cmsis-dap: fix USB interface for NXP LPC-Link2
[openocd.git] / src / target / armv7m.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2007,2008 √ėyvind Harboe *
12 * oyvind.harboe@zylin.com *
13 * *
14 * Copyright (C) 2018 by Liviu Ionescu *
15 * <ilg@livius.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 * *
30 * ARMv7-M Architecture, Application Level Reference Manual *
31 * ARM DDI 0405C (September 2008) *
32 * *
33 ***************************************************************************/
34
35 #ifdef HAVE_CONFIG_H
36 #include "config.h"
37 #endif
38
39 #include "breakpoints.h"
40 #include "armv7m.h"
41 #include "algorithm.h"
42 #include "register.h"
43 #include "semihosting_common.h"
44
45 #if 0
46 #define _DEBUG_INSTRUCTION_EXECUTION_
47 #endif
48
49 static const char * const armv7m_exception_strings[] = {
50 "", "Reset", "NMI", "HardFault",
51 "MemManage", "BusFault", "UsageFault", "RESERVED",
52 "RESERVED", "RESERVED", "RESERVED", "SVCall",
53 "DebugMonitor", "RESERVED", "PendSV", "SysTick"
54 };
55
56 /* PSP is used in some thread modes */
57 const int armv7m_psp_reg_map[ARMV7M_NUM_CORE_REGS] = {
58 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
59 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
60 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
61 ARMV7M_R12, ARMV7M_PSP, ARMV7M_R14, ARMV7M_PC,
62 ARMV7M_xPSR,
63 };
64
65 /* MSP is used in handler and some thread modes */
66 const int armv7m_msp_reg_map[ARMV7M_NUM_CORE_REGS] = {
67 ARMV7M_R0, ARMV7M_R1, ARMV7M_R2, ARMV7M_R3,
68 ARMV7M_R4, ARMV7M_R5, ARMV7M_R6, ARMV7M_R7,
69 ARMV7M_R8, ARMV7M_R9, ARMV7M_R10, ARMV7M_R11,
70 ARMV7M_R12, ARMV7M_MSP, ARMV7M_R14, ARMV7M_PC,
71 ARMV7M_xPSR,
72 };
73
74 /*
75 * These registers are not memory-mapped. The ARMv7-M profile includes
76 * memory mapped registers too, such as for the NVIC (interrupt controller)
77 * and SysTick (timer) modules; those can mostly be treated as peripherals.
78 *
79 * The ARMv6-M profile is almost identical in this respect, except that it
80 * doesn't include basepri or faultmask registers.
81 */
82 static const struct {
83 unsigned id;
84 const char *name;
85 unsigned bits;
86 enum reg_type type;
87 const char *group;
88 const char *feature;
89 } armv7m_regs[] = {
90 { ARMV7M_R0, "r0", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
91 { ARMV7M_R1, "r1", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
92 { ARMV7M_R2, "r2", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
93 { ARMV7M_R3, "r3", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
94 { ARMV7M_R4, "r4", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
95 { ARMV7M_R5, "r5", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
96 { ARMV7M_R6, "r6", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
97 { ARMV7M_R7, "r7", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
98 { ARMV7M_R8, "r8", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
99 { ARMV7M_R9, "r9", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
100 { ARMV7M_R10, "r10", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
101 { ARMV7M_R11, "r11", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
102 { ARMV7M_R12, "r12", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
103 { ARMV7M_R13, "sp", 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.arm.m-profile" },
104 { ARMV7M_R14, "lr", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
105 { ARMV7M_PC, "pc", 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.arm.m-profile" },
106 { ARMV7M_xPSR, "xPSR", 32, REG_TYPE_INT, "general", "org.gnu.gdb.arm.m-profile" },
107
108 { ARMV7M_MSP, "msp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
109 { ARMV7M_PSP, "psp", 32, REG_TYPE_DATA_PTR, "system", "org.gnu.gdb.arm.m-system" },
110
111 { ARMV7M_PRIMASK, "primask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
112 { ARMV7M_BASEPRI, "basepri", 8, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
113 { ARMV7M_FAULTMASK, "faultmask", 1, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
114 { ARMV7M_CONTROL, "control", 2, REG_TYPE_INT8, "system", "org.gnu.gdb.arm.m-system" },
115
116 { ARMV7M_D0, "d0", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
117 { ARMV7M_D1, "d1", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
118 { ARMV7M_D2, "d2", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
119 { ARMV7M_D3, "d3", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
120 { ARMV7M_D4, "d4", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
121 { ARMV7M_D5, "d5", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
122 { ARMV7M_D6, "d6", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
123 { ARMV7M_D7, "d7", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
124 { ARMV7M_D8, "d8", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
125 { ARMV7M_D9, "d9", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
126 { ARMV7M_D10, "d10", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
127 { ARMV7M_D11, "d11", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
128 { ARMV7M_D12, "d12", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
129 { ARMV7M_D13, "d13", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
130 { ARMV7M_D14, "d14", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
131 { ARMV7M_D15, "d15", 64, REG_TYPE_IEEE_DOUBLE, "float", "org.gnu.gdb.arm.vfp" },
132
133 { ARMV7M_FPSCR, "fpscr", 32, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp" },
134 };
135
136 #define ARMV7M_NUM_REGS ARRAY_SIZE(armv7m_regs)
137
138 /**
139 * Restores target context using the cache of core registers set up
140 * by armv7m_build_reg_cache(), calling optional core-specific hooks.
141 */
142 int armv7m_restore_context(struct target *target)
143 {
144 int i;
145 struct armv7m_common *armv7m = target_to_armv7m(target);
146 struct reg_cache *cache = armv7m->arm.core_cache;
147
148 LOG_DEBUG(" ");
149
150 if (armv7m->pre_restore_context)
151 armv7m->pre_restore_context(target);
152
153 for (i = cache->num_regs - 1; i >= 0; i--) {
154 if (cache->reg_list[i].dirty) {
155 armv7m->arm.write_core_reg(target, &cache->reg_list[i], i,
156 ARM_MODE_ANY, cache->reg_list[i].value);
157 }
158 }
159
160 return ERROR_OK;
161 }
162
163 /* Core state functions */
164
165 /**
166 * Maps ISR number (from xPSR) to name.
167 * Note that while names and meanings for the first sixteen are standardized
168 * (with zero not a true exception), external interrupts are only numbered.
169 * They are assigned by vendors, which generally assign different numbers to
170 * peripherals (such as UART0 or a USB peripheral controller).
171 */
172 const char *armv7m_exception_string(int number)
173 {
174 static char enamebuf[32];
175
176 if ((number < 0) | (number > 511))
177 return "Invalid exception";
178 if (number < 16)
179 return armv7m_exception_strings[number];
180 sprintf(enamebuf, "External Interrupt(%i)", number - 16);
181 return enamebuf;
182 }
183
184 static int armv7m_get_core_reg(struct reg *reg)
185 {
186 int retval;
187 struct arm_reg *armv7m_reg = reg->arch_info;
188 struct target *target = armv7m_reg->target;
189 struct arm *arm = target_to_arm(target);
190
191 if (target->state != TARGET_HALTED)
192 return ERROR_TARGET_NOT_HALTED;
193
194 retval = arm->read_core_reg(target, reg, reg->number, arm->core_mode);
195
196 return retval;
197 }
198
199 static int armv7m_set_core_reg(struct reg *reg, uint8_t *buf)
200 {
201 struct arm_reg *armv7m_reg = reg->arch_info;
202 struct target *target = armv7m_reg->target;
203
204 if (target->state != TARGET_HALTED)
205 return ERROR_TARGET_NOT_HALTED;
206
207 buf_cpy(buf, reg->value, reg->size);
208 reg->dirty = true;
209 reg->valid = true;
210
211 return ERROR_OK;
212 }
213
214 static int armv7m_read_core_reg(struct target *target, struct reg *r,
215 int num, enum arm_mode mode)
216 {
217 uint32_t reg_value;
218 int retval;
219 struct arm_reg *armv7m_core_reg;
220 struct armv7m_common *armv7m = target_to_armv7m(target);
221
222 assert(num < (int)armv7m->arm.core_cache->num_regs);
223
224 armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
225
226 if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
227 /* map D0..D15 to S0..S31 */
228 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
229 retval = armv7m->load_core_reg_u32(target, regidx, &reg_value);
230 if (retval != ERROR_OK)
231 return retval;
232 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value,
233 0, 32, reg_value);
234 retval = armv7m->load_core_reg_u32(target, regidx + 1, &reg_value);
235 if (retval != ERROR_OK)
236 return retval;
237 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value + 4,
238 0, 32, reg_value);
239 } else {
240 retval = armv7m->load_core_reg_u32(target,
241 armv7m_core_reg->num, &reg_value);
242 if (retval != ERROR_OK)
243 return retval;
244 buf_set_u32(armv7m->arm.core_cache->reg_list[num].value, 0, 32, reg_value);
245 }
246
247 armv7m->arm.core_cache->reg_list[num].valid = true;
248 armv7m->arm.core_cache->reg_list[num].dirty = false;
249
250 return retval;
251 }
252
253 static int armv7m_write_core_reg(struct target *target, struct reg *r,
254 int num, enum arm_mode mode, uint8_t *value)
255 {
256 int retval;
257 struct arm_reg *armv7m_core_reg;
258 struct armv7m_common *armv7m = target_to_armv7m(target);
259
260 assert(num < (int)armv7m->arm.core_cache->num_regs);
261
262 armv7m_core_reg = armv7m->arm.core_cache->reg_list[num].arch_info;
263
264 if ((armv7m_core_reg->num >= ARMV7M_D0) && (armv7m_core_reg->num <= ARMV7M_D15)) {
265 /* map D0..D15 to S0..S31 */
266 size_t regidx = ARMV7M_S0 + 2 * (armv7m_core_reg->num - ARMV7M_D0);
267
268 uint32_t t = buf_get_u32(value, 0, 32);
269 retval = armv7m->store_core_reg_u32(target, regidx, t);
270 if (retval != ERROR_OK)
271 goto out_error;
272
273 t = buf_get_u32(value + 4, 0, 32);
274 retval = armv7m->store_core_reg_u32(target, regidx + 1, t);
275 if (retval != ERROR_OK)
276 goto out_error;
277 } else {
278 uint32_t t = buf_get_u32(value, 0, 32);
279
280 LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num, t);
281 retval = armv7m->store_core_reg_u32(target, armv7m_core_reg->num, t);
282 if (retval != ERROR_OK)
283 goto out_error;
284 }
285
286 armv7m->arm.core_cache->reg_list[num].valid = true;
287 armv7m->arm.core_cache->reg_list[num].dirty = false;
288
289 return ERROR_OK;
290
291 out_error:
292 LOG_ERROR("Error setting register");
293 armv7m->arm.core_cache->reg_list[num].dirty = armv7m->arm.core_cache->reg_list[num].valid;
294 return ERROR_JTAG_DEVICE_ERROR;
295 }
296
297 /**
298 * Returns generic ARM userspace registers to GDB.
299 */
300 int armv7m_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
301 int *reg_list_size, enum target_register_class reg_class)
302 {
303 struct armv7m_common *armv7m = target_to_armv7m(target);
304 int i, size;
305
306 if (reg_class == REG_CLASS_ALL)
307 size = armv7m->arm.core_cache->num_regs;
308 else
309 size = ARMV7M_NUM_CORE_REGS;
310
311 *reg_list = malloc(sizeof(struct reg *) * size);
312 if (*reg_list == NULL)
313 return ERROR_FAIL;
314
315 for (i = 0; i < size; i++)
316 (*reg_list)[i] = &armv7m->arm.core_cache->reg_list[i];
317
318 *reg_list_size = size;
319
320 return ERROR_OK;
321 }
322
323 /** Runs a Thumb algorithm in the target. */
324 int armv7m_run_algorithm(struct target *target,
325 int num_mem_params, struct mem_param *mem_params,
326 int num_reg_params, struct reg_param *reg_params,
327 target_addr_t entry_point, target_addr_t exit_point,
328 int timeout_ms, void *arch_info)
329 {
330 int retval;
331
332 retval = armv7m_start_algorithm(target,
333 num_mem_params, mem_params,
334 num_reg_params, reg_params,
335 entry_point, exit_point,
336 arch_info);
337
338 if (retval == ERROR_OK)
339 retval = armv7m_wait_algorithm(target,
340 num_mem_params, mem_params,
341 num_reg_params, reg_params,
342 exit_point, timeout_ms,
343 arch_info);
344
345 return retval;
346 }
347
348 /** Starts a Thumb algorithm in the target. */
349 int armv7m_start_algorithm(struct target *target,
350 int num_mem_params, struct mem_param *mem_params,
351 int num_reg_params, struct reg_param *reg_params,
352 target_addr_t entry_point, target_addr_t exit_point,
353 void *arch_info)
354 {
355 struct armv7m_common *armv7m = target_to_armv7m(target);
356 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
357 enum arm_mode core_mode = armv7m->arm.core_mode;
358 int retval = ERROR_OK;
359
360 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
361 * at the exit point */
362
363 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
364 LOG_ERROR("current target isn't an ARMV7M target");
365 return ERROR_TARGET_INVALID;
366 }
367
368 if (target->state != TARGET_HALTED) {
369 LOG_WARNING("target not halted");
370 return ERROR_TARGET_NOT_HALTED;
371 }
372
373 /* refresh core register cache
374 * Not needed if core register cache is always consistent with target process state */
375 for (unsigned i = 0; i < armv7m->arm.core_cache->num_regs; i++) {
376
377 armv7m_algorithm_info->context[i] = buf_get_u32(
378 armv7m->arm.core_cache->reg_list[i].value,
379 0,
380 32);
381 }
382
383 for (int i = 0; i < num_mem_params; i++) {
384 if (mem_params[i].direction == PARAM_IN)
385 continue;
386 retval = target_write_buffer(target, mem_params[i].address,
387 mem_params[i].size,
388 mem_params[i].value);
389 if (retval != ERROR_OK)
390 return retval;
391 }
392
393 for (int i = 0; i < num_reg_params; i++) {
394 if (reg_params[i].direction == PARAM_IN)
395 continue;
396
397 struct reg *reg =
398 register_get_by_name(armv7m->arm.core_cache, reg_params[i].reg_name, 0);
399 /* uint32_t regvalue; */
400
401 if (!reg) {
402 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
403 return ERROR_COMMAND_SYNTAX_ERROR;
404 }
405
406 if (reg->size != reg_params[i].size) {
407 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
408 reg_params[i].reg_name);
409 return ERROR_COMMAND_SYNTAX_ERROR;
410 }
411
412 /* regvalue = buf_get_u32(reg_params[i].value, 0, 32); */
413 armv7m_set_core_reg(reg, reg_params[i].value);
414 }
415
416 {
417 /*
418 * Ensure xPSR.T is set to avoid trying to run things in arm
419 * (non-thumb) mode, which armv7m does not support.
420 *
421 * We do this by setting the entirety of xPSR, which should
422 * remove all the unknowns about xPSR state.
423 *
424 * Because xPSR.T is populated on reset from the vector table,
425 * it might be 0 if the vector table has "bad" data in it.
426 */
427 struct reg *reg = &armv7m->arm.core_cache->reg_list[ARMV7M_xPSR];
428 buf_set_u32(reg->value, 0, 32, 0x01000000);
429 reg->valid = true;
430 reg->dirty = true;
431 }
432
433 if (armv7m_algorithm_info->core_mode != ARM_MODE_ANY &&
434 armv7m_algorithm_info->core_mode != core_mode) {
435
436 /* we cannot set ARM_MODE_HANDLER, so use ARM_MODE_THREAD instead */
437 if (armv7m_algorithm_info->core_mode == ARM_MODE_HANDLER) {
438 armv7m_algorithm_info->core_mode = ARM_MODE_THREAD;
439 LOG_INFO("ARM_MODE_HANDLER not currently supported, using ARM_MODE_THREAD instead");
440 }
441
442 LOG_DEBUG("setting core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
443 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
444 0, 1, armv7m_algorithm_info->core_mode);
445 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
446 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
447 }
448
449 /* save previous core mode */
450 armv7m_algorithm_info->core_mode = core_mode;
451
452 retval = target_resume(target, 0, entry_point, 1, 1);
453
454 return retval;
455 }
456
457 /** Waits for an algorithm in the target. */
458 int armv7m_wait_algorithm(struct target *target,
459 int num_mem_params, struct mem_param *mem_params,
460 int num_reg_params, struct reg_param *reg_params,
461 target_addr_t exit_point, int timeout_ms,
462 void *arch_info)
463 {
464 struct armv7m_common *armv7m = target_to_armv7m(target);
465 struct armv7m_algorithm *armv7m_algorithm_info = arch_info;
466 int retval = ERROR_OK;
467
468 /* NOTE: armv7m_run_algorithm requires that each algorithm uses a software breakpoint
469 * at the exit point */
470
471 if (armv7m_algorithm_info->common_magic != ARMV7M_COMMON_MAGIC) {
472 LOG_ERROR("current target isn't an ARMV7M target");
473 return ERROR_TARGET_INVALID;
474 }
475
476 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
477 /* If the target fails to halt due to the breakpoint, force a halt */
478 if (retval != ERROR_OK || target->state != TARGET_HALTED) {
479 retval = target_halt(target);
480 if (retval != ERROR_OK)
481 return retval;
482 retval = target_wait_state(target, TARGET_HALTED, 500);
483 if (retval != ERROR_OK)
484 return retval;
485 return ERROR_TARGET_TIMEOUT;
486 }
487
488 if (exit_point) {
489 /* PC value has been cached in cortex_m_debug_entry() */
490 uint32_t pc = buf_get_u32(armv7m->arm.pc->value, 0, 32);
491 if (pc != exit_point) {
492 LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 ", expected 0x%" TARGET_PRIxADDR,
493 pc, exit_point);
494 return ERROR_TARGET_ALGO_EXIT;
495 }
496 }
497
498 /* Read memory values to mem_params[] */
499 for (int i = 0; i < num_mem_params; i++) {
500 if (mem_params[i].direction != PARAM_OUT) {
501 retval = target_read_buffer(target, mem_params[i].address,
502 mem_params[i].size,
503 mem_params[i].value);
504 if (retval != ERROR_OK)
505 return retval;
506 }
507 }
508
509 /* Copy core register values to reg_params[] */
510 for (int i = 0; i < num_reg_params; i++) {
511 if (reg_params[i].direction != PARAM_OUT) {
512 struct reg *reg = register_get_by_name(armv7m->arm.core_cache,
513 reg_params[i].reg_name,
514 0);
515
516 if (!reg) {
517 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
518 return ERROR_COMMAND_SYNTAX_ERROR;
519 }
520
521 if (reg->size != reg_params[i].size) {
522 LOG_ERROR(
523 "BUG: register '%s' size doesn't match reg_params[i].size",
524 reg_params[i].reg_name);
525 return ERROR_COMMAND_SYNTAX_ERROR;
526 }
527
528 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
529 }
530 }
531
532 for (int i = armv7m->arm.core_cache->num_regs - 1; i >= 0; i--) {
533 uint32_t regvalue;
534 regvalue = buf_get_u32(armv7m->arm.core_cache->reg_list[i].value, 0, 32);
535 if (regvalue != armv7m_algorithm_info->context[i]) {
536 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
537 armv7m->arm.core_cache->reg_list[i].name,
538 armv7m_algorithm_info->context[i]);
539 buf_set_u32(armv7m->arm.core_cache->reg_list[i].value,
540 0, 32, armv7m_algorithm_info->context[i]);
541 armv7m->arm.core_cache->reg_list[i].valid = true;
542 armv7m->arm.core_cache->reg_list[i].dirty = true;
543 }
544 }
545
546 /* restore previous core mode */
547 if (armv7m_algorithm_info->core_mode != armv7m->arm.core_mode) {
548 LOG_DEBUG("restoring core_mode: 0x%2.2x", armv7m_algorithm_info->core_mode);
549 buf_set_u32(armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].value,
550 0, 1, armv7m_algorithm_info->core_mode);
551 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].dirty = true;
552 armv7m->arm.core_cache->reg_list[ARMV7M_CONTROL].valid = true;
553 }
554
555 armv7m->arm.core_mode = armv7m_algorithm_info->core_mode;
556
557 return retval;
558 }
559
560 /** Logs summary of ARMv7-M state for a halted target. */
561 int armv7m_arch_state(struct target *target)
562 {
563 struct armv7m_common *armv7m = target_to_armv7m(target);
564 struct arm *arm = &armv7m->arm;
565 uint32_t ctrl, sp;
566
567 /* avoid filling log waiting for fileio reply */
568 if (target->semihosting && target->semihosting->hit_fileio)
569 return ERROR_OK;
570
571 ctrl = buf_get_u32(arm->core_cache->reg_list[ARMV7M_CONTROL].value, 0, 32);
572 sp = buf_get_u32(arm->core_cache->reg_list[ARMV7M_R13].value, 0, 32);
573
574 LOG_USER("target halted due to %s, current mode: %s %s\n"
575 "xPSR: %#8.8" PRIx32 " pc: %#8.8" PRIx32 " %csp: %#8.8" PRIx32 "%s%s",
576 debug_reason_name(target),
577 arm_mode_name(arm->core_mode),
578 armv7m_exception_string(armv7m->exception_number),
579 buf_get_u32(arm->cpsr->value, 0, 32),
580 buf_get_u32(arm->pc->value, 0, 32),
581 (ctrl & 0x02) ? 'p' : 'm',
582 sp,
583 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
584 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
585
586 return ERROR_OK;
587 }
588
589 static const struct reg_arch_type armv7m_reg_type = {
590 .get = armv7m_get_core_reg,
591 .set = armv7m_set_core_reg,
592 };
593
594 /** Builds cache of architecturally defined registers. */
595 struct reg_cache *armv7m_build_reg_cache(struct target *target)
596 {
597 struct armv7m_common *armv7m = target_to_armv7m(target);
598 struct arm *arm = &armv7m->arm;
599 int num_regs = ARMV7M_NUM_REGS;
600 struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
601 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
602 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
603 struct arm_reg *arch_info = calloc(num_regs, sizeof(struct arm_reg));
604 struct reg_feature *feature;
605 int i;
606
607 /* Build the process context cache */
608 cache->name = "arm v7m registers";
609 cache->next = NULL;
610 cache->reg_list = reg_list;
611 cache->num_regs = num_regs;
612 (*cache_p) = cache;
613
614 for (i = 0; i < num_regs; i++) {
615 arch_info[i].num = armv7m_regs[i].id;
616 arch_info[i].target = target;
617 arch_info[i].arm = arm;
618
619 reg_list[i].name = armv7m_regs[i].name;
620 reg_list[i].size = armv7m_regs[i].bits;
621 size_t storage_size = DIV_ROUND_UP(armv7m_regs[i].bits, 8);
622 if (storage_size < 4)
623 storage_size = 4;
624 reg_list[i].value = calloc(1, storage_size);
625 reg_list[i].dirty = false;
626 reg_list[i].valid = false;
627 reg_list[i].type = &armv7m_reg_type;
628 reg_list[i].arch_info = &arch_info[i];
629
630 reg_list[i].group = armv7m_regs[i].group;
631 reg_list[i].number = i;
632 reg_list[i].exist = true;
633 reg_list[i].caller_save = true; /* gdb defaults to true */
634
635 feature = calloc(1, sizeof(struct reg_feature));
636 if (feature) {
637 feature->name = armv7m_regs[i].feature;
638 reg_list[i].feature = feature;
639 } else
640 LOG_ERROR("unable to allocate feature list");
641
642 reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
643 if (reg_list[i].reg_data_type)
644 reg_list[i].reg_data_type->type = armv7m_regs[i].type;
645 else
646 LOG_ERROR("unable to allocate reg type list");
647 }
648
649 arm->cpsr = reg_list + ARMV7M_xPSR;
650 arm->pc = reg_list + ARMV7M_PC;
651 arm->core_cache = cache;
652
653 return cache;
654 }
655
656 void armv7m_free_reg_cache(struct target *target)
657 {
658 struct armv7m_common *armv7m = target_to_armv7m(target);
659 struct arm *arm = &armv7m->arm;
660 struct reg_cache *cache;
661 struct reg *reg;
662 unsigned int i;
663
664 cache = arm->core_cache;
665
666 if (!cache)
667 return;
668
669 for (i = 0; i < cache->num_regs; i++) {
670 reg = &cache->reg_list[i];
671
672 free(reg->feature);
673 free(reg->reg_data_type);
674 free(reg->value);
675 }
676
677 free(cache->reg_list[0].arch_info);
678 free(cache->reg_list);
679 free(cache);
680
681 arm->core_cache = NULL;
682 }
683
684 static int armv7m_setup_semihosting(struct target *target, int enable)
685 {
686 /* nothing todo for armv7m */
687 return ERROR_OK;
688 }
689
690 /** Sets up target as a generic ARMv7-M core */
691 int armv7m_init_arch_info(struct target *target, struct armv7m_common *armv7m)
692 {
693 struct arm *arm = &armv7m->arm;
694
695 armv7m->common_magic = ARMV7M_COMMON_MAGIC;
696 armv7m->fp_feature = FP_NONE;
697 armv7m->trace_config.trace_bus_id = 1;
698 /* Enable stimulus port #0 by default */
699 armv7m->trace_config.itm_ter[0] = 1;
700
701 arm->core_type = ARM_CORE_TYPE_M_PROFILE;
702 arm->arch_info = armv7m;
703 arm->setup_semihosting = armv7m_setup_semihosting;
704
705 arm->read_core_reg = armv7m_read_core_reg;
706 arm->write_core_reg = armv7m_write_core_reg;
707
708 return arm_init_arch_info(target, arm);
709 }
710
711 /** Generates a CRC32 checksum of a memory region. */
712 int armv7m_checksum_memory(struct target *target,
713 target_addr_t address, uint32_t count, uint32_t *checksum)
714 {
715 struct working_area *crc_algorithm;
716 struct armv7m_algorithm armv7m_info;
717 struct reg_param reg_params[2];
718 int retval;
719
720 static const uint8_t cortex_m_crc_code[] = {
721 #include "../../contrib/loaders/checksum/armv7m_crc.inc"
722 };
723
724 retval = target_alloc_working_area(target, sizeof(cortex_m_crc_code), &crc_algorithm);
725 if (retval != ERROR_OK)
726 return retval;
727
728 retval = target_write_buffer(target, crc_algorithm->address,
729 sizeof(cortex_m_crc_code), (uint8_t *)cortex_m_crc_code);
730 if (retval != ERROR_OK)
731 goto cleanup;
732
733 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
734 armv7m_info.core_mode = ARM_MODE_THREAD;
735
736 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
737 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
738
739 buf_set_u32(reg_params[0].value, 0, 32, address);
740 buf_set_u32(reg_params[1].value, 0, 32, count);
741
742 int timeout = 20000 * (1 + (count / (1024 * 1024)));
743
744 retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
745 crc_algorithm->address + (sizeof(cortex_m_crc_code) - 6),
746 timeout, &armv7m_info);
747
748 if (retval == ERROR_OK)
749 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
750 else
751 LOG_ERROR("error executing cortex_m crc algorithm");
752
753 destroy_reg_param(&reg_params[0]);
754 destroy_reg_param(&reg_params[1]);
755
756 cleanup:
757 target_free_working_area(target, crc_algorithm);
758
759 return retval;
760 }
761
762 /** Checks an array of memory regions whether they are erased. */
763 int armv7m_blank_check_memory(struct target *target,
764 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
765 {
766 struct working_area *erase_check_algorithm;
767 struct working_area *erase_check_params;
768 struct reg_param reg_params[2];
769 struct armv7m_algorithm armv7m_info;
770 int retval;
771
772 static bool timed_out;
773
774 static const uint8_t erase_check_code[] = {
775 #include "../../contrib/loaders/erase_check/armv7m_erase_check.inc"
776 };
777
778 const uint32_t code_size = sizeof(erase_check_code);
779
780 /* make sure we have a working area */
781 if (target_alloc_working_area(target, code_size,
782 &erase_check_algorithm) != ERROR_OK)
783 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
784
785 retval = target_write_buffer(target, erase_check_algorithm->address,
786 code_size, erase_check_code);
787 if (retval != ERROR_OK)
788 goto cleanup1;
789
790 /* prepare blocks array for algo */
791 struct algo_block {
792 union {
793 uint32_t size;
794 uint32_t result;
795 };
796 uint32_t address;
797 };
798
799 uint32_t avail = target_get_working_area_avail(target);
800 int blocks_to_check = avail / sizeof(struct algo_block) - 1;
801 if (num_blocks < blocks_to_check)
802 blocks_to_check = num_blocks;
803
804 struct algo_block *params = malloc((blocks_to_check+1)*sizeof(struct algo_block));
805 if (params == NULL) {
806 retval = ERROR_FAIL;
807 goto cleanup1;
808 }
809
810 int i;
811 uint32_t total_size = 0;
812 for (i = 0; i < blocks_to_check; i++) {
813 total_size += blocks[i].size;
814 target_buffer_set_u32(target, (uint8_t *)&(params[i].size),
815 blocks[i].size / sizeof(uint32_t));
816 target_buffer_set_u32(target, (uint8_t *)&(params[i].address),
817 blocks[i].address);
818 }
819 target_buffer_set_u32(target, (uint8_t *)&(params[blocks_to_check].size), 0);
820
821 uint32_t param_size = (blocks_to_check + 1) * sizeof(struct algo_block);
822 if (target_alloc_working_area(target, param_size,
823 &erase_check_params) != ERROR_OK) {
824 retval = ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
825 goto cleanup2;
826 }
827
828 retval = target_write_buffer(target, erase_check_params->address,
829 param_size, (uint8_t *)params);
830 if (retval != ERROR_OK)
831 goto cleanup3;
832
833 uint32_t erased_word = erased_value | (erased_value << 8)
834 | (erased_value << 16) | (erased_value << 24);
835
836 LOG_DEBUG("Starting erase check of %d blocks, parameters@"
837 TARGET_ADDR_FMT, blocks_to_check, erase_check_params->address);
838
839 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
840 armv7m_info.core_mode = ARM_MODE_THREAD;
841
842 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
843 buf_set_u32(reg_params[0].value, 0, 32, erase_check_params->address);
844
845 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
846 buf_set_u32(reg_params[1].value, 0, 32, erased_word);
847
848 /* assume CPU clk at least 1 MHz */
849 int timeout = (timed_out ? 30000 : 2000) + total_size * 3 / 1000;
850
851 retval = target_run_algorithm(target,
852 0, NULL,
853 ARRAY_SIZE(reg_params), reg_params,
854 erase_check_algorithm->address,
855 erase_check_algorithm->address + (code_size - 2),
856 timeout,
857 &armv7m_info);
858
859 timed_out = retval == ERROR_TARGET_TIMEOUT;
860 if (retval != ERROR_OK && !timed_out)
861 goto cleanup4;
862
863 retval = target_read_buffer(target, erase_check_params->address,
864 param_size, (uint8_t *)params);
865 if (retval != ERROR_OK)
866 goto cleanup4;
867
868 for (i = 0; i < blocks_to_check; i++) {
869 uint32_t result = target_buffer_get_u32(target,
870 (uint8_t *)&(params[i].result));
871 if (result != 0 && result != 1)
872 break;
873
874 blocks[i].result = result;
875 }
876 if (i && timed_out)
877 LOG_INFO("Slow CPU clock: %d blocks checked, %d remain. Continuing...", i, num_blocks-i);
878
879 retval = i; /* return number of blocks really checked */
880
881 cleanup4:
882 destroy_reg_param(&reg_params[0]);
883 destroy_reg_param(&reg_params[1]);
884
885 cleanup3:
886 target_free_working_area(target, erase_check_params);
887 cleanup2:
888 free(params);
889 cleanup1:
890 target_free_working_area(target, erase_check_algorithm);
891
892 return retval;
893 }
894
895 int armv7m_maybe_skip_bkpt_inst(struct target *target, bool *inst_found)
896 {
897 struct armv7m_common *armv7m = target_to_armv7m(target);
898 struct reg *r = armv7m->arm.pc;
899 bool result = false;
900
901
902 /* if we halted last time due to a bkpt instruction
903 * then we have to manually step over it, otherwise
904 * the core will break again */
905
906 if (target->debug_reason == DBG_REASON_BREAKPOINT) {
907 uint16_t op;
908 uint32_t pc = buf_get_u32(r->value, 0, 32);
909
910 pc &= ~1;
911 if (target_read_u16(target, pc, &op) == ERROR_OK) {
912 if ((op & 0xFF00) == 0xBE00) {
913 pc = buf_get_u32(r->value, 0, 32) + 2;
914 buf_set_u32(r->value, 0, 32, pc);
915 r->dirty = true;
916 r->valid = true;
917 result = true;
918 LOG_DEBUG("Skipping over BKPT instruction");
919 }
920 }
921 }
922
923 if (inst_found)
924 *inst_found = result;
925
926 return ERROR_OK;
927 }
928
929 const struct command_registration armv7m_command_handlers[] = {
930 {
931 .chain = arm_command_handlers,
932 },
933 COMMAND_REGISTRATION_DONE
934 };