ded4d55d7e21001f93068271a4dc28a2cb4f87f8
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
47
48 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
49 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
50 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
51 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
52 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
53 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
54 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
55 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
56 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
57 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
58 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
59 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
60 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
61 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
62 static int handle_bp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
63 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
64 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
65 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
66 static int handle_virt2phys_command(command_context_t *cmd_ctx, char *cmd, char **args, int argc);
67 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
68 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
69 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc);
70
71 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
72 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
73 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv);
74
75 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
76 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
77
78 /* targets */
79 extern target_type_t arm7tdmi_target;
80 extern target_type_t arm720t_target;
81 extern target_type_t arm9tdmi_target;
82 extern target_type_t arm920t_target;
83 extern target_type_t arm966e_target;
84 extern target_type_t arm926ejs_target;
85 extern target_type_t feroceon_target;
86 extern target_type_t xscale_target;
87 extern target_type_t cortexm3_target;
88 extern target_type_t cortexa8_target;
89 extern target_type_t arm11_target;
90 extern target_type_t mips_m4k_target;
91 extern target_type_t avr_target;
92
93 target_type_t *target_types[] =
94 {
95 &arm7tdmi_target,
96 &arm9tdmi_target,
97 &arm920t_target,
98 &arm720t_target,
99 &arm966e_target,
100 &arm926ejs_target,
101 &feroceon_target,
102 &xscale_target,
103 &cortexm3_target,
104 &cortexa8_target,
105 &arm11_target,
106 &mips_m4k_target,
107 &avr_target,
108 NULL,
109 };
110
111 target_t *all_targets = NULL;
112 target_event_callback_t *target_event_callbacks = NULL;
113 target_timer_callback_t *target_timer_callbacks = NULL;
114
115 const Jim_Nvp nvp_assert[] = {
116 { .name = "assert", NVP_ASSERT },
117 { .name = "deassert", NVP_DEASSERT },
118 { .name = "T", NVP_ASSERT },
119 { .name = "F", NVP_DEASSERT },
120 { .name = "t", NVP_ASSERT },
121 { .name = "f", NVP_DEASSERT },
122 { .name = NULL, .value = -1 }
123 };
124
125 const Jim_Nvp nvp_error_target[] = {
126 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
127 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
128 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
129 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
130 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
131 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
132 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
133 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
134 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
135 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
136 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
137 { .value = -1, .name = NULL }
138 };
139
140 const char *target_strerror_safe( int err )
141 {
142 const Jim_Nvp *n;
143
144 n = Jim_Nvp_value2name_simple( nvp_error_target, err );
145 if( n->name == NULL ){
146 return "unknown";
147 } else {
148 return n->name;
149 }
150 }
151
152 static const Jim_Nvp nvp_target_event[] = {
153 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
154 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
155
156 { .value = TARGET_EVENT_EARLY_HALTED, .name = "early-halted" },
157 { .value = TARGET_EVENT_HALTED, .name = "halted" },
158 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
159 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
160 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
161
162 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
163 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
164
165 /* historical name */
166
167 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
168
169 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
170 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
171 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
172 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
173 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
174 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
175 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
176 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
177 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
178 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
179
180 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
181 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
182
183 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
184 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
185
186 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
187 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
188
189 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
190 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
191
192 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
193 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
194
195 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
196 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
197 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
198
199 { .name = NULL, .value = -1 }
200 };
201
202 const Jim_Nvp nvp_target_state[] = {
203 { .name = "unknown", .value = TARGET_UNKNOWN },
204 { .name = "running", .value = TARGET_RUNNING },
205 { .name = "halted", .value = TARGET_HALTED },
206 { .name = "reset", .value = TARGET_RESET },
207 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
208 { .name = NULL, .value = -1 },
209 };
210
211 const Jim_Nvp nvp_target_debug_reason [] = {
212 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
213 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
214 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
215 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
216 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
217 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
218 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
219 { .name = NULL, .value = -1 },
220 };
221
222 const Jim_Nvp nvp_target_endian[] = {
223 { .name = "big", .value = TARGET_BIG_ENDIAN },
224 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
225 { .name = "be", .value = TARGET_BIG_ENDIAN },
226 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
227 { .name = NULL, .value = -1 },
228 };
229
230 const Jim_Nvp nvp_reset_modes[] = {
231 { .name = "unknown", .value = RESET_UNKNOWN },
232 { .name = "run" , .value = RESET_RUN },
233 { .name = "halt" , .value = RESET_HALT },
234 { .name = "init" , .value = RESET_INIT },
235 { .name = NULL , .value = -1 },
236 };
237
238 static int max_target_number(void)
239 {
240 target_t *t;
241 int x;
242
243 x = -1;
244 t = all_targets;
245 while( t ){
246 if( x < t->target_number ){
247 x = (t->target_number)+1;
248 }
249 t = t->next;
250 }
251 return x;
252 }
253
254 /* determine the number of the new target */
255 static int new_target_number(void)
256 {
257 target_t *t;
258 int x;
259
260 /* number is 0 based */
261 x = -1;
262 t = all_targets;
263 while(t){
264 if( x < t->target_number ){
265 x = t->target_number;
266 }
267 t = t->next;
268 }
269 return x+1;
270 }
271
272 static int target_continous_poll = 1;
273
274 /* read a u32 from a buffer in target memory endianness */
275 u32 target_buffer_get_u32(target_t *target, const u8 *buffer)
276 {
277 if (target->endianness == TARGET_LITTLE_ENDIAN)
278 return le_to_h_u32(buffer);
279 else
280 return be_to_h_u32(buffer);
281 }
282
283 /* read a u16 from a buffer in target memory endianness */
284 u16 target_buffer_get_u16(target_t *target, const u8 *buffer)
285 {
286 if (target->endianness == TARGET_LITTLE_ENDIAN)
287 return le_to_h_u16(buffer);
288 else
289 return be_to_h_u16(buffer);
290 }
291
292 /* read a u8 from a buffer in target memory endianness */
293 u8 target_buffer_get_u8(target_t *target, const u8 *buffer)
294 {
295 return *buffer & 0x0ff;
296 }
297
298 /* write a u32 to a buffer in target memory endianness */
299 void target_buffer_set_u32(target_t *target, u8 *buffer, u32 value)
300 {
301 if (target->endianness == TARGET_LITTLE_ENDIAN)
302 h_u32_to_le(buffer, value);
303 else
304 h_u32_to_be(buffer, value);
305 }
306
307 /* write a u16 to a buffer in target memory endianness */
308 void target_buffer_set_u16(target_t *target, u8 *buffer, u16 value)
309 {
310 if (target->endianness == TARGET_LITTLE_ENDIAN)
311 h_u16_to_le(buffer, value);
312 else
313 h_u16_to_be(buffer, value);
314 }
315
316 /* write a u8 to a buffer in target memory endianness */
317 void target_buffer_set_u8(target_t *target, u8 *buffer, u8 value)
318 {
319 *buffer = value;
320 }
321
322 /* return a pointer to a configured target; id is name or number */
323 target_t *get_target(const char *id)
324 {
325 target_t *target;
326
327 /* try as tcltarget name */
328 for (target = all_targets; target; target = target->next) {
329 if (target->cmd_name == NULL)
330 continue;
331 if (strcmp(id, target->cmd_name) == 0)
332 return target;
333 }
334
335 /* no match, try as number */
336 unsigned num;
337 if (parse_uint(id, &num) != ERROR_OK)
338 return NULL;
339
340 for (target = all_targets; target; target = target->next) {
341 if (target->target_number == (int)num)
342 return target;
343 }
344
345 return NULL;
346 }
347
348 /* returns a pointer to the n-th configured target */
349 static target_t *get_target_by_num(int num)
350 {
351 target_t *target = all_targets;
352
353 while (target){
354 if( target->target_number == num ){
355 return target;
356 }
357 target = target->next;
358 }
359
360 return NULL;
361 }
362
363 int get_num_by_target(target_t *query_target)
364 {
365 return query_target->target_number;
366 }
367
368 target_t* get_current_target(command_context_t *cmd_ctx)
369 {
370 target_t *target = get_target_by_num(cmd_ctx->current_target);
371
372 if (target == NULL)
373 {
374 LOG_ERROR("BUG: current_target out of bounds");
375 exit(-1);
376 }
377
378 return target;
379 }
380
381 int target_poll(struct target_s *target)
382 {
383 /* We can't poll until after examine */
384 if (!target_was_examined(target))
385 {
386 /* Fail silently lest we pollute the log */
387 return ERROR_FAIL;
388 }
389 return target->type->poll(target);
390 }
391
392 int target_halt(struct target_s *target)
393 {
394 /* We can't poll until after examine */
395 if (!target_was_examined(target))
396 {
397 LOG_ERROR("Target not examined yet");
398 return ERROR_FAIL;
399 }
400 return target->type->halt(target);
401 }
402
403 int target_resume(struct target_s *target, int current, u32 address, int handle_breakpoints, int debug_execution)
404 {
405 int retval;
406
407 /* We can't poll until after examine */
408 if (!target_was_examined(target))
409 {
410 LOG_ERROR("Target not examined yet");
411 return ERROR_FAIL;
412 }
413
414 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
415 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
416 * the application.
417 */
418 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
419 return retval;
420
421 return retval;
422 }
423
424 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
425 {
426 char buf[100];
427 int retval;
428 Jim_Nvp *n;
429 n = Jim_Nvp_value2name_simple( nvp_reset_modes, reset_mode );
430 if( n->name == NULL ){
431 LOG_ERROR("invalid reset mode");
432 return ERROR_FAIL;
433 }
434
435 /* disable polling during reset to make reset event scripts
436 * more predictable, i.e. dr/irscan & pathmove in events will
437 * not have JTAG operations injected into the middle of a sequence.
438 */
439 int save_poll = target_continous_poll;
440 target_continous_poll = 0;
441
442 sprintf( buf, "ocd_process_reset %s", n->name );
443 retval = Jim_Eval( interp, buf );
444
445 target_continous_poll = save_poll;
446
447 if(retval != JIM_OK) {
448 Jim_PrintErrorMessage(interp);
449 return ERROR_FAIL;
450 }
451
452 /* We want any events to be processed before the prompt */
453 retval = target_call_timer_callbacks_now();
454
455 return retval;
456 }
457
458 static int default_virt2phys(struct target_s *target, u32 virtual, u32 *physical)
459 {
460 *physical = virtual;
461 return ERROR_OK;
462 }
463
464 static int default_mmu(struct target_s *target, int *enabled)
465 {
466 *enabled = 0;
467 return ERROR_OK;
468 }
469
470 static int default_examine(struct target_s *target)
471 {
472 target_set_examined(target);
473 return ERROR_OK;
474 }
475
476 int target_examine_one(struct target_s *target)
477 {
478 return target->type->examine(target);
479 }
480
481 /* Targets that correctly implement init+examine, i.e.
482 * no communication with target during init:
483 *
484 * XScale
485 */
486 int target_examine(void)
487 {
488 int retval = ERROR_OK;
489 target_t *target;
490
491 for (target = all_targets; target; target = target->next)
492 {
493 if (!target->tap->enabled)
494 continue;
495 if ((retval = target_examine_one(target)) != ERROR_OK)
496 return retval;
497 }
498 return retval;
499 }
500 const char *target_get_name(struct target_s *target)
501 {
502 return target->type->name;
503 }
504
505 static int target_write_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
506 {
507 if (!target_was_examined(target))
508 {
509 LOG_ERROR("Target not examined yet");
510 return ERROR_FAIL;
511 }
512 return target->type->write_memory_imp(target, address, size, count, buffer);
513 }
514
515 static int target_read_memory_imp(struct target_s *target, u32 address, u32 size, u32 count, u8 *buffer)
516 {
517 if (!target_was_examined(target))
518 {
519 LOG_ERROR("Target not examined yet");
520 return ERROR_FAIL;
521 }
522 return target->type->read_memory_imp(target, address, size, count, buffer);
523 }
524
525 static int target_soft_reset_halt_imp(struct target_s *target)
526 {
527 if (!target_was_examined(target))
528 {
529 LOG_ERROR("Target not examined yet");
530 return ERROR_FAIL;
531 }
532 return target->type->soft_reset_halt_imp(target);
533 }
534
535 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, u32 entry_point, u32 exit_point, int timeout_ms, void *arch_info)
536 {
537 if (!target_was_examined(target))
538 {
539 LOG_ERROR("Target not examined yet");
540 return ERROR_FAIL;
541 }
542 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
543 }
544
545 int target_read_memory(struct target_s *target,
546 u32 address, u32 size, u32 count, u8 *buffer)
547 {
548 return target->type->read_memory(target, address, size, count, buffer);
549 }
550
551 int target_write_memory(struct target_s *target,
552 u32 address, u32 size, u32 count, u8 *buffer)
553 {
554 return target->type->write_memory(target, address, size, count, buffer);
555 }
556 int target_bulk_write_memory(struct target_s *target,
557 u32 address, u32 count, u8 *buffer)
558 {
559 return target->type->bulk_write_memory(target, address, count, buffer);
560 }
561
562 int target_add_breakpoint(struct target_s *target,
563 struct breakpoint_s *breakpoint)
564 {
565 return target->type->add_breakpoint(target, breakpoint);
566 }
567 int target_remove_breakpoint(struct target_s *target,
568 struct breakpoint_s *breakpoint)
569 {
570 return target->type->remove_breakpoint(target, breakpoint);
571 }
572
573 int target_add_watchpoint(struct target_s *target,
574 struct watchpoint_s *watchpoint)
575 {
576 return target->type->add_watchpoint(target, watchpoint);
577 }
578 int target_remove_watchpoint(struct target_s *target,
579 struct watchpoint_s *watchpoint)
580 {
581 return target->type->remove_watchpoint(target, watchpoint);
582 }
583
584 int target_get_gdb_reg_list(struct target_s *target,
585 struct reg_s **reg_list[], int *reg_list_size)
586 {
587 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
588 }
589 int target_step(struct target_s *target,
590 int current, u32 address, int handle_breakpoints)
591 {
592 return target->type->step(target, current, address, handle_breakpoints);
593 }
594
595
596 int target_run_algorithm(struct target_s *target,
597 int num_mem_params, mem_param_t *mem_params,
598 int num_reg_params, reg_param_t *reg_param,
599 u32 entry_point, u32 exit_point,
600 int timeout_ms, void *arch_info)
601 {
602 return target->type->run_algorithm(target,
603 num_mem_params, mem_params, num_reg_params, reg_param,
604 entry_point, exit_point, timeout_ms, arch_info);
605 }
606
607 /// @returns @c true if the target has been examined.
608 bool target_was_examined(struct target_s *target)
609 {
610 return target->type->examined;
611 }
612 /// Sets the @c examined flag for the given target.
613 void target_set_examined(struct target_s *target)
614 {
615 target->type->examined = true;
616 }
617 // Reset the @c examined flag for the given target.
618 void target_reset_examined(struct target_s *target)
619 {
620 target->type->examined = false;
621 }
622
623
624 int target_init(struct command_context_s *cmd_ctx)
625 {
626 target_t *target = all_targets;
627 int retval;
628
629 while (target)
630 {
631 target_reset_examined(target);
632 if (target->type->examine == NULL)
633 {
634 target->type->examine = default_examine;
635 }
636
637 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
638 {
639 LOG_ERROR("target '%s' init failed", target_get_name(target));
640 return retval;
641 }
642
643 /* Set up default functions if none are provided by target */
644 if (target->type->virt2phys == NULL)
645 {
646 target->type->virt2phys = default_virt2phys;
647 }
648 target->type->virt2phys = default_virt2phys;
649 /* a non-invasive way(in terms of patches) to add some code that
650 * runs before the type->write/read_memory implementation
651 */
652 target->type->write_memory_imp = target->type->write_memory;
653 target->type->write_memory = target_write_memory_imp;
654 target->type->read_memory_imp = target->type->read_memory;
655 target->type->read_memory = target_read_memory_imp;
656 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
657 target->type->soft_reset_halt = target_soft_reset_halt_imp;
658 target->type->run_algorithm_imp = target->type->run_algorithm;
659 target->type->run_algorithm = target_run_algorithm_imp;
660
661 if (target->type->mmu == NULL)
662 {
663 target->type->mmu = default_mmu;
664 }
665 target = target->next;
666 }
667
668 if (all_targets)
669 {
670 if((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
671 return retval;
672 if((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
673 return retval;
674 }
675
676 return ERROR_OK;
677 }
678
679 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
680 {
681 target_event_callback_t **callbacks_p = &target_event_callbacks;
682
683 if (callback == NULL)
684 {
685 return ERROR_INVALID_ARGUMENTS;
686 }
687
688 if (*callbacks_p)
689 {
690 while ((*callbacks_p)->next)
691 callbacks_p = &((*callbacks_p)->next);
692 callbacks_p = &((*callbacks_p)->next);
693 }
694
695 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
696 (*callbacks_p)->callback = callback;
697 (*callbacks_p)->priv = priv;
698 (*callbacks_p)->next = NULL;
699
700 return ERROR_OK;
701 }
702
703 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
704 {
705 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
706 struct timeval now;
707
708 if (callback == NULL)
709 {
710 return ERROR_INVALID_ARGUMENTS;
711 }
712
713 if (*callbacks_p)
714 {
715 while ((*callbacks_p)->next)
716 callbacks_p = &((*callbacks_p)->next);
717 callbacks_p = &((*callbacks_p)->next);
718 }
719
720 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
721 (*callbacks_p)->callback = callback;
722 (*callbacks_p)->periodic = periodic;
723 (*callbacks_p)->time_ms = time_ms;
724
725 gettimeofday(&now, NULL);
726 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
727 time_ms -= (time_ms % 1000);
728 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
729 if ((*callbacks_p)->when.tv_usec > 1000000)
730 {
731 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
732 (*callbacks_p)->when.tv_sec += 1;
733 }
734
735 (*callbacks_p)->priv = priv;
736 (*callbacks_p)->next = NULL;
737
738 return ERROR_OK;
739 }
740
741 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
742 {
743 target_event_callback_t **p = &target_event_callbacks;
744 target_event_callback_t *c = target_event_callbacks;
745
746 if (callback == NULL)
747 {
748 return ERROR_INVALID_ARGUMENTS;
749 }
750
751 while (c)
752 {
753 target_event_callback_t *next = c->next;
754 if ((c->callback == callback) && (c->priv == priv))
755 {
756 *p = next;
757 free(c);
758 return ERROR_OK;
759 }
760 else
761 p = &(c->next);
762 c = next;
763 }
764
765 return ERROR_OK;
766 }
767
768 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
769 {
770 target_timer_callback_t **p = &target_timer_callbacks;
771 target_timer_callback_t *c = target_timer_callbacks;
772
773 if (callback == NULL)
774 {
775 return ERROR_INVALID_ARGUMENTS;
776 }
777
778 while (c)
779 {
780 target_timer_callback_t *next = c->next;
781 if ((c->callback == callback) && (c->priv == priv))
782 {
783 *p = next;
784 free(c);
785 return ERROR_OK;
786 }
787 else
788 p = &(c->next);
789 c = next;
790 }
791
792 return ERROR_OK;
793 }
794
795 int target_call_event_callbacks(target_t *target, enum target_event event)
796 {
797 target_event_callback_t *callback = target_event_callbacks;
798 target_event_callback_t *next_callback;
799
800 if (event == TARGET_EVENT_HALTED)
801 {
802 /* execute early halted first */
803 target_call_event_callbacks(target, TARGET_EVENT_EARLY_HALTED);
804 }
805
806 LOG_DEBUG("target event %i (%s)",
807 event,
808 Jim_Nvp_value2name_simple( nvp_target_event, event )->name );
809
810 target_handle_event( target, event );
811
812 while (callback)
813 {
814 next_callback = callback->next;
815 callback->callback(target, event, callback->priv);
816 callback = next_callback;
817 }
818
819 return ERROR_OK;
820 }
821
822 static int target_timer_callback_periodic_restart(
823 target_timer_callback_t *cb, struct timeval *now)
824 {
825 int time_ms = cb->time_ms;
826 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
827 time_ms -= (time_ms % 1000);
828 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
829 if (cb->when.tv_usec > 1000000)
830 {
831 cb->when.tv_usec = cb->when.tv_usec - 1000000;
832 cb->when.tv_sec += 1;
833 }
834 return ERROR_OK;
835 }
836
837 static int target_call_timer_callback(target_timer_callback_t *cb,
838 struct timeval *now)
839 {
840 cb->callback(cb->priv);
841
842 if (cb->periodic)
843 return target_timer_callback_periodic_restart(cb, now);
844
845 return target_unregister_timer_callback(cb->callback, cb->priv);
846 }
847
848 static int target_call_timer_callbacks_check_time(int checktime)
849 {
850 keep_alive();
851
852 struct timeval now;
853 gettimeofday(&now, NULL);
854
855 target_timer_callback_t *callback = target_timer_callbacks;
856 while (callback)
857 {
858 // cleaning up may unregister and free this callback
859 target_timer_callback_t *next_callback = callback->next;
860
861 bool call_it = callback->callback &&
862 ((!checktime && callback->periodic) ||
863 now.tv_sec > callback->when.tv_sec ||
864 (now.tv_sec == callback->when.tv_sec &&
865 now.tv_usec >= callback->when.tv_usec));
866
867 if (call_it)
868 {
869 int retval = target_call_timer_callback(callback, &now);
870 if (retval != ERROR_OK)
871 return retval;
872 }
873
874 callback = next_callback;
875 }
876
877 return ERROR_OK;
878 }
879
880 int target_call_timer_callbacks(void)
881 {
882 return target_call_timer_callbacks_check_time(1);
883 }
884
885 /* invoke periodic callbacks immediately */
886 int target_call_timer_callbacks_now(void)
887 {
888 return target_call_timer_callbacks_check_time(0);
889 }
890
891 int target_alloc_working_area(struct target_s *target, u32 size, working_area_t **area)
892 {
893 working_area_t *c = target->working_areas;
894 working_area_t *new_wa = NULL;
895
896 /* Reevaluate working area address based on MMU state*/
897 if (target->working_areas == NULL)
898 {
899 int retval;
900 int enabled;
901 retval = target->type->mmu(target, &enabled);
902 if (retval != ERROR_OK)
903 {
904 return retval;
905 }
906 if (enabled)
907 {
908 target->working_area = target->working_area_virt;
909 }
910 else
911 {
912 target->working_area = target->working_area_phys;
913 }
914 }
915
916 /* only allocate multiples of 4 byte */
917 if (size % 4)
918 {
919 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes, padding");
920 size = CEIL(size, 4);
921 }
922
923 /* see if there's already a matching working area */
924 while (c)
925 {
926 if ((c->free) && (c->size == size))
927 {
928 new_wa = c;
929 break;
930 }
931 c = c->next;
932 }
933
934 /* if not, allocate a new one */
935 if (!new_wa)
936 {
937 working_area_t **p = &target->working_areas;
938 u32 first_free = target->working_area;
939 u32 free_size = target->working_area_size;
940
941 LOG_DEBUG("allocating new working area");
942
943 c = target->working_areas;
944 while (c)
945 {
946 first_free += c->size;
947 free_size -= c->size;
948 p = &c->next;
949 c = c->next;
950 }
951
952 if (free_size < size)
953 {
954 LOG_WARNING("not enough working area available(requested %d, free %d)", size, free_size);
955 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
956 }
957
958 new_wa = malloc(sizeof(working_area_t));
959 new_wa->next = NULL;
960 new_wa->size = size;
961 new_wa->address = first_free;
962
963 if (target->backup_working_area)
964 {
965 int retval;
966 new_wa->backup = malloc(new_wa->size);
967 if((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
968 {
969 free(new_wa->backup);
970 free(new_wa);
971 return retval;
972 }
973 }
974 else
975 {
976 new_wa->backup = NULL;
977 }
978
979 /* put new entry in list */
980 *p = new_wa;
981 }
982
983 /* mark as used, and return the new (reused) area */
984 new_wa->free = 0;
985 *area = new_wa;
986
987 /* user pointer */
988 new_wa->user = area;
989
990 return ERROR_OK;
991 }
992
993 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
994 {
995 if (area->free)
996 return ERROR_OK;
997
998 if (restore&&target->backup_working_area)
999 {
1000 int retval;
1001 if((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1002 return retval;
1003 }
1004
1005 area->free = 1;
1006
1007 /* mark user pointer invalid */
1008 *area->user = NULL;
1009 area->user = NULL;
1010
1011 return ERROR_OK;
1012 }
1013
1014 int target_free_working_area(struct target_s *target, working_area_t *area)
1015 {
1016 return target_free_working_area_restore(target, area, 1);
1017 }
1018
1019 /* free resources and restore memory, if restoring memory fails,
1020 * free up resources anyway
1021 */
1022 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1023 {
1024 working_area_t *c = target->working_areas;
1025
1026 while (c)
1027 {
1028 working_area_t *next = c->next;
1029 target_free_working_area_restore(target, c, restore);
1030
1031 if (c->backup)
1032 free(c->backup);
1033
1034 free(c);
1035
1036 c = next;
1037 }
1038
1039 target->working_areas = NULL;
1040 }
1041
1042 void target_free_all_working_areas(struct target_s *target)
1043 {
1044 target_free_all_working_areas_restore(target, 1);
1045 }
1046
1047 int target_register_commands(struct command_context_s *cmd_ctx)
1048 {
1049
1050 register_command(cmd_ctx, NULL, "targets", handle_targets_command, COMMAND_EXEC, "change the current command line target (one parameter) or lists targets (with no parameter)");
1051
1052
1053
1054
1055 register_jim(cmd_ctx, "target", jim_target, "configure target" );
1056
1057 return ERROR_OK;
1058 }
1059
1060 int target_arch_state(struct target_s *target)
1061 {
1062 int retval;
1063 if (target==NULL)
1064 {
1065 LOG_USER("No target has been configured");
1066 return ERROR_OK;
1067 }
1068
1069 LOG_USER("target state: %s",
1070 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name);
1071
1072 if (target->state!=TARGET_HALTED)
1073 return ERROR_OK;
1074
1075 retval=target->type->arch_state(target);
1076 return retval;
1077 }
1078
1079 /* Single aligned words are guaranteed to use 16 or 32 bit access
1080 * mode respectively, otherwise data is handled as quickly as
1081 * possible
1082 */
1083 int target_write_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1084 {
1085 int retval;
1086 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x", size, address);
1087
1088 if (!target_was_examined(target))
1089 {
1090 LOG_ERROR("Target not examined yet");
1091 return ERROR_FAIL;
1092 }
1093
1094 if (size == 0) {
1095 return ERROR_OK;
1096 }
1097
1098 if ((address + size - 1) < address)
1099 {
1100 /* GDB can request this when e.g. PC is 0xfffffffc*/
1101 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1102 return ERROR_FAIL;
1103 }
1104
1105 if (((address % 2) == 0) && (size == 2))
1106 {
1107 return target_write_memory(target, address, 2, 1, buffer);
1108 }
1109
1110 /* handle unaligned head bytes */
1111 if (address % 4)
1112 {
1113 u32 unaligned = 4 - (address % 4);
1114
1115 if (unaligned > size)
1116 unaligned = size;
1117
1118 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1119 return retval;
1120
1121 buffer += unaligned;
1122 address += unaligned;
1123 size -= unaligned;
1124 }
1125
1126 /* handle aligned words */
1127 if (size >= 4)
1128 {
1129 int aligned = size - (size % 4);
1130
1131 /* use bulk writes above a certain limit. This may have to be changed */
1132 if (aligned > 128)
1133 {
1134 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1135 return retval;
1136 }
1137 else
1138 {
1139 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1140 return retval;
1141 }
1142
1143 buffer += aligned;
1144 address += aligned;
1145 size -= aligned;
1146 }
1147
1148 /* handle tail writes of less than 4 bytes */
1149 if (size > 0)
1150 {
1151 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1152 return retval;
1153 }
1154
1155 return ERROR_OK;
1156 }
1157
1158 /* Single aligned words are guaranteed to use 16 or 32 bit access
1159 * mode respectively, otherwise data is handled as quickly as
1160 * possible
1161 */
1162 int target_read_buffer(struct target_s *target, u32 address, u32 size, u8 *buffer)
1163 {
1164 int retval;
1165 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x", size, address);
1166
1167 if (!target_was_examined(target))
1168 {
1169 LOG_ERROR("Target not examined yet");
1170 return ERROR_FAIL;
1171 }
1172
1173 if (size == 0) {
1174 return ERROR_OK;
1175 }
1176
1177 if ((address + size - 1) < address)
1178 {
1179 /* GDB can request this when e.g. PC is 0xfffffffc*/
1180 LOG_ERROR("address+size wrapped(0x%08x, 0x%08x)", address, size);
1181 return ERROR_FAIL;
1182 }
1183
1184 if (((address % 2) == 0) && (size == 2))
1185 {
1186 return target_read_memory(target, address, 2, 1, buffer);
1187 }
1188
1189 /* handle unaligned head bytes */
1190 if (address % 4)
1191 {
1192 u32 unaligned = 4 - (address % 4);
1193
1194 if (unaligned > size)
1195 unaligned = size;
1196
1197 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1198 return retval;
1199
1200 buffer += unaligned;
1201 address += unaligned;
1202 size -= unaligned;
1203 }
1204
1205 /* handle aligned words */
1206 if (size >= 4)
1207 {
1208 int aligned = size - (size % 4);
1209
1210 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1211 return retval;
1212
1213 buffer += aligned;
1214 address += aligned;
1215 size -= aligned;
1216 }
1217
1218 /* handle tail writes of less than 4 bytes */
1219 if (size > 0)
1220 {
1221 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1222 return retval;
1223 }
1224
1225 return ERROR_OK;
1226 }
1227
1228 int target_checksum_memory(struct target_s *target, u32 address, u32 size, u32* crc)
1229 {
1230 u8 *buffer;
1231 int retval;
1232 u32 i;
1233 u32 checksum = 0;
1234 if (!target_was_examined(target))
1235 {
1236 LOG_ERROR("Target not examined yet");
1237 return ERROR_FAIL;
1238 }
1239
1240 if ((retval = target->type->checksum_memory(target, address,
1241 size, &checksum)) != ERROR_OK)
1242 {
1243 buffer = malloc(size);
1244 if (buffer == NULL)
1245 {
1246 LOG_ERROR("error allocating buffer for section (%d bytes)", size);
1247 return ERROR_INVALID_ARGUMENTS;
1248 }
1249 retval = target_read_buffer(target, address, size, buffer);
1250 if (retval != ERROR_OK)
1251 {
1252 free(buffer);
1253 return retval;
1254 }
1255
1256 /* convert to target endianess */
1257 for (i = 0; i < (size/sizeof(u32)); i++)
1258 {
1259 u32 target_data;
1260 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(u32)]);
1261 target_buffer_set_u32(target, &buffer[i*sizeof(u32)], target_data);
1262 }
1263
1264 retval = image_calculate_checksum( buffer, size, &checksum );
1265 free(buffer);
1266 }
1267
1268 *crc = checksum;
1269
1270 return retval;
1271 }
1272
1273 int target_blank_check_memory(struct target_s *target, u32 address, u32 size, u32* blank)
1274 {
1275 int retval;
1276 if (!target_was_examined(target))
1277 {
1278 LOG_ERROR("Target not examined yet");
1279 return ERROR_FAIL;
1280 }
1281
1282 if (target->type->blank_check_memory == 0)
1283 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1284
1285 retval = target->type->blank_check_memory(target, address, size, blank);
1286
1287 return retval;
1288 }
1289
1290 int target_read_u32(struct target_s *target, u32 address, u32 *value)
1291 {
1292 u8 value_buf[4];
1293 if (!target_was_examined(target))
1294 {
1295 LOG_ERROR("Target not examined yet");
1296 return ERROR_FAIL;
1297 }
1298
1299 int retval = target_read_memory(target, address, 4, 1, value_buf);
1300
1301 if (retval == ERROR_OK)
1302 {
1303 *value = target_buffer_get_u32(target, value_buf);
1304 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, *value);
1305 }
1306 else
1307 {
1308 *value = 0x0;
1309 LOG_DEBUG("address: 0x%8.8x failed", address);
1310 }
1311
1312 return retval;
1313 }
1314
1315 int target_read_u16(struct target_s *target, u32 address, u16 *value)
1316 {
1317 u8 value_buf[2];
1318 if (!target_was_examined(target))
1319 {
1320 LOG_ERROR("Target not examined yet");
1321 return ERROR_FAIL;
1322 }
1323
1324 int retval = target_read_memory(target, address, 2, 1, value_buf);
1325
1326 if (retval == ERROR_OK)
1327 {
1328 *value = target_buffer_get_u16(target, value_buf);
1329 LOG_DEBUG("address: 0x%8.8x, value: 0x%4.4x", address, *value);
1330 }
1331 else
1332 {
1333 *value = 0x0;
1334 LOG_DEBUG("address: 0x%8.8x failed", address);
1335 }
1336
1337 return retval;
1338 }
1339
1340 int target_read_u8(struct target_s *target, u32 address, u8 *value)
1341 {
1342 int retval = target_read_memory(target, address, 1, 1, value);
1343 if (!target_was_examined(target))
1344 {
1345 LOG_ERROR("Target not examined yet");
1346 return ERROR_FAIL;
1347 }
1348
1349 if (retval == ERROR_OK)
1350 {
1351 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, *value);
1352 }
1353 else
1354 {
1355 *value = 0x0;
1356 LOG_DEBUG("address: 0x%8.8x failed", address);
1357 }
1358
1359 return retval;
1360 }
1361
1362 int target_write_u32(struct target_s *target, u32 address, u32 value)
1363 {
1364 int retval;
1365 u8 value_buf[4];
1366 if (!target_was_examined(target))
1367 {
1368 LOG_ERROR("Target not examined yet");
1369 return ERROR_FAIL;
1370 }
1371
1372 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1373
1374 target_buffer_set_u32(target, value_buf, value);
1375 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1376 {
1377 LOG_DEBUG("failed: %i", retval);
1378 }
1379
1380 return retval;
1381 }
1382
1383 int target_write_u16(struct target_s *target, u32 address, u16 value)
1384 {
1385 int retval;
1386 u8 value_buf[2];
1387 if (!target_was_examined(target))
1388 {
1389 LOG_ERROR("Target not examined yet");
1390 return ERROR_FAIL;
1391 }
1392
1393 LOG_DEBUG("address: 0x%8.8x, value: 0x%8.8x", address, value);
1394
1395 target_buffer_set_u16(target, value_buf, value);
1396 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1397 {
1398 LOG_DEBUG("failed: %i", retval);
1399 }
1400
1401 return retval;
1402 }
1403
1404 int target_write_u8(struct target_s *target, u32 address, u8 value)
1405 {
1406 int retval;
1407 if (!target_was_examined(target))
1408 {
1409 LOG_ERROR("Target not examined yet");
1410 return ERROR_FAIL;
1411 }
1412
1413 LOG_DEBUG("address: 0x%8.8x, value: 0x%2.2x", address, value);
1414
1415 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1416 {
1417 LOG_DEBUG("failed: %i", retval);
1418 }
1419
1420 return retval;
1421 }
1422
1423 int target_register_user_commands(struct command_context_s *cmd_ctx)
1424 {
1425 int retval = ERROR_OK;
1426
1427
1428 /* script procedures */
1429 register_command(cmd_ctx, NULL, "profile", handle_profile_command, COMMAND_EXEC, "profiling samples the CPU PC");
1430 register_jim(cmd_ctx, "ocd_mem2array", jim_mem2array, "read memory and return as a TCL array for script processing <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1431 register_jim(cmd_ctx, "ocd_array2mem", jim_array2mem, "convert a TCL array to memory locations and write the values <ARRAYNAME> <WIDTH=32/16/8> <ADDRESS> <COUNT>");
1432
1433 register_command(cmd_ctx, NULL, "fast_load_image", handle_fast_load_image_command, COMMAND_ANY,
1434 "same args as load_image, image stored in memory - mainly for profiling purposes");
1435
1436 register_command(cmd_ctx, NULL, "fast_load", handle_fast_load_command, COMMAND_ANY,
1437 "loads active fast load image to current target - mainly for profiling purposes");
1438
1439
1440 register_command(cmd_ctx, NULL, "virt2phys", handle_virt2phys_command, COMMAND_ANY, "translate a virtual address into a physical address");
1441 register_command(cmd_ctx, NULL, "reg", handle_reg_command, COMMAND_EXEC, "display or set a register");
1442 register_command(cmd_ctx, NULL, "poll", handle_poll_command, COMMAND_EXEC, "poll target state");
1443 register_command(cmd_ctx, NULL, "wait_halt", handle_wait_halt_command, COMMAND_EXEC, "wait for target halt [time (s)]");
1444 register_command(cmd_ctx, NULL, "halt", handle_halt_command, COMMAND_EXEC, "halt target");
1445 register_command(cmd_ctx, NULL, "resume", handle_resume_command, COMMAND_EXEC, "resume target [addr]");
1446 register_command(cmd_ctx, NULL, "step", handle_step_command, COMMAND_EXEC, "step one instruction from current PC or [addr]");
1447 register_command(cmd_ctx, NULL, "reset", handle_reset_command, COMMAND_EXEC, "reset target [run|halt|init] - default is run");
1448 register_command(cmd_ctx, NULL, "soft_reset_halt", handle_soft_reset_halt_command, COMMAND_EXEC, "halt the target and do a soft reset");
1449
1450 register_command(cmd_ctx, NULL, "mdw", handle_md_command, COMMAND_EXEC, "display memory words <addr> [count]");
1451 register_command(cmd_ctx, NULL, "mdh", handle_md_command, COMMAND_EXEC, "display memory half-words <addr> [count]");
1452 register_command(cmd_ctx, NULL, "mdb", handle_md_command, COMMAND_EXEC, "display memory bytes <addr> [count]");
1453
1454 register_command(cmd_ctx, NULL, "mww", handle_mw_command, COMMAND_EXEC, "write memory word <addr> <value> [count]");
1455 register_command(cmd_ctx, NULL, "mwh", handle_mw_command, COMMAND_EXEC, "write memory half-word <addr> <value> [count]");
1456 register_command(cmd_ctx, NULL, "mwb", handle_mw_command, COMMAND_EXEC, "write memory byte <addr> <value> [count]");
1457
1458 register_command(cmd_ctx, NULL, "bp", handle_bp_command, COMMAND_EXEC, "set breakpoint <address> <length> [hw]");
1459 register_command(cmd_ctx, NULL, "rbp", handle_rbp_command, COMMAND_EXEC, "remove breakpoint <adress>");
1460 register_command(cmd_ctx, NULL, "wp", handle_wp_command, COMMAND_EXEC, "set watchpoint <address> <length> <r/w/a> [value] [mask]");
1461 register_command(cmd_ctx, NULL, "rwp", handle_rwp_command, COMMAND_EXEC, "remove watchpoint <adress>");
1462
1463 register_command(cmd_ctx, NULL, "load_image", handle_load_image_command, COMMAND_EXEC, "load_image <file> <address> ['bin'|'ihex'|'elf'|'s19'] [min_address] [max_length]");
1464 register_command(cmd_ctx, NULL, "dump_image", handle_dump_image_command, COMMAND_EXEC, "dump_image <file> <address> <size>");
1465 register_command(cmd_ctx, NULL, "verify_image", handle_verify_image_command, COMMAND_EXEC, "verify_image <file> [offset] [type]");
1466 register_command(cmd_ctx, NULL, "test_image", handle_test_image_command, COMMAND_EXEC, "test_image <file> [offset] [type]");
1467
1468 if((retval = target_request_register_commands(cmd_ctx)) != ERROR_OK)
1469 return retval;
1470 if((retval = trace_register_commands(cmd_ctx)) != ERROR_OK)
1471 return retval;
1472
1473 return retval;
1474 }
1475
1476 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1477 {
1478 target_t *target = all_targets;
1479
1480 if (argc == 1)
1481 {
1482 target = get_target(args[0]);
1483 if (target == NULL) {
1484 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0] );
1485 goto DumpTargets;
1486 }
1487 if (!target->tap->enabled) {
1488 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1489 "can't be the current target\n",
1490 target->tap->dotted_name);
1491 return ERROR_FAIL;
1492 }
1493
1494 cmd_ctx->current_target = target->target_number;
1495 return ERROR_OK;
1496 }
1497 DumpTargets:
1498
1499 target = all_targets;
1500 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1501 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1502 while (target)
1503 {
1504 const char *state;
1505 char marker = ' ';
1506
1507 if (target->tap->enabled)
1508 state = Jim_Nvp_value2name_simple(nvp_target_state,
1509 target->state)->name;
1510 else
1511 state = "tap-disabled";
1512
1513 if (cmd_ctx->current_target == target->target_number)
1514 marker = '*';
1515
1516 /* keep columns lined up to match the headers above */
1517 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1518 target->target_number,
1519 marker,
1520 target->cmd_name,
1521 target_get_name(target),
1522 Jim_Nvp_value2name_simple(nvp_target_endian,
1523 target->endianness)->name,
1524 target->tap->dotted_name,
1525 state);
1526 target = target->next;
1527 }
1528
1529 return ERROR_OK;
1530 }
1531
1532 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1533
1534 static int powerDropout;
1535 static int srstAsserted;
1536
1537 static int runPowerRestore;
1538 static int runPowerDropout;
1539 static int runSrstAsserted;
1540 static int runSrstDeasserted;
1541
1542 static int sense_handler(void)
1543 {
1544 static int prevSrstAsserted = 0;
1545 static int prevPowerdropout = 0;
1546
1547 int retval;
1548 if ((retval=jtag_power_dropout(&powerDropout))!=ERROR_OK)
1549 return retval;
1550
1551 int powerRestored;
1552 powerRestored = prevPowerdropout && !powerDropout;
1553 if (powerRestored)
1554 {
1555 runPowerRestore = 1;
1556 }
1557
1558 long long current = timeval_ms();
1559 static long long lastPower = 0;
1560 int waitMore = lastPower + 2000 > current;
1561 if (powerDropout && !waitMore)
1562 {
1563 runPowerDropout = 1;
1564 lastPower = current;
1565 }
1566
1567 if ((retval=jtag_srst_asserted(&srstAsserted))!=ERROR_OK)
1568 return retval;
1569
1570 int srstDeasserted;
1571 srstDeasserted = prevSrstAsserted && !srstAsserted;
1572
1573 static long long lastSrst = 0;
1574 waitMore = lastSrst + 2000 > current;
1575 if (srstDeasserted && !waitMore)
1576 {
1577 runSrstDeasserted = 1;
1578 lastSrst = current;
1579 }
1580
1581 if (!prevSrstAsserted && srstAsserted)
1582 {
1583 runSrstAsserted = 1;
1584 }
1585
1586 prevSrstAsserted = srstAsserted;
1587 prevPowerdropout = powerDropout;
1588
1589 if (srstDeasserted || powerRestored)
1590 {
1591 /* Other than logging the event we can't do anything here.
1592 * Issuing a reset is a particularly bad idea as we might
1593 * be inside a reset already.
1594 */
1595 }
1596
1597 return ERROR_OK;
1598 }
1599
1600 /* process target state changes */
1601 int handle_target(void *priv)
1602 {
1603 int retval = ERROR_OK;
1604
1605 /* we do not want to recurse here... */
1606 static int recursive = 0;
1607 if (! recursive)
1608 {
1609 recursive = 1;
1610 sense_handler();
1611 /* danger! running these procedures can trigger srst assertions and power dropouts.
1612 * We need to avoid an infinite loop/recursion here and we do that by
1613 * clearing the flags after running these events.
1614 */
1615 int did_something = 0;
1616 if (runSrstAsserted)
1617 {
1618 Jim_Eval( interp, "srst_asserted");
1619 did_something = 1;
1620 }
1621 if (runSrstDeasserted)
1622 {
1623 Jim_Eval( interp, "srst_deasserted");
1624 did_something = 1;
1625 }
1626 if (runPowerDropout)
1627 {
1628 Jim_Eval( interp, "power_dropout");
1629 did_something = 1;
1630 }
1631 if (runPowerRestore)
1632 {
1633 Jim_Eval( interp, "power_restore");
1634 did_something = 1;
1635 }
1636
1637 if (did_something)
1638 {
1639 /* clear detect flags */
1640 sense_handler();
1641 }
1642
1643 /* clear action flags */
1644
1645 runSrstAsserted=0;
1646 runSrstDeasserted=0;
1647 runPowerRestore=0;
1648 runPowerDropout=0;
1649
1650 recursive = 0;
1651 }
1652
1653 target_t *target = all_targets;
1654
1655 while (target)
1656 {
1657
1658 /* only poll target if we've got power and srst isn't asserted */
1659 if (target_continous_poll&&!powerDropout&&!srstAsserted)
1660 {
1661 /* polling may fail silently until the target has been examined */
1662 if((retval = target_poll(target)) != ERROR_OK)
1663 return retval;
1664 }
1665
1666 target = target->next;
1667 }
1668
1669 return retval;
1670 }
1671
1672 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1673 {
1674 target_t *target;
1675 reg_t *reg = NULL;
1676 int count = 0;
1677 char *value;
1678
1679 LOG_DEBUG("-");
1680
1681 target = get_current_target(cmd_ctx);
1682
1683 /* list all available registers for the current target */
1684 if (argc == 0)
1685 {
1686 reg_cache_t *cache = target->reg_cache;
1687
1688 count = 0;
1689 while(cache)
1690 {
1691 int i;
1692 for (i = 0; i < cache->num_regs; i++)
1693 {
1694 value = buf_to_str(cache->reg_list[i].value, cache->reg_list[i].size, 16);
1695 command_print(cmd_ctx, "(%i) %s (/%i): 0x%s (dirty: %i, valid: %i)", count++, cache->reg_list[i].name, cache->reg_list[i].size, value, cache->reg_list[i].dirty, cache->reg_list[i].valid);
1696 free(value);
1697 }
1698 cache = cache->next;
1699 }
1700
1701 return ERROR_OK;
1702 }
1703
1704 /* access a single register by its ordinal number */
1705 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1706 {
1707 unsigned num;
1708 int retval = parse_uint(args[0], &num);
1709 if (ERROR_OK != retval)
1710 return ERROR_COMMAND_SYNTAX_ERROR;
1711
1712 reg_cache_t *cache = target->reg_cache;
1713 count = 0;
1714 while(cache)
1715 {
1716 int i;
1717 for (i = 0; i < cache->num_regs; i++)
1718 {
1719 if (count++ == (int)num)
1720 {
1721 reg = &cache->reg_list[i];
1722 break;
1723 }
1724 }
1725 if (reg)
1726 break;
1727 cache = cache->next;
1728 }
1729
1730 if (!reg)
1731 {
1732 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1733 return ERROR_OK;
1734 }
1735 } else /* access a single register by its name */
1736 {
1737 reg = register_get_by_name(target->reg_cache, args[0], 1);
1738
1739 if (!reg)
1740 {
1741 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1742 return ERROR_OK;
1743 }
1744 }
1745
1746 /* display a register */
1747 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1748 {
1749 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1750 reg->valid = 0;
1751
1752 if (reg->valid == 0)
1753 {
1754 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1755 arch_type->get(reg);
1756 }
1757 value = buf_to_str(reg->value, reg->size, 16);
1758 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1759 free(value);
1760 return ERROR_OK;
1761 }
1762
1763 /* set register value */
1764 if (argc == 2)
1765 {
1766 u8 *buf = malloc(CEIL(reg->size, 8));
1767 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1768
1769 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1770 arch_type->set(reg, buf);
1771
1772 value = buf_to_str(reg->value, reg->size, 16);
1773 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, reg->size, value);
1774 free(value);
1775
1776 free(buf);
1777
1778 return ERROR_OK;
1779 }
1780
1781 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1782
1783 return ERROR_OK;
1784 }
1785
1786 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1787 {
1788 int retval = ERROR_OK;
1789 target_t *target = get_current_target(cmd_ctx);
1790
1791 if (argc == 0)
1792 {
1793 command_print(cmd_ctx, "background polling: %s",
1794 target_continous_poll ? "on" : "off");
1795 if ((retval = target_poll(target)) != ERROR_OK)
1796 return retval;
1797 if ((retval = target_arch_state(target)) != ERROR_OK)
1798 return retval;
1799
1800 }
1801 else if (argc==1)
1802 {
1803 if (strcmp(args[0], "on") == 0)
1804 {
1805 target_continous_poll = 1;
1806 }
1807 else if (strcmp(args[0], "off") == 0)
1808 {
1809 target_continous_poll = 0;
1810 }
1811 else
1812 {
1813 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
1814 }
1815 } else
1816 {
1817 return ERROR_COMMAND_SYNTAX_ERROR;
1818 }
1819
1820 return retval;
1821 }
1822
1823 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1824 {
1825 if (argc > 1)
1826 return ERROR_COMMAND_SYNTAX_ERROR;
1827
1828 unsigned ms = 5000;
1829 if (1 == argc)
1830 {
1831 int retval = parse_uint(args[0], &ms);
1832 if (ERROR_OK != retval)
1833 {
1834 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
1835 return ERROR_COMMAND_SYNTAX_ERROR;
1836 }
1837 // convert seconds (given) to milliseconds (needed)
1838 ms *= 1000;
1839 }
1840
1841 target_t *target = get_current_target(cmd_ctx);
1842 return target_wait_state(target, TARGET_HALTED, ms);
1843 }
1844
1845 /* wait for target state to change. The trick here is to have a low
1846 * latency for short waits and not to suck up all the CPU time
1847 * on longer waits.
1848 *
1849 * After 500ms, keep_alive() is invoked
1850 */
1851 int target_wait_state(target_t *target, enum target_state state, int ms)
1852 {
1853 int retval;
1854 long long then=0, cur;
1855 int once=1;
1856
1857 for (;;)
1858 {
1859 if ((retval=target_poll(target))!=ERROR_OK)
1860 return retval;
1861 if (target->state == state)
1862 {
1863 break;
1864 }
1865 cur = timeval_ms();
1866 if (once)
1867 {
1868 once=0;
1869 then = timeval_ms();
1870 LOG_DEBUG("waiting for target %s...",
1871 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1872 }
1873
1874 if (cur-then>500)
1875 {
1876 keep_alive();
1877 }
1878
1879 if ((cur-then)>ms)
1880 {
1881 LOG_ERROR("timed out while waiting for target %s",
1882 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
1883 return ERROR_FAIL;
1884 }
1885 }
1886
1887 return ERROR_OK;
1888 }
1889
1890 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1891 {
1892 LOG_DEBUG("-");
1893
1894 target_t *target = get_current_target(cmd_ctx);
1895 int retval = target_halt(target);
1896 if (ERROR_OK != retval)
1897 return retval;
1898
1899 if (argc == 1)
1900 {
1901 unsigned wait;
1902 retval = parse_uint(args[0], &wait);
1903 if (ERROR_OK != retval)
1904 return ERROR_COMMAND_SYNTAX_ERROR;
1905 if (!wait)
1906 return ERROR_OK;
1907 }
1908
1909 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
1910 }
1911
1912 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1913 {
1914 target_t *target = get_current_target(cmd_ctx);
1915
1916 LOG_USER("requesting target halt and executing a soft reset");
1917
1918 target->type->soft_reset_halt(target);
1919
1920 return ERROR_OK;
1921 }
1922
1923 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1924 {
1925 if (argc > 1)
1926 return ERROR_COMMAND_SYNTAX_ERROR;
1927
1928 enum target_reset_mode reset_mode = RESET_RUN;
1929 if (argc == 1)
1930 {
1931 const Jim_Nvp *n;
1932 n = Jim_Nvp_name2value_simple( nvp_reset_modes, args[0] );
1933 if( (n->name == NULL) || (n->value == RESET_UNKNOWN) ){
1934 return ERROR_COMMAND_SYNTAX_ERROR;
1935 }
1936 reset_mode = n->value;
1937 }
1938
1939 /* reset *all* targets */
1940 return target_process_reset(cmd_ctx, reset_mode);
1941 }
1942
1943
1944 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1945 {
1946 if (argc > 1)
1947 return ERROR_COMMAND_SYNTAX_ERROR;
1948
1949 target_t *target = get_current_target(cmd_ctx);
1950 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
1951
1952 /* with no args, resume from current pc, addr = 0,
1953 * with one arguments, addr = args[0],
1954 * handle breakpoints, not debugging */
1955 u32 addr = 0;
1956 if (argc == 1)
1957 {
1958 int retval = parse_u32(args[0], &addr);
1959 if (ERROR_OK != retval)
1960 return retval;
1961 }
1962
1963 return target_resume(target, 0, addr, 1, 0);
1964 }
1965
1966 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1967 {
1968 if (argc > 1)
1969 return ERROR_COMMAND_SYNTAX_ERROR;
1970
1971 LOG_DEBUG("-");
1972
1973 /* with no args, step from current pc, addr = 0,
1974 * with one argument addr = args[0],
1975 * handle breakpoints, debugging */
1976 u32 addr = 0;
1977 if (argc == 1)
1978 {
1979 int retval = parse_u32(args[0], &addr);
1980 if (ERROR_OK != retval)
1981 return retval;
1982 }
1983
1984 target_t *target = get_current_target(cmd_ctx);
1985 return target->type->step(target, 0, addr, 1);
1986 }
1987
1988 static void handle_md_output(struct command_context_s *cmd_ctx,
1989 struct target_s *target, u32 address, unsigned size,
1990 unsigned count, const u8 *buffer)
1991 {
1992 const unsigned line_bytecnt = 32;
1993 unsigned line_modulo = line_bytecnt / size;
1994
1995 char output[line_bytecnt * 4 + 1];
1996 unsigned output_len = 0;
1997
1998 const char *value_fmt;
1999 switch (size) {
2000 case 4: value_fmt = "%8.8x "; break;
2001 case 2: value_fmt = "%4.2x "; break;
2002 case 1: value_fmt = "%2.2x "; break;
2003 default:
2004 LOG_ERROR("invalid memory read size: %u", size);
2005 exit(-1);
2006 }
2007
2008 for (unsigned i = 0; i < count; i++)
2009 {
2010 if (i % line_modulo == 0)
2011 {
2012 output_len += snprintf(output + output_len,
2013 sizeof(output) - output_len,
2014 "0x%8.8x: ", address + (i*size));
2015 }
2016
2017 u32 value=0;
2018 const u8 *value_ptr = buffer + i * size;
2019 switch (size) {
2020 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2021 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2022 case 1: value = *value_ptr;
2023 }
2024 output_len += snprintf(output + output_len,
2025 sizeof(output) - output_len,
2026 value_fmt, value);
2027
2028 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2029 {
2030 command_print(cmd_ctx, "%s", output);
2031 output_len = 0;
2032 }
2033 }
2034 }
2035
2036 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2037 {
2038 if (argc < 1)
2039 return ERROR_COMMAND_SYNTAX_ERROR;
2040
2041 unsigned size = 0;
2042 switch (cmd[2]) {
2043 case 'w': size = 4; break;
2044 case 'h': size = 2; break;
2045 case 'b': size = 1; break;
2046 default: return ERROR_COMMAND_SYNTAX_ERROR;
2047 }
2048
2049 u32 address;
2050 int retval = parse_u32(args[0], &address);
2051 if (ERROR_OK != retval)
2052 return retval;
2053
2054 unsigned count = 1;
2055 if (argc == 2)
2056 {
2057 retval = parse_uint(args[1], &count);
2058 if (ERROR_OK != retval)
2059 return retval;
2060 }
2061
2062 u8 *buffer = calloc(count, size);
2063
2064 target_t *target = get_current_target(cmd_ctx);
2065 retval = target_read_memory(target,
2066 address, size, count, buffer);
2067 if (ERROR_OK == retval)
2068 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2069
2070 free(buffer);
2071
2072 return retval;
2073 }
2074
2075 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2076 {
2077 if ((argc < 2) || (argc > 3))
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079
2080 u32 address;
2081 int retval = parse_u32(args[0], &address);
2082 if (ERROR_OK != retval)
2083 return retval;
2084
2085 u32 value;
2086 retval = parse_u32(args[1], &value);
2087 if (ERROR_OK != retval)
2088 return retval;
2089
2090 unsigned count = 1;
2091 if (argc == 3)
2092 {
2093 retval = parse_uint(args[2], &count);
2094 if (ERROR_OK != retval)
2095 return retval;
2096 }
2097
2098 target_t *target = get_current_target(cmd_ctx);
2099 unsigned wordsize;
2100 u8 value_buf[4];
2101 switch (cmd[2])
2102 {
2103 case 'w':
2104 wordsize = 4;
2105 target_buffer_set_u32(target, value_buf, value);
2106 break;
2107 case 'h':
2108 wordsize = 2;
2109 target_buffer_set_u16(target, value_buf, value);
2110 break;
2111 case 'b':
2112 wordsize = 1;
2113 value_buf[0] = value;
2114 break;
2115 default:
2116 return ERROR_COMMAND_SYNTAX_ERROR;
2117 }
2118 for (unsigned i = 0; i < count; i++)
2119 {
2120 retval = target_write_memory(target,
2121 address + i * wordsize, wordsize, 1, value_buf);
2122 if (ERROR_OK != retval)
2123 return retval;
2124 keep_alive();
2125 }
2126
2127 return ERROR_OK;
2128
2129 }
2130
2131 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2132 {
2133 u8 *buffer;
2134 u32 buf_cnt;
2135 u32 image_size;
2136 u32 min_address=0;
2137 u32 max_address=0xffffffff;
2138 int i;
2139 int retval, retvaltemp;
2140
2141 image_t image;
2142
2143 duration_t duration;
2144 char *duration_text;
2145
2146 target_t *target = get_current_target(cmd_ctx);
2147
2148 if ((argc < 1)||(argc > 5))
2149 {
2150 return ERROR_COMMAND_SYNTAX_ERROR;
2151 }
2152
2153 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
2154 if (argc >= 2)
2155 {
2156 u32 addr;
2157 retval = parse_u32(args[1], &addr);
2158 if (ERROR_OK != retval)
2159 return ERROR_COMMAND_SYNTAX_ERROR;
2160 image.base_address = addr;
2161 image.base_address_set = 1;
2162 }
2163 else
2164 {
2165 image.base_address_set = 0;
2166 }
2167
2168
2169 image.start_address_set = 0;
2170
2171 if (argc>=4)
2172 {
2173 retval = parse_u32(args[3], &min_address);
2174 if (ERROR_OK != retval)
2175 return ERROR_COMMAND_SYNTAX_ERROR;
2176 }
2177 if (argc>=5)
2178 {
2179 retval = parse_u32(args[4], &max_address);
2180 if (ERROR_OK != retval)
2181 return ERROR_COMMAND_SYNTAX_ERROR;
2182 // use size (given) to find max (required)
2183 max_address += min_address;
2184 }
2185
2186 if (min_address>max_address)
2187 {
2188 return ERROR_COMMAND_SYNTAX_ERROR;
2189 }
2190
2191 duration_start_measure(&duration);
2192
2193 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2194 {
2195 return ERROR_OK;
2196 }
2197
2198 image_size = 0x0;
2199 retval = ERROR_OK;
2200 for (i = 0; i < image.num_sections; i++)
2201 {
2202 buffer = malloc(image.sections[i].size);
2203 if (buffer == NULL)
2204 {
2205 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2206 break;
2207 }
2208
2209 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2210 {
2211 free(buffer);
2212 break;
2213 }
2214
2215 u32 offset=0;
2216 u32 length=buf_cnt;
2217
2218 /* DANGER!!! beware of unsigned comparision here!!! */
2219
2220 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
2221 (image.sections[i].base_address<max_address))
2222 {
2223 if (image.sections[i].base_address<min_address)
2224 {
2225 /* clip addresses below */
2226 offset+=min_address-image.sections[i].base_address;
2227 length-=offset;
2228 }
2229
2230 if (image.sections[i].base_address+buf_cnt>max_address)
2231 {
2232 length-=(image.sections[i].base_address+buf_cnt)-max_address;
2233 }
2234
2235 if ((retval = target_write_buffer(target, image.sections[i].base_address+offset, length, buffer+offset)) != ERROR_OK)
2236 {
2237 free(buffer);
2238 break;
2239 }
2240 image_size += length;
2241 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
2242 }
2243
2244 free(buffer);
2245 }
2246
2247 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2248 {
2249 image_close(&image);
2250 return retvaltemp;
2251 }
2252
2253 if (retval==ERROR_OK)
2254 {
2255 command_print(cmd_ctx, "downloaded %u byte in %s", image_size, duration_text);
2256 }
2257 free(duration_text);
2258
2259 image_close(&image);
2260
2261 return retval;
2262
2263 }
2264
2265 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2266 {
2267 fileio_t fileio;
2268
2269 u8 buffer[560];
2270 int retvaltemp;
2271
2272 duration_t duration;
2273 char *duration_text;
2274
2275 target_t *target = get_current_target(cmd_ctx);
2276
2277 if (argc != 3)
2278 {
2279 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2280 return ERROR_OK;
2281 }
2282
2283 u32 address;
2284 int retval = parse_u32(args[1], &address);
2285 if (ERROR_OK != retval)
2286 return retval;
2287
2288 u32 size;
2289 retval = parse_u32(args[2], &size);
2290 if (ERROR_OK != retval)
2291 return retval;
2292
2293 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2294 {
2295 return ERROR_OK;
2296 }
2297
2298 duration_start_measure(&duration);
2299
2300 while (size > 0)
2301 {
2302 u32 size_written;
2303 u32 this_run_size = (size > 560) ? 560 : size;
2304
2305 retval = target_read_buffer(target, address, this_run_size, buffer);
2306 if (retval != ERROR_OK)
2307 {
2308 break;
2309 }
2310
2311 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2312 if (retval != ERROR_OK)
2313 {
2314 break;
2315 }
2316
2317 size -= this_run_size;
2318 address += this_run_size;
2319 }
2320
2321 if((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2322 return retvaltemp;
2323
2324 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2325 return retvaltemp;
2326
2327 if (retval==ERROR_OK)
2328 {
2329 command_print(cmd_ctx, "dumped %lld byte in %s",
2330 fileio.size, duration_text);
2331 free(duration_text);
2332 }
2333
2334 return retval;
2335 }
2336
2337 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2338 {
2339 u8 *buffer;
2340 u32 buf_cnt;
2341 u32 image_size;
2342 int i;
2343 int retval, retvaltemp;
2344 u32 checksum = 0;
2345 u32 mem_checksum = 0;
2346
2347 image_t image;
2348
2349 duration_t duration;
2350 char *duration_text;
2351
2352 target_t *target = get_current_target(cmd_ctx);
2353
2354 if (argc < 1)
2355 {
2356 return ERROR_COMMAND_SYNTAX_ERROR;
2357 }
2358
2359 if (!target)
2360 {
2361 LOG_ERROR("no target selected");
2362 return ERROR_FAIL;
2363 }
2364
2365 duration_start_measure(&duration);
2366
2367 if (argc >= 2)
2368 {
2369 image.base_address_set = 1;
2370 image.base_address = strtoul(args[1], NULL, 0);
2371 }
2372 else
2373 {
2374 image.base_address_set = 0;
2375 image.base_address = 0x0;
2376 }
2377
2378 image.start_address_set = 0;
2379
2380 if ((retval=image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2381 {
2382 return retval;
2383 }
2384
2385 image_size = 0x0;
2386 retval=ERROR_OK;
2387 for (i = 0; i < image.num_sections; i++)
2388 {
2389 buffer = malloc(image.sections[i].size);
2390 if (buffer == NULL)
2391 {
2392 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
2393 break;
2394 }
2395 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2396 {
2397 free(buffer);
2398 break;
2399 }
2400
2401 if (verify)
2402 {
2403 /* calculate checksum of image */
2404 image_calculate_checksum( buffer, buf_cnt, &checksum );
2405
2406 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2407 if( retval != ERROR_OK )
2408 {
2409 free(buffer);
2410 break;
2411 }
2412
2413 if( checksum != mem_checksum )
2414 {
2415 /* failed crc checksum, fall back to a binary compare */
2416 u8 *data;
2417
2418 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2419
2420 data = (u8*)malloc(buf_cnt);
2421
2422 /* Can we use 32bit word accesses? */
2423 int size = 1;
2424 int count = buf_cnt;
2425 if ((count % 4) == 0)
2426 {
2427 size *= 4;
2428 count /= 4;
2429 }
2430 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2431 if (retval == ERROR_OK)
2432 {
2433 u32 t;
2434 for (t = 0; t < buf_cnt; t++)
2435 {
2436 if (data[t] != buffer[t])
2437 {
2438 command_print(cmd_ctx, "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n", t + image.sections[i].base_address, data[t], buffer[t]);
2439 free(data);
2440 free(buffer);
2441 retval=ERROR_FAIL;
2442 goto done;
2443 }
2444 if ((t%16384)==0)
2445 {
2446 keep_alive();
2447 }
2448 }
2449 }
2450
2451 free(data);
2452 }
2453 } else
2454 {
2455 command_print(cmd_ctx, "address 0x%08x length 0x%08x", image.sections[i].base_address, buf_cnt);
2456 }
2457
2458 free(buffer);
2459 image_size += buf_cnt;
2460 }
2461 done:
2462
2463 if((retvaltemp = duration_stop_measure(&duration, &duration_text)) != ERROR_OK)
2464 {
2465 image_close(&image);
2466 return retvaltemp;
2467 }
2468
2469 if (retval==ERROR_OK)
2470 {
2471 command_print(cmd_ctx, "verified %u bytes in %s", image_size, duration_text);
2472 }
2473 free(duration_text);
2474
2475 image_close(&image);
2476
2477 return retval;
2478 }
2479
2480 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2481 {
2482 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2483 }
2484
2485 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2486 {
2487 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2488 }
2489
2490 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2491 {
2492 target_t *target = get_current_target(cmd_ctx);
2493 breakpoint_t *breakpoint = target->breakpoints;
2494 while (breakpoint)
2495 {
2496 if (breakpoint->type == BKPT_SOFT)
2497 {
2498 char* buf = buf_to_str(breakpoint->orig_instr,
2499 breakpoint->length, 16);
2500 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i, 0x%s",
2501 breakpoint->address, breakpoint->length,
2502 breakpoint->set, buf);
2503 free(buf);
2504 }
2505 else
2506 {
2507 command_print(cmd_ctx, "0x%8.8x, 0x%x, %i",
2508 breakpoint->address, breakpoint->length, breakpoint->set);
2509 }
2510
2511 breakpoint = breakpoint->next;
2512 }
2513 return ERROR_OK;
2514 }
2515
2516 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2517 u32 addr, u32 length, int hw)
2518 {
2519 target_t *target = get_current_target(cmd_ctx);
2520 int retval = breakpoint_add(target, addr, length, hw);
2521 if (ERROR_OK == retval)
2522 command_print(cmd_ctx, "breakpoint set at 0x%8.8x", addr);
2523 else
2524 LOG_ERROR("Failure setting breakpoint");
2525 return retval;
2526 }
2527
2528 static int handle_bp_command(struct command_context_s *cmd_ctx,
2529 char *cmd, char **args, int argc)
2530 {
2531 if (argc == 0)
2532 return handle_bp_command_list(cmd_ctx);
2533
2534 if (argc < 2 || argc > 3)
2535 {
2536 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2537 return ERROR_COMMAND_SYNTAX_ERROR;
2538 }
2539
2540 u32 addr = strtoul(args[0], NULL, 0);
2541 u32 length = strtoul(args[1], NULL, 0);
2542
2543 int hw = BKPT_SOFT;
2544 if (argc == 3)
2545 {
2546 if (strcmp(args[2], "hw") == 0)
2547 hw = BKPT_HARD;
2548 else
2549 return ERROR_COMMAND_SYNTAX_ERROR;
2550 }
2551
2552 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2553 }
2554
2555 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2556 {
2557 target_t *target = get_current_target(cmd_ctx);
2558
2559 if (argc > 0)
2560 breakpoint_remove(target, strtoul(args[0], NULL, 0));
2561
2562 return ERROR_OK;
2563 }
2564
2565 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2566 {
2567 target_t *target = get_current_target(cmd_ctx);
2568 int retval;
2569
2570 if (argc == 0)
2571 {
2572 watchpoint_t *watchpoint = target->watchpoints;
2573
2574 while (watchpoint)
2575 {
2576 command_print(cmd_ctx, "address: 0x%8.8x, len: 0x%8.8x, r/w/a: %i, value: 0x%8.8x, mask: 0x%8.8x", watchpoint->address, watchpoint->length, watchpoint->rw, watchpoint->value, watchpoint->mask);
2577 watchpoint = watchpoint->next;
2578 }
2579 }
2580 else if (argc >= 2)
2581 {
2582 enum watchpoint_rw type = WPT_ACCESS;
2583 u32 data_value = 0x0;
2584 u32 data_mask = 0xffffffff;
2585
2586 if (argc >= 3)
2587 {
2588 switch(args[2][0])
2589 {
2590 case 'r':
2591 type = WPT_READ;
2592 break;
2593 case 'w':
2594 type = WPT_WRITE;
2595 break;
2596 case 'a':
2597 type = WPT_ACCESS;
2598 break;
2599 default:
2600 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2601 return ERROR_OK;
2602 }
2603 }
2604 if (argc >= 4)
2605 {
2606 data_value = strtoul(args[3], NULL, 0);
2607 }
2608 if (argc >= 5)
2609 {
2610 data_mask = strtoul(args[4], NULL, 0);
2611 }
2612
2613 if ((retval = watchpoint_add(target, strtoul(args[0], NULL, 0),
2614 strtoul(args[1], NULL, 0), type, data_value, data_mask)) != ERROR_OK)
2615 {
2616 LOG_ERROR("Failure setting breakpoints");
2617 }
2618 }
2619 else
2620 {
2621 command_print(cmd_ctx, "usage: wp <address> <length> [r/w/a] [value] [mask]");
2622 }
2623
2624 return ERROR_OK;
2625 }
2626
2627 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2628 {
2629 if (argc != 1)
2630 return ERROR_COMMAND_SYNTAX_ERROR;
2631
2632 target_t *target = get_current_target(cmd_ctx);
2633 watchpoint_remove(target, strtoul(args[0], NULL, 0));
2634
2635 return ERROR_OK;
2636 }
2637
2638
2639 /**
2640 * Translate a virtual address to a physical address.
2641 *
2642 * The low-level target implementation must have logged a detailed error
2643 * which is forwarded to telnet/GDB session.
2644 */
2645 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2646 char *cmd, char **args, int argc)
2647 {
2648 if (argc != 1)
2649 return ERROR_COMMAND_SYNTAX_ERROR;
2650
2651 target_t *target = get_current_target(cmd_ctx);
2652 u32 va = strtoul(args[0], NULL, 0);
2653 u32 pa;
2654
2655 int retval = target->type->virt2phys(target, va, &pa);
2656 if (retval == ERROR_OK)
2657 command_print(cmd_ctx, "Physical address 0x%08x", pa);
2658
2659 return retval;
2660 }
2661
2662 static void writeData(FILE *f, const void *data, size_t len)
2663 {
2664 size_t written = fwrite(data, 1, len, f);
2665 if (written != len)
2666 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2667 }
2668
2669 static void writeLong(FILE *f, int l)
2670 {
2671 int i;
2672 for (i=0; i<4; i++)
2673 {
2674 char c=(l>>(i*8))&0xff;
2675 writeData(f, &c, 1);
2676 }
2677
2678 }
2679
2680 static void writeString(FILE *f, char *s)
2681 {
2682 writeData(f, s, strlen(s));
2683 }
2684
2685 /* Dump a gmon.out histogram file. */
2686 static void writeGmon(u32 *samples, u32 sampleNum, char *filename)
2687 {
2688 u32 i;
2689 FILE *f=fopen(filename, "w");
2690 if (f==NULL)
2691 return;
2692 writeString(f, "gmon");
2693 writeLong(f, 0x00000001); /* Version */
2694 writeLong(f, 0); /* padding */
2695 writeLong(f, 0); /* padding */
2696 writeLong(f, 0); /* padding */
2697
2698 u8 zero = 0; /* GMON_TAG_TIME_HIST */
2699 writeData(f, &zero, 1);
2700
2701 /* figure out bucket size */
2702 u32 min=samples[0];
2703 u32 max=samples[0];
2704 for (i=0; i<sampleNum; i++)
2705 {
2706 if (min>samples[i])
2707 {
2708 min=samples[i];
2709 }
2710 if (max<samples[i])
2711 {
2712 max=samples[i];
2713 }
2714 }
2715
2716 int addressSpace=(max-min+1);
2717
2718 static const u32 maxBuckets = 256 * 1024; /* maximum buckets. */
2719 u32 length = addressSpace;
2720 if (length > maxBuckets)
2721 {
2722 length=maxBuckets;
2723 }
2724 int *buckets=malloc(sizeof(int)*length);
2725 if (buckets==NULL)
2726 {
2727 fclose(f);
2728 return;
2729 }
2730 memset(buckets, 0, sizeof(int)*length);
2731 for (i=0; i<sampleNum;i++)
2732 {
2733 u32 address=samples[i];
2734 long long a=address-min;
2735 long long b=length-1;
2736 long long c=addressSpace-1;
2737 int index=(a*b)/c; /* danger!!!! int32 overflows */
2738 buckets[index]++;
2739 }
2740
2741 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2742 writeLong(f, min); /* low_pc */
2743 writeLong(f, max); /* high_pc */
2744 writeLong(f, length); /* # of samples */
2745 writeLong(f, 64000000); /* 64MHz */
2746 writeString(f, "seconds");
2747 for (i=0; i<(15-strlen("seconds")); i++)
2748 writeData(f, &zero, 1);
2749 writeString(f, "s");
2750
2751 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2752
2753 char *data=malloc(2*length);
2754 if (data!=NULL)
2755 {
2756 for (i=0; i<length;i++)
2757 {
2758 int val;
2759 val=buckets[i];
2760 if (val>65535)
2761 {
2762 val=65535;
2763 }
2764 data[i*2]=val&0xff;
2765 data[i*2+1]=(val>>8)&0xff;
2766 }
2767 free(buckets);
2768 writeData(f, data, length * 2);
2769 free(data);
2770 } else
2771 {
2772 free(buckets);
2773 }
2774
2775 fclose(f);
2776 }
2777
2778 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
2779 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2780 {
2781 target_t *target = get_current_target(cmd_ctx);
2782 struct timeval timeout, now;
2783
2784 gettimeofday(&timeout, NULL);
2785 if (argc!=2)
2786 {
2787 return ERROR_COMMAND_SYNTAX_ERROR;
2788 }
2789 char *end;
2790 timeval_add_time(&timeout, strtoul(args[0], &end, 0), 0);
2791 if (*end)
2792 {
2793 return ERROR_OK;
2794 }
2795
2796 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
2797
2798 static const int maxSample=10000;
2799 u32 *samples=malloc(sizeof(u32)*maxSample);
2800 if (samples==NULL)
2801 return ERROR_OK;
2802
2803 int numSamples=0;
2804 int retval=ERROR_OK;
2805 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2806 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
2807
2808 for (;;)
2809 {
2810 target_poll(target);
2811 if (target->state == TARGET_HALTED)
2812 {
2813 u32 t=*((u32 *)reg->value);
2814 samples[numSamples++]=t;
2815 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2816 target_poll(target);
2817 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2818 } else if (target->state == TARGET_RUNNING)
2819 {
2820 /* We want to quickly sample the PC. */
2821 if((retval = target_halt(target)) != ERROR_OK)
2822 {
2823 free(samples);
2824 return retval;
2825 }
2826 } else
2827 {
2828 command_print(cmd_ctx, "Target not halted or running");
2829 retval=ERROR_OK;
2830 break;
2831 }
2832 if (retval!=ERROR_OK)
2833 {
2834 break;
2835 }
2836
2837 gettimeofday(&now, NULL);
2838 if ((numSamples>=maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
2839 {
2840 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
2841 if((retval = target_poll(target)) != ERROR_OK)
2842 {
2843 free(samples);
2844 return retval;
2845 }
2846 if (target->state == TARGET_HALTED)
2847 {
2848 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
2849 }
2850 if((retval = target_poll(target)) != ERROR_OK)
2851 {
2852 free(samples);
2853 return retval;
2854 }
2855 writeGmon(samples, numSamples, args[1]);
2856 command_print(cmd_ctx, "Wrote %s", args[1]);
2857 break;
2858 }
2859 }
2860 free(samples);
2861
2862 return ERROR_OK;
2863 }
2864
2865 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 val)
2866 {
2867 char *namebuf;
2868 Jim_Obj *nameObjPtr, *valObjPtr;
2869 int result;
2870
2871 namebuf = alloc_printf("%s(%d)", varname, idx);
2872 if (!namebuf)
2873 return JIM_ERR;
2874
2875 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
2876 valObjPtr = Jim_NewIntObj(interp, val);
2877 if (!nameObjPtr || !valObjPtr)
2878 {
2879 free(namebuf);
2880 return JIM_ERR;
2881 }
2882
2883 Jim_IncrRefCount(nameObjPtr);
2884 Jim_IncrRefCount(valObjPtr);
2885 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
2886 Jim_DecrRefCount(interp, nameObjPtr);
2887 Jim_DecrRefCount(interp, valObjPtr);
2888 free(namebuf);
2889 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
2890 return result;
2891 }
2892
2893 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
2894 {
2895 command_context_t *context;
2896 target_t *target;
2897
2898 context = Jim_GetAssocData(interp, "context");
2899 if (context == NULL)
2900 {
2901 LOG_ERROR("mem2array: no command context");
2902 return JIM_ERR;
2903 }
2904 target = get_current_target(context);
2905 if (target == NULL)
2906 {
2907 LOG_ERROR("mem2array: no current target");
2908 return JIM_ERR;
2909 }
2910
2911 return target_mem2array(interp, target, argc-1, argv+1);
2912 }
2913
2914 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
2915 {
2916 long l;
2917 u32 width;
2918 int len;
2919 u32 addr;
2920 u32 count;
2921 u32 v;
2922 const char *varname;
2923 u8 buffer[4096];
2924 int n, e, retval;
2925 u32 i;
2926
2927 /* argv[1] = name of array to receive the data
2928 * argv[2] = desired width
2929 * argv[3] = memory address
2930 * argv[4] = count of times to read
2931 */
2932 if (argc != 4) {
2933 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
2934 return JIM_ERR;
2935 }
2936 varname = Jim_GetString(argv[0], &len);
2937 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
2938
2939 e = Jim_GetLong(interp, argv[1], &l);
2940 width = l;
2941 if (e != JIM_OK) {
2942 return e;
2943 }
2944
2945 e = Jim_GetLong(interp, argv[2], &l);
2946 addr = l;
2947 if (e != JIM_OK) {
2948 return e;
2949 }
2950 e = Jim_GetLong(interp, argv[3], &l);
2951 len = l;
2952 if (e != JIM_OK) {
2953 return e;
2954 }
2955 switch (width) {
2956 case 8:
2957 width = 1;
2958 break;
2959 case 16:
2960 width = 2;
2961 break;
2962 case 32:
2963 width = 4;
2964 break;
2965 default:
2966 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2967 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
2968 return JIM_ERR;
2969 }
2970 if (len == 0) {
2971 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2972 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
2973 return JIM_ERR;
2974 }
2975 if ((addr + (len * width)) < addr) {
2976 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2977 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
2978 return JIM_ERR;
2979 }
2980 /* absurd transfer size? */
2981 if (len > 65536) {
2982 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2983 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: absurd > 64K item request", NULL);
2984 return JIM_ERR;
2985 }
2986
2987 if ((width == 1) ||
2988 ((width == 2) && ((addr & 1) == 0)) ||
2989 ((width == 4) && ((addr & 3) == 0))) {
2990 /* all is well */
2991 } else {
2992 char buf[100];
2993 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
2994 sprintf(buf, "mem2array address: 0x%08x is not aligned for %d byte reads", addr, width);
2995 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
2996 return JIM_ERR;
2997 }
2998
2999 /* Transfer loop */
3000
3001 /* index counter */
3002 n = 0;
3003 /* assume ok */
3004 e = JIM_OK;
3005 while (len) {
3006 /* Slurp... in buffer size chunks */
3007
3008 count = len; /* in objects.. */
3009 if (count > (sizeof(buffer)/width)) {
3010 count = (sizeof(buffer)/width);
3011 }
3012
3013 retval = target_read_memory( target, addr, width, count, buffer );
3014 if (retval != ERROR_OK) {
3015 /* BOO !*/
3016 LOG_ERROR("mem2array: Read @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3017 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3018 Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
3019 e = JIM_ERR;
3020 len = 0;
3021 } else {
3022 v = 0; /* shut up gcc */
3023 for (i = 0 ;i < count ;i++, n++) {
3024 switch (width) {
3025 case 4:
3026 v = target_buffer_get_u32(target, &buffer[i*width]);
3027 break;
3028 case 2:
3029 v = target_buffer_get_u16(target, &buffer[i*width]);
3030 break;
3031 case 1:
3032 v = buffer[i] & 0x0ff;
3033 break;
3034 }
3035 new_int_array_element(interp, varname, n, v);
3036 }
3037 len -= count;
3038 }
3039 }
3040
3041 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3042
3043 return JIM_OK;
3044 }
3045
3046 static int get_int_array_element(Jim_Interp * interp, const char *varname, int idx, u32 *val)
3047 {
3048 char *namebuf;
3049 Jim_Obj *nameObjPtr, *valObjPtr;
3050 int result;
3051 long l;
3052
3053 namebuf = alloc_printf("%s(%d)", varname, idx);
3054 if (!namebuf)
3055 return JIM_ERR;
3056
3057 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3058 if (!nameObjPtr)
3059 {
3060 free(namebuf);
3061 return JIM_ERR;
3062 }
3063
3064 Jim_IncrRefCount(nameObjPtr);
3065 valObjPtr = Jim_GetVariable(interp, nameObjPtr, JIM_ERRMSG);
3066 Jim_DecrRefCount(interp, nameObjPtr);
3067 free(namebuf);
3068 if (valObjPtr == NULL)
3069 return JIM_ERR;
3070
3071 result = Jim_GetLong(interp, valObjPtr, &l);
3072 /* printf("%s(%d) => 0%08x\n", varname, idx, val); */
3073 *val = l;
3074 return result;
3075 }
3076
3077 static int jim_array2mem(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3078 {
3079 command_context_t *context;
3080 target_t *target;
3081
3082 context = Jim_GetAssocData(interp, "context");
3083 if (context == NULL){
3084 LOG_ERROR("array2mem: no command context");
3085 return JIM_ERR;
3086 }
3087 target = get_current_target(context);
3088 if (target == NULL){
3089 LOG_ERROR("array2mem: no current target");
3090 return JIM_ERR;
3091 }
3092
3093 return target_array2mem( interp,target, argc-1, argv+1 );
3094 }
3095
3096 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3097 {
3098 long l;
3099 u32 width;
3100 int len;
3101 u32 addr;
3102 u32 count;
3103 u32 v;
3104 const char *varname;
3105 u8 buffer[4096];
3106 int n, e, retval;
3107 u32 i;
3108
3109 /* argv[1] = name of array to get the data
3110 * argv[2] = desired width
3111 * argv[3] = memory address
3112 * argv[4] = count to write
3113 */
3114 if (argc != 4) {
3115 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3116 return JIM_ERR;
3117 }
3118 varname = Jim_GetString(argv[0], &len);
3119 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3120
3121 e = Jim_GetLong(interp, argv[1], &l);
3122 width = l;
3123 if (e != JIM_OK) {
3124 return e;
3125 }
3126
3127 e = Jim_GetLong(interp, argv[2], &l);
3128 addr = l;
3129 if (e != JIM_OK) {
3130 return e;
3131 }
3132 e = Jim_GetLong(interp, argv[3], &l);
3133 len = l;
3134 if (e != JIM_OK) {
3135 return e;
3136 }
3137 switch (width) {
3138 case 8:
3139 width = 1;
3140 break;
3141 case 16:
3142 width = 2;
3143 break;
3144 case 32:
3145 width = 4;
3146 break;
3147 default:
3148 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3149 Jim_AppendStrings( interp, Jim_GetResult(interp), "Invalid width param, must be 8/16/32", NULL );
3150 return JIM_ERR;
3151 }
3152 if (len == 0) {
3153 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3154 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: zero width read?", NULL);
3155 return JIM_ERR;
3156 }
3157 if ((addr + (len * width)) < addr) {
3158 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3159 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: addr + len - wraps to zero?", NULL);
3160 return JIM_ERR;
3161 }
3162 /* absurd transfer size? */
3163 if (len > 65536) {
3164 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3165 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: absurd > 64K item request", NULL);
3166 return JIM_ERR;
3167 }
3168
3169 if ((width == 1) ||
3170 ((width == 2) && ((addr & 1) == 0)) ||
3171 ((width == 4) && ((addr & 3) == 0))) {
3172 /* all is well */
3173 } else {
3174 char buf[100];
3175 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3176 sprintf(buf, "array2mem address: 0x%08x is not aligned for %d byte reads", addr, width);
3177 Jim_AppendStrings(interp, Jim_GetResult(interp), buf , NULL);
3178 return JIM_ERR;
3179 }
3180
3181 /* Transfer loop */
3182
3183 /* index counter */
3184 n = 0;
3185 /* assume ok */
3186 e = JIM_OK;
3187 while (len) {
3188 /* Slurp... in buffer size chunks */
3189
3190 count = len; /* in objects.. */
3191 if (count > (sizeof(buffer)/width)) {
3192 count = (sizeof(buffer)/width);
3193 }
3194
3195 v = 0; /* shut up gcc */
3196 for (i = 0 ;i < count ;i++, n++) {
3197 get_int_array_element(interp, varname, n, &v);
3198 switch (width) {
3199 case 4:
3200 target_buffer_set_u32(target, &buffer[i*width], v);
3201 break;
3202 case 2:
3203 target_buffer_set_u16(target, &buffer[i*width], v);
3204 break;
3205 case 1:
3206 buffer[i] = v & 0x0ff;
3207 break;
3208 }
3209 }
3210 len -= count;
3211
3212 retval = target_write_memory(target, addr, width, count, buffer);
3213 if (retval != ERROR_OK) {
3214 /* BOO !*/
3215 LOG_ERROR("array2mem: Write @ 0x%08x, w=%d, cnt=%d, failed", addr, width, count);
3216 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3217 Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
3218 e = JIM_ERR;
3219 len = 0;
3220 }
3221 }
3222
3223 Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
3224
3225 return JIM_OK;
3226 }
3227
3228 void target_all_handle_event( enum target_event e )
3229 {
3230 target_t *target;
3231
3232 LOG_DEBUG( "**all*targets: event: %d, %s",
3233 e,
3234 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3235
3236 target = all_targets;
3237 while (target){
3238 target_handle_event( target, e );
3239 target = target->next;
3240 }
3241 }
3242
3243 void target_handle_event( target_t *target, enum target_event e )
3244 {
3245 target_event_action_t *teap;
3246 int done;
3247
3248 teap = target->event_action;
3249
3250 done = 0;
3251 while( teap ){
3252 if( teap->event == e ){
3253 done = 1;
3254 LOG_DEBUG( "target: (%d) %s (%s) event: %d (%s) action: %s\n",
3255 target->target_number,
3256 target->cmd_name,
3257 target_get_name(target),
3258 e,
3259 Jim_Nvp_value2name_simple( nvp_target_event, e )->name,
3260 Jim_GetString( teap->body, NULL ) );
3261 if (Jim_EvalObj( interp, teap->body )!=JIM_OK)
3262 {
3263 Jim_PrintErrorMessage(interp);
3264 }
3265 }
3266 teap = teap->next;
3267 }
3268 if( !done ){
3269 LOG_DEBUG( "event: %d %s - no action",
3270 e,
3271 Jim_Nvp_value2name_simple( nvp_target_event, e )->name );
3272 }
3273 }
3274
3275 enum target_cfg_param {
3276 TCFG_TYPE,
3277 TCFG_EVENT,
3278 TCFG_WORK_AREA_VIRT,
3279 TCFG_WORK_AREA_PHYS,
3280 TCFG_WORK_AREA_SIZE,
3281 TCFG_WORK_AREA_BACKUP,
3282 TCFG_ENDIAN,
3283 TCFG_VARIANT,
3284 TCFG_CHAIN_POSITION,
3285 };
3286
3287 static Jim_Nvp nvp_config_opts[] = {
3288 { .name = "-type", .value = TCFG_TYPE },
3289 { .name = "-event", .value = TCFG_EVENT },
3290 { .name = "-work-area-virt", .value = TCFG_WORK_AREA_VIRT },
3291 { .name = "-work-area-phys", .value = TCFG_WORK_AREA_PHYS },
3292 { .name = "-work-area-size", .value = TCFG_WORK_AREA_SIZE },
3293 { .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
3294 { .name = "-endian" , .value = TCFG_ENDIAN },
3295 { .name = "-variant", .value = TCFG_VARIANT },
3296 { .name = "-chain-position", .value = TCFG_CHAIN_POSITION },
3297
3298 { .name = NULL, .value = -1 }
3299 };
3300
3301 static int target_configure( Jim_GetOptInfo *goi, target_t *target )
3302 {
3303 Jim_Nvp *n;
3304 Jim_Obj *o;
3305 jim_wide w;
3306 char *cp;
3307 int e;
3308
3309 /* parse config or cget options ... */
3310 while( goi->argc > 0 ){
3311 Jim_SetEmptyResult( goi->interp );
3312 /* Jim_GetOpt_Debug( goi ); */
3313
3314 if( target->type->target_jim_configure ){
3315 /* target defines a configure function */
3316 /* target gets first dibs on parameters */
3317 e = (*(target->type->target_jim_configure))( target, goi );
3318 if( e == JIM_OK ){
3319 /* more? */
3320 continue;
3321 }
3322 if( e == JIM_ERR ){
3323 /* An error */
3324 return e;
3325 }
3326 /* otherwise we 'continue' below */
3327 }
3328 e = Jim_GetOpt_Nvp( goi, nvp_config_opts, &n );
3329 if( e != JIM_OK ){
3330 Jim_GetOpt_NvpUnknown( goi, nvp_config_opts, 0 );
3331 return e;
3332 }
3333 switch( n->value ){
3334 case TCFG_TYPE:
3335 /* not setable */
3336 if( goi->isconfigure ){
3337 Jim_SetResult_sprintf( goi->interp, "not setable: %s", n->name );
3338 return JIM_ERR;
3339 } else {
3340 no_params:
3341 if( goi->argc != 0 ){
3342 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "NO PARAMS");
3343 return JIM_ERR;
3344 }
3345 }
3346 Jim_SetResultString( goi->interp, target_get_name(target), -1 );
3347 /* loop for more */
3348 break;
3349 case TCFG_EVENT:
3350 if( goi->argc == 0 ){
3351 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
3352 return JIM_ERR;
3353 }
3354
3355 e = Jim_GetOpt_Nvp( goi, nvp_target_event, &n );
3356 if( e != JIM_OK ){
3357 Jim_GetOpt_NvpUnknown( goi, nvp_target_event, 1 );
3358 return e;
3359 }
3360
3361 if( goi->isconfigure ){
3362 if( goi->argc != 1 ){
3363 Jim_WrongNumArgs( goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
3364 return JIM_ERR;
3365 }
3366 } else {
3367 if( goi->argc != 0 ){
3368 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
3369 return JIM_ERR;
3370 }
3371 }
3372
3373 {
3374 target_event_action_t *teap;
3375
3376 teap = target->event_action;
3377 /* replace existing? */
3378 while( teap ){
3379 if( teap->event == (enum target_event)n->value ){
3380 break;
3381 }
3382 teap = teap->next;
3383 }
3384
3385 if( goi->isconfigure ){
3386 if( teap == NULL ){
3387 /* create new */
3388 teap = calloc( 1, sizeof(*teap) );
3389 }
3390 teap->event = n->value;
3391 Jim_GetOpt_Obj( goi, &o );
3392 if( teap->body ){
3393 Jim_DecrRefCount( interp, teap->body );
3394 }
3395 teap->body = Jim_DuplicateObj( goi->interp, o );
3396 /*
3397 * FIXME:
3398 * Tcl/TK - "tk events" have a nice feature.
3399 * See the "BIND" command.
3400 * We should support that here.
3401 * You can specify %X and %Y in the event code.
3402 * The idea is: %T - target name.
3403 * The idea is: %N - target number
3404 * The idea is: %E - event name.
3405 */
3406 Jim_IncrRefCount( teap->body );
3407
3408 /* add to head of event list */
3409 teap->next = target->event_action;
3410 target->event_action = teap;
3411 Jim_SetEmptyResult(goi->interp);
3412 } else {
3413 /* get */
3414 if( teap == NULL ){
3415 Jim_SetEmptyResult( goi->interp );
3416 } else {
3417 Jim_SetResult( goi->interp, Jim_DuplicateObj( goi->interp, teap->body ) );
3418 }
3419 }
3420 }
3421 /* loop for more */
3422 break;
3423
3424 case TCFG_WORK_AREA_VIRT:
3425 if( goi->isconfigure ){
3426 target_free_all_working_areas(target);
3427 e = Jim_GetOpt_Wide( goi, &w );
3428 if( e != JIM_OK ){
3429 return e;
3430 }
3431 target->working_area_virt = w;
3432 } else {
3433 if( goi->argc != 0 ){
3434 goto no_params;
3435 }
3436 }
3437 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_virt ) );
3438 /* loop for more */
3439 break;
3440
3441 case TCFG_WORK_AREA_PHYS:
3442 if( goi->isconfigure ){
3443 target_free_all_working_areas(target);
3444 e = Jim_GetOpt_Wide( goi, &w );
3445 if( e != JIM_OK ){
3446 return e;
3447 }
3448 target->working_area_phys = w;
3449 } else {
3450 if( goi->argc != 0 ){
3451 goto no_params;
3452 }
3453 }
3454 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_phys ) );
3455 /* loop for more */
3456 break;
3457
3458 case TCFG_WORK_AREA_SIZE:
3459 if( goi->isconfigure ){
3460 target_free_all_working_areas(target);
3461 e = Jim_GetOpt_Wide( goi, &w );
3462 if( e != JIM_OK ){
3463 return e;
3464 }
3465 target->working_area_size = w;
3466 } else {
3467 if( goi->argc != 0 ){
3468 goto no_params;
3469 }
3470 }
3471 Jim_SetResult( interp, Jim_NewIntObj( goi->interp, target->working_area_size ) );
3472 /* loop for more */
3473 break;
3474
3475 case TCFG_WORK_AREA_BACKUP:
3476 if( goi->isconfigure ){
3477 target_free_all_working_areas(target);
3478 e = Jim_GetOpt_Wide( goi, &w );
3479 if( e != JIM_OK ){
3480 return e;
3481 }
3482 /* make this exactly 1 or 0 */
3483 target->backup_working_area = (!!w);
3484 } else {
3485 if( goi->argc != 0 ){
3486 goto no_params;
3487 }
3488 }
3489 Jim_SetResult(interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
3490 /* loop for more e*/
3491 break;
3492
3493 case TCFG_ENDIAN:
3494 if( goi->isconfigure ){
3495 e = Jim_GetOpt_Nvp( goi, nvp_target_endian, &n );
3496 if( e != JIM_OK ){
3497 Jim_GetOpt_NvpUnknown( goi, nvp_target_endian, 1 );
3498 return e;
3499 }
3500 target->endianness = n->value;
3501 } else {
3502 if( goi->argc != 0 ){
3503 goto no_params;
3504 }
3505 }
3506 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3507 if( n->name == NULL ){
3508 target->endianness = TARGET_LITTLE_ENDIAN;
3509 n = Jim_Nvp_value2name_simple( nvp_target_endian, target->endianness );
3510 }
3511 Jim_SetResultString( goi->interp, n->name, -1 );
3512 /* loop for more */
3513 break;
3514
3515 case TCFG_VARIANT:
3516 if( goi->isconfigure ){
3517 if( goi->argc < 1 ){
3518 Jim_SetResult_sprintf( goi->interp,
3519 "%s ?STRING?",
3520 n->name );
3521 return JIM_ERR;
3522 }
3523 if( target->variant ){
3524 free((void *)(target->variant));
3525 }
3526 e = Jim_GetOpt_String( goi, &cp, NULL );
3527 target->variant = strdup(cp);
3528 } else {
3529 if( goi->argc != 0 ){
3530 goto no_params;
3531 }
3532 }
3533 Jim_SetResultString( goi->interp, target->variant,-1 );
3534 /* loop for more */
3535 break;
3536 case TCFG_CHAIN_POSITION:
3537 if( goi->isconfigure ){
3538 Jim_Obj *o;
3539 jtag_tap_t *tap;
3540 target_free_all_working_areas(target);
3541 e = Jim_GetOpt_Obj( goi, &o );
3542 if( e != JIM_OK ){
3543 return e;
3544 }
3545 tap = jtag_tap_by_jim_obj( goi->interp, o );
3546 if( tap == NULL ){
3547 return JIM_ERR;
3548 }
3549 /* make this exactly 1 or 0 */
3550 target->tap = tap;
3551 } else {
3552 if( goi->argc != 0 ){
3553 goto no_params;
3554 }
3555 }
3556 Jim_SetResultString( interp, target->tap->dotted_name, -1 );
3557 /* loop for more e*/
3558 break;
3559 }
3560 } /* while( goi->argc ) */
3561
3562
3563 /* done - we return */
3564 return JIM_OK;
3565 }
3566
3567 /** this is the 'tcl' handler for the target specific command */
3568 static int tcl_target_func( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
3569 {
3570 Jim_GetOptInfo goi;
3571 jim_wide a,b,c;
3572 int x,y,z;
3573 u8 target_buf[32];
3574 Jim_Nvp *n;
3575 target_t *target;
3576 struct command_context_s *cmd_ctx;
3577 int e;
3578
3579 enum {
3580 TS_CMD_CONFIGURE,
3581 TS_CMD_CGET,
3582
3583 TS_CMD_MWW, TS_CMD_MWH, TS_CMD_MWB,
3584 TS_CMD_MDW, TS_CMD_MDH, TS_CMD_MDB,
3585 TS_CMD_MRW, TS_CMD_MRH, TS_CMD_MRB,
3586 TS_CMD_MEM2ARRAY, TS_CMD_ARRAY2MEM,
3587 TS_CMD_EXAMINE,
3588 TS_CMD_POLL,
3589 TS_CMD_RESET,
3590 TS_CMD_HALT,
3591 TS_CMD_WAITSTATE,
3592 TS_CMD_EVENTLIST,
3593 TS_CMD_CURSTATE,
3594 TS_CMD_INVOKE_EVENT,
3595 };
3596
3597 static const Jim_Nvp target_options[] = {
3598 { .name = "configure", .value = TS_CMD_CONFIGURE },
3599 { .name = "cget", .value = TS_CMD_CGET },
3600 { .name = "mww", .value = TS_CMD_MWW },
3601 { .name = "mwh", .value = TS_CMD_MWH },
3602 { .name = "mwb", .value = TS_CMD_MWB },
3603 { .name = "mdw", .value = TS_CMD_MDW },
3604 { .name = "mdh", .value = TS_CMD_MDH },
3605 { .name = "mdb", .value = TS_CMD_MDB },
3606 { .name = "mem2array", .value = TS_CMD_MEM2ARRAY },
3607 { .name = "array2mem", .value = TS_CMD_ARRAY2MEM },
3608 { .name = "eventlist", .value = TS_CMD_EVENTLIST },
3609 { .name = "curstate", .value = TS_CMD_CURSTATE },
3610
3611 { .name = "arp_examine", .value = TS_CMD_EXAMINE },
3612 { .name = "arp_poll", .value = TS_CMD_POLL },
3613 { .name = "arp_reset", .value = TS_CMD_RESET },
3614 { .name = "arp_halt", .value = TS_CMD_HALT },
3615 { .name = "arp_waitstate", .value = TS_CMD_WAITSTATE },
3616 { .name = "invoke-event", .value = TS_CMD_INVOKE_EVENT },
3617
3618 { .name = NULL, .value = -1 },
3619 };
3620
3621 /* go past the "command" */
3622 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
3623
3624 target = Jim_CmdPrivData( goi.interp );
3625 cmd_ctx = Jim_GetAssocData(goi.interp, "context");
3626
3627 /* commands here are in an NVP table */
3628 e = Jim_GetOpt_Nvp( &goi, target_options, &n );
3629 if( e != JIM_OK ){
3630 Jim_GetOpt_NvpUnknown( &goi, target_options, 0 );
3631 return e;
3632 }
3633 /* Assume blank result */
3634 Jim_SetEmptyResult( goi.interp );
3635
3636 switch( n->value ){
3637 case TS_CMD_CONFIGURE:
3638 if( goi.argc < 2 ){
3639 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "missing: -option VALUE ...");
3640 return JIM_ERR;
3641 }
3642 goi.isconfigure = 1;
3643 return target_configure( &goi, target );
3644 case TS_CMD_CGET:
3645 // some things take params
3646 if( goi.argc < 1 ){
3647 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "missing: ?-option?");
3648 return JIM_ERR;
3649 }
3650 goi.isconfigure = 0;
3651 return target_configure( &goi, target );
3652 break;
3653 case TS_CMD_MWW:
3654 case TS_CMD_MWH:
3655 case TS_CMD_MWB:
3656 /* argv[0] = cmd
3657 * argv[1] = address
3658 * argv[2] = data
3659 * argv[3] = optional count.
3660 */
3661
3662 if( (goi.argc == 3) || (goi.argc == 4) ){
3663 /* all is well */
3664 } else {
3665 mwx_error:
3666 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR DATA [COUNT]", n->name );
3667 return JIM_ERR;
3668 }
3669
3670 e = Jim_GetOpt_Wide( &goi, &a );
3671 if( e != JIM_OK ){
3672 goto mwx_error;
3673 }
3674
3675 e = Jim_GetOpt_Wide( &goi, &b );
3676 if( e != JIM_OK ){
3677 goto mwx_error;
3678 }
3679 if( goi.argc ){
3680 e = Jim_GetOpt_Wide( &goi, &c );
3681 if( e != JIM_OK ){
3682 goto mwx_error;
3683 }
3684 } else {
3685 c = 1;
3686 }
3687
3688 switch( n->value ){
3689 case TS_CMD_MWW:
3690 target_buffer_set_u32( target, target_buf, b );
3691 b = 4;
3692 break;
3693 case TS_CMD_MWH:
3694 target_buffer_set_u16( target, target_buf, b );
3695 b = 2;
3696 break;
3697 case TS_CMD_MWB:
3698 target_buffer_set_u8( target, target_buf, b );
3699 b = 1;
3700 break;
3701 }
3702 for( x = 0 ; x < c ; x++ ){
3703 e = target_write_memory( target, a, b, 1, target_buf );
3704 if( e != ERROR_OK ){
3705 Jim_SetResult_sprintf( interp, "Error writing @ 0x%08x: %d\n", (int)(a), e );
3706 return JIM_ERR;
3707 }
3708 /* b = width */
3709 a = a + b;
3710 }
3711 return JIM_OK;
3712 break;
3713
3714 /* display */
3715 case TS_CMD_MDW:
3716 case TS_CMD_MDH:
3717 case TS_CMD_MDB:
3718 /* argv[0] = command
3719 * argv[1] = address
3720 * argv[2] = optional count
3721 */
3722 if( (goi.argc == 2) || (goi.argc == 3) ){
3723 Jim_SetResult_sprintf( goi.interp, "expected: %s ADDR [COUNT]", n->name );
3724 return JIM_ERR;
3725 }
3726 e = Jim_GetOpt_Wide( &goi, &a );
3727 if( e != JIM_OK ){
3728 return JIM_ERR;
3729 }
3730 if( goi.argc ){
3731 e = Jim_GetOpt_Wide( &goi, &c );
3732 if( e != JIM_OK ){
3733 return JIM_ERR;
3734 }
3735 } else {
3736 c = 1;
3737 }
3738 b = 1; /* shut up gcc */
3739 switch( n->value ){
3740 case TS_CMD_MDW:
3741 b = 4;
3742 break;
3743 case TS_CMD_MDH:
3744 b = 2;
3745 break;
3746 case TS_CMD_MDB:
3747 b = 1;
3748 break;
3749 }
3750
3751 /* convert to "bytes" */
3752 c = c * b;
3753 /* count is now in 'BYTES' */
3754 while( c > 0 ){
3755 y = c;
3756 if( y > 16 ){
3757 y = 16;
3758 }
3759 e = target_read_memory( target, a, b, y / b, target_buf );
3760 if( e != ERROR_OK ){
3761 Jim_SetResult_sprintf( interp, "error reading target @ 0x%08lx", (int)(a) );
3762 return JIM_ERR;
3763 }
3764
3765 Jim_fprintf( interp, interp->cookie_stdout, "0x%08x ", (int)(a) );
3766 switch( b ){
3767 case 4:
3768 for( x = 0 ; (x < 16) && (x < y) ; x += 4 ){
3769 z = target_buffer_get_u32( target, &(target_buf[ x * 4 ]) );
3770 Jim_fprintf( interp, interp->cookie_stdout, "%08x ", (int)(z) );
3771 }
3772 for( ; (x < 16) ; x += 4 ){
3773 Jim_fprintf( interp, interp->cookie_stdout, " " );
3774 }
3775 break;
3776 case 2:
3777 for( x = 0 ; (x < 16) && (x < y) ; x += 2 ){
3778 z = target_buffer_get_u16( target, &(target_buf[ x * 2 ]) );
3779 Jim_fprintf( interp, interp->cookie_stdout, "%04x ", (int)(z) );
3780 }
3781 for( ; (x < 16) ; x += 2 ){
3782 Jim_fprintf( interp, interp->cookie_stdout, " " );
3783 }
3784 break;
3785 case 1:
3786 default:
3787 for( x = 0 ; (x < 16) && (x < y) ; x += 1 ){
3788 z = target_buffer_get_u8( target, &(target_buf[ x * 4 ]) );
3789 Jim_fprintf( interp, interp->cookie_stdout, "%02x ", (int)(z) );
3790 }
3791 for( ; (x < 16) ; x += 1 ){
3792 Jim_fprintf( interp, interp->cookie_stdout, " " );
3793 }
3794 break;
3795 }
3796 /* ascii-ify the bytes */
3797 for( x = 0 ; x < y ; x++ ){
3798 if( (target_buf[x] >= 0x20) &&
3799 (target_buf[x] <= 0x7e) ){
3800 /* good */
3801 } else {
3802 /* smack it */
3803 target_buf[x] = '.';
3804 }
3805 }
3806 /* space pad */
3807 while( x < 16 ){
3808 target_buf[x] = ' ';
3809 x++;
3810 }
3811 /* terminate */
3812 target_buf[16] = 0;
3813 /* print - with a newline */
3814 Jim_fprintf( interp, interp->cookie_stdout, "%s\n", target_buf );
3815 /* NEXT... */
3816 c -= 16;
3817 a += 16;
3818 }
3819 return JIM_OK;
3820 case TS_CMD_MEM2ARRAY:
3821 return target_mem2array( goi.interp, target, goi.argc, goi.argv );
3822 break;
3823 case TS_CMD_ARRAY2MEM:
3824 return target_array2mem( goi.interp, target, goi.argc, goi.argv );
3825 break;
3826 case TS_CMD_EXAMINE:
3827 if( goi.argc ){
3828 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3829 return JIM_ERR;
3830 }
3831 if (!target->tap->enabled)
3832 goto err_tap_disabled;
3833 e = target->type->examine( target );
3834 if( e != ERROR_OK ){
3835 Jim_SetResult_sprintf( interp, "examine-fails: %d", e );
3836 return JIM_ERR;
3837 }
3838 return JIM_OK;
3839 case TS_CMD_POLL:
3840 if( goi.argc ){
3841 Jim_WrongNumArgs( goi.interp, 2, argv, "[no parameters]");
3842 return JIM_ERR;
3843 }
3844 if (!target->tap->enabled)
3845 goto err_tap_disabled;
3846 if( !(target_was_examined(target)) ){
3847 e = ERROR_TARGET_NOT_EXAMINED;
3848 } else {
3849 e = target->type->poll( target );
3850 }
3851 if( e != ERROR_OK ){
3852 Jim_SetResult_sprintf( interp, "poll-fails: %d", e );
3853 return JIM_ERR;
3854 } else {
3855 return JIM_OK;
3856 }
3857 break;
3858 case TS_CMD_RESET:
3859 if( goi.argc != 2 ){
3860 Jim_WrongNumArgs( interp, 2, argv, "t|f|assert|deassert BOOL");
3861 return JIM_ERR;
3862 }
3863 e = Jim_GetOpt_Nvp( &goi, nvp_assert, &n );
3864 if( e != JIM_OK ){
3865 Jim_GetOpt_NvpUnknown( &goi, nvp_assert, 1 );
3866 return e;
3867 }
3868 /* the halt or not param */
3869 e = Jim_GetOpt_Wide( &goi, &a);
3870 if( e != JIM_OK ){
3871 return e;
3872 }
3873 if (!target->tap->enabled)
3874 goto err_tap_disabled;
3875 /* determine if we should halt or not. */
3876 target->reset_halt = !!a;
3877 /* When this happens - all workareas are invalid. */
3878 target_free_all_working_areas_restore(target, 0);
3879
3880 /* do the assert */
3881 if( n->value == NVP_ASSERT ){
3882 target->type->assert_reset( target );
3883 } else {
3884 target->type->deassert_reset( target );
3885 }
3886 return JIM_OK;
3887 case TS_CMD_HALT:
3888 if( goi.argc ){
3889 Jim_WrongNumArgs( goi.interp, 0, argv, "halt [no parameters]");
3890 return JIM_ERR;
3891 }
3892 if (!target->tap->enabled)
3893 goto err_tap_disabled;
3894 target->type->halt( target );
3895 return JIM_OK;
3896 case TS_CMD_WAITSTATE:
3897 /* params: <name> statename timeoutmsecs */
3898 if( goi.argc != 2 ){
3899 Jim_SetResult_sprintf( goi.interp, "%s STATENAME TIMEOUTMSECS", n->name );
3900 return JIM_ERR;
3901 }
3902 e = Jim_GetOpt_Nvp( &goi, nvp_target_state, &n );
3903 if( e != JIM_OK ){
3904 Jim_GetOpt_NvpUnknown( &goi, nvp_target_state,1 );
3905 return e;
3906 }
3907 e = Jim_GetOpt_Wide( &goi, &a );
3908 if( e != JIM_OK ){
3909 return e;
3910 }
3911 if (!target->tap->enabled)
3912 goto err_tap_disabled;
3913 e = target_wait_state( target, n->value, a );
3914 if( e != ERROR_OK ){
3915 Jim_SetResult_sprintf( goi.interp,
3916 "target: %s wait %s fails (%d) %s",
3917 target->cmd_name,
3918 n->name,
3919 e, target_strerror_safe(e) );
3920 return JIM_ERR;
3921 } else {
3922 return JIM_OK;
3923 }
3924 case TS_CMD_EVENTLIST:
3925 /* List for human, Events defined for this target.
3926 * scripts/programs should use 'name cget -event NAME'
3927 */
3928 {
3929 target_event_action_t *teap;
3930 teap = target->event_action;
3931 command_print( cmd_ctx, "Event actions for target (%d) %s\n",
3932 target->target_number,
3933 target->cmd_name );
3934 command_print( cmd_ctx, "%-25s | Body", "Event");
3935 command_print( cmd_ctx, "------------------------- | ----------------------------------------");
3936 while( teap ){
3937 command_print( cmd_ctx,
3938 "%-25s | %s",
3939 Jim_Nvp_value2name_simple( nvp_target_event, teap->event )->name,
3940 Jim_GetString( teap->body, NULL ) );
3941 teap = teap->next;
3942 }
3943 command_print( cmd_ctx, "***END***");
3944 return JIM_OK;
3945 }
3946 case TS_CMD_CURSTATE:
3947 if( goi.argc != 0 ){
3948 Jim_WrongNumArgs( goi.interp, 0, argv, "[no parameters]");
3949 return JIM_ERR;
3950 }
3951 Jim_SetResultString( goi.interp,
3952 Jim_Nvp_value2name_simple(nvp_target_state,target->state)->name,-1);
3953 return JIM_OK;
3954 case TS_CMD_INVOKE_EVENT:
3955 if( goi.argc != 1 ){
3956 Jim_SetResult_sprintf( goi.interp, "%s ?EVENTNAME?",n->name);
3957 return JIM_ERR;
3958 }
3959 e = Jim_GetOpt_Nvp( &goi, nvp_target_event, &n );
3960 if( e != JIM_OK ){
3961 Jim_GetOpt_NvpUnknown( &goi, nvp_target_event, 1 );
3962 return e;
3963 }
3964 target_handle_event( target, n->value );
3965 return JIM_OK;
3966 }
3967 return JIM_ERR;
3968
3969 err_tap_disabled:
3970 Jim_SetResult_sprintf(interp, "[TAP is disabled]");
3971 return JIM_ERR;
3972 }
3973
3974 static int target_create( Jim_GetOptInfo *goi )
3975 {
3976 Jim_Obj *new_cmd;
3977 Jim_Cmd *cmd;
3978 const char *cp;
3979 char *cp2;
3980 int e;
3981 int x;
3982 target_t *target;
3983 struct command_context_s *cmd_ctx;
3984
3985 cmd_ctx = Jim_GetAssocData(goi->interp, "context");
3986 if( goi->argc < 3 ){
3987 Jim_WrongNumArgs( goi->interp, 1, goi->argv, "?name? ?type? ..options...");
3988 return JIM_ERR;
3989 }
3990
3991 /* COMMAND */
3992 Jim_GetOpt_Obj( goi, &new_cmd );
3993 /* does this command exist? */
3994 cmd = Jim_GetCommand( goi->interp, new_cmd, JIM_ERRMSG );
3995 if( cmd ){
3996 cp = Jim_GetString( new_cmd, NULL );
3997 Jim_SetResult_sprintf(goi->interp, "Command/target: %s Exists", cp);
3998 return JIM_ERR;
3999 }
4000
4001 /* TYPE */
4002 e = Jim_GetOpt_String( goi, &cp2, NULL );
4003 cp = cp2;
4004 /* now does target type exist */
4005 for( x = 0 ; target_types[x] ; x++ ){
4006 if( 0 == strcmp( cp, target_types[x]->name ) ){
4007 /* found */
4008 break;
4009 }
4010 }
4011 if( target_types[x] == NULL ){
4012 Jim_SetResult_sprintf( goi->interp, "Unknown target type %s, try one of ", cp );
4013 for( x = 0 ; target_types[x] ; x++ ){
4014 if( target_types[x+1] ){
4015 Jim_AppendStrings( goi->interp,
4016 Jim_GetResult(goi->interp),
4017 target_types[x]->name,
4018 ", ", NULL);
4019 } else {
4020 Jim_AppendStrings( goi->interp,
4021 Jim_GetResult(goi->interp),
4022 " or ",
4023 target_types[x]->name,NULL );
4024 }
4025 }
4026 return JIM_ERR;
4027 }
4028
4029 /* Create it */
4030 target = calloc(1,sizeof(target_t));
4031 /* set target number */
4032 target->target_number = new_target_number();
4033
4034 /* allocate memory for each unique target type */
4035 target->type = (target_type_t*)calloc(1,sizeof(target_type_t));
4036
4037 memcpy( target->type, target_types[x], sizeof(target_type_t));
4038
4039 /* will be set by "-endian" */
4040 target->endianness = TARGET_ENDIAN_UNKNOWN;
4041
4042 target->working_area = 0x0;
4043 target->working_area_size = 0x0;
4044 target->working_areas = NULL;
4045 target->backup_working_area = 0;
4046
4047 target->state = TARGET_UNKNOWN;
4048 target->debug_reason = DBG_REASON_UNDEFINED;
4049 target->reg_cache = NULL;
4050 target->breakpoints = NULL;
4051 target->watchpoints = NULL;
4052 target->next = NULL;
4053 target->arch_info = NULL;
4054
4055 target->display = 1;
4056
4057 /* initialize trace information */
4058 target->trace_info = malloc(sizeof(trace_t));
4059 target->trace_info->num_trace_points = 0;
4060 target->trace_info->trace_points_size = 0;
4061 target->trace_info->trace_points = NULL;
4062 target->trace_info->trace_history_size = 0;
4063 target->trace_info->trace_history = NULL;
4064 target->trace_info->trace_history_pos = 0;
4065 target->trace_info->trace_history_overflowed = 0;
4066
4067 target->dbgmsg = NULL;
4068 target->dbg_msg_enabled = 0;
4069
4070 target->endianness = TARGET_ENDIAN_UNKNOWN;
4071
4072 /* Do the rest as "configure" options */
4073 goi->isconfigure = 1;
4074 e = target_configure( goi, target);
4075
4076 if (target->tap == NULL)
4077 {
4078 Jim_SetResultString( interp, "-chain-position required when creating target", -1);
4079 e=JIM_ERR;
4080 }
4081
4082 if( e != JIM_OK ){
4083 free( target->type );
4084 free( target );
4085 return e;
4086 }
4087
4088 if( target->endianness == TARGET_ENDIAN_UNKNOWN ){
4089 /* default endian to little if not specified */
4090 target->endianness = TARGET_LITTLE_ENDIAN;
4091 }
4092
4093 /* incase variant is not set */
4094 if (!target->variant)
4095 target->variant = strdup("");
4096
4097 /* create the target specific commands */
4098 if( target->type->register_commands ){
4099 (*(target->type->register_commands))( cmd_ctx );
4100 }
4101 if( target->type->target_create ){
4102 (*(target->type->target_create))( target, goi->interp );
4103 }
4104
4105 /* append to end of list */
4106 {
4107 target_t **tpp;
4108 tpp = &(all_targets);
4109 while( *tpp ){
4110 tpp = &( (*tpp)->next );
4111 }
4112 *tpp = target;
4113 }
4114
4115 cp = Jim_GetString( new_cmd, NULL );
4116 target->cmd_name = strdup(cp);
4117
4118 /* now - create the new target name command */
4119 e = Jim_CreateCommand( goi->interp,
4120 /* name */
4121 cp,
4122 tcl_target_func, /* C function */
4123 target, /* private data */
4124 NULL ); /* no del proc */
4125
4126 return e;
4127 }
4128
4129 static int jim_target( Jim_Interp *interp, int argc, Jim_Obj *const *argv )
4130 {
4131 int x,r,e;
4132 jim_wide w;
4133 struct command_context_s *cmd_ctx;
4134 target_t *target;
4135 Jim_GetOptInfo goi;
4136 enum tcmd {
4137 /* TG = target generic */
4138 TG_CMD_CREATE,
4139 TG_CMD_TYPES,
4140 TG_CMD_NAMES,
4141 TG_CMD_CURRENT,
4142 TG_CMD_NUMBER,
4143 TG_CMD_COUNT,
4144 };
4145 const char *target_cmds[] = {
4146 "create", "types", "names", "current", "number",
4147 "count",
4148 NULL /* terminate */
4149 };
4150
4151 LOG_DEBUG("Target command params:");
4152 LOG_DEBUG("%s", Jim_Debug_ArgvString(interp, argc, argv));
4153
4154 cmd_ctx = Jim_GetAssocData( interp, "context" );
4155
4156 Jim_GetOpt_Setup( &goi, interp, argc-1, argv+1 );
4157
4158 if( goi.argc == 0 ){
4159 Jim_WrongNumArgs(interp, 1, argv, "missing: command ...");
4160 return JIM_ERR;
4161 }
4162
4163 /* Jim_GetOpt_Debug( &goi ); */
4164 r = Jim_GetOpt_Enum( &goi, target_cmds, &x );
4165 if( r != JIM_OK ){
4166 return r;
4167 }
4168
4169 switch(x){
4170 default:
4171 Jim_Panic(goi.interp,"Why am I here?");
4172 return JIM_ERR;
4173 case TG_CMD_CURRENT:
4174 if( goi.argc != 0 ){
4175 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters");
4176 return JIM_ERR;
4177 }
4178 Jim_SetResultString( goi.interp, get_current_target( cmd_ctx )->cmd_name, -1 );
4179 return JIM_OK;
4180 case TG_CMD_TYPES:
4181 if( goi.argc != 0 ){
4182 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4183 return JIM_ERR;
4184 }
4185 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4186 for( x = 0 ; target_types[x] ; x++ ){
4187 Jim_ListAppendElement( goi.interp,
4188 Jim_GetResult(goi.interp),
4189 Jim_NewStringObj( goi.interp, target_types[x]->name, -1 ) );
4190 }
4191 return JIM_OK;
4192 case TG_CMD_NAMES:
4193 if( goi.argc != 0 ){
4194 Jim_WrongNumArgs( goi.interp, 1, goi.argv, "Too many parameters" );
4195 return JIM_ERR;
4196 }
4197 Jim_SetResult( goi.interp, Jim_NewListObj( goi.interp, NULL, 0 ) );
4198 target = all_targets;
4199 while( target ){
4200 Jim_ListAppendElement( goi.interp,
4201 Jim_GetResult(goi.interp),
4202 Jim_NewStringObj( goi.interp, target->cmd_name, -1 ) );
4203 target = target->next;
4204 }
4205 return JIM_OK;
4206 case TG_CMD_CREATE:
4207 if( goi.argc < 3 ){
4208 Jim_WrongNumArgs( goi.interp, goi.argc, goi.argv, "?name ... config options ...");
4209 return JIM_ERR;
4210 }
4211 return target_create( &goi );
4212 break;
4213 case TG_CMD_NUMBER:
4214 if( goi.argc != 1 ){
4215 Jim_SetResult_sprintf( goi.interp, "expected: target number ?NUMBER?");
4216 return JIM_ERR;
4217 }
4218 e = Jim_GetOpt_Wide( &goi, &w );
4219 if( e != JIM_OK ){
4220 return JIM_ERR;
4221 }
4222 {
4223 target_t *t;
4224 t = get_target_by_num(w);
4225 if( t == NULL ){
4226 Jim_SetResult_sprintf( goi.interp,"Target: number %d does not exist", (int)(w));
4227 return JIM_ERR;
4228 }
4229 Jim_SetResultString( goi.interp, t->cmd_name, -1 );
4230 return JIM_OK;
4231 }
4232 case TG_CMD_COUNT:
4233 if( goi.argc != 0 ){
4234 Jim_WrongNumArgs( goi.interp, 0, goi.argv, "<no parameters>");
4235 return JIM_ERR;
4236 }
4237 Jim_SetResult( goi.interp,
4238 Jim_NewIntObj( goi.interp, max_target_number()));
4239 return JIM_OK;
4240 }
4241
4242 return JIM_ERR;
4243 }
4244
4245
4246 struct FastLoad
4247 {
4248 u32 address;
4249 u8 *data;
4250 int length;
4251
4252 };
4253
4254 static int fastload_num;
4255 static struct FastLoad *fastload;
4256
4257 static void free_fastload(void)
4258 {
4259 if (fastload!=NULL)
4260 {
4261 int i;
4262 for (i=0; i<fastload_num; i++)
4263 {
4264 if (fastload[i].data)
4265 free(fastload[i].data);
4266 }
4267 free(fastload);
4268 fastload=NULL;
4269 }
4270 }
4271
4272
4273
4274
4275 static int handle_fast_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4276 {
4277 u8 *buffer;
4278 u32 buf_cnt;
4279 u32 image_size;
4280 u32 min_address=0;
4281 u32 max_address=0xffffffff;
4282 int i;
4283 int retval;
4284
4285 image_t image;
4286
4287 duration_t duration;
4288 char *duration_text;
4289
4290 if ((argc < 1)||(argc > 5))
4291 {
4292 return ERROR_COMMAND_SYNTAX_ERROR;
4293 }
4294
4295 /* a base address isn't always necessary, default to 0x0 (i.e. don't relocate) */
4296 if (argc >= 2)
4297 {
4298 image.base_address_set = 1;
4299 image.base_address = strtoul(args[1], NULL, 0);
4300 }
4301 else
4302 {
4303 image.base_address_set = 0;
4304 }
4305
4306
4307 image.start_address_set = 0;
4308
4309 if (argc>=4)
4310 {
4311 min_address=strtoul(args[3], NULL, 0);
4312 }
4313 if (argc>=5)
4314 {
4315 max_address=strtoul(args[4], NULL, 0)+min_address;
4316 }
4317
4318 if (min_address>max_address)
4319 {
4320 return ERROR_COMMAND_SYNTAX_ERROR;
4321 }
4322
4323 duration_start_measure(&duration);
4324
4325 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
4326 {
4327 return ERROR_OK;
4328 }
4329
4330 image_size = 0x0;
4331 retval = ERROR_OK;
4332 fastload_num=image.num_sections;
4333 fastload=(struct FastLoad *)malloc(sizeof(struct FastLoad)*image.num_sections);
4334 if (fastload==NULL)
4335 {
4336 image_close(&image);
4337 return ERROR_FAIL;
4338 }
4339 memset(fastload, 0, sizeof(struct FastLoad)*image.num_sections);
4340 for (i = 0; i < image.num_sections; i++)
4341 {
4342 buffer = malloc(image.sections[i].size);
4343 if (buffer == NULL)
4344 {
4345 command_print(cmd_ctx, "error allocating buffer for section (%d bytes)", image.sections[i].size);
4346 break;
4347 }
4348
4349 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
4350 {
4351 free(buffer);
4352 break;
4353 }
4354
4355 u32 offset=0;
4356 u32 length=buf_cnt;
4357
4358
4359 /* DANGER!!! beware of unsigned comparision here!!! */
4360
4361 if ((image.sections[i].base_address+buf_cnt>=min_address)&&
4362 (image.sections[i].base_address<max_address))
4363 {
4364 if (image.sections[i].base_address<min_address)
4365 {
4366 /* clip addresses below */
4367 offset+=min_address-image.sections[i].base_address;
4368 length-=offset;
4369 }
4370
4371 if (image.sections[i].base_address+buf_cnt>max_address)
4372 {
4373 length-=(image.sections[i].base_address+buf_cnt)-max_address;
4374 }
4375
4376 fastload[i].address=image.sections[i].base_address+offset;
4377 fastload[i].data=malloc(length);
4378 if (fastload[i].data==NULL)
4379 {
4380 free(buffer);
4381 break;
4382 }
4383 memcpy(fastload[i].data, buffer+offset, length);
4384 fastload[i].length=length;
4385
4386 image_size += length;
4387 command_print(cmd_ctx, "%u byte written at address 0x%8.8x", length, image.sections[i].base_address+offset);
4388 }
4389
4390 free(buffer);
4391 }
4392
4393 duration_stop_measure(&duration, &duration_text);
4394 if (retval==ERROR_OK)
4395 {
4396 command_print(cmd_ctx, "Loaded %u bytes in %s", image_size, duration_text);
4397 command_print(cmd_ctx, "NB!!! image has not been loaded to target, issue a subsequent 'fast_load' to do so.");
4398 }
4399 free(duration_text);
4400
4401 image_close(&image);
4402
4403 if (retval!=ERROR_OK)
4404 {
4405 free_fastload();
4406 }
4407
4408 return retval;
4409 }
4410
4411 static int handle_fast_load_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
4412 {
4413 if (argc>0)
4414 return ERROR_COMMAND_SYNTAX_ERROR;
4415 if (fastload==NULL)
4416 {
4417 LOG_ERROR("No image in memory");
4418 return ERROR_FAIL;
4419 }
4420 int i;
4421 int ms=timeval_ms();
4422 int size=0;
4423 int retval=ERROR_OK;
4424 for (i=0; i<fastload_num;i++)
4425 {
4426 target_t *target = get_current_target(cmd_ctx);
4427 command_print(cmd_ctx, "Write to 0x%08x, length 0x%08x", fastload[i].address, fastload[i].length);
4428 if (retval==ERROR_OK)
4429 {
4430 retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
4431 }
4432 size+=fastload[i].length;
4433 }
4434 int after=timeval_ms();
4435 command_print(cmd_ctx, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
4436 return retval;
4437 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)