21439b656aa396dff6db63ba18e207dfd6dc2c57
[openocd.git] / src / target / target_type.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * This program is free software; you can redistribute it and/or modify *
12 * it under the terms of the GNU General Public License as published by *
13 * the Free Software Foundation; either version 2 of the License, or *
14 * (at your option) any later version. *
15 * *
16 * This program is distributed in the hope that it will be useful, *
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
19 * GNU General Public License for more details. *
20 * *
21 * You should have received a copy of the GNU General Public License *
22 * along with this program; if not, write to the *
23 * Free Software Foundation, Inc., *
24 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
25 ***************************************************************************/
26
27 #ifndef TARGET_TYPE_H
28 #define TARGET_TYPE_H
29
30 #include <jim-nvp.h>
31
32 struct target;
33
34 /**
35 * This holds methods shared between all instances of a given target
36 * type. For example, all Cortex-M3 targets on a scan chain share
37 * the same method table.
38 */
39 struct target_type {
40 /**
41 * Name of this type of target. Do @b not access this
42 * field directly, use target_type_name() instead.
43 */
44 const char *name;
45 const char *deprecated_name;
46
47 /* poll current target status */
48 int (*poll)(struct target *target);
49 /* Invoked only from target_arch_state().
50 * Issue USER() w/architecture specific status. */
51 int (*arch_state)(struct target *target);
52
53 /* target request support */
54 int (*target_request_data)(struct target *target, uint32_t size, uint8_t *buffer);
55
56 /* halt will log a warning, but return ERROR_OK if the target is already halted. */
57 int (*halt)(struct target *target);
58 int (*resume)(struct target *target, int current, uint32_t address,
59 int handle_breakpoints, int debug_execution);
60 int (*step)(struct target *target, int current, uint32_t address,
61 int handle_breakpoints);
62
63 /* target reset control. assert reset can be invoked when OpenOCD and
64 * the target is out of sync.
65 *
66 * A typical example is that the target was power cycled while OpenOCD
67 * thought the target was halted or running.
68 *
69 * assert_reset() can therefore make no assumptions whatsoever about the
70 * state of the target
71 *
72 * Before assert_reset() for the target is invoked, a TRST/tms and
73 * chain validation is executed. TRST should not be asserted
74 * during target assert unless there is no way around it due to
75 * the way reset's are configured.
76 *
77 */
78 int (*assert_reset)(struct target *target);
79 /**
80 * The implementation is responsible for polling the
81 * target such that target->state reflects the
82 * state correctly.
83 *
84 * Otherwise the following would fail, as there will not
85 * be any "poll" invoked inbetween the "reset run" and
86 * "halt".
87 *
88 * reset run; halt
89 */
90 int (*deassert_reset)(struct target *target);
91 int (*soft_reset_halt)(struct target *target);
92
93 /**
94 * Target register access for GDB. Do @b not call this function
95 * directly, use target_get_gdb_reg_list() instead.
96 *
97 * Danger! this function will succeed even if the target is running
98 * and return a register list with dummy values.
99 *
100 * The reason is that GDB connection will fail without a valid register
101 * list, however it is after GDB is connected that monitor commands can
102 * be run to properly initialize the target
103 */
104 int (*get_gdb_reg_list)(struct target *target, struct reg **reg_list[],
105 int *reg_list_size, enum target_register_class reg_class);
106
107 /* target memory access
108 * size: 1 = byte (8bit), 2 = half-word (16bit), 4 = word (32bit)
109 * count: number of items of <size>
110 */
111
112 /**
113 * Target memory read callback. Do @b not call this function
114 * directly, use target_read_memory() instead.
115 */
116 int (*read_memory)(struct target *target, uint32_t address,
117 uint32_t size, uint32_t count, uint8_t *buffer);
118 /**
119 * Target memory write callback. Do @b not call this function
120 * directly, use target_write_memory() instead.
121 */
122 int (*write_memory)(struct target *target, uint32_t address,
123 uint32_t size, uint32_t count, const uint8_t *buffer);
124
125 /* Default implementation will do some fancy alignment to improve performance, target can override */
126 int (*read_buffer)(struct target *target, uint32_t address,
127 uint32_t size, uint8_t *buffer);
128
129 /* Default implementation will do some fancy alignment to improve performance, target can override */
130 int (*write_buffer)(struct target *target, uint32_t address,
131 uint32_t size, const uint8_t *buffer);
132
133 /**
134 * Write target memory in multiples of 4 bytes, optimized for
135 * writing large quantities of data. Do @b not call this
136 * function directly, use target_bulk_write_memory() instead.
137 */
138 int (*bulk_write_memory)(struct target *target, uint32_t address,
139 uint32_t count, const uint8_t *buffer);
140
141 int (*checksum_memory)(struct target *target, uint32_t address,
142 uint32_t count, uint32_t *checksum);
143 int (*blank_check_memory)(struct target *target, uint32_t address,
144 uint32_t count, uint32_t *blank);
145
146 /*
147 * target break-/watchpoint control
148 * rw: 0 = write, 1 = read, 2 = access
149 *
150 * Target must be halted while this is invoked as this
151 * will actually set up breakpoints on target.
152 *
153 * The breakpoint hardware will be set up upon adding the
154 * first breakpoint.
155 *
156 * Upon GDB connection all breakpoints/watchpoints are cleared.
157 */
158 int (*add_breakpoint)(struct target *target, struct breakpoint *breakpoint);
159 int (*add_context_breakpoint)(struct target *target, struct breakpoint *breakpoint);
160 int (*add_hybrid_breakpoint)(struct target *target, struct breakpoint *breakpoint);
161
162 /* remove breakpoint. hw will only be updated if the target
163 * is currently halted.
164 * However, this method can be invoked on unresponsive targets.
165 */
166 int (*remove_breakpoint)(struct target *target, struct breakpoint *breakpoint);
167
168 /* add watchpoint ... see add_breakpoint() comment above. */
169 int (*add_watchpoint)(struct target *target, struct watchpoint *watchpoint);
170
171 /* remove watchpoint. hw will only be updated if the target
172 * is currently halted.
173 * However, this method can be invoked on unresponsive targets.
174 */
175 int (*remove_watchpoint)(struct target *target, struct watchpoint *watchpoint);
176
177 /* Find out just hit watchpoint. After the target hits a watchpoint, the
178 * information could assist gdb to locate where the modified/accessed memory is.
179 */
180 int (*hit_watchpoint)(struct target *target, struct watchpoint **hit_watchpoint);
181
182 /**
183 * Target algorithm support. Do @b not call this method directly,
184 * use target_run_algorithm() instead.
185 */
186 int (*run_algorithm)(struct target *target, int num_mem_params,
187 struct mem_param *mem_params, int num_reg_params,
188 struct reg_param *reg_param, uint32_t entry_point,
189 uint32_t exit_point, int timeout_ms, void *arch_info);
190 int (*start_algorithm)(struct target *target, int num_mem_params,
191 struct mem_param *mem_params, int num_reg_params,
192 struct reg_param *reg_param, uint32_t entry_point,
193 uint32_t exit_point, void *arch_info);
194 int (*wait_algorithm)(struct target *target, int num_mem_params,
195 struct mem_param *mem_params, int num_reg_params,
196 struct reg_param *reg_param, uint32_t exit_point,
197 int timeout_ms, void *arch_info);
198
199 const struct command_registration *commands;
200
201 /* called when target is created */
202 int (*target_create)(struct target *target, Jim_Interp *interp);
203
204 /* called for various config parameters */
205 /* returns JIM_CONTINUE - if option not understood */
206 /* otherwise: JIM_OK, or JIM_ERR, */
207 int (*target_jim_configure)(struct target *target, Jim_GetOptInfo *goi);
208
209 /* target commands specifically handled by the target */
210 /* returns JIM_OK, or JIM_ERR, or JIM_CONTINUE - if option not understood */
211 int (*target_jim_commands)(struct target *target, Jim_GetOptInfo *goi);
212
213 /**
214 * This method is used to perform target setup that requires
215 * JTAG access.
216 *
217 * This may be called multiple times. It is called after the
218 * scan chain is initially validated, or later after the target
219 * is enabled by a JRC. It may also be called during some
220 * parts of the reset sequence.
221 *
222 * For one-time initialization tasks, use target_was_examined()
223 * and target_set_examined(). For example, probe the hardware
224 * before setting up chip-specific state, and then set that
225 * flag so you don't do that again.
226 */
227 int (*examine)(struct target *target);
228
229 /* Set up structures for target.
230 *
231 * It is illegal to talk to the target at this stage as this fn is invoked
232 * before the JTAG chain has been examined/verified
233 * */
234 int (*init_target)(struct command_context *cmd_ctx, struct target *target);
235
236 /* translate from virtual to physical address. Default implementation is successful
237 * no-op(i.e. virtual==physical).
238 */
239 int (*virt2phys)(struct target *target, uint32_t address, uint32_t *physical);
240
241 /* read directly from physical memory. caches are bypassed and untouched.
242 *
243 * If the target does not support disabling caches, leaving them untouched,
244 * then minimally the actual physical memory location will be read even
245 * if cache states are unchanged, flushed, etc.
246 *
247 * Default implementation is to call read_memory.
248 */
249 int (*read_phys_memory)(struct target *target, uint32_t phys_address,
250 uint32_t size, uint32_t count, uint8_t *buffer);
251
252 /*
253 * same as read_phys_memory, except that it writes...
254 */
255 int (*write_phys_memory)(struct target *target, uint32_t phys_address,
256 uint32_t size, uint32_t count, const uint8_t *buffer);
257
258 int (*mmu)(struct target *target, int *enabled);
259
260 /* after reset is complete, the target can check if things are properly set up.
261 *
262 * This can be used to check if e.g. DCC memory writes have been enabled for
263 * arm7/9 targets, which they really should except in the most contrived
264 * circumstances.
265 */
266 int (*check_reset)(struct target *target);
267
268 /* get GDB file-I/O parameters from target
269 */
270 int (*get_gdb_fileio_info)(struct target *target, struct gdb_fileio_info *fileio_info);
271
272 /* pass GDB file-I/O response to target
273 */
274 int (*gdb_fileio_end)(struct target *target, int retcode, int fileio_errno, bool ctrl_c);
275
276 };
277
278 #endif /* TARGET_TYPE_H */