openocd: fix simple cases of NULL comparison
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/cortex_m.h>
33
34 /* Regarding performance:
35 *
36 * Short story - it might be best to leave the performance at
37 * current levels.
38 *
39 * You may see a jump in speed if you change to using
40 * 32bit words for the block programming.
41 *
42 * Its a shame you cannot use the double word as its
43 * even faster - but you require external VPP for that mode.
44 *
45 * Having said all that 16bit writes give us the widest vdd
46 * operating range, so may be worth adding a note to that effect.
47 *
48 */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51 * quite different flash controllers.
52 *
53 * What's more scary is that the names of the registers and their
54 * addresses are the same, but the actual bits and what they do are
55 * can be very different.
56 *
57 * To reduce testing complexity and dangers of regressions,
58 * a separate file is used for stm32fx2x.
59 *
60 * Sector sizes in kiBytes:
61 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62 * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64 * 1 MiByte STM32F42x/43x part with DB1M Option set:
65 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66 *
67 * STM32F7[2|3]
68 * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69 *
70 * STM32F7[4|5]
71 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72 *
73 * STM32F7[6|7]
74 * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75 * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76 * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77 * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78 *
79 * Protection size is sector size.
80 *
81 * Tested with STM3220F-EVAL board.
82 *
83 * STM32F4xx series for reference.
84 *
85 * RM0090
86 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87 *
88 * PM0059
89 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90 * PROGRAMMING_MANUAL/CD00233952.pdf
91 *
92 * STM32F7xx series for reference.
93 *
94 * RM0385
95 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96 *
97 * RM0410
98 * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99 *
100 * RM0430
101 * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102 *
103 * RM0431
104 * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105 *
106 * STM32F1x series - notice that this code was copy, pasted and knocked
107 * into a stm32f2x driver, so in case something has been converted or
108 * bugs haven't been fixed, here are the original manuals:
109 *
110 * RM0008 - Reference manual
111 *
112 * RM0042, the Flash programming manual for low-, medium- high-density and
113 * connectivity line STM32F10x devices
114 *
115 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116 *
117 */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE 0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE 0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE 0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE 0x40023c00
140 #define STM32_FLASH_ACR 0x40023c00
141 #define STM32_FLASH_KEYR 0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR 0x40023c0C
144 #define STM32_FLASH_CR 0x40023c10
145 #define STM32_FLASH_OPTCR 0x40023c14
146 #define STM32_FLASH_OPTCR1 0x40023c18
147 #define STM32_FLASH_OPTCR2 0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG (1 << 0)
151 #define FLASH_SER (1 << 1)
152 #define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT (1 << 16)
155 #define FLASH_PSIZE_8 (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a) ((a) << 3)
161 #define FLASH_LOCK (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY (1 << 16)
165 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR (1 << 4) /* Write protection error */
169 #define FLASH_OPERR (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK (1 << 0)
175 #define OPTCR_START (1 << 1)
176 #define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
177 #define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1 0x45670123
185 #define KEY2 0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1 0x08192A3B
189 #define OPTKEY2 0x4C5D6E7F
190
191 struct stm32x_options {
192 uint8_t RDP;
193 uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
194 uint32_t protection;
195 uint32_t boot_addr;
196 uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200 struct stm32x_options option_bytes;
201 bool probed;
202 bool otp_unlocked;
203 bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
204 bool has_extra_options; /* F42x/43x/469/479/7xx */
205 bool has_boot_addr; /* F7xx */
206 bool has_optcr2_pcrop; /* F72x/73x */
207 unsigned int protection_bits; /* F413/423 */
208 uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213 return bank->base == STM32F2_OTP_BANK_BASE ||
214 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219 return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226 return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233 LOG_INFO("OTP memory bank #%u is disabled for write commands.",
234 bank->bank_number);
235 stm32x_info->otp_unlocked = false;
236 return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243 if (!stm32x_info->otp_unlocked) {
244 LOG_INFO("OTP memory bank #%u is is enabled for write commands.",
245 bank->bank_number);
246 stm32x_info->otp_unlocked = true;
247 } else {
248 LOG_WARNING("OTP memory bank #%u is is already enabled for write commands.",
249 bank->bank_number);
250 }
251 return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255 */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258 struct stm32x_flash_bank *stm32x_info;
259
260 if (CMD_ARGC < 6)
261 return ERROR_COMMAND_SYNTAX_ERROR;
262
263 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264 bank->driver_priv = stm32x_info;
265
266 stm32x_info->probed = false;
267 stm32x_info->otp_unlocked = false;
268 stm32x_info->user_bank_size = bank->size;
269
270 return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275 return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280 struct target *target = bank->target;
281 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286 struct target *target = bank->target;
287 uint32_t status;
288 int retval = ERROR_OK;
289
290 /* wait for busy to clear */
291 for (;;) {
292 retval = stm32x_get_flash_status(bank, &status);
293 if (retval != ERROR_OK)
294 return retval;
295 LOG_DEBUG("status: 0x%" PRIx32, status);
296 if ((status & FLASH_BSY) == 0)
297 break;
298 if (timeout-- <= 0) {
299 LOG_ERROR("timed out waiting for flash");
300 return ERROR_FAIL;
301 }
302 alive_sleep(1);
303 }
304
305
306 if (status & FLASH_WRPERR) {
307 LOG_ERROR("stm32x device protected");
308 retval = ERROR_FAIL;
309 }
310
311 /* Clear but report errors */
312 if (status & FLASH_ERROR) {
313 if (retval == ERROR_OK)
314 retval = ERROR_FAIL;
315 /* If this operation fails, we ignore it and report the original
316 * retval
317 */
318 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319 status & FLASH_ERROR);
320 }
321 return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326 uint32_t ctrl;
327
328 /* first check if not already unlocked
329 * otherwise writing on STM32_FLASH_KEYR will fail
330 */
331 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332 if (retval != ERROR_OK)
333 return retval;
334
335 if ((ctrl & FLASH_LOCK) == 0)
336 return ERROR_OK;
337
338 /* unlock flash registers */
339 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340 if (retval != ERROR_OK)
341 return retval;
342
343 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344 if (retval != ERROR_OK)
345 return retval;
346
347 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348 if (retval != ERROR_OK)
349 return retval;
350
351 if (ctrl & FLASH_LOCK) {
352 LOG_ERROR("flash not unlocked STM32_FLASH_CR: 0x%" PRIx32, ctrl);
353 return ERROR_TARGET_FAILURE;
354 }
355
356 return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361 uint32_t ctrl;
362
363 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if ((ctrl & OPTCR_LOCK) == 0)
368 return ERROR_OK;
369
370 /* unlock option registers */
371 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372 if (retval != ERROR_OK)
373 return retval;
374
375 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376 if (retval != ERROR_OK)
377 return retval;
378
379 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380 if (retval != ERROR_OK)
381 return retval;
382
383 if (ctrl & OPTCR_LOCK) {
384 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: 0x%" PRIx32, ctrl);
385 return ERROR_TARGET_FAILURE;
386 }
387
388 return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393 uint32_t optiondata;
394 struct stm32x_flash_bank *stm32x_info = NULL;
395 struct target *target = bank->target;
396
397 stm32x_info = bank->driver_priv;
398
399 /* read current option bytes */
400 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401 if (retval != ERROR_OK)
402 return retval;
403
404 /* caution: F2 implements 5 bits (WDG_SW only)
405 * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406 stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408 stm32x_info->option_bytes.protection =
409 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411 if (stm32x_info->has_extra_options) {
412 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415 }
416
417 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419 if (retval != ERROR_OK)
420 return retval;
421
422 /* FLASH_OPTCR1 has quite different meanings ... */
423 if (stm32x_info->has_boot_addr) {
424 /* for F7xx it contains boot0 and boot1 */
425 stm32x_info->option_bytes.boot_addr = optiondata;
426 } else {
427 /* for F42x/43x/469/479 it contains 12 additional protection bits */
428 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429 }
430 }
431
432 if (stm32x_info->has_optcr2_pcrop) {
433 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434 if (retval != ERROR_OK)
435 return retval;
436
437 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438 if (stm32x_info->has_optcr2_pcrop &&
439 (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440 LOG_INFO("PCROP Engaged");
441 }
442 } else {
443 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444 }
445
446 if (stm32x_info->option_bytes.RDP != 0xAA)
447 LOG_INFO("Device Security Bit Set");
448
449 return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454 struct stm32x_flash_bank *stm32x_info = NULL;
455 struct target *target = bank->target;
456 uint32_t optiondata, optiondata2;
457
458 stm32x_info = bank->driver_priv;
459
460 int retval = stm32x_unlock_option_reg(target);
461 if (retval != ERROR_OK)
462 return retval;
463
464 /* rebuild option data */
465 optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466 optiondata |= stm32x_info->option_bytes.RDP << 8;
467 optiondata |= (stm32x_info->option_bytes.protection &
468 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470 if (stm32x_info->has_extra_options) {
471 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472 optiondata |= (stm32x_info->option_bytes.user_options &
473 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474 }
475
476 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477 if (stm32x_info->has_boot_addr) {
478 /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479 optiondata2 = stm32x_info->option_bytes.boot_addr;
480 } else {
481 /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482 optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483 }
484
485 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486 if (retval != ERROR_OK)
487 return retval;
488 }
489
490 /* program extra pcrop register */
491 if (stm32x_info->has_optcr2_pcrop) {
492 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493 stm32x_info->option_bytes.optcr2_pcrop);
494 if (retval != ERROR_OK)
495 return retval;
496 }
497
498 /* program options */
499 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500 if (retval != ERROR_OK)
501 return retval;
502
503 /* start programming cycle */
504 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505 if (retval != ERROR_OK)
506 return retval;
507
508 /* wait for completion, this might trigger a security erase and take a while */
509 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510 if (retval != ERROR_OK)
511 return retval;
512
513 /* relock registers */
514 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515 if (retval != ERROR_OK)
516 return retval;
517
518 return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523 struct target *target = bank->target;
524 uint32_t lock_base;
525 int retval;
526 uint8_t lock;
527
528 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529 : STM32F2_OTP_LOCK_BASE;
530
531 for (unsigned int i = 0; i < bank->num_sectors; i++) {
532 retval = target_read_u8(target, lock_base + i, &lock);
533 if (retval != ERROR_OK)
534 return retval;
535 bank->sectors[i].is_protected = !lock;
536 }
537
538 return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, unsigned int first,
542 unsigned int last)
543 {
544 struct target *target = bank->target;
545 uint32_t lock_base;
546 int i, retval;
547 uint8_t lock;
548
549 assert((first <= last) && (last < bank->num_sectors));
550
551 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
552 : STM32F2_OTP_LOCK_BASE;
553
554 for (i = first; first <= last; i++) {
555 retval = target_read_u8(target, lock_base + i, &lock);
556 if (retval != ERROR_OK)
557 return retval;
558 if (lock)
559 continue;
560
561 lock = 0xff;
562 retval = target_write_u8(target, lock_base + i, lock);
563 if (retval != ERROR_OK)
564 return retval;
565 }
566
567 return ERROR_OK;
568 }
569
570 static int stm32x_protect_check(struct flash_bank *bank)
571 {
572 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
573 struct flash_sector *prot_blocks;
574 unsigned int num_prot_blocks;
575 int retval;
576
577 /* if it's the OTP bank, look at the lock bits there */
578 if (stm32x_is_otp(bank))
579 return stm32x_otp_read_protect(bank);
580
581 /* read write protection settings */
582 retval = stm32x_read_options(bank);
583 if (retval != ERROR_OK) {
584 LOG_DEBUG("unable to read option bytes");
585 return retval;
586 }
587
588 if (bank->prot_blocks) {
589 num_prot_blocks = bank->num_prot_blocks;
590 prot_blocks = bank->prot_blocks;
591 } else {
592 num_prot_blocks = bank->num_sectors;
593 prot_blocks = bank->sectors;
594 }
595
596 for (unsigned int i = 0; i < num_prot_blocks; i++)
597 prot_blocks[i].is_protected =
598 ~(stm32x_info->option_bytes.protection >> i) & 1;
599
600 return ERROR_OK;
601 }
602
603 static int stm32x_erase(struct flash_bank *bank, unsigned int first,
604 unsigned int last)
605 {
606 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
607 struct target *target = bank->target;
608
609 if (stm32x_is_otp(bank)) {
610 LOG_ERROR("Cannot erase OTP memory");
611 return ERROR_FAIL;
612 }
613
614 assert((first <= last) && (last < bank->num_sectors));
615
616 if (bank->target->state != TARGET_HALTED) {
617 LOG_ERROR("Target not halted");
618 return ERROR_TARGET_NOT_HALTED;
619 }
620
621 int retval;
622 retval = stm32x_unlock_reg(target);
623 if (retval != ERROR_OK)
624 return retval;
625
626 /*
627 Sector Erase
628 To erase a sector, follow the procedure below:
629 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
630 FLASH_SR register
631 2. Set the SER bit and select the sector
632 you wish to erase (SNB) in the FLASH_CR register
633 3. Set the STRT bit in the FLASH_CR register
634 4. Wait for the BSY bit to be cleared
635 */
636
637 for (unsigned int i = first; i <= last; i++) {
638 unsigned int snb;
639 if (stm32x_info->has_large_mem && i >= 12)
640 snb = (i - 12) | 0x10;
641 else
642 snb = i;
643
644 retval = target_write_u32(target,
645 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
646 if (retval != ERROR_OK)
647 return retval;
648
649 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
650 if (retval != ERROR_OK)
651 return retval;
652
653 bank->sectors[i].is_erased = 1;
654 }
655
656 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
657 if (retval != ERROR_OK)
658 return retval;
659
660 return ERROR_OK;
661 }
662
663 static int stm32x_protect(struct flash_bank *bank, int set, unsigned int first,
664 unsigned int last)
665 {
666 struct target *target = bank->target;
667 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
668
669 if (target->state != TARGET_HALTED) {
670 LOG_ERROR("Target not halted");
671 return ERROR_TARGET_NOT_HALTED;
672 }
673
674 if (stm32x_is_otp(bank)) {
675 if (!set)
676 return ERROR_COMMAND_ARGUMENT_INVALID;
677
678 return stm32x_otp_protect(bank, first, last);
679 }
680
681 /* read protection settings */
682 int retval = stm32x_read_options(bank);
683 if (retval != ERROR_OK) {
684 LOG_DEBUG("unable to read option bytes");
685 return retval;
686 }
687
688 for (unsigned int i = first; i <= last; i++) {
689 if (set)
690 stm32x_info->option_bytes.protection &= ~(1 << i);
691 else
692 stm32x_info->option_bytes.protection |= (1 << i);
693 }
694
695 retval = stm32x_write_options(bank);
696 if (retval != ERROR_OK)
697 return retval;
698
699 return ERROR_OK;
700 }
701
702 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
703 uint32_t offset, uint32_t count)
704 {
705 struct target *target = bank->target;
706 uint32_t buffer_size = 16384;
707 struct working_area *write_algorithm;
708 struct working_area *source;
709 uint32_t address = bank->base + offset;
710 struct reg_param reg_params[5];
711 struct armv7m_algorithm armv7m_info;
712 int retval = ERROR_OK;
713
714 static const uint8_t stm32x_flash_write_code[] = {
715 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
716 };
717
718 if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
719 LOG_ERROR("OTP memory bank is disabled for write commands.");
720 return ERROR_FAIL;
721 }
722
723 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
724 &write_algorithm) != ERROR_OK) {
725 LOG_WARNING("no working area available, can't do block memory writes");
726 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
727 }
728
729 retval = target_write_buffer(target, write_algorithm->address,
730 sizeof(stm32x_flash_write_code),
731 stm32x_flash_write_code);
732 if (retval != ERROR_OK) {
733 target_free_working_area(target, write_algorithm);
734 return retval;
735 }
736
737 /* memory buffer */
738 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
739 buffer_size /= 2;
740 if (buffer_size <= 256) {
741 /* we already allocated the writing code, but failed to get a
742 * buffer, free the algorithm */
743 target_free_working_area(target, write_algorithm);
744
745 LOG_WARNING("no large enough working area available, can't do block memory writes");
746 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
747 }
748 }
749
750 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
751 armv7m_info.core_mode = ARM_MODE_THREAD;
752
753 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
754 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
755 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
756 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
757 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
758
759 buf_set_u32(reg_params[0].value, 0, 32, source->address);
760 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
761 buf_set_u32(reg_params[2].value, 0, 32, address);
762 buf_set_u32(reg_params[3].value, 0, 32, count);
763 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
764
765 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
766 0, NULL,
767 5, reg_params,
768 source->address, source->size,
769 write_algorithm->address, 0,
770 &armv7m_info);
771
772 if (retval == ERROR_FLASH_OPERATION_FAILED) {
773 LOG_ERROR("error executing stm32x flash write algorithm");
774
775 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
776
777 if (error & FLASH_WRPERR)
778 LOG_ERROR("flash memory write protected");
779
780 if (error != 0) {
781 LOG_ERROR("flash write failed = 0x%08" PRIx32, error);
782 /* Clear but report errors */
783 target_write_u32(target, STM32_FLASH_SR, error);
784 retval = ERROR_FAIL;
785 }
786 }
787
788 target_free_working_area(target, source);
789 target_free_working_area(target, write_algorithm);
790
791 destroy_reg_param(&reg_params[0]);
792 destroy_reg_param(&reg_params[1]);
793 destroy_reg_param(&reg_params[2]);
794 destroy_reg_param(&reg_params[3]);
795 destroy_reg_param(&reg_params[4]);
796
797 return retval;
798 }
799
800 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
801 uint32_t offset, uint32_t count)
802 {
803 struct target *target = bank->target;
804 uint32_t words_remaining = (count / 2);
805 uint32_t bytes_remaining = (count & 0x00000001);
806 uint32_t address = bank->base + offset;
807 uint32_t bytes_written = 0;
808 int retval;
809
810 if (bank->target->state != TARGET_HALTED) {
811 LOG_ERROR("Target not halted");
812 return ERROR_TARGET_NOT_HALTED;
813 }
814
815 if (offset & 0x1) {
816 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
817 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
818 }
819
820 retval = stm32x_unlock_reg(target);
821 if (retval != ERROR_OK)
822 return retval;
823
824 /* multiple half words (2-byte) to be programmed? */
825 if (words_remaining > 0) {
826 /* try using a block write */
827 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
828 if (retval != ERROR_OK) {
829 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
830 /* if block write failed (no sufficient working area),
831 * we use normal (slow) single dword accesses */
832 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
833 }
834 } else {
835 buffer += words_remaining * 2;
836 address += words_remaining * 2;
837 words_remaining = 0;
838 }
839 }
840
841 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
842 return retval;
843
844 /*
845 Standard programming
846 The Flash memory programming sequence is as follows:
847 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
848 FLASH_SR register.
849 2. Set the PG bit in the FLASH_CR register
850 3. Perform the data write operation(s) to the desired memory address (inside main
851 memory block or OTP area):
852 – – Half-word access in case of x16 parallelism
853 – Word access in case of x32 parallelism
854 –
855 4.
856 Byte access in case of x8 parallelism
857 Double word access in case of x64 parallelism
858 Wait for the BSY bit to be cleared
859 */
860 while (words_remaining > 0) {
861 uint16_t value;
862 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
863
864 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
865 FLASH_PG | FLASH_PSIZE_16);
866 if (retval != ERROR_OK)
867 return retval;
868
869 retval = target_write_u16(target, address, value);
870 if (retval != ERROR_OK)
871 return retval;
872
873 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
874 if (retval != ERROR_OK)
875 return retval;
876
877 bytes_written += 2;
878 words_remaining--;
879 address += 2;
880 }
881
882 if (bytes_remaining) {
883 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
884 FLASH_PG | FLASH_PSIZE_8);
885 if (retval != ERROR_OK)
886 return retval;
887 retval = target_write_u8(target, address, buffer[bytes_written]);
888 if (retval != ERROR_OK)
889 return retval;
890
891 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
892 if (retval != ERROR_OK)
893 return retval;
894 }
895
896 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
897 }
898
899 static void setup_sector(struct flash_bank *bank, unsigned int i,
900 unsigned int size)
901 {
902 assert(i < bank->num_sectors);
903 bank->sectors[i].offset = bank->size;
904 bank->sectors[i].size = size;
905 bank->size += bank->sectors[i].size;
906 LOG_DEBUG("sector %u: %ukBytes", i, size >> 10);
907 }
908
909 static uint16_t sector_size_in_kb(unsigned int i, uint16_t max_sector_size_in_kb)
910 {
911 if (i < 4)
912 return max_sector_size_in_kb / 8;
913 if (i == 4)
914 return max_sector_size_in_kb / 2;
915 return max_sector_size_in_kb;
916 }
917
918 static unsigned int calculate_number_of_sectors(struct flash_bank *bank,
919 uint16_t flash_size_in_kb,
920 uint16_t max_sector_size_in_kb)
921 {
922 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
923 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
924 unsigned int nr_sectors;
925
926 /* Dual Bank Flash has two identically-arranged banks of sectors. */
927 if (stm32x_info->has_large_mem)
928 remaining_flash_size_in_kb /= 2;
929
930 for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
931 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
932 if (size_in_kb > remaining_flash_size_in_kb) {
933 LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
934 stm32x_info->has_large_mem ? "Dual" : "Single",
935 flash_size_in_kb, remaining_flash_size_in_kb);
936 remaining_flash_size_in_kb = 0;
937 } else {
938 remaining_flash_size_in_kb -= size_in_kb;
939 }
940 }
941
942 return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
943 }
944
945 static void setup_bank(struct flash_bank *bank, unsigned int start,
946 uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
947 {
948 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
949 unsigned int sector_index = 0;
950 while (remaining_flash_size_in_kb > 0) {
951 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
952 if (size_in_kb > remaining_flash_size_in_kb) {
953 /* Clip last sector. Already warned in
954 * calculate_number_of_sectors. */
955 size_in_kb = remaining_flash_size_in_kb;
956 }
957 setup_sector(bank, start + sector_index, size_in_kb * 1024);
958 remaining_flash_size_in_kb -= size_in_kb;
959 sector_index++;
960 }
961 }
962
963 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
964 {
965 /* this checks for a stm32f4x errata issue where a
966 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
967 * If the issue is detected target is forced to stm32f4x Rev A.
968 * Only effects Rev A silicon */
969
970 struct target *target = bank->target;
971 struct cortex_m_common *cortex_m = target_to_cm(target);
972
973 /* read stm32 device id register */
974 int retval = target_read_u32(target, 0xE0042000, device_id);
975 if (retval != ERROR_OK)
976 return retval;
977
978 if ((*device_id & 0xfff) == 0x411 && cortex_m->core_info->partno == CORTEX_M4_PARTNO) {
979 *device_id &= ~((0xFFFF << 16) | 0xfff);
980 *device_id |= (0x1000 << 16) | 0x413;
981 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
982 }
983 return retval;
984 }
985
986 static int stm32x_probe(struct flash_bank *bank)
987 {
988 struct target *target = bank->target;
989 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
990 unsigned int num_prot_blocks, num_sectors;
991 uint16_t flash_size_in_kb;
992 uint16_t otp_size_in_b;
993 uint16_t otp_sector_size;
994 uint32_t flash_size_reg = 0x1FFF7A22;
995 uint16_t max_sector_size_in_kb = 128;
996 uint16_t max_flash_size_in_kb;
997 uint32_t device_id;
998 uint32_t base_address = 0x08000000;
999
1000 stm32x_info->probed = false;
1001 stm32x_info->has_large_mem = false;
1002 stm32x_info->has_boot_addr = false;
1003 stm32x_info->has_extra_options = false;
1004 stm32x_info->has_optcr2_pcrop = false;
1005 stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1006 num_prot_blocks = 0;
1007
1008 free(bank->sectors);
1009 bank->num_sectors = 0;
1010 bank->sectors = NULL;
1011
1012 free(bank->prot_blocks);
1013 bank->num_prot_blocks = 0;
1014 bank->prot_blocks = NULL;
1015
1016 /* if explicitly called out as OTP bank, short circuit probe */
1017 if (stm32x_is_otp(bank)) {
1018 if (stm32x_otp_is_f7(bank)) {
1019 otp_size_in_b = STM32F7_OTP_SIZE;
1020 otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1021 } else {
1022 otp_size_in_b = STM32F2_OTP_SIZE;
1023 otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1024 }
1025
1026 num_sectors = otp_size_in_b / otp_sector_size;
1027 LOG_INFO("flash size = %" PRIu16 " bytes", otp_size_in_b);
1028
1029 assert(num_sectors > 0);
1030
1031 bank->num_sectors = num_sectors;
1032 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1033
1034 if (stm32x_otp_is_f7(bank))
1035 bank->size = STM32F7_OTP_SIZE;
1036 else
1037 bank->size = STM32F2_OTP_SIZE;
1038
1039 for (unsigned int i = 0; i < num_sectors; i++) {
1040 bank->sectors[i].offset = i * otp_sector_size;
1041 bank->sectors[i].size = otp_sector_size;
1042 bank->sectors[i].is_erased = 1;
1043 bank->sectors[i].is_protected = 0;
1044 }
1045
1046 stm32x_info->probed = true;
1047 return ERROR_OK;
1048 }
1049
1050 /* read stm32 device id register */
1051 int retval = stm32x_get_device_id(bank, &device_id);
1052 if (retval != ERROR_OK)
1053 return retval;
1054 LOG_INFO("device id = 0x%08" PRIx32, device_id);
1055 device_id &= 0xfff; /* only bits 0-11 are used further on */
1056
1057 /* set max flash size depending on family, id taken from AN2606 */
1058 switch (device_id) {
1059 case 0x411: /* F20x/21x */
1060 case 0x413: /* F40x/41x */
1061 max_flash_size_in_kb = 1024;
1062 break;
1063
1064 case 0x419: /* F42x/43x */
1065 case 0x434: /* F469/479 */
1066 stm32x_info->has_extra_options = true;
1067 max_flash_size_in_kb = 2048;
1068 break;
1069
1070 case 0x423: /* F401xB/C */
1071 max_flash_size_in_kb = 256;
1072 break;
1073
1074 case 0x421: /* F446 */
1075 case 0x431: /* F411 */
1076 case 0x433: /* F401xD/E */
1077 case 0x441: /* F412 */
1078 max_flash_size_in_kb = 512;
1079 break;
1080
1081 case 0x458: /* F410 */
1082 max_flash_size_in_kb = 128;
1083 break;
1084
1085 case 0x449: /* F74x/75x */
1086 max_flash_size_in_kb = 1024;
1087 max_sector_size_in_kb = 256;
1088 flash_size_reg = 0x1FF0F442;
1089 stm32x_info->has_extra_options = true;
1090 stm32x_info->has_boot_addr = true;
1091 break;
1092
1093 case 0x451: /* F76x/77x */
1094 max_flash_size_in_kb = 2048;
1095 max_sector_size_in_kb = 256;
1096 flash_size_reg = 0x1FF0F442;
1097 stm32x_info->has_extra_options = true;
1098 stm32x_info->has_boot_addr = true;
1099 break;
1100
1101 case 0x452: /* F72x/73x */
1102 max_flash_size_in_kb = 512;
1103 flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1104 stm32x_info->has_extra_options = true;
1105 stm32x_info->has_boot_addr = true;
1106 stm32x_info->has_optcr2_pcrop = true;
1107 break;
1108
1109 case 0x463: /* F413x/423x */
1110 max_flash_size_in_kb = 1536;
1111 stm32x_info->has_extra_options = true;
1112 stm32x_info->protection_bits = 15;
1113 num_prot_blocks = 15;
1114 break;
1115
1116 default:
1117 LOG_WARNING("Cannot identify target as a STM32 family.");
1118 return ERROR_FAIL;
1119 }
1120
1121 /* get flash size from target. */
1122 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1123
1124 /* failed reading flash size or flash size invalid (early silicon),
1125 * default to max target family */
1126 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1127 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %" PRIu16 "k flash",
1128 max_flash_size_in_kb);
1129 flash_size_in_kb = max_flash_size_in_kb;
1130 }
1131
1132 /* if the user sets the size manually then ignore the probed value
1133 * this allows us to work around devices that have a invalid flash size register value */
1134 if (stm32x_info->user_bank_size) {
1135 LOG_INFO("ignoring flash probed value, using configured bank size");
1136 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1137 }
1138
1139 LOG_INFO("flash size = %" PRIu16 " kbytes", flash_size_in_kb);
1140
1141 /* did we assign flash size? */
1142 assert(flash_size_in_kb != 0xffff);
1143
1144 /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1145 if ((device_id == 0x419) || (device_id == 0x434)) {
1146 uint32_t optiondata;
1147 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1148 if (retval != ERROR_OK) {
1149 LOG_DEBUG("unable to read option bytes");
1150 return retval;
1151 }
1152 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1153 stm32x_info->has_large_mem = true;
1154 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1155 } else {
1156 stm32x_info->has_large_mem = false;
1157 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1158 }
1159 }
1160
1161 /* F76x/77x devices have a dual bank option */
1162 if (device_id == 0x451) {
1163 uint32_t optiondata;
1164 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1165 if (retval != ERROR_OK) {
1166 LOG_DEBUG("unable to read option bytes");
1167 return retval;
1168 }
1169 if (optiondata & OPTCR_NDBANK) {
1170 stm32x_info->has_large_mem = false;
1171 LOG_INFO("Single Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1172 } else {
1173 stm32x_info->has_large_mem = true;
1174 max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1175 LOG_INFO("Dual Bank %" PRIu16 " kiB STM32F76x/77x found", flash_size_in_kb);
1176 }
1177 }
1178
1179 /* calculate numbers of pages */
1180 unsigned int num_pages = calculate_number_of_sectors(
1181 bank, flash_size_in_kb, max_sector_size_in_kb);
1182
1183 bank->base = base_address;
1184 bank->num_sectors = num_pages;
1185 bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1186 for (unsigned int i = 0; i < num_pages; i++) {
1187 bank->sectors[i].is_erased = -1;
1188 bank->sectors[i].is_protected = 0;
1189 }
1190 bank->size = 0;
1191 LOG_DEBUG("allocated %u sectors", num_pages);
1192
1193 /* F76x/77x in dual bank mode */
1194 if ((device_id == 0x451) && stm32x_info->has_large_mem)
1195 num_prot_blocks = num_pages >> 1;
1196
1197 if (num_prot_blocks) {
1198 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1199 for (unsigned int i = 0; i < num_prot_blocks; i++)
1200 bank->prot_blocks[i].is_protected = 0;
1201 LOG_DEBUG("allocated %u prot blocks", num_prot_blocks);
1202 }
1203
1204 if (stm32x_info->has_large_mem) {
1205 /* dual-bank */
1206 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1207 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1208 max_sector_size_in_kb);
1209
1210 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1211 if (device_id == 0x451) {
1212 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1213 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1214 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1215 + bank->sectors[(i << 1) + 1].size;
1216 }
1217 }
1218 } else {
1219 /* single-bank */
1220 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1221
1222 /* F413/F423, sectors 14 and 15 share one common protection bit */
1223 if (device_id == 0x463) {
1224 for (unsigned int i = 0; i < num_prot_blocks; i++) {
1225 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1226 bank->prot_blocks[i].size = bank->sectors[i].size;
1227 }
1228 bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1229 }
1230 }
1231 bank->num_prot_blocks = num_prot_blocks;
1232 assert((bank->size >> 10) == flash_size_in_kb);
1233
1234 stm32x_info->probed = true;
1235 return ERROR_OK;
1236 }
1237
1238 static int stm32x_auto_probe(struct flash_bank *bank)
1239 {
1240 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1241 if (stm32x_info->probed)
1242 return ERROR_OK;
1243 return stm32x_probe(bank);
1244 }
1245
1246 static int get_stm32x_info(struct flash_bank *bank, struct command_invocation *cmd)
1247 {
1248 uint32_t dbgmcu_idcode;
1249
1250 /* read stm32 device id register */
1251 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1252 if (retval != ERROR_OK)
1253 return retval;
1254
1255 uint16_t device_id = dbgmcu_idcode & 0xfff;
1256 uint16_t rev_id = dbgmcu_idcode >> 16;
1257 const char *device_str;
1258 const char *rev_str = NULL;
1259
1260 switch (device_id) {
1261 case 0x411:
1262 device_str = "STM32F2xx";
1263
1264 switch (rev_id) {
1265 case 0x1000:
1266 rev_str = "A";
1267 break;
1268
1269 case 0x2000:
1270 rev_str = "B";
1271 break;
1272
1273 case 0x1001:
1274 rev_str = "Z";
1275 break;
1276
1277 case 0x2001:
1278 rev_str = "Y";
1279 break;
1280
1281 case 0x2003:
1282 rev_str = "X";
1283 break;
1284
1285 case 0x2007:
1286 rev_str = "1";
1287 break;
1288
1289 case 0x200F:
1290 rev_str = "V";
1291 break;
1292
1293 case 0x201F:
1294 rev_str = "2";
1295 break;
1296 }
1297 break;
1298
1299 case 0x413:
1300 case 0x419:
1301 case 0x434:
1302 device_str = "STM32F4xx";
1303
1304 switch (rev_id) {
1305 case 0x1000:
1306 rev_str = "A";
1307 break;
1308
1309 case 0x1001:
1310 rev_str = "Z";
1311 break;
1312
1313 case 0x1003:
1314 rev_str = "Y";
1315 break;
1316
1317 case 0x1007:
1318 rev_str = "1";
1319 break;
1320
1321 case 0x2001:
1322 rev_str = "3";
1323 break;
1324 }
1325 break;
1326
1327 case 0x421:
1328 device_str = "STM32F446";
1329
1330 switch (rev_id) {
1331 case 0x1000:
1332 rev_str = "A";
1333 break;
1334 }
1335 break;
1336
1337 case 0x423:
1338 case 0x431:
1339 case 0x433:
1340 case 0x458:
1341 case 0x441:
1342 device_str = "STM32F4xx (Low Power)";
1343
1344 switch (rev_id) {
1345 case 0x1000:
1346 rev_str = "A";
1347 break;
1348
1349 case 0x1001:
1350 rev_str = "Z";
1351 break;
1352
1353 case 0x2000:
1354 rev_str = "B";
1355 break;
1356
1357 case 0x3000:
1358 rev_str = "C";
1359 break;
1360 }
1361 break;
1362
1363 case 0x449:
1364 device_str = "STM32F7[4|5]x";
1365
1366 switch (rev_id) {
1367 case 0x1000:
1368 rev_str = "A";
1369 break;
1370
1371 case 0x1001:
1372 rev_str = "Z";
1373 break;
1374 }
1375 break;
1376
1377 case 0x451:
1378 device_str = "STM32F7[6|7]x";
1379
1380 switch (rev_id) {
1381 case 0x1000:
1382 rev_str = "A";
1383 break;
1384 case 0x1001:
1385 rev_str = "Z";
1386 break;
1387 }
1388 break;
1389
1390 case 0x452:
1391 device_str = "STM32F7[2|3]x";
1392
1393 switch (rev_id) {
1394 case 0x1000:
1395 rev_str = "A";
1396 break;
1397 }
1398 break;
1399
1400 case 0x463:
1401 device_str = "STM32F4[1|2]3";
1402
1403 switch (rev_id) {
1404 case 0x1000:
1405 rev_str = "A";
1406 break;
1407 }
1408 break;
1409
1410 default:
1411 command_print_sameline(cmd, "Cannot identify target as a STM32F2/4/7\n");
1412 return ERROR_FAIL;
1413 }
1414
1415 if (rev_str)
1416 command_print_sameline(cmd, "%s - Rev: %s", device_str, rev_str);
1417 else
1418 command_print_sameline(cmd, "%s - Rev: unknown (0x%04" PRIx16 ")", device_str, rev_id);
1419
1420 return ERROR_OK;
1421 }
1422
1423 COMMAND_HANDLER(stm32x_handle_lock_command)
1424 {
1425 struct target *target = NULL;
1426 struct stm32x_flash_bank *stm32x_info = NULL;
1427
1428 if (CMD_ARGC < 1)
1429 return ERROR_COMMAND_SYNTAX_ERROR;
1430
1431 struct flash_bank *bank;
1432 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1433 if (retval != ERROR_OK)
1434 return retval;
1435
1436 stm32x_info = bank->driver_priv;
1437 target = bank->target;
1438
1439 if (target->state != TARGET_HALTED) {
1440 LOG_INFO("Target not halted");
1441 /* return ERROR_TARGET_NOT_HALTED; */
1442 }
1443
1444 if (stm32x_read_options(bank) != ERROR_OK) {
1445 command_print(CMD, "%s failed to read options", bank->driver->name);
1446 return ERROR_OK;
1447 }
1448
1449 /* set readout protection */
1450 stm32x_info->option_bytes.RDP = 0;
1451
1452 if (stm32x_write_options(bank) != ERROR_OK) {
1453 command_print(CMD, "%s failed to lock device", bank->driver->name);
1454 return ERROR_OK;
1455 }
1456
1457 command_print(CMD, "%s locked", bank->driver->name);
1458
1459 return ERROR_OK;
1460 }
1461
1462 COMMAND_HANDLER(stm32x_handle_unlock_command)
1463 {
1464 struct target *target = NULL;
1465 struct stm32x_flash_bank *stm32x_info = NULL;
1466
1467 if (CMD_ARGC < 1)
1468 return ERROR_COMMAND_SYNTAX_ERROR;
1469
1470 struct flash_bank *bank;
1471 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1472 if (retval != ERROR_OK)
1473 return retval;
1474
1475 stm32x_info = bank->driver_priv;
1476 target = bank->target;
1477
1478 if (target->state != TARGET_HALTED) {
1479 LOG_INFO("Target not halted");
1480 /* return ERROR_TARGET_NOT_HALTED; */
1481 }
1482
1483 if (stm32x_read_options(bank) != ERROR_OK) {
1484 command_print(CMD, "%s failed to read options", bank->driver->name);
1485 return ERROR_OK;
1486 }
1487
1488 /* clear readout protection and complementary option bytes
1489 * this will also force a device unlock if set */
1490 stm32x_info->option_bytes.RDP = 0xAA;
1491 if (stm32x_info->has_optcr2_pcrop) {
1492 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1493 }
1494
1495 if (stm32x_write_options(bank) != ERROR_OK) {
1496 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1497 return ERROR_OK;
1498 }
1499
1500 command_print(CMD, "%s unlocked.\n"
1501 "INFO: a reset or power cycle is required "
1502 "for the new settings to take effect.", bank->driver->name);
1503
1504 return ERROR_OK;
1505 }
1506
1507 static int stm32x_mass_erase(struct flash_bank *bank)
1508 {
1509 int retval;
1510 uint32_t flash_mer;
1511 struct target *target = bank->target;
1512 struct stm32x_flash_bank *stm32x_info = NULL;
1513
1514 if (target->state != TARGET_HALTED) {
1515 LOG_ERROR("Target not halted");
1516 return ERROR_TARGET_NOT_HALTED;
1517 }
1518
1519 stm32x_info = bank->driver_priv;
1520
1521 retval = stm32x_unlock_reg(target);
1522 if (retval != ERROR_OK)
1523 return retval;
1524
1525 /* mass erase flash memory */
1526 if (stm32x_info->has_large_mem)
1527 flash_mer = FLASH_MER | FLASH_MER1;
1528 else
1529 flash_mer = FLASH_MER;
1530
1531 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1532 if (retval != ERROR_OK)
1533 return retval;
1534 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1535 flash_mer | FLASH_STRT);
1536 if (retval != ERROR_OK)
1537 return retval;
1538
1539 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1540 if (retval != ERROR_OK)
1541 return retval;
1542
1543 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1544 if (retval != ERROR_OK)
1545 return retval;
1546
1547 return ERROR_OK;
1548 }
1549
1550 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1551 {
1552 if (CMD_ARGC < 1) {
1553 command_print(CMD, "stm32x mass_erase <bank>");
1554 return ERROR_COMMAND_SYNTAX_ERROR;
1555 }
1556
1557 struct flash_bank *bank;
1558 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1559 if (retval != ERROR_OK)
1560 return retval;
1561
1562 retval = stm32x_mass_erase(bank);
1563 if (retval == ERROR_OK) {
1564 /* set all sectors as erased */
1565 for (unsigned int i = 0; i < bank->num_sectors; i++)
1566 bank->sectors[i].is_erased = 1;
1567
1568 command_print(CMD, "stm32x mass erase complete");
1569 } else {
1570 command_print(CMD, "stm32x mass erase failed");
1571 }
1572
1573 return retval;
1574 }
1575
1576 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1577 {
1578 int retval;
1579 struct flash_bank *bank;
1580 struct stm32x_flash_bank *stm32x_info = NULL;
1581
1582 if (CMD_ARGC != 1) {
1583 command_print(CMD, "stm32f2x options_read <bank>");
1584 return ERROR_COMMAND_SYNTAX_ERROR;
1585 }
1586
1587 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1588 if (retval != ERROR_OK)
1589 return retval;
1590
1591 retval = stm32x_read_options(bank);
1592 if (retval != ERROR_OK)
1593 return retval;
1594
1595 stm32x_info = bank->driver_priv;
1596 if (stm32x_info->has_extra_options) {
1597 if (stm32x_info->has_boot_addr) {
1598 uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1599
1600 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16 ","
1601 " boot_add0 0x%04" PRIX32 ", boot_add1 0x%04" PRIX32,
1602 stm32x_info->option_bytes.user_options,
1603 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1604 if (stm32x_info->has_optcr2_pcrop) {
1605 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08" PRIX32,
1606 stm32x_info->option_bytes.optcr2_pcrop);
1607 }
1608 } else {
1609 command_print(CMD, "stm32f2x user_options 0x%03" PRIX16,
1610 stm32x_info->option_bytes.user_options);
1611 }
1612 } else {
1613 command_print(CMD, "stm32f2x user_options 0x%02" PRIX16,
1614 stm32x_info->option_bytes.user_options);
1615
1616 }
1617
1618 return retval;
1619 }
1620
1621 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1622 {
1623 int retval;
1624 struct flash_bank *bank;
1625 struct stm32x_flash_bank *stm32x_info = NULL;
1626 uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1627
1628 if (CMD_ARGC < 1) {
1629 command_print(CMD, "stm32f2x options_write <bank> ...");
1630 return ERROR_COMMAND_SYNTAX_ERROR;
1631 }
1632
1633 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1634 if (retval != ERROR_OK)
1635 return retval;
1636
1637 retval = stm32x_read_options(bank);
1638 if (retval != ERROR_OK)
1639 return retval;
1640
1641 stm32x_info = bank->driver_priv;
1642 if (stm32x_info->has_boot_addr) {
1643 if (CMD_ARGC != 4) {
1644 command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1645 " <boot_addr0> <boot_addr1>");
1646 return ERROR_COMMAND_SYNTAX_ERROR;
1647 }
1648 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1649 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1650 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1651 } else {
1652 if (CMD_ARGC != 2) {
1653 command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1654 return ERROR_COMMAND_SYNTAX_ERROR;
1655 }
1656 }
1657
1658 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1659 options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1660 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1661 if (user_options & options_mask) {
1662 command_print(CMD, "stm32f2x invalid user_options");
1663 return ERROR_COMMAND_ARGUMENT_INVALID;
1664 }
1665
1666 stm32x_info->option_bytes.user_options = user_options;
1667
1668 if (stm32x_write_options(bank) != ERROR_OK) {
1669 command_print(CMD, "stm32f2x failed to write options");
1670 return ERROR_OK;
1671 }
1672
1673 /* switching between single- and dual-bank modes requires re-probe */
1674 /* ... and reprogramming of whole flash */
1675 stm32x_info->probed = false;
1676
1677 command_print(CMD, "stm32f2x write options complete.\n"
1678 "INFO: a reset or power cycle is required "
1679 "for the new settings to take effect.");
1680 return retval;
1681 }
1682
1683 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1684 {
1685 int retval;
1686 struct flash_bank *bank;
1687 struct stm32x_flash_bank *stm32x_info = NULL;
1688 uint32_t optcr2_pcrop;
1689
1690 if (CMD_ARGC != 2) {
1691 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1692 return ERROR_COMMAND_SYNTAX_ERROR;
1693 }
1694
1695 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1696 if (retval != ERROR_OK)
1697 return retval;
1698
1699 stm32x_info = bank->driver_priv;
1700 if (!stm32x_info->has_optcr2_pcrop) {
1701 command_print(CMD, "no optcr2 register");
1702 return ERROR_COMMAND_ARGUMENT_INVALID;
1703 }
1704
1705 command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1706 " with PCROPi bits STILL SET, then\nlock device and"
1707 " finally unlock it. Clears PCROP and mass erases flash.");
1708
1709 retval = stm32x_read_options(bank);
1710 if (retval != ERROR_OK)
1711 return retval;
1712
1713 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1714 stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1715
1716 if (stm32x_write_options(bank) != ERROR_OK) {
1717 command_print(CMD, "stm32f2x failed to write options");
1718 return ERROR_OK;
1719 }
1720
1721 command_print(CMD, "stm32f2x optcr2_write complete.");
1722 return retval;
1723 }
1724
1725 COMMAND_HANDLER(stm32x_handle_otp_command)
1726 {
1727 if (CMD_ARGC < 2) {
1728 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1729 return ERROR_COMMAND_SYNTAX_ERROR;
1730 }
1731
1732 struct flash_bank *bank;
1733 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1734 if (retval != ERROR_OK)
1735 return retval;
1736 if (stm32x_is_otp(bank)) {
1737 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1738 stm32x_otp_enable(bank);
1739 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1740 stm32x_otp_disable(bank);
1741 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1742 command_print(CMD,
1743 "OTP memory bank #%u is %s for write commands.",
1744 bank->bank_number,
1745 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1746 } else {
1747 return ERROR_COMMAND_SYNTAX_ERROR;
1748 }
1749 } else {
1750 command_print(CMD, "Failed: not an OTP bank.");
1751 }
1752
1753 return retval;
1754 }
1755
1756 static const struct command_registration stm32x_exec_command_handlers[] = {
1757 {
1758 .name = "lock",
1759 .handler = stm32x_handle_lock_command,
1760 .mode = COMMAND_EXEC,
1761 .usage = "bank_id",
1762 .help = "Lock entire flash device.",
1763 },
1764 {
1765 .name = "unlock",
1766 .handler = stm32x_handle_unlock_command,
1767 .mode = COMMAND_EXEC,
1768 .usage = "bank_id",
1769 .help = "Unlock entire protected flash device.",
1770 },
1771 {
1772 .name = "mass_erase",
1773 .handler = stm32x_handle_mass_erase_command,
1774 .mode = COMMAND_EXEC,
1775 .usage = "bank_id",
1776 .help = "Erase entire flash device.",
1777 },
1778 {
1779 .name = "options_read",
1780 .handler = stm32f2x_handle_options_read_command,
1781 .mode = COMMAND_EXEC,
1782 .usage = "bank_id",
1783 .help = "Read and display device option bytes.",
1784 },
1785 {
1786 .name = "options_write",
1787 .handler = stm32f2x_handle_options_write_command,
1788 .mode = COMMAND_EXEC,
1789 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1790 .help = "Write option bytes",
1791 },
1792 {
1793 .name = "optcr2_write",
1794 .handler = stm32f2x_handle_optcr2_write_command,
1795 .mode = COMMAND_EXEC,
1796 .usage = "bank_id optcr2",
1797 .help = "Write optcr2 word",
1798 },
1799 {
1800 .name = "otp",
1801 .handler = stm32x_handle_otp_command,
1802 .mode = COMMAND_EXEC,
1803 .usage = "bank_id",
1804 .help = "OTP (One Time Programmable) memory write enable/disable.",
1805 },
1806 COMMAND_REGISTRATION_DONE
1807 };
1808
1809 static const struct command_registration stm32x_command_handlers[] = {
1810 {
1811 .name = "stm32f2x",
1812 .mode = COMMAND_ANY,
1813 .help = "stm32f2x flash command group",
1814 .usage = "",
1815 .chain = stm32x_exec_command_handlers,
1816 },
1817 COMMAND_REGISTRATION_DONE
1818 };
1819
1820 const struct flash_driver stm32f2x_flash = {
1821 .name = "stm32f2x",
1822 .commands = stm32x_command_handlers,
1823 .flash_bank_command = stm32x_flash_bank_command,
1824 .erase = stm32x_erase,
1825 .protect = stm32x_protect,
1826 .write = stm32x_write,
1827 .read = default_flash_read,
1828 .probe = stm32x_probe,
1829 .auto_probe = stm32x_auto_probe,
1830 .erase_check = default_flash_blank_check,
1831 .protect_check = stm32x_protect_check,
1832 .info = get_stm32x_info,
1833 .free_driver_priv = default_flash_free_driver_priv,
1834 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)