flash/nor/stm32f2x: Support value line chips with trimmed flash
[openocd.git] / src / flash / nor / stm32f2x.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2011 Øyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
23 ***************************************************************************/
24
25 #ifdef HAVE_CONFIG_H
26 #include "config.h"
27 #endif
28
29 #include "imp.h"
30 #include <helper/binarybuffer.h>
31 #include <target/algorithm.h>
32 #include <target/armv7m.h>
33
34 /* Regarding performance:
35 *
36 * Short story - it might be best to leave the performance at
37 * current levels.
38 *
39 * You may see a jump in speed if you change to using
40 * 32bit words for the block programming.
41 *
42 * Its a shame you cannot use the double word as its
43 * even faster - but you require external VPP for that mode.
44 *
45 * Having said all that 16bit writes give us the widest vdd
46 * operating range, so may be worth adding a note to that effect.
47 *
48 */
49
50 /* Danger!!!! The STM32F1x and STM32F2x series actually have
51 * quite different flash controllers.
52 *
53 * What's more scary is that the names of the registers and their
54 * addresses are the same, but the actual bits and what they do are
55 * can be very different.
56 *
57 * To reduce testing complexity and dangers of regressions,
58 * a seperate file is used for stm32fx2x.
59 *
60 * Sector sizes in kiBytes:
61 * 1 MiByte part with 4 x 16, 1 x 64, 7 x 128.
62 * 1.5 MiByte part with 4 x 16, 1 x 64, 11 x 128.
63 * 2 MiByte part with 4 x 16, 1 x 64, 7 x 128, 4 x 16, 1 x 64, 7 x 128.
64 * 1 MiByte STM32F42x/43x part with DB1M Option set:
65 * 4 x 16, 1 x 64, 3 x 128, 4 x 16, 1 x 64, 3 x 128.
66 *
67 * STM32F7[2|3]
68 * 512 kiByte part with 4 x 16, 1 x 64, 3 x 128.
69 *
70 * STM32F7[4|5]
71 * 1 MiByte part with 4 x 32, 1 x 128, 3 x 256.
72 *
73 * STM32F7[6|7]
74 * 1 MiByte part in single bank mode with 4 x 32, 1 x 128, 3 x 256.
75 * 1 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 3 x 128 each.
76 * 2 MiByte part in single-bank mode with 4 x 32, 1 x 128, 7 x 256.
77 * 2 MiByte part in dual-bank mode two banks with 4 x 16, 1 x 64, 7 x 128 each.
78 *
79 * Protection size is sector size.
80 *
81 * Tested with STM3220F-EVAL board.
82 *
83 * STM32F4xx series for reference.
84 *
85 * RM0090
86 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00031020.pdf
87 *
88 * PM0059
89 * www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/
90 * PROGRAMMING_MANUAL/CD00233952.pdf
91 *
92 * STM32F7xx series for reference.
93 *
94 * RM0385
95 * http://www.st.com/web/en/resource/technical/document/reference_manual/DM00124865.pdf
96 *
97 * RM0410
98 * http://www.st.com/resource/en/reference_manual/dm00224583.pdf
99 *
100 * RM0430
101 * http://www.st.com/resource/en/reference_manual/dm00305666.pdf
102 *
103 * RM0431
104 * http://www.st.com/resource/en/reference_manual/dm00305990.pdf
105 *
106 * STM32F1x series - notice that this code was copy, pasted and knocked
107 * into a stm32f2x driver, so in case something has been converted or
108 * bugs haven't been fixed, here are the original manuals:
109 *
110 * RM0008 - Reference manual
111 *
112 * RM0042, the Flash programming manual for low-, medium- high-density and
113 * connectivity line STM32F10x devices
114 *
115 * PM0068, the Flash programming manual for XL-density STM32F10x devices.
116 *
117 */
118
119 /* Erase time can be as high as 1000ms, 10x this and it's toast... */
120 #define FLASH_ERASE_TIMEOUT 10000
121 #define FLASH_WRITE_TIMEOUT 5
122
123 /* Mass erase time can be as high as 32 s in x8 mode. */
124 #define FLASH_MASS_ERASE_TIMEOUT 33000
125
126 #define FLASH_BANK_BASE 0x80000000
127
128 #define STM32F2_OTP_SIZE 512
129 #define STM32F2_OTP_SECTOR_SIZE 32
130 #define STM32F2_OTP_BANK_BASE 0x1fff7800
131 #define STM32F2_OTP_LOCK_BASE ((STM32F2_OTP_BANK_BASE) + (STM32F2_OTP_SIZE))
132
133 /* see RM0410 section 3.6 "One-time programmable bytes" */
134 #define STM32F7_OTP_SECTOR_SIZE 64
135 #define STM32F7_OTP_SIZE 1024
136 #define STM32F7_OTP_BANK_BASE 0x1ff0f000
137 #define STM32F7_OTP_LOCK_BASE ((STM32F7_OTP_BANK_BASE) + (STM32F7_OTP_SIZE))
138
139 #define STM32_FLASH_BASE 0x40023c00
140 #define STM32_FLASH_ACR 0x40023c00
141 #define STM32_FLASH_KEYR 0x40023c04
142 #define STM32_FLASH_OPTKEYR 0x40023c08
143 #define STM32_FLASH_SR 0x40023c0C
144 #define STM32_FLASH_CR 0x40023c10
145 #define STM32_FLASH_OPTCR 0x40023c14
146 #define STM32_FLASH_OPTCR1 0x40023c18
147 #define STM32_FLASH_OPTCR2 0x40023c1c
148
149 /* FLASH_CR register bits */
150 #define FLASH_PG (1 << 0)
151 #define FLASH_SER (1 << 1)
152 #define FLASH_MER (1 << 2) /* MER/MER1 for f76x/77x */
153 #define FLASH_MER1 (1 << 15) /* MER2 for f76x/77x, confusing ... */
154 #define FLASH_STRT (1 << 16)
155 #define FLASH_PSIZE_8 (0 << 8)
156 #define FLASH_PSIZE_16 (1 << 8)
157 #define FLASH_PSIZE_32 (2 << 8)
158 #define FLASH_PSIZE_64 (3 << 8)
159 /* The sector number encoding is not straight binary for dual bank flash. */
160 #define FLASH_SNB(a) ((a) << 3)
161 #define FLASH_LOCK (1 << 31)
162
163 /* FLASH_SR register bits */
164 #define FLASH_BSY (1 << 16)
165 #define FLASH_PGSERR (1 << 7) /* Programming sequence error */
166 #define FLASH_PGPERR (1 << 6) /* Programming parallelism error */
167 #define FLASH_PGAERR (1 << 5) /* Programming alignment error */
168 #define FLASH_WRPERR (1 << 4) /* Write protection error */
169 #define FLASH_OPERR (1 << 1) /* Operation error */
170
171 #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGPERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)
172
173 /* STM32_FLASH_OPTCR register bits */
174 #define OPTCR_LOCK (1 << 0)
175 #define OPTCR_START (1 << 1)
176 #define OPTCR_NDBANK (1 << 29) /* not dual bank mode */
177 #define OPTCR_DB1M (1 << 30) /* 1 MiB devices dual flash bank option */
178 #define OPTCR_SPRMOD (1 << 31) /* switches PCROPi/nWPRi interpretation */
179
180 /* STM32_FLASH_OPTCR2 register bits */
181 #define OPTCR2_PCROP_RDP (1 << 31) /* erase PCROP zone when decreasing RDP */
182
183 /* register unlock keys */
184 #define KEY1 0x45670123
185 #define KEY2 0xCDEF89AB
186
187 /* option register unlock key */
188 #define OPTKEY1 0x08192A3B
189 #define OPTKEY2 0x4C5D6E7F
190
191 struct stm32x_options {
192 uint8_t RDP;
193 uint16_t user_options; /* bit 0-7 usual options, bit 8-11 extra options */
194 uint32_t protection;
195 uint32_t boot_addr;
196 uint32_t optcr2_pcrop;
197 };
198
199 struct stm32x_flash_bank {
200 struct stm32x_options option_bytes;
201 bool probed;
202 bool otp_unlocked;
203 bool has_large_mem; /* F42x/43x/469/479/7xx in dual bank mode */
204 bool has_extra_options; /* F42x/43x/469/479/7xx */
205 bool has_boot_addr; /* F7xx */
206 bool has_optcr2_pcrop; /* F72x/73x */
207 int protection_bits; /* F413/423 */
208 uint32_t user_bank_size;
209 };
210
211 static bool stm32x_is_otp(struct flash_bank *bank)
212 {
213 return bank->base == STM32F2_OTP_BANK_BASE ||
214 bank->base == STM32F7_OTP_BANK_BASE;
215 }
216
217 static bool stm32x_otp_is_f7(struct flash_bank *bank)
218 {
219 return bank->base == STM32F7_OTP_BANK_BASE;
220 }
221
222 static int stm32x_is_otp_unlocked(struct flash_bank *bank)
223 {
224 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
225
226 return stm32x_info->otp_unlocked;
227 }
228
229 static int stm32x_otp_disable(struct flash_bank *bank)
230 {
231 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
232
233 LOG_INFO("OTP memory bank #%d is disabled for write commands.",
234 bank->bank_number);
235 stm32x_info->otp_unlocked = false;
236 return ERROR_OK;
237 }
238
239 static int stm32x_otp_enable(struct flash_bank *bank)
240 {
241 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
242
243 if (!stm32x_info->otp_unlocked) {
244 LOG_INFO("OTP memory bank #%d is is enabled for write commands.",
245 bank->bank_number);
246 stm32x_info->otp_unlocked = true;
247 } else {
248 LOG_WARNING("OTP memory bank #%d is is already enabled for write commands.",
249 bank->bank_number);
250 }
251 return ERROR_OK;
252 }
253
254 /* flash bank stm32x <base> <size> 0 0 <target#>
255 */
256 FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command)
257 {
258 struct stm32x_flash_bank *stm32x_info;
259
260 if (CMD_ARGC < 6)
261 return ERROR_COMMAND_SYNTAX_ERROR;
262
263 stm32x_info = malloc(sizeof(struct stm32x_flash_bank));
264 bank->driver_priv = stm32x_info;
265
266 stm32x_info->probed = false;
267 stm32x_info->otp_unlocked = false;
268 stm32x_info->user_bank_size = bank->size;
269
270 return ERROR_OK;
271 }
272
273 static inline int stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg)
274 {
275 return reg;
276 }
277
278 static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status)
279 {
280 struct target *target = bank->target;
281 return target_read_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), status);
282 }
283
284 static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout)
285 {
286 struct target *target = bank->target;
287 uint32_t status;
288 int retval = ERROR_OK;
289
290 /* wait for busy to clear */
291 for (;;) {
292 retval = stm32x_get_flash_status(bank, &status);
293 if (retval != ERROR_OK)
294 return retval;
295 LOG_DEBUG("status: 0x%" PRIx32 "", status);
296 if ((status & FLASH_BSY) == 0)
297 break;
298 if (timeout-- <= 0) {
299 LOG_ERROR("timed out waiting for flash");
300 return ERROR_FAIL;
301 }
302 alive_sleep(1);
303 }
304
305
306 if (status & FLASH_WRPERR) {
307 LOG_ERROR("stm32x device protected");
308 retval = ERROR_FAIL;
309 }
310
311 /* Clear but report errors */
312 if (status & FLASH_ERROR) {
313 if (retval == ERROR_OK)
314 retval = ERROR_FAIL;
315 /* If this operation fails, we ignore it and report the original
316 * retval
317 */
318 target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR),
319 status & FLASH_ERROR);
320 }
321 return retval;
322 }
323
324 static int stm32x_unlock_reg(struct target *target)
325 {
326 uint32_t ctrl;
327
328 /* first check if not already unlocked
329 * otherwise writing on STM32_FLASH_KEYR will fail
330 */
331 int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
332 if (retval != ERROR_OK)
333 return retval;
334
335 if ((ctrl & FLASH_LOCK) == 0)
336 return ERROR_OK;
337
338 /* unlock flash registers */
339 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
340 if (retval != ERROR_OK)
341 return retval;
342
343 retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
344 if (retval != ERROR_OK)
345 return retval;
346
347 retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
348 if (retval != ERROR_OK)
349 return retval;
350
351 if (ctrl & FLASH_LOCK) {
352 LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
353 return ERROR_TARGET_FAILURE;
354 }
355
356 return ERROR_OK;
357 }
358
359 static int stm32x_unlock_option_reg(struct target *target)
360 {
361 uint32_t ctrl;
362
363 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if ((ctrl & OPTCR_LOCK) == 0)
368 return ERROR_OK;
369
370 /* unlock option registers */
371 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
372 if (retval != ERROR_OK)
373 return retval;
374
375 retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
376 if (retval != ERROR_OK)
377 return retval;
378
379 retval = target_read_u32(target, STM32_FLASH_OPTCR, &ctrl);
380 if (retval != ERROR_OK)
381 return retval;
382
383 if (ctrl & OPTCR_LOCK) {
384 LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl);
385 return ERROR_TARGET_FAILURE;
386 }
387
388 return ERROR_OK;
389 }
390
391 static int stm32x_read_options(struct flash_bank *bank)
392 {
393 uint32_t optiondata;
394 struct stm32x_flash_bank *stm32x_info = NULL;
395 struct target *target = bank->target;
396
397 stm32x_info = bank->driver_priv;
398
399 /* read current option bytes */
400 int retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
401 if (retval != ERROR_OK)
402 return retval;
403
404 /* caution: F2 implements 5 bits (WDG_SW only)
405 * whereas F7 6 bits (IWDG_SW and WWDG_SW) in user_options */
406 stm32x_info->option_bytes.user_options = optiondata & 0xfc;
407 stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff;
408 stm32x_info->option_bytes.protection =
409 (optiondata >> 16) & (~(0xffff << stm32x_info->protection_bits) & 0xffff);
410
411 if (stm32x_info->has_extra_options) {
412 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
413 stm32x_info->option_bytes.user_options |= (optiondata >> 20) &
414 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00);
415 }
416
417 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
418 retval = target_read_u32(target, STM32_FLASH_OPTCR1, &optiondata);
419 if (retval != ERROR_OK)
420 return retval;
421
422 /* FLASH_OPTCR1 has quite diffent meanings ... */
423 if (stm32x_info->has_boot_addr) {
424 /* for F7xx it contains boot0 and boot1 */
425 stm32x_info->option_bytes.boot_addr = optiondata;
426 } else {
427 /* for F42x/43x/469/479 it contains 12 additional protection bits */
428 stm32x_info->option_bytes.protection |= (optiondata >> 4) & 0x00fff000;
429 }
430 }
431
432 if (stm32x_info->has_optcr2_pcrop) {
433 retval = target_read_u32(target, STM32_FLASH_OPTCR2, &optiondata);
434 if (retval != ERROR_OK)
435 return retval;
436
437 stm32x_info->option_bytes.optcr2_pcrop = optiondata;
438 if (stm32x_info->has_optcr2_pcrop &&
439 (stm32x_info->option_bytes.optcr2_pcrop & ~OPTCR2_PCROP_RDP)) {
440 LOG_INFO("PCROP Engaged");
441 }
442 } else {
443 stm32x_info->option_bytes.optcr2_pcrop = 0x0;
444 }
445
446 if (stm32x_info->option_bytes.RDP != 0xAA)
447 LOG_INFO("Device Security Bit Set");
448
449 return ERROR_OK;
450 }
451
452 static int stm32x_write_options(struct flash_bank *bank)
453 {
454 struct stm32x_flash_bank *stm32x_info = NULL;
455 struct target *target = bank->target;
456 uint32_t optiondata, optiondata2;
457
458 stm32x_info = bank->driver_priv;
459
460 int retval = stm32x_unlock_option_reg(target);
461 if (retval != ERROR_OK)
462 return retval;
463
464 /* rebuild option data */
465 optiondata = stm32x_info->option_bytes.user_options & 0xfc;
466 optiondata |= stm32x_info->option_bytes.RDP << 8;
467 optiondata |= (stm32x_info->option_bytes.protection &
468 (~(0xffff << stm32x_info->protection_bits))) << 16;
469
470 if (stm32x_info->has_extra_options) {
471 /* F42x/43x/469/479 and 7xx have up to 4 bits of extra options */
472 optiondata |= (stm32x_info->option_bytes.user_options &
473 ((0xf00 << (stm32x_info->protection_bits - 12)) & 0xf00)) << 20;
474 }
475
476 if (stm32x_info->has_large_mem || stm32x_info->has_boot_addr) {
477 if (stm32x_info->has_boot_addr) {
478 /* F7xx uses FLASH_OPTCR1 for boot0 and boot1 ... */
479 optiondata2 = stm32x_info->option_bytes.boot_addr;
480 } else {
481 /* F42x/43x/469/479 uses FLASH_OPTCR1 for additional protection bits */
482 optiondata2 = (stm32x_info->option_bytes.protection & 0x00fff000) << 4;
483 }
484
485 retval = target_write_u32(target, STM32_FLASH_OPTCR1, optiondata2);
486 if (retval != ERROR_OK)
487 return retval;
488 }
489
490 /* program extra pcrop register */
491 if (stm32x_info->has_optcr2_pcrop) {
492 retval = target_write_u32(target, STM32_FLASH_OPTCR2,
493 stm32x_info->option_bytes.optcr2_pcrop);
494 if (retval != ERROR_OK)
495 return retval;
496 }
497
498 /* program options */
499 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata);
500 if (retval != ERROR_OK)
501 return retval;
502
503 /* start programming cycle */
504 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_START);
505 if (retval != ERROR_OK)
506 return retval;
507
508 /* wait for completion, this might trigger a security erase and take a while */
509 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
510 if (retval != ERROR_OK)
511 return retval;
512
513 /* relock registers */
514 retval = target_write_u32(target, STM32_FLASH_OPTCR, optiondata | OPTCR_LOCK);
515 if (retval != ERROR_OK)
516 return retval;
517
518 return ERROR_OK;
519 }
520
521 static int stm32x_otp_read_protect(struct flash_bank *bank)
522 {
523 struct target *target = bank->target;
524 uint32_t lock_base;
525 int i, retval;
526 uint8_t lock;
527
528 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
529 : STM32F2_OTP_LOCK_BASE;
530
531 for (i = 0; i < bank->num_sectors; i++) {
532 retval = target_read_u8(target, lock_base + i, &lock);
533 if (retval != ERROR_OK)
534 return retval;
535 bank->sectors[i].is_protected = !lock;
536 }
537
538 return ERROR_OK;
539 }
540
541 static int stm32x_otp_protect(struct flash_bank *bank, int first, int last)
542 {
543 struct target *target = bank->target;
544 uint32_t lock_base;
545 int i, retval;
546 uint8_t lock;
547
548 assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
549
550 lock_base = stm32x_otp_is_f7(bank) ? STM32F7_OTP_LOCK_BASE
551 : STM32F2_OTP_LOCK_BASE;
552
553 for (i = first; first <= last; i++) {
554 retval = target_read_u8(target, lock_base + i, &lock);
555 if (retval != ERROR_OK)
556 return retval;
557 if (lock)
558 continue;
559
560 lock = 0xff;
561 retval = target_write_u8(target, lock_base + i, lock);
562 if (retval != ERROR_OK)
563 return retval;
564 }
565
566 return ERROR_OK;
567 }
568
569 static int stm32x_protect_check(struct flash_bank *bank)
570 {
571 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
572 struct flash_sector *prot_blocks;
573 int num_prot_blocks;
574 int retval;
575
576 /* if it's the OTP bank, look at the lock bits there */
577 if (stm32x_is_otp(bank))
578 return stm32x_otp_read_protect(bank);
579
580 /* read write protection settings */
581 retval = stm32x_read_options(bank);
582 if (retval != ERROR_OK) {
583 LOG_DEBUG("unable to read option bytes");
584 return retval;
585 }
586
587 if (bank->prot_blocks) {
588 num_prot_blocks = bank->num_prot_blocks;
589 prot_blocks = bank->prot_blocks;
590 } else {
591 num_prot_blocks = bank->num_sectors;
592 prot_blocks = bank->sectors;
593 }
594
595 for (int i = 0; i < num_prot_blocks; i++)
596 prot_blocks[i].is_protected =
597 ~(stm32x_info->option_bytes.protection >> i) & 1;
598
599 return ERROR_OK;
600 }
601
602 static int stm32x_erase(struct flash_bank *bank, int first, int last)
603 {
604 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
605 struct target *target = bank->target;
606 int i;
607
608 if (stm32x_is_otp(bank)) {
609 LOG_ERROR("Cannot erase OTP memory");
610 return ERROR_FAIL;
611 }
612
613 assert((0 <= first) && (first <= last) && (last < bank->num_sectors));
614
615 if (bank->target->state != TARGET_HALTED) {
616 LOG_ERROR("Target not halted");
617 return ERROR_TARGET_NOT_HALTED;
618 }
619
620 int retval;
621 retval = stm32x_unlock_reg(target);
622 if (retval != ERROR_OK)
623 return retval;
624
625 /*
626 Sector Erase
627 To erase a sector, follow the procedure below:
628 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
629 FLASH_SR register
630 2. Set the SER bit and select the sector
631 you wish to erase (SNB) in the FLASH_CR register
632 3. Set the STRT bit in the FLASH_CR register
633 4. Wait for the BSY bit to be cleared
634 */
635
636 for (i = first; i <= last; i++) {
637 unsigned int snb;
638 if (stm32x_info->has_large_mem && i >= 12)
639 snb = (i - 12) | 0x10;
640 else
641 snb = i;
642
643 retval = target_write_u32(target,
644 stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_SER | FLASH_SNB(snb) | FLASH_STRT);
645 if (retval != ERROR_OK)
646 return retval;
647
648 retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
649 if (retval != ERROR_OK)
650 return retval;
651
652 bank->sectors[i].is_erased = 1;
653 }
654
655 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
656 if (retval != ERROR_OK)
657 return retval;
658
659 return ERROR_OK;
660 }
661
662 static int stm32x_protect(struct flash_bank *bank, int set, int first, int last)
663 {
664 struct target *target = bank->target;
665 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
666
667 if (target->state != TARGET_HALTED) {
668 LOG_ERROR("Target not halted");
669 return ERROR_TARGET_NOT_HALTED;
670 }
671
672 if (stm32x_is_otp(bank)) {
673 if (!set)
674 return ERROR_COMMAND_ARGUMENT_INVALID;
675
676 return stm32x_otp_protect(bank, first, last);
677 }
678
679 /* read protection settings */
680 int retval = stm32x_read_options(bank);
681 if (retval != ERROR_OK) {
682 LOG_DEBUG("unable to read option bytes");
683 return retval;
684 }
685
686 for (int i = first; i <= last; i++) {
687 if (set)
688 stm32x_info->option_bytes.protection &= ~(1 << i);
689 else
690 stm32x_info->option_bytes.protection |= (1 << i);
691 }
692
693 retval = stm32x_write_options(bank);
694 if (retval != ERROR_OK)
695 return retval;
696
697 return ERROR_OK;
698 }
699
700 static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer,
701 uint32_t offset, uint32_t count)
702 {
703 struct target *target = bank->target;
704 uint32_t buffer_size = 16384;
705 struct working_area *write_algorithm;
706 struct working_area *source;
707 uint32_t address = bank->base + offset;
708 struct reg_param reg_params[5];
709 struct armv7m_algorithm armv7m_info;
710 int retval = ERROR_OK;
711
712 static const uint8_t stm32x_flash_write_code[] = {
713 #include "../../../contrib/loaders/flash/stm32/stm32f2x.inc"
714 };
715
716 if (stm32x_is_otp(bank) && !stm32x_is_otp_unlocked(bank)) {
717 LOG_ERROR("OTP memory bank is disabled for write commands.");
718 return ERROR_FAIL;
719 }
720
721 if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code),
722 &write_algorithm) != ERROR_OK) {
723 LOG_WARNING("no working area available, can't do block memory writes");
724 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
725 }
726
727 retval = target_write_buffer(target, write_algorithm->address,
728 sizeof(stm32x_flash_write_code),
729 stm32x_flash_write_code);
730 if (retval != ERROR_OK) {
731 target_free_working_area(target, write_algorithm);
732 return retval;
733 }
734
735 /* memory buffer */
736 while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) {
737 buffer_size /= 2;
738 if (buffer_size <= 256) {
739 /* we already allocated the writing code, but failed to get a
740 * buffer, free the algorithm */
741 target_free_working_area(target, write_algorithm);
742
743 LOG_WARNING("no large enough working area available, can't do block memory writes");
744 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
745 }
746 }
747
748 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
749 armv7m_info.core_mode = ARM_MODE_THREAD;
750
751 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */
752 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer end */
753 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* target address */
754 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT); /* count (halfword-16bit) */
755 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT); /* flash base */
756
757 buf_set_u32(reg_params[0].value, 0, 32, source->address);
758 buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
759 buf_set_u32(reg_params[2].value, 0, 32, address);
760 buf_set_u32(reg_params[3].value, 0, 32, count);
761 buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);
762
763 retval = target_run_flash_async_algorithm(target, buffer, count, 2,
764 0, NULL,
765 5, reg_params,
766 source->address, source->size,
767 write_algorithm->address, 0,
768 &armv7m_info);
769
770 if (retval == ERROR_FLASH_OPERATION_FAILED) {
771 LOG_ERROR("error executing stm32x flash write algorithm");
772
773 uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;
774
775 if (error & FLASH_WRPERR)
776 LOG_ERROR("flash memory write protected");
777
778 if (error != 0) {
779 LOG_ERROR("flash write failed = %08" PRIx32, error);
780 /* Clear but report errors */
781 target_write_u32(target, STM32_FLASH_SR, error);
782 retval = ERROR_FAIL;
783 }
784 }
785
786 target_free_working_area(target, source);
787 target_free_working_area(target, write_algorithm);
788
789 destroy_reg_param(&reg_params[0]);
790 destroy_reg_param(&reg_params[1]);
791 destroy_reg_param(&reg_params[2]);
792 destroy_reg_param(&reg_params[3]);
793 destroy_reg_param(&reg_params[4]);
794
795 return retval;
796 }
797
798 static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer,
799 uint32_t offset, uint32_t count)
800 {
801 struct target *target = bank->target;
802 uint32_t words_remaining = (count / 2);
803 uint32_t bytes_remaining = (count & 0x00000001);
804 uint32_t address = bank->base + offset;
805 uint32_t bytes_written = 0;
806 int retval;
807
808 if (bank->target->state != TARGET_HALTED) {
809 LOG_ERROR("Target not halted");
810 return ERROR_TARGET_NOT_HALTED;
811 }
812
813 if (offset & 0x1) {
814 LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset);
815 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
816 }
817
818 retval = stm32x_unlock_reg(target);
819 if (retval != ERROR_OK)
820 return retval;
821
822 /* multiple half words (2-byte) to be programmed? */
823 if (words_remaining > 0) {
824 /* try using a block write */
825 retval = stm32x_write_block(bank, buffer, offset, words_remaining);
826 if (retval != ERROR_OK) {
827 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
828 /* if block write failed (no sufficient working area),
829 * we use normal (slow) single dword accesses */
830 LOG_WARNING("couldn't use block writes, falling back to single memory accesses");
831 }
832 } else {
833 buffer += words_remaining * 2;
834 address += words_remaining * 2;
835 words_remaining = 0;
836 }
837 }
838
839 if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE))
840 return retval;
841
842 /*
843 Standard programming
844 The Flash memory programming sequence is as follows:
845 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
846 FLASH_SR register.
847 2. Set the PG bit in the FLASH_CR register
848 3. Perform the data write operation(s) to the desired memory address (inside main
849 memory block or OTP area):
850 – – Half-word access in case of x16 parallelism
851 – Word access in case of x32 parallelism
852 –
853 4.
854 Byte access in case of x8 parallelism
855 Double word access in case of x64 parallelism
856 Wait for the BSY bit to be cleared
857 */
858 while (words_remaining > 0) {
859 uint16_t value;
860 memcpy(&value, buffer + bytes_written, sizeof(uint16_t));
861
862 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
863 FLASH_PG | FLASH_PSIZE_16);
864 if (retval != ERROR_OK)
865 return retval;
866
867 retval = target_write_u16(target, address, value);
868 if (retval != ERROR_OK)
869 return retval;
870
871 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
872 if (retval != ERROR_OK)
873 return retval;
874
875 bytes_written += 2;
876 words_remaining--;
877 address += 2;
878 }
879
880 if (bytes_remaining) {
881 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
882 FLASH_PG | FLASH_PSIZE_8);
883 if (retval != ERROR_OK)
884 return retval;
885 retval = target_write_u8(target, address, buffer[bytes_written]);
886 if (retval != ERROR_OK)
887 return retval;
888
889 retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
890 if (retval != ERROR_OK)
891 return retval;
892 }
893
894 return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
895 }
896
897 static void setup_sector(struct flash_bank *bank, int i, int size)
898 {
899 assert(i < bank->num_sectors);
900 bank->sectors[i].offset = bank->size;
901 bank->sectors[i].size = size;
902 bank->size += bank->sectors[i].size;
903 LOG_DEBUG("sector %d: %dkBytes", i, size >> 10);
904 }
905
906 static uint16_t sector_size_in_kb(int i, uint16_t max_sector_size_in_kb)
907 {
908 assert(i >= 0);
909 if (i < 4)
910 return max_sector_size_in_kb / 8;
911 if (i == 4)
912 return max_sector_size_in_kb / 2;
913 return max_sector_size_in_kb;
914 }
915
916 static int calculate_number_of_sectors(struct flash_bank *bank,
917 uint16_t flash_size_in_kb,
918 uint16_t max_sector_size_in_kb)
919 {
920 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
921 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
922 int nr_sectors;
923
924 /* Dual Bank Flash has two identically-arranged banks of sectors. */
925 if (stm32x_info->has_large_mem)
926 remaining_flash_size_in_kb /= 2;
927
928 for (nr_sectors = 0; remaining_flash_size_in_kb > 0; nr_sectors++) {
929 uint16_t size_in_kb = sector_size_in_kb(nr_sectors, max_sector_size_in_kb);
930 if (size_in_kb > remaining_flash_size_in_kb) {
931 LOG_INFO("%s Bank %" PRIu16 " kiB final sector clipped to %" PRIu16 " kiB",
932 stm32x_info->has_large_mem ? "Dual" : "Single",
933 flash_size_in_kb, remaining_flash_size_in_kb);
934 remaining_flash_size_in_kb = 0;
935 } else {
936 remaining_flash_size_in_kb -= size_in_kb;
937 }
938 }
939
940 return stm32x_info->has_large_mem ? nr_sectors*2 : nr_sectors;
941 }
942
943 static void setup_bank(struct flash_bank *bank, int start,
944 uint16_t flash_size_in_kb, uint16_t max_sector_size_in_kb)
945 {
946 uint16_t remaining_flash_size_in_kb = flash_size_in_kb;
947 int sector_index = 0;
948 while (remaining_flash_size_in_kb > 0) {
949 uint16_t size_in_kb = sector_size_in_kb(sector_index, max_sector_size_in_kb);
950 if (size_in_kb > remaining_flash_size_in_kb) {
951 /* Clip last sector. Already warned in
952 * calculate_number_of_sectors. */
953 size_in_kb = remaining_flash_size_in_kb;
954 }
955 setup_sector(bank, start + sector_index, size_in_kb * 1024);
956 remaining_flash_size_in_kb -= size_in_kb;
957 sector_index++;
958 }
959 }
960
961 static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id)
962 {
963 /* this checks for a stm32f4x errata issue where a
964 * stm32f2x DBGMCU_IDCODE is incorrectly returned.
965 * If the issue is detected target is forced to stm32f4x Rev A.
966 * Only effects Rev A silicon */
967
968 struct target *target = bank->target;
969 uint32_t cpuid;
970
971 /* read stm32 device id register */
972 int retval = target_read_u32(target, 0xE0042000, device_id);
973 if (retval != ERROR_OK)
974 return retval;
975
976 if ((*device_id & 0xfff) == 0x411) {
977 /* read CPUID reg to check core type */
978 retval = target_read_u32(target, 0xE000ED00, &cpuid);
979 if (retval != ERROR_OK)
980 return retval;
981
982 /* check for cortex_m4 */
983 if (((cpuid >> 4) & 0xFFF) == 0xC24) {
984 *device_id &= ~((0xFFFF << 16) | 0xfff);
985 *device_id |= (0x1000 << 16) | 0x413;
986 LOG_INFO("stm32f4x errata detected - fixing incorrect MCU_IDCODE");
987 }
988 }
989 return retval;
990 }
991
992 static int stm32x_probe(struct flash_bank *bank)
993 {
994 struct target *target = bank->target;
995 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
996 int i, num_prot_blocks, num_sectors;
997 uint16_t flash_size_in_kb;
998 uint16_t otp_size_in_b;
999 uint16_t otp_sector_size;
1000 uint32_t flash_size_reg = 0x1FFF7A22;
1001 uint16_t max_sector_size_in_kb = 128;
1002 uint16_t max_flash_size_in_kb;
1003 uint32_t device_id;
1004 uint32_t base_address = 0x08000000;
1005
1006 stm32x_info->probed = false;
1007 stm32x_info->has_large_mem = false;
1008 stm32x_info->has_boot_addr = false;
1009 stm32x_info->has_extra_options = false;
1010 stm32x_info->has_optcr2_pcrop = false;
1011 stm32x_info->protection_bits = 12; /* max. number of nWRPi bits (in FLASH_OPTCR !!!) */
1012 num_prot_blocks = 0;
1013
1014 if (bank->sectors) {
1015 free(bank->sectors);
1016 bank->num_sectors = 0;
1017 bank->sectors = NULL;
1018 }
1019
1020 if (bank->prot_blocks) {
1021 free(bank->prot_blocks);
1022 bank->num_prot_blocks = 0;
1023 bank->prot_blocks = NULL;
1024 }
1025
1026 /* if explicitely called out as OTP bank, short circuit probe */
1027 if (stm32x_is_otp(bank)) {
1028 if (stm32x_otp_is_f7(bank)) {
1029 otp_size_in_b = STM32F7_OTP_SIZE;
1030 otp_sector_size = STM32F7_OTP_SECTOR_SIZE;
1031 } else {
1032 otp_size_in_b = STM32F2_OTP_SIZE;
1033 otp_sector_size = STM32F2_OTP_SECTOR_SIZE;
1034 }
1035
1036 num_sectors = otp_size_in_b / otp_sector_size;
1037 LOG_INFO("flash size = %d bytes", otp_size_in_b);
1038
1039 assert(num_sectors > 0);
1040
1041 bank->num_sectors = num_sectors;
1042 bank->sectors = calloc(sizeof(struct flash_sector), num_sectors);
1043
1044 if (stm32x_otp_is_f7(bank))
1045 bank->size = STM32F7_OTP_SIZE;
1046 else
1047 bank->size = STM32F2_OTP_SIZE;
1048
1049 for (i = 0; i < num_sectors; i++) {
1050 bank->sectors[i].offset = i * otp_sector_size;
1051 bank->sectors[i].size = otp_sector_size;
1052 bank->sectors[i].is_erased = 1;
1053 bank->sectors[i].is_protected = 0;
1054 }
1055
1056 stm32x_info->probed = true;
1057 return ERROR_OK;
1058 }
1059
1060 /* read stm32 device id register */
1061 int retval = stm32x_get_device_id(bank, &device_id);
1062 if (retval != ERROR_OK)
1063 return retval;
1064 LOG_INFO("device id = 0x%08" PRIx32 "", device_id);
1065 device_id &= 0xfff; /* only bits 0-11 are used further on */
1066
1067 /* set max flash size depending on family, id taken from AN2606 */
1068 switch (device_id) {
1069 case 0x411: /* F20x/21x */
1070 case 0x413: /* F40x/41x */
1071 max_flash_size_in_kb = 1024;
1072 break;
1073
1074 case 0x419: /* F42x/43x */
1075 case 0x434: /* F469/479 */
1076 stm32x_info->has_extra_options = true;
1077 max_flash_size_in_kb = 2048;
1078 break;
1079
1080 case 0x423: /* F401xB/C */
1081 max_flash_size_in_kb = 256;
1082 break;
1083
1084 case 0x421: /* F446 */
1085 case 0x431: /* F411 */
1086 case 0x433: /* F401xD/E */
1087 case 0x441: /* F412 */
1088 max_flash_size_in_kb = 512;
1089 break;
1090
1091 case 0x458: /* F410 */
1092 max_flash_size_in_kb = 128;
1093 break;
1094
1095 case 0x449: /* F74x/75x */
1096 max_flash_size_in_kb = 1024;
1097 max_sector_size_in_kb = 256;
1098 flash_size_reg = 0x1FF0F442;
1099 stm32x_info->has_extra_options = true;
1100 stm32x_info->has_boot_addr = true;
1101 break;
1102
1103 case 0x451: /* F76x/77x */
1104 max_flash_size_in_kb = 2048;
1105 max_sector_size_in_kb = 256;
1106 flash_size_reg = 0x1FF0F442;
1107 stm32x_info->has_extra_options = true;
1108 stm32x_info->has_boot_addr = true;
1109 break;
1110
1111 case 0x452: /* F72x/73x */
1112 max_flash_size_in_kb = 512;
1113 flash_size_reg = 0x1FF07A22; /* yes, 0x1FF*0*7A22, not 0x1FF*F*7A22 */
1114 stm32x_info->has_extra_options = true;
1115 stm32x_info->has_boot_addr = true;
1116 stm32x_info->has_optcr2_pcrop = true;
1117 break;
1118
1119 case 0x463: /* F413x/423x */
1120 max_flash_size_in_kb = 1536;
1121 stm32x_info->has_extra_options = true;
1122 stm32x_info->protection_bits = 15;
1123 num_prot_blocks = 15;
1124 break;
1125
1126 default:
1127 LOG_WARNING("Cannot identify target as a STM32 family.");
1128 return ERROR_FAIL;
1129 }
1130
1131 /* get flash size from target. */
1132 retval = target_read_u16(target, flash_size_reg, &flash_size_in_kb);
1133
1134 /* failed reading flash size or flash size invalid (early silicon),
1135 * default to max target family */
1136 if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
1137 LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
1138 max_flash_size_in_kb);
1139 flash_size_in_kb = max_flash_size_in_kb;
1140 }
1141
1142 /* if the user sets the size manually then ignore the probed value
1143 * this allows us to work around devices that have a invalid flash size register value */
1144 if (stm32x_info->user_bank_size) {
1145 LOG_INFO("ignoring flash probed value, using configured bank size");
1146 flash_size_in_kb = stm32x_info->user_bank_size / 1024;
1147 }
1148
1149 LOG_INFO("flash size = %d kbytes", flash_size_in_kb);
1150
1151 /* did we assign flash size? */
1152 assert(flash_size_in_kb != 0xffff);
1153
1154 /* F42x/43x/469/479 1024 kiByte devices have a dual bank option */
1155 if ((device_id == 0x419) || (device_id == 0x434)) {
1156 uint32_t optiondata;
1157 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1158 if (retval != ERROR_OK) {
1159 LOG_DEBUG("unable to read option bytes");
1160 return retval;
1161 }
1162 if ((flash_size_in_kb > 1024) || (optiondata & OPTCR_DB1M)) {
1163 stm32x_info->has_large_mem = true;
1164 LOG_INFO("Dual Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1165 } else {
1166 stm32x_info->has_large_mem = false;
1167 LOG_INFO("Single Bank %d kiB STM32F42x/43x/469/479 found", flash_size_in_kb);
1168 }
1169 }
1170
1171 /* F76x/77x devices have a dual bank option */
1172 if (device_id == 0x451) {
1173 uint32_t optiondata;
1174 retval = target_read_u32(target, STM32_FLASH_OPTCR, &optiondata);
1175 if (retval != ERROR_OK) {
1176 LOG_DEBUG("unable to read option bytes");
1177 return retval;
1178 }
1179 if (optiondata & OPTCR_NDBANK) {
1180 stm32x_info->has_large_mem = false;
1181 LOG_INFO("Single Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
1182 } else {
1183 stm32x_info->has_large_mem = true;
1184 max_sector_size_in_kb >>= 1; /* sector size divided by 2 in dual-bank mode */
1185 LOG_INFO("Dual Bank %d kiB STM32F76x/77x found", flash_size_in_kb);
1186 }
1187 }
1188
1189 /* calculate numbers of pages */
1190 int num_pages = calculate_number_of_sectors(
1191 bank, flash_size_in_kb, max_sector_size_in_kb);
1192
1193 bank->base = base_address;
1194 bank->num_sectors = num_pages;
1195 bank->sectors = calloc(num_pages, sizeof(struct flash_sector));
1196 for (i = 0; i < num_pages; i++) {
1197 bank->sectors[i].is_erased = -1;
1198 bank->sectors[i].is_protected = 0;
1199 }
1200 bank->size = 0;
1201 LOG_DEBUG("allocated %d sectors", num_pages);
1202
1203 /* F76x/77x in dual bank mode */
1204 if ((device_id == 0x451) && stm32x_info->has_large_mem)
1205 num_prot_blocks = num_pages >> 1;
1206
1207 if (num_prot_blocks) {
1208 bank->prot_blocks = malloc(sizeof(struct flash_sector) * num_prot_blocks);
1209 for (i = 0; i < num_prot_blocks; i++)
1210 bank->prot_blocks[i].is_protected = 0;
1211 LOG_DEBUG("allocated %d prot blocks", num_prot_blocks);
1212 }
1213
1214 if (stm32x_info->has_large_mem) {
1215 /* dual-bank */
1216 setup_bank(bank, 0, flash_size_in_kb >> 1, max_sector_size_in_kb);
1217 setup_bank(bank, num_pages >> 1, flash_size_in_kb >> 1,
1218 max_sector_size_in_kb);
1219
1220 /* F767x/F77x in dual mode, one protection bit refers to two adjacent sectors */
1221 if (device_id == 0x451) {
1222 for (i = 0; i < num_prot_blocks; i++) {
1223 bank->prot_blocks[i].offset = bank->sectors[i << 1].offset;
1224 bank->prot_blocks[i].size = bank->sectors[i << 1].size
1225 + bank->sectors[(i << 1) + 1].size;
1226 }
1227 }
1228 } else {
1229 /* single-bank */
1230 setup_bank(bank, 0, flash_size_in_kb, max_sector_size_in_kb);
1231
1232 /* F413/F423, sectors 14 and 15 share one common protection bit */
1233 if (device_id == 0x463) {
1234 for (i = 0; i < num_prot_blocks; i++) {
1235 bank->prot_blocks[i].offset = bank->sectors[i].offset;
1236 bank->prot_blocks[i].size = bank->sectors[i].size;
1237 }
1238 bank->prot_blocks[num_prot_blocks - 1].size <<= 1;
1239 }
1240 }
1241 bank->num_prot_blocks = num_prot_blocks;
1242 assert((bank->size >> 10) == flash_size_in_kb);
1243
1244 stm32x_info->probed = true;
1245 return ERROR_OK;
1246 }
1247
1248 static int stm32x_auto_probe(struct flash_bank *bank)
1249 {
1250 struct stm32x_flash_bank *stm32x_info = bank->driver_priv;
1251 if (stm32x_info->probed)
1252 return ERROR_OK;
1253 return stm32x_probe(bank);
1254 }
1255
1256 static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size)
1257 {
1258 uint32_t dbgmcu_idcode;
1259
1260 /* read stm32 device id register */
1261 int retval = stm32x_get_device_id(bank, &dbgmcu_idcode);
1262 if (retval != ERROR_OK)
1263 return retval;
1264
1265 uint16_t device_id = dbgmcu_idcode & 0xfff;
1266 uint16_t rev_id = dbgmcu_idcode >> 16;
1267 const char *device_str;
1268 const char *rev_str = NULL;
1269
1270 switch (device_id) {
1271 case 0x411:
1272 device_str = "STM32F2xx";
1273
1274 switch (rev_id) {
1275 case 0x1000:
1276 rev_str = "A";
1277 break;
1278
1279 case 0x2000:
1280 rev_str = "B";
1281 break;
1282
1283 case 0x1001:
1284 rev_str = "Z";
1285 break;
1286
1287 case 0x2001:
1288 rev_str = "Y";
1289 break;
1290
1291 case 0x2003:
1292 rev_str = "X";
1293 break;
1294
1295 case 0x2007:
1296 rev_str = "1";
1297 break;
1298
1299 case 0x200F:
1300 rev_str = "V";
1301 break;
1302
1303 case 0x201F:
1304 rev_str = "2";
1305 break;
1306 }
1307 break;
1308
1309 case 0x413:
1310 case 0x419:
1311 case 0x434:
1312 device_str = "STM32F4xx";
1313
1314 switch (rev_id) {
1315 case 0x1000:
1316 rev_str = "A";
1317 break;
1318
1319 case 0x1001:
1320 rev_str = "Z";
1321 break;
1322
1323 case 0x1003:
1324 rev_str = "Y";
1325 break;
1326
1327 case 0x1007:
1328 rev_str = "1";
1329 break;
1330
1331 case 0x2001:
1332 rev_str = "3";
1333 break;
1334 }
1335 break;
1336
1337 case 0x421:
1338 device_str = "STM32F446";
1339
1340 switch (rev_id) {
1341 case 0x1000:
1342 rev_str = "A";
1343 break;
1344 }
1345 break;
1346
1347 case 0x423:
1348 case 0x431:
1349 case 0x433:
1350 case 0x458:
1351 case 0x441:
1352 device_str = "STM32F4xx (Low Power)";
1353
1354 switch (rev_id) {
1355 case 0x1000:
1356 rev_str = "A";
1357 break;
1358
1359 case 0x1001:
1360 rev_str = "Z";
1361 break;
1362
1363 case 0x2000:
1364 rev_str = "B";
1365 break;
1366
1367 case 0x3000:
1368 rev_str = "C";
1369 break;
1370 }
1371 break;
1372
1373 case 0x449:
1374 device_str = "STM32F7[4|5]x";
1375
1376 switch (rev_id) {
1377 case 0x1000:
1378 rev_str = "A";
1379 break;
1380
1381 case 0x1001:
1382 rev_str = "Z";
1383 break;
1384 }
1385 break;
1386
1387 case 0x451:
1388 device_str = "STM32F7[6|7]x";
1389
1390 switch (rev_id) {
1391 case 0x1000:
1392 rev_str = "A";
1393 break;
1394 case 0x1001:
1395 rev_str = "Z";
1396 break;
1397 }
1398 break;
1399
1400 case 0x452:
1401 device_str = "STM32F7[2|3]x";
1402
1403 switch (rev_id) {
1404 case 0x1000:
1405 rev_str = "A";
1406 break;
1407 }
1408 break;
1409
1410 case 0x463:
1411 device_str = "STM32F4[1|2]3";
1412
1413 switch (rev_id) {
1414 case 0x1000:
1415 rev_str = "A";
1416 break;
1417 }
1418 break;
1419
1420 default:
1421 snprintf(buf, buf_size, "Cannot identify target as a STM32F2/4/7\n");
1422 return ERROR_FAIL;
1423 }
1424
1425 if (rev_str != NULL)
1426 snprintf(buf, buf_size, "%s - Rev: %s", device_str, rev_str);
1427 else
1428 snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", device_str, rev_id);
1429
1430 return ERROR_OK;
1431 }
1432
1433 COMMAND_HANDLER(stm32x_handle_lock_command)
1434 {
1435 struct target *target = NULL;
1436 struct stm32x_flash_bank *stm32x_info = NULL;
1437
1438 if (CMD_ARGC < 1)
1439 return ERROR_COMMAND_SYNTAX_ERROR;
1440
1441 struct flash_bank *bank;
1442 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1443 if (ERROR_OK != retval)
1444 return retval;
1445
1446 stm32x_info = bank->driver_priv;
1447 target = bank->target;
1448
1449 if (target->state != TARGET_HALTED) {
1450 LOG_INFO("Target not halted");
1451 /* return ERROR_TARGET_NOT_HALTED; */
1452 }
1453
1454 if (stm32x_read_options(bank) != ERROR_OK) {
1455 command_print(CMD, "%s failed to read options", bank->driver->name);
1456 return ERROR_OK;
1457 }
1458
1459 /* set readout protection */
1460 stm32x_info->option_bytes.RDP = 0;
1461
1462 if (stm32x_write_options(bank) != ERROR_OK) {
1463 command_print(CMD, "%s failed to lock device", bank->driver->name);
1464 return ERROR_OK;
1465 }
1466
1467 command_print(CMD, "%s locked", bank->driver->name);
1468
1469 return ERROR_OK;
1470 }
1471
1472 COMMAND_HANDLER(stm32x_handle_unlock_command)
1473 {
1474 struct target *target = NULL;
1475 struct stm32x_flash_bank *stm32x_info = NULL;
1476
1477 if (CMD_ARGC < 1)
1478 return ERROR_COMMAND_SYNTAX_ERROR;
1479
1480 struct flash_bank *bank;
1481 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1482 if (ERROR_OK != retval)
1483 return retval;
1484
1485 stm32x_info = bank->driver_priv;
1486 target = bank->target;
1487
1488 if (target->state != TARGET_HALTED) {
1489 LOG_INFO("Target not halted");
1490 /* return ERROR_TARGET_NOT_HALTED; */
1491 }
1492
1493 if (stm32x_read_options(bank) != ERROR_OK) {
1494 command_print(CMD, "%s failed to read options", bank->driver->name);
1495 return ERROR_OK;
1496 }
1497
1498 /* clear readout protection and complementary option bytes
1499 * this will also force a device unlock if set */
1500 stm32x_info->option_bytes.RDP = 0xAA;
1501 if (stm32x_info->has_optcr2_pcrop) {
1502 stm32x_info->option_bytes.optcr2_pcrop = OPTCR2_PCROP_RDP | (~1U << bank->num_sectors);
1503 }
1504
1505 if (stm32x_write_options(bank) != ERROR_OK) {
1506 command_print(CMD, "%s failed to unlock device", bank->driver->name);
1507 return ERROR_OK;
1508 }
1509
1510 command_print(CMD, "%s unlocked.\n"
1511 "INFO: a reset or power cycle is required "
1512 "for the new settings to take effect.", bank->driver->name);
1513
1514 return ERROR_OK;
1515 }
1516
1517 static int stm32x_mass_erase(struct flash_bank *bank)
1518 {
1519 int retval;
1520 uint32_t flash_mer;
1521 struct target *target = bank->target;
1522 struct stm32x_flash_bank *stm32x_info = NULL;
1523
1524 if (target->state != TARGET_HALTED) {
1525 LOG_ERROR("Target not halted");
1526 return ERROR_TARGET_NOT_HALTED;
1527 }
1528
1529 stm32x_info = bank->driver_priv;
1530
1531 retval = stm32x_unlock_reg(target);
1532 if (retval != ERROR_OK)
1533 return retval;
1534
1535 /* mass erase flash memory */
1536 if (stm32x_info->has_large_mem)
1537 flash_mer = FLASH_MER | FLASH_MER1;
1538 else
1539 flash_mer = FLASH_MER;
1540
1541 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), flash_mer);
1542 if (retval != ERROR_OK)
1543 return retval;
1544 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR),
1545 flash_mer | FLASH_STRT);
1546 if (retval != ERROR_OK)
1547 return retval;
1548
1549 retval = stm32x_wait_status_busy(bank, FLASH_MASS_ERASE_TIMEOUT);
1550 if (retval != ERROR_OK)
1551 return retval;
1552
1553 retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
1554 if (retval != ERROR_OK)
1555 return retval;
1556
1557 return ERROR_OK;
1558 }
1559
1560 COMMAND_HANDLER(stm32x_handle_mass_erase_command)
1561 {
1562 int i;
1563
1564 if (CMD_ARGC < 1) {
1565 command_print(CMD, "stm32x mass_erase <bank>");
1566 return ERROR_COMMAND_SYNTAX_ERROR;
1567 }
1568
1569 struct flash_bank *bank;
1570 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1571 if (ERROR_OK != retval)
1572 return retval;
1573
1574 retval = stm32x_mass_erase(bank);
1575 if (retval == ERROR_OK) {
1576 /* set all sectors as erased */
1577 for (i = 0; i < bank->num_sectors; i++)
1578 bank->sectors[i].is_erased = 1;
1579
1580 command_print(CMD, "stm32x mass erase complete");
1581 } else {
1582 command_print(CMD, "stm32x mass erase failed");
1583 }
1584
1585 return retval;
1586 }
1587
1588 COMMAND_HANDLER(stm32f2x_handle_options_read_command)
1589 {
1590 int retval;
1591 struct flash_bank *bank;
1592 struct stm32x_flash_bank *stm32x_info = NULL;
1593
1594 if (CMD_ARGC != 1) {
1595 command_print(CMD, "stm32f2x options_read <bank>");
1596 return ERROR_COMMAND_SYNTAX_ERROR;
1597 }
1598
1599 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1600 if (ERROR_OK != retval)
1601 return retval;
1602
1603 retval = stm32x_read_options(bank);
1604 if (ERROR_OK != retval)
1605 return retval;
1606
1607 stm32x_info = bank->driver_priv;
1608 if (stm32x_info->has_extra_options) {
1609 if (stm32x_info->has_boot_addr) {
1610 uint32_t boot_addr = stm32x_info->option_bytes.boot_addr;
1611
1612 command_print(CMD, "stm32f2x user_options 0x%03X,"
1613 " boot_add0 0x%04X, boot_add1 0x%04X",
1614 stm32x_info->option_bytes.user_options,
1615 boot_addr & 0xffff, (boot_addr & 0xffff0000) >> 16);
1616 if (stm32x_info->has_optcr2_pcrop) {
1617 command_print(CMD, "stm32f2x optcr2_pcrop 0x%08X",
1618 stm32x_info->option_bytes.optcr2_pcrop);
1619 }
1620 } else {
1621 command_print(CMD, "stm32f2x user_options 0x%03X",
1622 stm32x_info->option_bytes.user_options);
1623 }
1624 } else {
1625 command_print(CMD, "stm32f2x user_options 0x%02X",
1626 stm32x_info->option_bytes.user_options);
1627
1628 }
1629
1630 return retval;
1631 }
1632
1633 COMMAND_HANDLER(stm32f2x_handle_options_write_command)
1634 {
1635 int retval;
1636 struct flash_bank *bank;
1637 struct stm32x_flash_bank *stm32x_info = NULL;
1638 uint16_t user_options, boot_addr0, boot_addr1, options_mask;
1639
1640 if (CMD_ARGC < 1) {
1641 command_print(CMD, "stm32f2x options_write <bank> ...");
1642 return ERROR_COMMAND_SYNTAX_ERROR;
1643 }
1644
1645 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1646 if (ERROR_OK != retval)
1647 return retval;
1648
1649 retval = stm32x_read_options(bank);
1650 if (ERROR_OK != retval)
1651 return retval;
1652
1653 stm32x_info = bank->driver_priv;
1654 if (stm32x_info->has_boot_addr) {
1655 if (CMD_ARGC != 4) {
1656 command_print(CMD, "stm32f2x options_write <bank> <user_options>"
1657 " <boot_addr0> <boot_addr1>");
1658 return ERROR_COMMAND_SYNTAX_ERROR;
1659 }
1660 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], boot_addr0);
1661 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], boot_addr1);
1662 stm32x_info->option_bytes.boot_addr = boot_addr0 | (((uint32_t) boot_addr1) << 16);
1663 } else {
1664 if (CMD_ARGC != 2) {
1665 command_print(CMD, "stm32f2x options_write <bank> <user_options>");
1666 return ERROR_COMMAND_SYNTAX_ERROR;
1667 }
1668 }
1669
1670 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], user_options);
1671 options_mask = !stm32x_info->has_extra_options ? ~0xfc :
1672 ~(((0xf00 << (stm32x_info->protection_bits - 12)) | 0xff) & 0xffc);
1673 if (user_options & options_mask) {
1674 command_print(CMD, "stm32f2x invalid user_options");
1675 return ERROR_COMMAND_ARGUMENT_INVALID;
1676 }
1677
1678 stm32x_info->option_bytes.user_options = user_options;
1679
1680 if (stm32x_write_options(bank) != ERROR_OK) {
1681 command_print(CMD, "stm32f2x failed to write options");
1682 return ERROR_OK;
1683 }
1684
1685 /* switching between single- and dual-bank modes requires re-probe */
1686 /* ... and reprogramming of whole flash */
1687 stm32x_info->probed = false;
1688
1689 command_print(CMD, "stm32f2x write options complete.\n"
1690 "INFO: a reset or power cycle is required "
1691 "for the new settings to take effect.");
1692 return retval;
1693 }
1694
1695 COMMAND_HANDLER(stm32f2x_handle_optcr2_write_command)
1696 {
1697 int retval;
1698 struct flash_bank *bank;
1699 struct stm32x_flash_bank *stm32x_info = NULL;
1700 uint32_t optcr2_pcrop;
1701
1702 if (CMD_ARGC != 2) {
1703 command_print(CMD, "stm32f2x optcr2_write <bank> <optcr2_value>");
1704 return ERROR_COMMAND_SYNTAX_ERROR;
1705 }
1706
1707 retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1708 if (ERROR_OK != retval)
1709 return retval;
1710
1711 stm32x_info = bank->driver_priv;
1712 if (!stm32x_info->has_optcr2_pcrop) {
1713 command_print(CMD, "no optcr2 register");
1714 return ERROR_COMMAND_ARGUMENT_INVALID;
1715 }
1716
1717 command_print(CMD, "INFO: To disable PCROP, set PCROP_RDP"
1718 " with PCROPi bits STILL SET, then\nlock device and"
1719 " finally unlock it. Clears PCROP and mass erases flash.");
1720
1721 retval = stm32x_read_options(bank);
1722 if (ERROR_OK != retval)
1723 return retval;
1724
1725 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], optcr2_pcrop);
1726 stm32x_info->option_bytes.optcr2_pcrop = optcr2_pcrop;
1727
1728 if (stm32x_write_options(bank) != ERROR_OK) {
1729 command_print(CMD, "stm32f2x failed to write options");
1730 return ERROR_OK;
1731 }
1732
1733 command_print(CMD, "stm32f2x optcr2_write complete.");
1734 return retval;
1735 }
1736
1737 COMMAND_HANDLER(stm32x_handle_otp_command)
1738 {
1739 if (CMD_ARGC < 2) {
1740 command_print(CMD, "stm32x otp <bank> (enable|disable|show)");
1741 return ERROR_COMMAND_SYNTAX_ERROR;
1742 }
1743
1744 struct flash_bank *bank;
1745 int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1746 if (ERROR_OK != retval)
1747 return retval;
1748 if (stm32x_is_otp(bank)) {
1749 if (strcmp(CMD_ARGV[1], "enable") == 0) {
1750 stm32x_otp_enable(bank);
1751 } else if (strcmp(CMD_ARGV[1], "disable") == 0) {
1752 stm32x_otp_disable(bank);
1753 } else if (strcmp(CMD_ARGV[1], "show") == 0) {
1754 command_print(CMD,
1755 "OTP memory bank #%d is %s for write commands.",
1756 bank->bank_number,
1757 stm32x_is_otp_unlocked(bank) ? "enabled" : "disabled");
1758 } else {
1759 return ERROR_COMMAND_SYNTAX_ERROR;
1760 }
1761 } else {
1762 command_print(CMD, "Failed: not an OTP bank.");
1763 }
1764
1765 return retval;
1766 }
1767
1768 static const struct command_registration stm32x_exec_command_handlers[] = {
1769 {
1770 .name = "lock",
1771 .handler = stm32x_handle_lock_command,
1772 .mode = COMMAND_EXEC,
1773 .usage = "bank_id",
1774 .help = "Lock entire flash device.",
1775 },
1776 {
1777 .name = "unlock",
1778 .handler = stm32x_handle_unlock_command,
1779 .mode = COMMAND_EXEC,
1780 .usage = "bank_id",
1781 .help = "Unlock entire protected flash device.",
1782 },
1783 {
1784 .name = "mass_erase",
1785 .handler = stm32x_handle_mass_erase_command,
1786 .mode = COMMAND_EXEC,
1787 .usage = "bank_id",
1788 .help = "Erase entire flash device.",
1789 },
1790 {
1791 .name = "options_read",
1792 .handler = stm32f2x_handle_options_read_command,
1793 .mode = COMMAND_EXEC,
1794 .usage = "bank_id",
1795 .help = "Read and display device option bytes.",
1796 },
1797 {
1798 .name = "options_write",
1799 .handler = stm32f2x_handle_options_write_command,
1800 .mode = COMMAND_EXEC,
1801 .usage = "bank_id user_options [ boot_add0 boot_add1 ]",
1802 .help = "Write option bytes",
1803 },
1804 {
1805 .name = "optcr2_write",
1806 .handler = stm32f2x_handle_optcr2_write_command,
1807 .mode = COMMAND_EXEC,
1808 .usage = "bank_id optcr2",
1809 .help = "Write optcr2 word",
1810 },
1811 {
1812 .name = "otp",
1813 .handler = stm32x_handle_otp_command,
1814 .mode = COMMAND_EXEC,
1815 .usage = "bank_id",
1816 .help = "OTP (One Time Programmable) memory write enable/disable.",
1817 },
1818 COMMAND_REGISTRATION_DONE
1819 };
1820
1821 static const struct command_registration stm32x_command_handlers[] = {
1822 {
1823 .name = "stm32f2x",
1824 .mode = COMMAND_ANY,
1825 .help = "stm32f2x flash command group",
1826 .usage = "",
1827 .chain = stm32x_exec_command_handlers,
1828 },
1829 COMMAND_REGISTRATION_DONE
1830 };
1831
1832 const struct flash_driver stm32f2x_flash = {
1833 .name = "stm32f2x",
1834 .commands = stm32x_command_handlers,
1835 .flash_bank_command = stm32x_flash_bank_command,
1836 .erase = stm32x_erase,
1837 .protect = stm32x_protect,
1838 .write = stm32x_write,
1839 .read = default_flash_read,
1840 .probe = stm32x_probe,
1841 .auto_probe = stm32x_auto_probe,
1842 .erase_check = default_flash_blank_check,
1843 .protect_check = stm32x_protect_check,
1844 .info = get_stm32x_info,
1845 .free_driver_priv = default_flash_free_driver_priv,
1846 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)