jtag: linuxgpiod: drop extra parenthesis
[openocd.git] / src / target / armv4_5.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2008 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2018 by Liviu Ionescu *
12 * <ilg@livius.net> *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "arm.h"
33 #include "armv4_5.h"
34 #include "arm_jtag.h"
35 #include "breakpoints.h"
36 #include "arm_disassembler.h"
37 #include <helper/binarybuffer.h>
38 #include "algorithm.h"
39 #include "register.h"
40 #include "semihosting_common.h"
41
42 /* offsets into armv4_5 core register cache */
43 enum {
44 /* ARMV4_5_CPSR = 31, */
45 ARMV4_5_SPSR_FIQ = 32,
46 ARMV4_5_SPSR_IRQ = 33,
47 ARMV4_5_SPSR_SVC = 34,
48 ARMV4_5_SPSR_ABT = 35,
49 ARMV4_5_SPSR_UND = 36,
50 ARM_SPSR_MON = 41,
51 ARM_SPSR_HYP = 43,
52 };
53
54 static const uint8_t arm_usr_indices[17] = {
55 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
56 };
57
58 static const uint8_t arm_fiq_indices[8] = {
59 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
60 };
61
62 static const uint8_t arm_irq_indices[3] = {
63 23, 24, ARMV4_5_SPSR_IRQ,
64 };
65
66 static const uint8_t arm_svc_indices[3] = {
67 25, 26, ARMV4_5_SPSR_SVC,
68 };
69
70 static const uint8_t arm_abt_indices[3] = {
71 27, 28, ARMV4_5_SPSR_ABT,
72 };
73
74 static const uint8_t arm_und_indices[3] = {
75 29, 30, ARMV4_5_SPSR_UND,
76 };
77
78 static const uint8_t arm_mon_indices[3] = {
79 39, 40, ARM_SPSR_MON,
80 };
81
82 static const uint8_t arm_hyp_indices[2] = {
83 42, ARM_SPSR_HYP,
84 };
85
86 static const struct {
87 const char *name;
88 unsigned short psr;
89 /* For user and system modes, these list indices for all registers.
90 * otherwise they're just indices for the shadow registers and SPSR.
91 */
92 unsigned short n_indices;
93 const uint8_t *indices;
94 } arm_mode_data[] = {
95 /* Seven modes are standard from ARM7 on. "System" and "User" share
96 * the same registers; other modes shadow from 3 to 8 registers.
97 */
98 {
99 .name = "User",
100 .psr = ARM_MODE_USR,
101 .n_indices = ARRAY_SIZE(arm_usr_indices),
102 .indices = arm_usr_indices,
103 },
104 {
105 .name = "FIQ",
106 .psr = ARM_MODE_FIQ,
107 .n_indices = ARRAY_SIZE(arm_fiq_indices),
108 .indices = arm_fiq_indices,
109 },
110 {
111 .name = "Supervisor",
112 .psr = ARM_MODE_SVC,
113 .n_indices = ARRAY_SIZE(arm_svc_indices),
114 .indices = arm_svc_indices,
115 },
116 {
117 .name = "Abort",
118 .psr = ARM_MODE_ABT,
119 .n_indices = ARRAY_SIZE(arm_abt_indices),
120 .indices = arm_abt_indices,
121 },
122 {
123 .name = "IRQ",
124 .psr = ARM_MODE_IRQ,
125 .n_indices = ARRAY_SIZE(arm_irq_indices),
126 .indices = arm_irq_indices,
127 },
128 {
129 .name = "Undefined instruction",
130 .psr = ARM_MODE_UND,
131 .n_indices = ARRAY_SIZE(arm_und_indices),
132 .indices = arm_und_indices,
133 },
134 {
135 .name = "System",
136 .psr = ARM_MODE_SYS,
137 .n_indices = ARRAY_SIZE(arm_usr_indices),
138 .indices = arm_usr_indices,
139 },
140 /* TrustZone "Security Extensions" add a secure monitor mode.
141 * This is distinct from a "debug monitor" which can support
142 * non-halting debug, in conjunction with some debuggers.
143 */
144 {
145 .name = "Secure Monitor",
146 .psr = ARM_MODE_MON,
147 .n_indices = ARRAY_SIZE(arm_mon_indices),
148 .indices = arm_mon_indices,
149 },
150 {
151 .name = "Secure Monitor ARM1176JZF-S",
152 .psr = ARM_MODE_1176_MON,
153 .n_indices = ARRAY_SIZE(arm_mon_indices),
154 .indices = arm_mon_indices,
155 },
156
157 /* These special modes are currently only supported
158 * by ARMv6M and ARMv7M profiles */
159 {
160 .name = "Thread",
161 .psr = ARM_MODE_THREAD,
162 },
163 {
164 .name = "Thread (User)",
165 .psr = ARM_MODE_USER_THREAD,
166 },
167 {
168 .name = "Handler",
169 .psr = ARM_MODE_HANDLER,
170 },
171
172 /* armv7-a with virtualization extension */
173 {
174 .name = "Hypervisor",
175 .psr = ARM_MODE_HYP,
176 .n_indices = ARRAY_SIZE(arm_hyp_indices),
177 .indices = arm_hyp_indices,
178 },
179 };
180
181 /** Map PSR mode bits to the name of an ARM processor operating mode. */
182 const char *arm_mode_name(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return arm_mode_data[i].name;
187 }
188 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
189 return "UNRECOGNIZED";
190 }
191
192 /** Return true iff the parameter denotes a valid ARM processor mode. */
193 bool is_arm_mode(unsigned psr_mode)
194 {
195 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
196 if (arm_mode_data[i].psr == psr_mode)
197 return true;
198 }
199 return false;
200 }
201
202 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
203 int arm_mode_to_number(enum arm_mode mode)
204 {
205 switch (mode) {
206 case ARM_MODE_ANY:
207 /* map MODE_ANY to user mode */
208 case ARM_MODE_USR:
209 return 0;
210 case ARM_MODE_FIQ:
211 return 1;
212 case ARM_MODE_IRQ:
213 return 2;
214 case ARM_MODE_SVC:
215 return 3;
216 case ARM_MODE_ABT:
217 return 4;
218 case ARM_MODE_UND:
219 return 5;
220 case ARM_MODE_SYS:
221 return 6;
222 case ARM_MODE_MON:
223 case ARM_MODE_1176_MON:
224 return 7;
225 case ARM_MODE_HYP:
226 return 8;
227 default:
228 LOG_ERROR("invalid mode value encountered %d", mode);
229 return -1;
230 }
231 }
232
233 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
234 enum arm_mode armv4_5_number_to_mode(int number)
235 {
236 switch (number) {
237 case 0:
238 return ARM_MODE_USR;
239 case 1:
240 return ARM_MODE_FIQ;
241 case 2:
242 return ARM_MODE_IRQ;
243 case 3:
244 return ARM_MODE_SVC;
245 case 4:
246 return ARM_MODE_ABT;
247 case 5:
248 return ARM_MODE_UND;
249 case 6:
250 return ARM_MODE_SYS;
251 case 7:
252 return ARM_MODE_MON;
253 case 8:
254 return ARM_MODE_HYP;
255 default:
256 LOG_ERROR("mode index out of bounds %d", number);
257 return ARM_MODE_ANY;
258 }
259 }
260
261 static const char *arm_state_strings[] = {
262 "ARM", "Thumb", "Jazelle", "ThumbEE",
263 };
264
265 /* Templates for ARM core registers.
266 *
267 * NOTE: offsets in this table are coupled to the arm_mode_data
268 * table above, the armv4_5_core_reg_map array below, and also to
269 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
270 */
271 static const struct {
272 /* The name is used for e.g. the "regs" command. */
273 const char *name;
274
275 /* The {cookie, mode} tuple uniquely identifies one register.
276 * In a given mode, cookies 0..15 map to registers R0..R15,
277 * with R13..R15 usually called SP, LR, PC.
278 *
279 * MODE_ANY is used as *input* to the mapping, and indicates
280 * various special cases (sigh) and errors.
281 *
282 * Cookie 16 is (currently) confusing, since it indicates
283 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
284 * (Exception modes have both CPSR and SPSR registers ...)
285 */
286 unsigned cookie;
287 unsigned gdb_index;
288 enum arm_mode mode;
289 } arm_core_regs[] = {
290 /* IMPORTANT: we guarantee that the first eight cached registers
291 * correspond to r0..r7, and the fifteenth to PC, so that callers
292 * don't need to map them.
293 */
294 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
295 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
296 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
297 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
298 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
299 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
300 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
301 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
302
303 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
304 * them as MODE_ANY creates special cases. (ANY means
305 * "not mapped" elsewhere; here it's "everything but FIQ".)
306 */
307 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
308 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
309 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
310 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
311 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
312
313 /* Historical GDB mapping of indices:
314 * - 13-14 are sp and lr, but banked counterparts are used
315 * - 16-24 are left for deprecated 8 FPA + 1 FPS
316 * - 25 is the cpsr
317 */
318
319 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
320 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
321 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
322
323 /* guaranteed to be at index 15 */
324 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
325 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
326 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
327 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
328 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
329 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
330
331 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
332 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
333
334 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
335 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
336
337 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
338 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
339
340 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
341 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
342
343 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
344 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
345
346 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
347 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
348 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
349 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
350 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
351 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
352
353 /* These are only used for GDB target description, banked registers are accessed instead */
354 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
355 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
356
357 /* These exist only when the Security Extension (TrustZone) is present */
358 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
359 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
360 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
361
362 /* These exist only when the Virtualization Extensions is present */
363 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
364 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
365 };
366
367 static const struct {
368 unsigned int id;
369 const char *name;
370 uint32_t bits;
371 enum arm_mode mode;
372 enum reg_type type;
373 const char *group;
374 const char *feature;
375 } arm_vfp_v3_regs[] = {
376 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
398 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
399 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
400 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
401 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
402 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
403 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
404 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
405 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
406 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
407 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
408 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
409 };
410
411 /* map core mode (USR, FIQ, ...) and register number to
412 * indices into the register cache
413 */
414 const int armv4_5_core_reg_map[9][17] = {
415 { /* USR */
416 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
417 },
418 { /* FIQ (8 shadows of USR, vs normal 3) */
419 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
420 },
421 { /* IRQ */
422 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
423 },
424 { /* SVC */
425 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
426 },
427 { /* ABT */
428 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
429 },
430 { /* UND */
431 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
432 },
433 { /* SYS (same registers as USR) */
434 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
435 },
436 { /* MON */
437 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
438 },
439 { /* HYP */
440 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
441 }
442 };
443
444 /**
445 * Configures host-side ARM records to reflect the specified CPSR.
446 * Later, code can use arm_reg_current() to map register numbers
447 * according to how they are exposed by this mode.
448 */
449 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
450 {
451 enum arm_mode mode = cpsr & 0x1f;
452 int num;
453
454 /* NOTE: this may be called very early, before the register
455 * cache is set up. We can't defend against many errors, in
456 * particular against CPSRs that aren't valid *here* ...
457 */
458 if (arm->cpsr) {
459 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
460 arm->cpsr->valid = true;
461 arm->cpsr->dirty = false;
462 }
463
464 arm->core_mode = mode;
465
466 /* mode_to_number() warned; set up a somewhat-sane mapping */
467 num = arm_mode_to_number(mode);
468 if (num < 0) {
469 mode = ARM_MODE_USR;
470 num = 0;
471 }
472
473 arm->map = &armv4_5_core_reg_map[num][0];
474 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
475 ? NULL
476 : arm->core_cache->reg_list + arm->map[16];
477
478 /* Older ARMs won't have the J bit */
479 enum arm_state state;
480
481 if (cpsr & (1 << 5)) { /* T */
482 if (cpsr & (1 << 24)) { /* J */
483 LOG_WARNING("ThumbEE -- incomplete support");
484 state = ARM_STATE_THUMB_EE;
485 } else
486 state = ARM_STATE_THUMB;
487 } else {
488 if (cpsr & (1 << 24)) { /* J */
489 LOG_ERROR("Jazelle state handling is BROKEN!");
490 state = ARM_STATE_JAZELLE;
491 } else
492 state = ARM_STATE_ARM;
493 }
494 arm->core_state = state;
495
496 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
497 arm_mode_name(mode),
498 arm_state_strings[arm->core_state]);
499 }
500
501 /**
502 * Returns handle to the register currently mapped to a given number.
503 * Someone must have called arm_set_cpsr() before.
504 *
505 * \param arm This core's state and registers are used.
506 * \param regnum From 0..15 corresponding to R0..R14 and PC.
507 * Note that R0..R7 don't require mapping; you may access those
508 * as the first eight entries in the register cache. Likewise
509 * R15 (PC) doesn't need mapping; you may also access it directly.
510 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
511 * CPSR (arm->cpsr) is also not mapped.
512 */
513 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
514 {
515 struct reg *r;
516
517 if (regnum > 16)
518 return NULL;
519
520 if (!arm->map) {
521 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
522 r = arm->core_cache->reg_list + regnum;
523 } else
524 r = arm->core_cache->reg_list + arm->map[regnum];
525
526 /* e.g. invalid CPSR said "secure monitor" mode on a core
527 * that doesn't support it...
528 */
529 if (!r) {
530 LOG_ERROR("Invalid CPSR mode");
531 r = arm->core_cache->reg_list + regnum;
532 }
533
534 return r;
535 }
536
537 static const uint8_t arm_gdb_dummy_fp_value[12];
538
539 static struct reg_feature arm_gdb_dummy_fp_features = {
540 .name = "net.sourceforge.openocd.fake_fpa"
541 };
542
543 /**
544 * Dummy FPA registers are required to support GDB on ARM.
545 * Register packets require eight obsolete FPA register values.
546 * Modern ARM cores use Vector Floating Point (VFP), if they
547 * have any floating point support. VFP is not FPA-compatible.
548 */
549 struct reg arm_gdb_dummy_fp_reg = {
550 .name = "GDB dummy FPA register",
551 .value = (uint8_t *) arm_gdb_dummy_fp_value,
552 .valid = true,
553 .size = 96,
554 .exist = false,
555 .number = 16,
556 .feature = &arm_gdb_dummy_fp_features,
557 .group = "fake_fpa",
558 };
559
560 static const uint8_t arm_gdb_dummy_fps_value[4];
561
562 /**
563 * Dummy FPA status registers are required to support GDB on ARM.
564 * Register packets require an obsolete FPA status register.
565 */
566 struct reg arm_gdb_dummy_fps_reg = {
567 .name = "GDB dummy FPA status register",
568 .value = (uint8_t *) arm_gdb_dummy_fps_value,
569 .valid = true,
570 .size = 32,
571 .exist = false,
572 .number = 24,
573 .feature = &arm_gdb_dummy_fp_features,
574 .group = "fake_fpa",
575 };
576
577 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
578
579 static void arm_gdb_dummy_init(void)
580 {
581 register_init_dummy(&arm_gdb_dummy_fp_reg);
582 register_init_dummy(&arm_gdb_dummy_fps_reg);
583 }
584
585 static int armv4_5_get_core_reg(struct reg *reg)
586 {
587 int retval;
588 struct arm_reg *reg_arch_info = reg->arch_info;
589 struct target *target = reg_arch_info->target;
590
591 if (target->state != TARGET_HALTED) {
592 LOG_ERROR("Target not halted");
593 return ERROR_TARGET_NOT_HALTED;
594 }
595
596 retval = reg_arch_info->arm->read_core_reg(target, reg,
597 reg_arch_info->num, reg_arch_info->mode);
598 if (retval == ERROR_OK) {
599 reg->valid = true;
600 reg->dirty = false;
601 }
602
603 return retval;
604 }
605
606 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
607 {
608 struct arm_reg *reg_arch_info = reg->arch_info;
609 struct target *target = reg_arch_info->target;
610 struct arm *armv4_5_target = target_to_arm(target);
611 uint32_t value = buf_get_u32(buf, 0, 32);
612
613 if (target->state != TARGET_HALTED) {
614 LOG_ERROR("Target not halted");
615 return ERROR_TARGET_NOT_HALTED;
616 }
617
618 /* Except for CPSR, the "reg" command exposes a writeback model
619 * for the register cache.
620 */
621 if (reg == armv4_5_target->cpsr) {
622 arm_set_cpsr(armv4_5_target, value);
623
624 /* Older cores need help to be in ARM mode during halt
625 * mode debug, so we clear the J and T bits if we flush.
626 * For newer cores (v6/v7a/v7r) we don't need that, but
627 * it won't hurt since CPSR is always flushed anyway.
628 */
629 if (armv4_5_target->core_mode !=
630 (enum arm_mode)(value & 0x1f)) {
631 LOG_DEBUG("changing ARM core mode to '%s'",
632 arm_mode_name(value & 0x1f));
633 value &= ~((1 << 24) | (1 << 5));
634 uint8_t t[4];
635 buf_set_u32(t, 0, 32, value);
636 armv4_5_target->write_core_reg(target, reg,
637 16, ARM_MODE_ANY, t);
638 }
639 } else {
640 buf_set_u32(reg->value, 0, 32, value);
641 if (reg->size == 64) {
642 value = buf_get_u32(buf + 4, 0, 32);
643 buf_set_u32(reg->value + 4, 0, 32, value);
644 }
645 reg->valid = true;
646 }
647 reg->dirty = true;
648
649 return ERROR_OK;
650 }
651
652 static const struct reg_arch_type arm_reg_type = {
653 .get = armv4_5_get_core_reg,
654 .set = armv4_5_set_core_reg,
655 };
656
657 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
658 {
659 int num_regs = ARRAY_SIZE(arm_core_regs);
660 int num_core_regs = num_regs;
661 if (arm->arm_vfp_version == ARM_VFP_V3)
662 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
663
664 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
665 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
666 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
667 int i;
668
669 if (!cache || !reg_list || !reg_arch_info) {
670 free(cache);
671 free(reg_list);
672 free(reg_arch_info);
673 return NULL;
674 }
675
676 cache->name = "ARM registers";
677 cache->next = NULL;
678 cache->reg_list = reg_list;
679 cache->num_regs = 0;
680
681 for (i = 0; i < num_core_regs; i++) {
682 /* Skip registers this core doesn't expose */
683 if (arm_core_regs[i].mode == ARM_MODE_MON
684 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
685 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
686 continue;
687 if (arm_core_regs[i].mode == ARM_MODE_HYP
688 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
689 continue;
690
691 /* REVISIT handle Cortex-M, which only shadows R13/SP */
692
693 reg_arch_info[i].num = arm_core_regs[i].cookie;
694 reg_arch_info[i].mode = arm_core_regs[i].mode;
695 reg_arch_info[i].target = target;
696 reg_arch_info[i].arm = arm;
697
698 reg_list[i].name = arm_core_regs[i].name;
699 reg_list[i].number = arm_core_regs[i].gdb_index;
700 reg_list[i].size = 32;
701 reg_list[i].value = reg_arch_info[i].value;
702 reg_list[i].type = &arm_reg_type;
703 reg_list[i].arch_info = &reg_arch_info[i];
704 reg_list[i].exist = true;
705
706 /* This really depends on the calling convention in use */
707 reg_list[i].caller_save = false;
708
709 /* Registers data type, as used by GDB target description */
710 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
711 switch (arm_core_regs[i].cookie) {
712 case 13:
713 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
714 break;
715 case 14:
716 case 15:
717 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
718 break;
719 default:
720 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
721 break;
722 }
723
724 /* let GDB shows banked registers only in "info all-reg" */
725 reg_list[i].feature = malloc(sizeof(struct reg_feature));
726 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
727 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
728 reg_list[i].group = "general";
729 } else {
730 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
731 reg_list[i].group = "banked";
732 }
733
734 cache->num_regs++;
735 }
736
737 int j;
738 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
739 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
740 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
741 reg_arch_info[i].target = target;
742 reg_arch_info[i].arm = arm;
743
744 reg_list[i].name = arm_vfp_v3_regs[j].name;
745 reg_list[i].number = arm_vfp_v3_regs[j].id;
746 reg_list[i].size = arm_vfp_v3_regs[j].bits;
747 reg_list[i].value = reg_arch_info[i].value;
748 reg_list[i].type = &arm_reg_type;
749 reg_list[i].arch_info = &reg_arch_info[i];
750 reg_list[i].exist = true;
751
752 reg_list[i].caller_save = false;
753
754 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
755 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
756
757 reg_list[i].feature = malloc(sizeof(struct reg_feature));
758 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
759
760 reg_list[i].group = arm_vfp_v3_regs[j].group;
761
762 cache->num_regs++;
763 }
764
765 arm->pc = reg_list + 15;
766 arm->cpsr = reg_list + ARMV4_5_CPSR;
767 arm->core_cache = cache;
768
769 return cache;
770 }
771
772 void arm_free_reg_cache(struct arm *arm)
773 {
774 if (!arm || !arm->core_cache)
775 return;
776
777 struct reg_cache *cache = arm->core_cache;
778
779 for (unsigned int i = 0; i < cache->num_regs; i++) {
780 struct reg *reg = &cache->reg_list[i];
781
782 free(reg->feature);
783 free(reg->reg_data_type);
784 }
785
786 free(cache->reg_list[0].arch_info);
787 free(cache->reg_list);
788 free(cache);
789
790 arm->core_cache = NULL;
791 }
792
793 int arm_arch_state(struct target *target)
794 {
795 struct arm *arm = target_to_arm(target);
796
797 if (arm->common_magic != ARM_COMMON_MAGIC) {
798 LOG_ERROR("BUG: called for a non-ARM target");
799 return ERROR_FAIL;
800 }
801
802 /* avoid filling log waiting for fileio reply */
803 if (target->semihosting && target->semihosting->hit_fileio)
804 return ERROR_OK;
805
806 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
807 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
808 arm_state_strings[arm->core_state],
809 debug_reason_name(target),
810 arm_mode_name(arm->core_mode),
811 buf_get_u32(arm->cpsr->value, 0, 32),
812 buf_get_u32(arm->pc->value, 0, 32),
813 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
814 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
815
816 return ERROR_OK;
817 }
818
819 COMMAND_HANDLER(handle_armv4_5_reg_command)
820 {
821 struct target *target = get_current_target(CMD_CTX);
822 struct arm *arm = target_to_arm(target);
823 struct reg *regs;
824
825 if (!is_arm(arm)) {
826 command_print(CMD, "current target isn't an ARM");
827 return ERROR_FAIL;
828 }
829
830 if (target->state != TARGET_HALTED) {
831 command_print(CMD, "error: target must be halted for register accesses");
832 return ERROR_FAIL;
833 }
834
835 if (arm->core_type != ARM_CORE_TYPE_STD) {
836 command_print(CMD,
837 "Microcontroller Profile not supported - use standard reg cmd");
838 return ERROR_OK;
839 }
840
841 if (!is_arm_mode(arm->core_mode)) {
842 LOG_ERROR("not a valid arm core mode - communication failure?");
843 return ERROR_FAIL;
844 }
845
846 if (!arm->full_context) {
847 command_print(CMD, "error: target doesn't support %s",
848 CMD_NAME);
849 return ERROR_FAIL;
850 }
851
852 regs = arm->core_cache->reg_list;
853
854 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
855 const char *name;
856 char *sep = "\n";
857 char *shadow = "";
858
859 /* label this bank of registers (or shadows) */
860 switch (arm_mode_data[mode].psr) {
861 case ARM_MODE_SYS:
862 continue;
863 case ARM_MODE_USR:
864 name = "System and User";
865 sep = "";
866 break;
867 case ARM_MODE_HYP:
868 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
869 continue;
870 /* FALLTHROUGH */
871 case ARM_MODE_MON:
872 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
873 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
874 continue;
875 /* FALLTHROUGH */
876 default:
877 name = arm_mode_data[mode].name;
878 shadow = "shadow ";
879 break;
880 }
881 command_print(CMD, "%s%s mode %sregisters",
882 sep, name, shadow);
883
884 /* display N rows of up to 4 registers each */
885 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
886 char output[80];
887 int output_len = 0;
888
889 for (unsigned j = 0; j < 4; j++, i++) {
890 uint32_t value;
891 struct reg *reg = regs;
892
893 if (i >= arm_mode_data[mode].n_indices)
894 break;
895
896 reg += arm_mode_data[mode].indices[i];
897
898 /* REVISIT be smarter about faults... */
899 if (!reg->valid)
900 arm->full_context(target);
901
902 value = buf_get_u32(reg->value, 0, 32);
903 output_len += snprintf(output + output_len,
904 sizeof(output) - output_len,
905 "%8s: %8.8" PRIx32 " ",
906 reg->name, value);
907 }
908 command_print(CMD, "%s", output);
909 }
910 }
911
912 return ERROR_OK;
913 }
914
915 COMMAND_HANDLER(handle_armv4_5_core_state_command)
916 {
917 struct target *target = get_current_target(CMD_CTX);
918 struct arm *arm = target_to_arm(target);
919
920 if (!is_arm(arm)) {
921 command_print(CMD, "current target isn't an ARM");
922 return ERROR_FAIL;
923 }
924
925 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
926 /* armv7m not supported */
927 command_print(CMD, "Unsupported Command");
928 return ERROR_OK;
929 }
930
931 if (CMD_ARGC > 0) {
932 if (strcmp(CMD_ARGV[0], "arm") == 0)
933 arm->core_state = ARM_STATE_ARM;
934 if (strcmp(CMD_ARGV[0], "thumb") == 0)
935 arm->core_state = ARM_STATE_THUMB;
936 }
937
938 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
939
940 return ERROR_OK;
941 }
942
943 COMMAND_HANDLER(handle_arm_disassemble_command)
944 {
945 int retval = ERROR_OK;
946 struct target *target = get_current_target(CMD_CTX);
947
948 if (target == NULL) {
949 LOG_ERROR("No target selected");
950 return ERROR_FAIL;
951 }
952
953 struct arm *arm = target_to_arm(target);
954 target_addr_t address;
955 int count = 1;
956 int thumb = 0;
957
958 if (!is_arm(arm)) {
959 command_print(CMD, "current target isn't an ARM");
960 return ERROR_FAIL;
961 }
962
963 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
964 /* armv7m is always thumb mode */
965 thumb = 1;
966 }
967
968 switch (CMD_ARGC) {
969 case 3:
970 if (strcmp(CMD_ARGV[2], "thumb") != 0)
971 goto usage;
972 thumb = 1;
973 /* FALL THROUGH */
974 case 2:
975 COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], count);
976 /* FALL THROUGH */
977 case 1:
978 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
979 if (address & 0x01) {
980 if (!thumb) {
981 command_print(CMD, "Disassemble as Thumb");
982 thumb = 1;
983 }
984 address &= ~1;
985 }
986 break;
987 default:
988 usage:
989 count = 0;
990 retval = ERROR_COMMAND_SYNTAX_ERROR;
991 }
992
993 while (count-- > 0) {
994 struct arm_instruction cur_instruction;
995
996 if (thumb) {
997 /* Always use Thumb2 disassembly for best handling
998 * of 32-bit BL/BLX, and to work with newer cores
999 * (some ARMv6, all ARMv7) that use Thumb2.
1000 */
1001 retval = thumb2_opcode(target, address,
1002 &cur_instruction);
1003 if (retval != ERROR_OK)
1004 break;
1005 } else {
1006 uint32_t opcode;
1007
1008 retval = target_read_u32(target, address, &opcode);
1009 if (retval != ERROR_OK)
1010 break;
1011 retval = arm_evaluate_opcode(opcode, address,
1012 &cur_instruction) != ERROR_OK;
1013 if (retval != ERROR_OK)
1014 break;
1015 }
1016 command_print(CMD, "%s", cur_instruction.text);
1017 address += cur_instruction.instruction_size;
1018 }
1019
1020 return retval;
1021 }
1022
1023 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
1024 {
1025 struct command_context *context;
1026 struct target *target;
1027 struct arm *arm;
1028 int retval;
1029
1030 context = current_command_context(interp);
1031 assert(context != NULL);
1032
1033 target = get_current_target(context);
1034 if (target == NULL) {
1035 LOG_ERROR("%s: no current target", __func__);
1036 return JIM_ERR;
1037 }
1038 if (!target_was_examined(target)) {
1039 LOG_ERROR("%s: not yet examined", target_name(target));
1040 return JIM_ERR;
1041 }
1042 arm = target_to_arm(target);
1043 if (!is_arm(arm)) {
1044 LOG_ERROR("%s: not an ARM", target_name(target));
1045 return JIM_ERR;
1046 }
1047
1048 if ((argc < 6) || (argc > 7)) {
1049 /* FIXME use the command name to verify # params... */
1050 LOG_ERROR("%s: wrong number of arguments", __func__);
1051 return JIM_ERR;
1052 }
1053
1054 int cpnum;
1055 uint32_t op1;
1056 uint32_t op2;
1057 uint32_t CRn;
1058 uint32_t CRm;
1059 uint32_t value;
1060 long l;
1061
1062 /* NOTE: parameter sequence matches ARM instruction set usage:
1063 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1064 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1065 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1066 */
1067 retval = Jim_GetLong(interp, argv[1], &l);
1068 if (retval != JIM_OK)
1069 return retval;
1070 if (l & ~0xf) {
1071 LOG_ERROR("%s: %s %d out of range", __func__,
1072 "coprocessor", (int) l);
1073 return JIM_ERR;
1074 }
1075 cpnum = l;
1076
1077 retval = Jim_GetLong(interp, argv[2], &l);
1078 if (retval != JIM_OK)
1079 return retval;
1080 if (l & ~0x7) {
1081 LOG_ERROR("%s: %s %d out of range", __func__,
1082 "op1", (int) l);
1083 return JIM_ERR;
1084 }
1085 op1 = l;
1086
1087 retval = Jim_GetLong(interp, argv[3], &l);
1088 if (retval != JIM_OK)
1089 return retval;
1090 if (l & ~0xf) {
1091 LOG_ERROR("%s: %s %d out of range", __func__,
1092 "CRn", (int) l);
1093 return JIM_ERR;
1094 }
1095 CRn = l;
1096
1097 retval = Jim_GetLong(interp, argv[4], &l);
1098 if (retval != JIM_OK)
1099 return retval;
1100 if (l & ~0xf) {
1101 LOG_ERROR("%s: %s %d out of range", __func__,
1102 "CRm", (int) l);
1103 return JIM_ERR;
1104 }
1105 CRm = l;
1106
1107 retval = Jim_GetLong(interp, argv[5], &l);
1108 if (retval != JIM_OK)
1109 return retval;
1110 if (l & ~0x7) {
1111 LOG_ERROR("%s: %s %d out of range", __func__,
1112 "op2", (int) l);
1113 return JIM_ERR;
1114 }
1115 op2 = l;
1116
1117 value = 0;
1118
1119 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1120 * that could easily be a typo! Check both...
1121 *
1122 * FIXME change the call syntax here ... simplest to just pass
1123 * the MRC() or MCR() instruction to be executed. That will also
1124 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1125 * if that's ever needed.
1126 */
1127 if (argc == 7) {
1128 retval = Jim_GetLong(interp, argv[6], &l);
1129 if (retval != JIM_OK)
1130 return retval;
1131 value = l;
1132
1133 /* NOTE: parameters reordered! */
1134 /* ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2) */
1135 retval = arm->mcr(target, cpnum, op1, op2, CRn, CRm, value);
1136 if (retval != ERROR_OK)
1137 return JIM_ERR;
1138 } else {
1139 /* NOTE: parameters reordered! */
1140 /* ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2) */
1141 retval = arm->mrc(target, cpnum, op1, op2, CRn, CRm, &value);
1142 if (retval != ERROR_OK)
1143 return JIM_ERR;
1144
1145 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1146 }
1147
1148 return JIM_OK;
1149 }
1150
1151 extern const struct command_registration semihosting_common_handlers[];
1152
1153 static const struct command_registration arm_exec_command_handlers[] = {
1154 {
1155 .name = "reg",
1156 .handler = handle_armv4_5_reg_command,
1157 .mode = COMMAND_EXEC,
1158 .help = "display ARM core registers",
1159 .usage = "",
1160 },
1161 {
1162 .name = "core_state",
1163 .handler = handle_armv4_5_core_state_command,
1164 .mode = COMMAND_EXEC,
1165 .usage = "['arm'|'thumb']",
1166 .help = "display/change ARM core state",
1167 },
1168 {
1169 .name = "disassemble",
1170 .handler = handle_arm_disassemble_command,
1171 .mode = COMMAND_EXEC,
1172 .usage = "address [count ['thumb']]",
1173 .help = "disassemble instructions ",
1174 },
1175 {
1176 .name = "mcr",
1177 .mode = COMMAND_EXEC,
1178 .jim_handler = &jim_mcrmrc,
1179 .help = "write coprocessor register",
1180 .usage = "cpnum op1 CRn CRm op2 value",
1181 },
1182 {
1183 .name = "mrc",
1184 .mode = COMMAND_EXEC,
1185 .jim_handler = &jim_mcrmrc,
1186 .help = "read coprocessor register",
1187 .usage = "cpnum op1 CRn CRm op2",
1188 },
1189 {
1190 .chain = semihosting_common_handlers,
1191 },
1192 COMMAND_REGISTRATION_DONE
1193 };
1194 const struct command_registration arm_command_handlers[] = {
1195 {
1196 .name = "arm",
1197 .mode = COMMAND_ANY,
1198 .help = "ARM command group",
1199 .usage = "",
1200 .chain = arm_exec_command_handlers,
1201 },
1202 COMMAND_REGISTRATION_DONE
1203 };
1204
1205 /*
1206 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1207 * of arm architecture. You can list them using the autocompletion of gdb
1208 * command prompt by typing "set architecture " and then press TAB key.
1209 * The default, selected automatically, is "arm".
1210 * Let's use the default value, here, to make gdb-multiarch behave in the
1211 * same way as a gdb for arm. This can be changed later on. User can still
1212 * set the specific architecture variant with the gdb command.
1213 */
1214 const char *arm_get_gdb_arch(struct target *target)
1215 {
1216 return "arm";
1217 }
1218
1219 int arm_get_gdb_reg_list(struct target *target,
1220 struct reg **reg_list[], int *reg_list_size,
1221 enum target_register_class reg_class)
1222 {
1223 struct arm *arm = target_to_arm(target);
1224 unsigned int i;
1225
1226 if (!is_arm_mode(arm->core_mode)) {
1227 LOG_ERROR("not a valid arm core mode - communication failure?");
1228 return ERROR_FAIL;
1229 }
1230
1231 switch (reg_class) {
1232 case REG_CLASS_GENERAL:
1233 *reg_list_size = 26;
1234 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1235
1236 for (i = 0; i < 16; i++)
1237 (*reg_list)[i] = arm_reg_current(arm, i);
1238
1239 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1240 for (i = 16; i < 24; i++)
1241 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1242 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1243
1244 (*reg_list)[25] = arm->cpsr;
1245
1246 return ERROR_OK;
1247
1248 case REG_CLASS_ALL:
1249 switch (arm->core_type) {
1250 case ARM_CORE_TYPE_SEC_EXT:
1251 *reg_list_size = 51;
1252 break;
1253 case ARM_CORE_TYPE_VIRT_EXT:
1254 *reg_list_size = 53;
1255 break;
1256 default:
1257 *reg_list_size = 48;
1258 }
1259 unsigned int list_size_core = *reg_list_size;
1260 if (arm->arm_vfp_version == ARM_VFP_V3)
1261 *reg_list_size += 33;
1262
1263 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1264
1265 for (i = 0; i < 16; i++)
1266 (*reg_list)[i] = arm_reg_current(arm, i);
1267
1268 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1269 int reg_index = arm->core_cache->reg_list[i].number;
1270
1271 if (arm_core_regs[i].mode == ARM_MODE_MON
1272 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1273 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1274 continue;
1275 if (arm_core_regs[i].mode == ARM_MODE_HYP
1276 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1277 continue;
1278 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1279 }
1280
1281 /* When we supply the target description, there is no need for fake FPA */
1282 for (i = 16; i < 24; i++) {
1283 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1284 (*reg_list)[i]->size = 0;
1285 }
1286 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1287 (*reg_list)[24]->size = 0;
1288
1289 if (arm->arm_vfp_version == ARM_VFP_V3) {
1290 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1291 for (i = 0; i < 33; i++)
1292 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1293 }
1294
1295 return ERROR_OK;
1296
1297 default:
1298 LOG_ERROR("not a valid register class type in query.");
1299 return ERROR_FAIL;
1300 }
1301 }
1302
1303 /* wait for execution to complete and check exit point */
1304 static int armv4_5_run_algorithm_completion(struct target *target,
1305 uint32_t exit_point,
1306 int timeout_ms,
1307 void *arch_info)
1308 {
1309 int retval;
1310 struct arm *arm = target_to_arm(target);
1311
1312 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1313 if (retval != ERROR_OK)
1314 return retval;
1315 if (target->state != TARGET_HALTED) {
1316 retval = target_halt(target);
1317 if (retval != ERROR_OK)
1318 return retval;
1319 retval = target_wait_state(target, TARGET_HALTED, 500);
1320 if (retval != ERROR_OK)
1321 return retval;
1322 return ERROR_TARGET_TIMEOUT;
1323 }
1324
1325 /* fast exit: ARMv5+ code can use BKPT */
1326 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1327 LOG_WARNING(
1328 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1329 buf_get_u32(arm->pc->value, 0, 32));
1330 return ERROR_TARGET_TIMEOUT;
1331 }
1332
1333 return ERROR_OK;
1334 }
1335
1336 int armv4_5_run_algorithm_inner(struct target *target,
1337 int num_mem_params, struct mem_param *mem_params,
1338 int num_reg_params, struct reg_param *reg_params,
1339 uint32_t entry_point, uint32_t exit_point,
1340 int timeout_ms, void *arch_info,
1341 int (*run_it)(struct target *target, uint32_t exit_point,
1342 int timeout_ms, void *arch_info))
1343 {
1344 struct arm *arm = target_to_arm(target);
1345 struct arm_algorithm *arm_algorithm_info = arch_info;
1346 enum arm_state core_state = arm->core_state;
1347 uint32_t context[17];
1348 uint32_t cpsr;
1349 int exit_breakpoint_size = 0;
1350 int i;
1351 int retval = ERROR_OK;
1352
1353 LOG_DEBUG("Running algorithm");
1354
1355 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1356 LOG_ERROR("current target isn't an ARMV4/5 target");
1357 return ERROR_TARGET_INVALID;
1358 }
1359
1360 if (target->state != TARGET_HALTED) {
1361 LOG_WARNING("target not halted");
1362 return ERROR_TARGET_NOT_HALTED;
1363 }
1364
1365 if (!is_arm_mode(arm->core_mode)) {
1366 LOG_ERROR("not a valid arm core mode - communication failure?");
1367 return ERROR_FAIL;
1368 }
1369
1370 /* armv5 and later can terminate with BKPT instruction; less overhead */
1371 if (!exit_point && arm->is_armv4) {
1372 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1373 return ERROR_FAIL;
1374 }
1375
1376 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1377 * they'll be restored later.
1378 */
1379 for (i = 0; i <= 16; i++) {
1380 struct reg *r;
1381
1382 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1383 arm_algorithm_info->core_mode, i);
1384 if (!r->valid)
1385 arm->read_core_reg(target, r, i,
1386 arm_algorithm_info->core_mode);
1387 context[i] = buf_get_u32(r->value, 0, 32);
1388 }
1389 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1390
1391 for (i = 0; i < num_mem_params; i++) {
1392 if (mem_params[i].direction == PARAM_IN)
1393 continue;
1394 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1395 mem_params[i].value);
1396 if (retval != ERROR_OK)
1397 return retval;
1398 }
1399
1400 for (i = 0; i < num_reg_params; i++) {
1401 if (reg_params[i].direction == PARAM_IN)
1402 continue;
1403
1404 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, 0);
1405 if (!reg) {
1406 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1407 return ERROR_COMMAND_SYNTAX_ERROR;
1408 }
1409
1410 if (reg->size != reg_params[i].size) {
1411 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1412 reg_params[i].reg_name);
1413 return ERROR_COMMAND_SYNTAX_ERROR;
1414 }
1415
1416 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1417 if (retval != ERROR_OK)
1418 return retval;
1419 }
1420
1421 arm->core_state = arm_algorithm_info->core_state;
1422 if (arm->core_state == ARM_STATE_ARM)
1423 exit_breakpoint_size = 4;
1424 else if (arm->core_state == ARM_STATE_THUMB)
1425 exit_breakpoint_size = 2;
1426 else {
1427 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1428 return ERROR_COMMAND_SYNTAX_ERROR;
1429 }
1430
1431 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1432 LOG_DEBUG("setting core_mode: 0x%2.2x",
1433 arm_algorithm_info->core_mode);
1434 buf_set_u32(arm->cpsr->value, 0, 5,
1435 arm_algorithm_info->core_mode);
1436 arm->cpsr->dirty = true;
1437 arm->cpsr->valid = true;
1438 }
1439
1440 /* terminate using a hardware or (ARMv5+) software breakpoint */
1441 if (exit_point) {
1442 retval = breakpoint_add(target, exit_point,
1443 exit_breakpoint_size, BKPT_HARD);
1444 if (retval != ERROR_OK) {
1445 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1446 return ERROR_TARGET_FAILURE;
1447 }
1448 }
1449
1450 retval = target_resume(target, 0, entry_point, 1, 1);
1451 if (retval != ERROR_OK)
1452 return retval;
1453 retval = run_it(target, exit_point, timeout_ms, arch_info);
1454
1455 if (exit_point)
1456 breakpoint_remove(target, exit_point);
1457
1458 if (retval != ERROR_OK)
1459 return retval;
1460
1461 for (i = 0; i < num_mem_params; i++) {
1462 if (mem_params[i].direction != PARAM_OUT) {
1463 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1464 mem_params[i].size,
1465 mem_params[i].value);
1466 if (retvaltemp != ERROR_OK)
1467 retval = retvaltemp;
1468 }
1469 }
1470
1471 for (i = 0; i < num_reg_params; i++) {
1472 if (reg_params[i].direction != PARAM_OUT) {
1473
1474 struct reg *reg = register_get_by_name(arm->core_cache,
1475 reg_params[i].reg_name,
1476 0);
1477 if (!reg) {
1478 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1479 retval = ERROR_COMMAND_SYNTAX_ERROR;
1480 continue;
1481 }
1482
1483 if (reg->size != reg_params[i].size) {
1484 LOG_ERROR(
1485 "BUG: register '%s' size doesn't match reg_params[i].size",
1486 reg_params[i].reg_name);
1487 retval = ERROR_COMMAND_SYNTAX_ERROR;
1488 continue;
1489 }
1490
1491 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1492 }
1493 }
1494
1495 /* restore everything we saved before (17 or 18 registers) */
1496 for (i = 0; i <= 16; i++) {
1497 uint32_t regvalue;
1498 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1499 arm_algorithm_info->core_mode, i).value, 0, 32);
1500 if (regvalue != context[i]) {
1501 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1502 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1503 arm_algorithm_info->core_mode, i).name, context[i]);
1504 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1505 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1506 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1507 i).valid = true;
1508 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1509 i).dirty = true;
1510 }
1511 }
1512
1513 arm_set_cpsr(arm, cpsr);
1514 arm->cpsr->dirty = true;
1515
1516 arm->core_state = core_state;
1517
1518 return retval;
1519 }
1520
1521 int armv4_5_run_algorithm(struct target *target,
1522 int num_mem_params,
1523 struct mem_param *mem_params,
1524 int num_reg_params,
1525 struct reg_param *reg_params,
1526 target_addr_t entry_point,
1527 target_addr_t exit_point,
1528 int timeout_ms,
1529 void *arch_info)
1530 {
1531 return armv4_5_run_algorithm_inner(target,
1532 num_mem_params,
1533 mem_params,
1534 num_reg_params,
1535 reg_params,
1536 (uint32_t)entry_point,
1537 (uint32_t)exit_point,
1538 timeout_ms,
1539 arch_info,
1540 armv4_5_run_algorithm_completion);
1541 }
1542
1543 /**
1544 * Runs ARM code in the target to calculate a CRC32 checksum.
1545 *
1546 */
1547 int arm_checksum_memory(struct target *target,
1548 target_addr_t address, uint32_t count, uint32_t *checksum)
1549 {
1550 struct working_area *crc_algorithm;
1551 struct arm_algorithm arm_algo;
1552 struct arm *arm = target_to_arm(target);
1553 struct reg_param reg_params[2];
1554 int retval;
1555 uint32_t i;
1556 uint32_t exit_var = 0;
1557
1558 static const uint8_t arm_crc_code_le[] = {
1559 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1560 };
1561
1562 assert(sizeof(arm_crc_code_le) % 4 == 0);
1563
1564 retval = target_alloc_working_area(target,
1565 sizeof(arm_crc_code_le), &crc_algorithm);
1566 if (retval != ERROR_OK)
1567 return retval;
1568
1569 /* convert code into a buffer in target endianness */
1570 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1571 retval = target_write_u32(target,
1572 crc_algorithm->address + i * sizeof(uint32_t),
1573 le_to_h_u32(&arm_crc_code_le[i * 4]));
1574 if (retval != ERROR_OK)
1575 goto cleanup;
1576 }
1577
1578 arm_algo.common_magic = ARM_COMMON_MAGIC;
1579 arm_algo.core_mode = ARM_MODE_SVC;
1580 arm_algo.core_state = ARM_STATE_ARM;
1581
1582 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1583 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1584
1585 buf_set_u32(reg_params[0].value, 0, 32, address);
1586 buf_set_u32(reg_params[1].value, 0, 32, count);
1587
1588 /* 20 second timeout/megabyte */
1589 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1590
1591 /* armv4 must exit using a hardware breakpoint */
1592 if (arm->is_armv4)
1593 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1594
1595 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1596 crc_algorithm->address,
1597 exit_var,
1598 timeout, &arm_algo);
1599
1600 if (retval == ERROR_OK)
1601 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1602 else
1603 LOG_ERROR("error executing ARM crc algorithm");
1604
1605 destroy_reg_param(&reg_params[0]);
1606 destroy_reg_param(&reg_params[1]);
1607
1608 cleanup:
1609 target_free_working_area(target, crc_algorithm);
1610
1611 return retval;
1612 }
1613
1614 /**
1615 * Runs ARM code in the target to check whether a memory block holds
1616 * all ones. NOR flash which has been erased, and thus may be written,
1617 * holds all ones.
1618 *
1619 */
1620 int arm_blank_check_memory(struct target *target,
1621 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1622 {
1623 struct working_area *check_algorithm;
1624 struct reg_param reg_params[3];
1625 struct arm_algorithm arm_algo;
1626 struct arm *arm = target_to_arm(target);
1627 int retval;
1628 uint32_t i;
1629 uint32_t exit_var = 0;
1630
1631 static const uint8_t check_code_le[] = {
1632 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1633 };
1634
1635 assert(sizeof(check_code_le) % 4 == 0);
1636
1637 if (erased_value != 0xff) {
1638 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1639 erased_value);
1640 return ERROR_FAIL;
1641 }
1642
1643 /* make sure we have a working area */
1644 retval = target_alloc_working_area(target,
1645 sizeof(check_code_le), &check_algorithm);
1646 if (retval != ERROR_OK)
1647 return retval;
1648
1649 /* convert code into a buffer in target endianness */
1650 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1651 retval = target_write_u32(target,
1652 check_algorithm->address
1653 + i * sizeof(uint32_t),
1654 le_to_h_u32(&check_code_le[i * 4]));
1655 if (retval != ERROR_OK)
1656 goto cleanup;
1657 }
1658
1659 arm_algo.common_magic = ARM_COMMON_MAGIC;
1660 arm_algo.core_mode = ARM_MODE_SVC;
1661 arm_algo.core_state = ARM_STATE_ARM;
1662
1663 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1664 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1665
1666 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1667 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1668
1669 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1670 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1671
1672 /* armv4 must exit using a hardware breakpoint */
1673 if (arm->is_armv4)
1674 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1675
1676 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1677 check_algorithm->address,
1678 exit_var,
1679 10000, &arm_algo);
1680
1681 if (retval == ERROR_OK)
1682 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1683
1684 destroy_reg_param(&reg_params[0]);
1685 destroy_reg_param(&reg_params[1]);
1686 destroy_reg_param(&reg_params[2]);
1687
1688 cleanup:
1689 target_free_working_area(target, check_algorithm);
1690
1691 if (retval != ERROR_OK)
1692 return retval;
1693
1694 return 1; /* only one block has been checked */
1695 }
1696
1697 static int arm_full_context(struct target *target)
1698 {
1699 struct arm *arm = target_to_arm(target);
1700 unsigned num_regs = arm->core_cache->num_regs;
1701 struct reg *reg = arm->core_cache->reg_list;
1702 int retval = ERROR_OK;
1703
1704 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1705 if (reg->valid)
1706 continue;
1707 retval = armv4_5_get_core_reg(reg);
1708 }
1709 return retval;
1710 }
1711
1712 static int arm_default_mrc(struct target *target, int cpnum,
1713 uint32_t op1, uint32_t op2,
1714 uint32_t CRn, uint32_t CRm,
1715 uint32_t *value)
1716 {
1717 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1718 return ERROR_FAIL;
1719 }
1720
1721 static int arm_default_mcr(struct target *target, int cpnum,
1722 uint32_t op1, uint32_t op2,
1723 uint32_t CRn, uint32_t CRm,
1724 uint32_t value)
1725 {
1726 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1727 return ERROR_FAIL;
1728 }
1729
1730 int arm_init_arch_info(struct target *target, struct arm *arm)
1731 {
1732 target->arch_info = arm;
1733 arm->target = target;
1734
1735 arm->common_magic = ARM_COMMON_MAGIC;
1736
1737 /* core_type may be overridden by subtype logic */
1738 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1739 arm->core_type = ARM_CORE_TYPE_STD;
1740 arm_set_cpsr(arm, ARM_MODE_USR);
1741 }
1742
1743 /* default full_context() has no core-specific optimizations */
1744 if (!arm->full_context && arm->read_core_reg)
1745 arm->full_context = arm_full_context;
1746
1747 if (!arm->mrc)
1748 arm->mrc = arm_default_mrc;
1749 if (!arm->mcr)
1750 arm->mcr = arm_default_mcr;
1751
1752 return ERROR_OK;
1753 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)