target: Use proper data types for timer callback
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 ***************************************************************************/
39
40 #ifdef HAVE_CONFIG_H
41 #include "config.h"
42 #endif
43
44 #include <helper/time_support.h>
45 #include <jtag/jtag.h>
46 #include <flash/nor/core.h>
47
48 #include "target.h"
49 #include "target_type.h"
50 #include "target_request.h"
51 #include "breakpoints.h"
52 #include "register.h"
53 #include "trace.h"
54 #include "image.h"
55 #include "rtos/rtos.h"
56 #include "transport/transport.h"
57 #include "arm_cti.h"
58
59 /* default halt wait timeout (ms) */
60 #define DEFAULT_HALT_TIMEOUT 5000
61
62 static int target_read_buffer_default(struct target *target, target_addr_t address,
63 uint32_t count, uint8_t *buffer);
64 static int target_write_buffer_default(struct target *target, target_addr_t address,
65 uint32_t count, const uint8_t *buffer);
66 static int target_array2mem(Jim_Interp *interp, struct target *target,
67 int argc, Jim_Obj * const *argv);
68 static int target_mem2array(Jim_Interp *interp, struct target *target,
69 int argc, Jim_Obj * const *argv);
70 static int target_register_user_commands(struct command_context *cmd_ctx);
71 static int target_get_gdb_fileio_info_default(struct target *target,
72 struct gdb_fileio_info *fileio_info);
73 static int target_gdb_fileio_end_default(struct target *target, int retcode,
74 int fileio_errno, bool ctrl_c);
75 static int target_profiling_default(struct target *target, uint32_t *samples,
76 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds);
77
78 /* targets */
79 extern struct target_type arm7tdmi_target;
80 extern struct target_type arm720t_target;
81 extern struct target_type arm9tdmi_target;
82 extern struct target_type arm920t_target;
83 extern struct target_type arm966e_target;
84 extern struct target_type arm946e_target;
85 extern struct target_type arm926ejs_target;
86 extern struct target_type fa526_target;
87 extern struct target_type feroceon_target;
88 extern struct target_type dragonite_target;
89 extern struct target_type xscale_target;
90 extern struct target_type cortexm_target;
91 extern struct target_type cortexa_target;
92 extern struct target_type aarch64_target;
93 extern struct target_type cortexr4_target;
94 extern struct target_type arm11_target;
95 extern struct target_type ls1_sap_target;
96 extern struct target_type mips_m4k_target;
97 extern struct target_type avr_target;
98 extern struct target_type dsp563xx_target;
99 extern struct target_type dsp5680xx_target;
100 extern struct target_type testee_target;
101 extern struct target_type avr32_ap7k_target;
102 extern struct target_type hla_target;
103 extern struct target_type nds32_v2_target;
104 extern struct target_type nds32_v3_target;
105 extern struct target_type nds32_v3m_target;
106 extern struct target_type or1k_target;
107 extern struct target_type quark_x10xx_target;
108 extern struct target_type quark_d20xx_target;
109 extern struct target_type stm8_target;
110 extern struct target_type riscv_target;
111 extern struct target_type mem_ap_target;
112 extern struct target_type esirisc_target;
113
114 static struct target_type *target_types[] = {
115 &arm7tdmi_target,
116 &arm9tdmi_target,
117 &arm920t_target,
118 &arm720t_target,
119 &arm966e_target,
120 &arm946e_target,
121 &arm926ejs_target,
122 &fa526_target,
123 &feroceon_target,
124 &dragonite_target,
125 &xscale_target,
126 &cortexm_target,
127 &cortexa_target,
128 &cortexr4_target,
129 &arm11_target,
130 &ls1_sap_target,
131 &mips_m4k_target,
132 &avr_target,
133 &dsp563xx_target,
134 &dsp5680xx_target,
135 &testee_target,
136 &avr32_ap7k_target,
137 &hla_target,
138 &nds32_v2_target,
139 &nds32_v3_target,
140 &nds32_v3m_target,
141 &or1k_target,
142 &quark_x10xx_target,
143 &quark_d20xx_target,
144 &stm8_target,
145 &riscv_target,
146 &mem_ap_target,
147 &esirisc_target,
148 #if BUILD_TARGET64
149 &aarch64_target,
150 #endif
151 NULL,
152 };
153
154 struct target *all_targets;
155 static struct target_event_callback *target_event_callbacks;
156 static struct target_timer_callback *target_timer_callbacks;
157 LIST_HEAD(target_reset_callback_list);
158 LIST_HEAD(target_trace_callback_list);
159 static const int polling_interval = 100;
160
161 static const Jim_Nvp nvp_assert[] = {
162 { .name = "assert", NVP_ASSERT },
163 { .name = "deassert", NVP_DEASSERT },
164 { .name = "T", NVP_ASSERT },
165 { .name = "F", NVP_DEASSERT },
166 { .name = "t", NVP_ASSERT },
167 { .name = "f", NVP_DEASSERT },
168 { .name = NULL, .value = -1 }
169 };
170
171 static const Jim_Nvp nvp_error_target[] = {
172 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
173 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
174 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
175 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
176 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
177 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
178 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
179 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
180 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
181 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
182 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
183 { .value = -1, .name = NULL }
184 };
185
186 static const char *target_strerror_safe(int err)
187 {
188 const Jim_Nvp *n;
189
190 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
191 if (n->name == NULL)
192 return "unknown";
193 else
194 return n->name;
195 }
196
197 static const Jim_Nvp nvp_target_event[] = {
198
199 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
200 { .value = TARGET_EVENT_HALTED, .name = "halted" },
201 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
202 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
203 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
204
205 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
206 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
207
208 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
209 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
210 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
211 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
212 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
213 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
214 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
215 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
216
217 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
218 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
219
220 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
221 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
222
223 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
224 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
225
226 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
227 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
228
229 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
230 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
231
232 { .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },
233
234 { .name = NULL, .value = -1 }
235 };
236
237 static const Jim_Nvp nvp_target_state[] = {
238 { .name = "unknown", .value = TARGET_UNKNOWN },
239 { .name = "running", .value = TARGET_RUNNING },
240 { .name = "halted", .value = TARGET_HALTED },
241 { .name = "reset", .value = TARGET_RESET },
242 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
243 { .name = NULL, .value = -1 },
244 };
245
246 static const Jim_Nvp nvp_target_debug_reason[] = {
247 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
248 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
249 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
250 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
251 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
252 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
253 { .name = "program-exit" , .value = DBG_REASON_EXIT },
254 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
255 { .name = NULL, .value = -1 },
256 };
257
258 static const Jim_Nvp nvp_target_endian[] = {
259 { .name = "big", .value = TARGET_BIG_ENDIAN },
260 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
261 { .name = "be", .value = TARGET_BIG_ENDIAN },
262 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
263 { .name = NULL, .value = -1 },
264 };
265
266 static const Jim_Nvp nvp_reset_modes[] = {
267 { .name = "unknown", .value = RESET_UNKNOWN },
268 { .name = "run" , .value = RESET_RUN },
269 { .name = "halt" , .value = RESET_HALT },
270 { .name = "init" , .value = RESET_INIT },
271 { .name = NULL , .value = -1 },
272 };
273
274 const char *debug_reason_name(struct target *t)
275 {
276 const char *cp;
277
278 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
279 t->debug_reason)->name;
280 if (!cp) {
281 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
282 cp = "(*BUG*unknown*BUG*)";
283 }
284 return cp;
285 }
286
287 const char *target_state_name(struct target *t)
288 {
289 const char *cp;
290 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
291 if (!cp) {
292 LOG_ERROR("Invalid target state: %d", (int)(t->state));
293 cp = "(*BUG*unknown*BUG*)";
294 }
295
296 if (!target_was_examined(t) && t->defer_examine)
297 cp = "examine deferred";
298
299 return cp;
300 }
301
302 const char *target_event_name(enum target_event event)
303 {
304 const char *cp;
305 cp = Jim_Nvp_value2name_simple(nvp_target_event, event)->name;
306 if (!cp) {
307 LOG_ERROR("Invalid target event: %d", (int)(event));
308 cp = "(*BUG*unknown*BUG*)";
309 }
310 return cp;
311 }
312
313 const char *target_reset_mode_name(enum target_reset_mode reset_mode)
314 {
315 const char *cp;
316 cp = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
317 if (!cp) {
318 LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
319 cp = "(*BUG*unknown*BUG*)";
320 }
321 return cp;
322 }
323
324 /* determine the number of the new target */
325 static int new_target_number(void)
326 {
327 struct target *t;
328 int x;
329
330 /* number is 0 based */
331 x = -1;
332 t = all_targets;
333 while (t) {
334 if (x < t->target_number)
335 x = t->target_number;
336 t = t->next;
337 }
338 return x + 1;
339 }
340
341 /* read a uint64_t from a buffer in target memory endianness */
342 uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
343 {
344 if (target->endianness == TARGET_LITTLE_ENDIAN)
345 return le_to_h_u64(buffer);
346 else
347 return be_to_h_u64(buffer);
348 }
349
350 /* read a uint32_t from a buffer in target memory endianness */
351 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
352 {
353 if (target->endianness == TARGET_LITTLE_ENDIAN)
354 return le_to_h_u32(buffer);
355 else
356 return be_to_h_u32(buffer);
357 }
358
359 /* read a uint24_t from a buffer in target memory endianness */
360 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
361 {
362 if (target->endianness == TARGET_LITTLE_ENDIAN)
363 return le_to_h_u24(buffer);
364 else
365 return be_to_h_u24(buffer);
366 }
367
368 /* read a uint16_t from a buffer in target memory endianness */
369 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
370 {
371 if (target->endianness == TARGET_LITTLE_ENDIAN)
372 return le_to_h_u16(buffer);
373 else
374 return be_to_h_u16(buffer);
375 }
376
377 /* read a uint8_t from a buffer in target memory endianness */
378 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
379 {
380 return *buffer & 0x0ff;
381 }
382
383 /* write a uint64_t to a buffer in target memory endianness */
384 void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
385 {
386 if (target->endianness == TARGET_LITTLE_ENDIAN)
387 h_u64_to_le(buffer, value);
388 else
389 h_u64_to_be(buffer, value);
390 }
391
392 /* write a uint32_t to a buffer in target memory endianness */
393 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
394 {
395 if (target->endianness == TARGET_LITTLE_ENDIAN)
396 h_u32_to_le(buffer, value);
397 else
398 h_u32_to_be(buffer, value);
399 }
400
401 /* write a uint24_t to a buffer in target memory endianness */
402 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
403 {
404 if (target->endianness == TARGET_LITTLE_ENDIAN)
405 h_u24_to_le(buffer, value);
406 else
407 h_u24_to_be(buffer, value);
408 }
409
410 /* write a uint16_t to a buffer in target memory endianness */
411 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
412 {
413 if (target->endianness == TARGET_LITTLE_ENDIAN)
414 h_u16_to_le(buffer, value);
415 else
416 h_u16_to_be(buffer, value);
417 }
418
419 /* write a uint8_t to a buffer in target memory endianness */
420 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
421 {
422 *buffer = value;
423 }
424
425 /* write a uint64_t array to a buffer in target memory endianness */
426 void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
427 {
428 uint32_t i;
429 for (i = 0; i < count; i++)
430 dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
431 }
432
433 /* write a uint32_t array to a buffer in target memory endianness */
434 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
435 {
436 uint32_t i;
437 for (i = 0; i < count; i++)
438 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
439 }
440
441 /* write a uint16_t array to a buffer in target memory endianness */
442 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
443 {
444 uint32_t i;
445 for (i = 0; i < count; i++)
446 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
447 }
448
449 /* write a uint64_t array to a buffer in target memory endianness */
450 void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
451 {
452 uint32_t i;
453 for (i = 0; i < count; i++)
454 target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
455 }
456
457 /* write a uint32_t array to a buffer in target memory endianness */
458 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
459 {
460 uint32_t i;
461 for (i = 0; i < count; i++)
462 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
463 }
464
465 /* write a uint16_t array to a buffer in target memory endianness */
466 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
467 {
468 uint32_t i;
469 for (i = 0; i < count; i++)
470 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
471 }
472
473 /* return a pointer to a configured target; id is name or number */
474 struct target *get_target(const char *id)
475 {
476 struct target *target;
477
478 /* try as tcltarget name */
479 for (target = all_targets; target; target = target->next) {
480 if (target_name(target) == NULL)
481 continue;
482 if (strcmp(id, target_name(target)) == 0)
483 return target;
484 }
485
486 /* It's OK to remove this fallback sometime after August 2010 or so */
487
488 /* no match, try as number */
489 unsigned num;
490 if (parse_uint(id, &num) != ERROR_OK)
491 return NULL;
492
493 for (target = all_targets; target; target = target->next) {
494 if (target->target_number == (int)num) {
495 LOG_WARNING("use '%s' as target identifier, not '%u'",
496 target_name(target), num);
497 return target;
498 }
499 }
500
501 return NULL;
502 }
503
504 /* returns a pointer to the n-th configured target */
505 struct target *get_target_by_num(int num)
506 {
507 struct target *target = all_targets;
508
509 while (target) {
510 if (target->target_number == num)
511 return target;
512 target = target->next;
513 }
514
515 return NULL;
516 }
517
518 struct target *get_current_target(struct command_context *cmd_ctx)
519 {
520 struct target *target = get_current_target_or_null(cmd_ctx);
521
522 if (target == NULL) {
523 LOG_ERROR("BUG: current_target out of bounds");
524 exit(-1);
525 }
526
527 return target;
528 }
529
530 struct target *get_current_target_or_null(struct command_context *cmd_ctx)
531 {
532 return cmd_ctx->current_target_override
533 ? cmd_ctx->current_target_override
534 : cmd_ctx->current_target;
535 }
536
537 int target_poll(struct target *target)
538 {
539 int retval;
540
541 /* We can't poll until after examine */
542 if (!target_was_examined(target)) {
543 /* Fail silently lest we pollute the log */
544 return ERROR_FAIL;
545 }
546
547 retval = target->type->poll(target);
548 if (retval != ERROR_OK)
549 return retval;
550
551 if (target->halt_issued) {
552 if (target->state == TARGET_HALTED)
553 target->halt_issued = false;
554 else {
555 int64_t t = timeval_ms() - target->halt_issued_time;
556 if (t > DEFAULT_HALT_TIMEOUT) {
557 target->halt_issued = false;
558 LOG_INFO("Halt timed out, wake up GDB.");
559 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
560 }
561 }
562 }
563
564 return ERROR_OK;
565 }
566
567 int target_halt(struct target *target)
568 {
569 int retval;
570 /* We can't poll until after examine */
571 if (!target_was_examined(target)) {
572 LOG_ERROR("Target not examined yet");
573 return ERROR_FAIL;
574 }
575
576 retval = target->type->halt(target);
577 if (retval != ERROR_OK)
578 return retval;
579
580 target->halt_issued = true;
581 target->halt_issued_time = timeval_ms();
582
583 return ERROR_OK;
584 }
585
586 /**
587 * Make the target (re)start executing using its saved execution
588 * context (possibly with some modifications).
589 *
590 * @param target Which target should start executing.
591 * @param current True to use the target's saved program counter instead
592 * of the address parameter
593 * @param address Optionally used as the program counter.
594 * @param handle_breakpoints True iff breakpoints at the resumption PC
595 * should be skipped. (For example, maybe execution was stopped by
596 * such a breakpoint, in which case it would be counterprodutive to
597 * let it re-trigger.
598 * @param debug_execution False if all working areas allocated by OpenOCD
599 * should be released and/or restored to their original contents.
600 * (This would for example be true to run some downloaded "helper"
601 * algorithm code, which resides in one such working buffer and uses
602 * another for data storage.)
603 *
604 * @todo Resolve the ambiguity about what the "debug_execution" flag
605 * signifies. For example, Target implementations don't agree on how
606 * it relates to invalidation of the register cache, or to whether
607 * breakpoints and watchpoints should be enabled. (It would seem wrong
608 * to enable breakpoints when running downloaded "helper" algorithms
609 * (debug_execution true), since the breakpoints would be set to match
610 * target firmware being debugged, not the helper algorithm.... and
611 * enabling them could cause such helpers to malfunction (for example,
612 * by overwriting data with a breakpoint instruction. On the other
613 * hand the infrastructure for running such helpers might use this
614 * procedure but rely on hardware breakpoint to detect termination.)
615 */
616 int target_resume(struct target *target, int current, target_addr_t address,
617 int handle_breakpoints, int debug_execution)
618 {
619 int retval;
620
621 /* We can't poll until after examine */
622 if (!target_was_examined(target)) {
623 LOG_ERROR("Target not examined yet");
624 return ERROR_FAIL;
625 }
626
627 target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);
628
629 /* note that resume *must* be asynchronous. The CPU can halt before
630 * we poll. The CPU can even halt at the current PC as a result of
631 * a software breakpoint being inserted by (a bug?) the application.
632 */
633 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
634 if (retval != ERROR_OK)
635 return retval;
636
637 target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);
638
639 return retval;
640 }
641
642 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
643 {
644 char buf[100];
645 int retval;
646 Jim_Nvp *n;
647 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
648 if (n->name == NULL) {
649 LOG_ERROR("invalid reset mode");
650 return ERROR_FAIL;
651 }
652
653 struct target *target;
654 for (target = all_targets; target; target = target->next)
655 target_call_reset_callbacks(target, reset_mode);
656
657 /* disable polling during reset to make reset event scripts
658 * more predictable, i.e. dr/irscan & pathmove in events will
659 * not have JTAG operations injected into the middle of a sequence.
660 */
661 bool save_poll = jtag_poll_get_enabled();
662
663 jtag_poll_set_enabled(false);
664
665 sprintf(buf, "ocd_process_reset %s", n->name);
666 retval = Jim_Eval(cmd_ctx->interp, buf);
667
668 jtag_poll_set_enabled(save_poll);
669
670 if (retval != JIM_OK) {
671 Jim_MakeErrorMessage(cmd_ctx->interp);
672 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
673 return ERROR_FAIL;
674 }
675
676 /* We want any events to be processed before the prompt */
677 retval = target_call_timer_callbacks_now();
678
679 for (target = all_targets; target; target = target->next) {
680 target->type->check_reset(target);
681 target->running_alg = false;
682 }
683
684 return retval;
685 }
686
687 static int identity_virt2phys(struct target *target,
688 target_addr_t virtual, target_addr_t *physical)
689 {
690 *physical = virtual;
691 return ERROR_OK;
692 }
693
694 static int no_mmu(struct target *target, int *enabled)
695 {
696 *enabled = 0;
697 return ERROR_OK;
698 }
699
700 static int default_examine(struct target *target)
701 {
702 target_set_examined(target);
703 return ERROR_OK;
704 }
705
706 /* no check by default */
707 static int default_check_reset(struct target *target)
708 {
709 return ERROR_OK;
710 }
711
712 int target_examine_one(struct target *target)
713 {
714 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);
715
716 int retval = target->type->examine(target);
717 if (retval != ERROR_OK)
718 return retval;
719
720 target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);
721
722 return ERROR_OK;
723 }
724
725 static int jtag_enable_callback(enum jtag_event event, void *priv)
726 {
727 struct target *target = priv;
728
729 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
730 return ERROR_OK;
731
732 jtag_unregister_event_callback(jtag_enable_callback, target);
733
734 return target_examine_one(target);
735 }
736
737 /* Targets that correctly implement init + examine, i.e.
738 * no communication with target during init:
739 *
740 * XScale
741 */
742 int target_examine(void)
743 {
744 int retval = ERROR_OK;
745 struct target *target;
746
747 for (target = all_targets; target; target = target->next) {
748 /* defer examination, but don't skip it */
749 if (!target->tap->enabled) {
750 jtag_register_event_callback(jtag_enable_callback,
751 target);
752 continue;
753 }
754
755 if (target->defer_examine)
756 continue;
757
758 retval = target_examine_one(target);
759 if (retval != ERROR_OK)
760 return retval;
761 }
762 return retval;
763 }
764
765 const char *target_type_name(struct target *target)
766 {
767 return target->type->name;
768 }
769
770 static int target_soft_reset_halt(struct target *target)
771 {
772 if (!target_was_examined(target)) {
773 LOG_ERROR("Target not examined yet");
774 return ERROR_FAIL;
775 }
776 if (!target->type->soft_reset_halt) {
777 LOG_ERROR("Target %s does not support soft_reset_halt",
778 target_name(target));
779 return ERROR_FAIL;
780 }
781 return target->type->soft_reset_halt(target);
782 }
783
784 /**
785 * Downloads a target-specific native code algorithm to the target,
786 * and executes it. * Note that some targets may need to set up, enable,
787 * and tear down a breakpoint (hard or * soft) to detect algorithm
788 * termination, while others may support lower overhead schemes where
789 * soft breakpoints embedded in the algorithm automatically terminate the
790 * algorithm.
791 *
792 * @param target used to run the algorithm
793 * @param arch_info target-specific description of the algorithm.
794 */
795 int target_run_algorithm(struct target *target,
796 int num_mem_params, struct mem_param *mem_params,
797 int num_reg_params, struct reg_param *reg_param,
798 uint32_t entry_point, uint32_t exit_point,
799 int timeout_ms, void *arch_info)
800 {
801 int retval = ERROR_FAIL;
802
803 if (!target_was_examined(target)) {
804 LOG_ERROR("Target not examined yet");
805 goto done;
806 }
807 if (!target->type->run_algorithm) {
808 LOG_ERROR("Target type '%s' does not support %s",
809 target_type_name(target), __func__);
810 goto done;
811 }
812
813 target->running_alg = true;
814 retval = target->type->run_algorithm(target,
815 num_mem_params, mem_params,
816 num_reg_params, reg_param,
817 entry_point, exit_point, timeout_ms, arch_info);
818 target->running_alg = false;
819
820 done:
821 return retval;
822 }
823
824 /**
825 * Executes a target-specific native code algorithm and leaves it running.
826 *
827 * @param target used to run the algorithm
828 * @param arch_info target-specific description of the algorithm.
829 */
830 int target_start_algorithm(struct target *target,
831 int num_mem_params, struct mem_param *mem_params,
832 int num_reg_params, struct reg_param *reg_params,
833 uint32_t entry_point, uint32_t exit_point,
834 void *arch_info)
835 {
836 int retval = ERROR_FAIL;
837
838 if (!target_was_examined(target)) {
839 LOG_ERROR("Target not examined yet");
840 goto done;
841 }
842 if (!target->type->start_algorithm) {
843 LOG_ERROR("Target type '%s' does not support %s",
844 target_type_name(target), __func__);
845 goto done;
846 }
847 if (target->running_alg) {
848 LOG_ERROR("Target is already running an algorithm");
849 goto done;
850 }
851
852 target->running_alg = true;
853 retval = target->type->start_algorithm(target,
854 num_mem_params, mem_params,
855 num_reg_params, reg_params,
856 entry_point, exit_point, arch_info);
857
858 done:
859 return retval;
860 }
861
862 /**
863 * Waits for an algorithm started with target_start_algorithm() to complete.
864 *
865 * @param target used to run the algorithm
866 * @param arch_info target-specific description of the algorithm.
867 */
868 int target_wait_algorithm(struct target *target,
869 int num_mem_params, struct mem_param *mem_params,
870 int num_reg_params, struct reg_param *reg_params,
871 uint32_t exit_point, int timeout_ms,
872 void *arch_info)
873 {
874 int retval = ERROR_FAIL;
875
876 if (!target->type->wait_algorithm) {
877 LOG_ERROR("Target type '%s' does not support %s",
878 target_type_name(target), __func__);
879 goto done;
880 }
881 if (!target->running_alg) {
882 LOG_ERROR("Target is not running an algorithm");
883 goto done;
884 }
885
886 retval = target->type->wait_algorithm(target,
887 num_mem_params, mem_params,
888 num_reg_params, reg_params,
889 exit_point, timeout_ms, arch_info);
890 if (retval != ERROR_TARGET_TIMEOUT)
891 target->running_alg = false;
892
893 done:
894 return retval;
895 }
896
897 /**
898 * Streams data to a circular buffer on target intended for consumption by code
899 * running asynchronously on target.
900 *
901 * This is intended for applications where target-specific native code runs
902 * on the target, receives data from the circular buffer, does something with
903 * it (most likely writing it to a flash memory), and advances the circular
904 * buffer pointer.
905 *
906 * This assumes that the helper algorithm has already been loaded to the target,
907 * but has not been started yet. Given memory and register parameters are passed
908 * to the algorithm.
909 *
910 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
911 * following format:
912 *
913 * [buffer_start + 0, buffer_start + 4):
914 * Write Pointer address (aka head). Written and updated by this
915 * routine when new data is written to the circular buffer.
916 * [buffer_start + 4, buffer_start + 8):
917 * Read Pointer address (aka tail). Updated by code running on the
918 * target after it consumes data.
919 * [buffer_start + 8, buffer_start + buffer_size):
920 * Circular buffer contents.
921 *
922 * See contrib/loaders/flash/stm32f1x.S for an example.
923 *
924 * @param target used to run the algorithm
925 * @param buffer address on the host where data to be sent is located
926 * @param count number of blocks to send
927 * @param block_size size in bytes of each block
928 * @param num_mem_params count of memory-based params to pass to algorithm
929 * @param mem_params memory-based params to pass to algorithm
930 * @param num_reg_params count of register-based params to pass to algorithm
931 * @param reg_params memory-based params to pass to algorithm
932 * @param buffer_start address on the target of the circular buffer structure
933 * @param buffer_size size of the circular buffer structure
934 * @param entry_point address on the target to execute to start the algorithm
935 * @param exit_point address at which to set a breakpoint to catch the
936 * end of the algorithm; can be 0 if target triggers a breakpoint itself
937 */
938
939 int target_run_flash_async_algorithm(struct target *target,
940 const uint8_t *buffer, uint32_t count, int block_size,
941 int num_mem_params, struct mem_param *mem_params,
942 int num_reg_params, struct reg_param *reg_params,
943 uint32_t buffer_start, uint32_t buffer_size,
944 uint32_t entry_point, uint32_t exit_point, void *arch_info)
945 {
946 int retval;
947 int timeout = 0;
948
949 const uint8_t *buffer_orig = buffer;
950
951 /* Set up working area. First word is write pointer, second word is read pointer,
952 * rest is fifo data area. */
953 uint32_t wp_addr = buffer_start;
954 uint32_t rp_addr = buffer_start + 4;
955 uint32_t fifo_start_addr = buffer_start + 8;
956 uint32_t fifo_end_addr = buffer_start + buffer_size;
957
958 uint32_t wp = fifo_start_addr;
959 uint32_t rp = fifo_start_addr;
960
961 /* validate block_size is 2^n */
962 assert(!block_size || !(block_size & (block_size - 1)));
963
964 retval = target_write_u32(target, wp_addr, wp);
965 if (retval != ERROR_OK)
966 return retval;
967 retval = target_write_u32(target, rp_addr, rp);
968 if (retval != ERROR_OK)
969 return retval;
970
971 /* Start up algorithm on target and let it idle while writing the first chunk */
972 retval = target_start_algorithm(target, num_mem_params, mem_params,
973 num_reg_params, reg_params,
974 entry_point,
975 exit_point,
976 arch_info);
977
978 if (retval != ERROR_OK) {
979 LOG_ERROR("error starting target flash write algorithm");
980 return retval;
981 }
982
983 while (count > 0) {
984
985 retval = target_read_u32(target, rp_addr, &rp);
986 if (retval != ERROR_OK) {
987 LOG_ERROR("failed to get read pointer");
988 break;
989 }
990
991 LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
992 (size_t) (buffer - buffer_orig), count, wp, rp);
993
994 if (rp == 0) {
995 LOG_ERROR("flash write algorithm aborted by target");
996 retval = ERROR_FLASH_OPERATION_FAILED;
997 break;
998 }
999
1000 if (((rp - fifo_start_addr) & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
1001 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
1002 break;
1003 }
1004
1005 /* Count the number of bytes available in the fifo without
1006 * crossing the wrap around. Make sure to not fill it completely,
1007 * because that would make wp == rp and that's the empty condition. */
1008 uint32_t thisrun_bytes;
1009 if (rp > wp)
1010 thisrun_bytes = rp - wp - block_size;
1011 else if (rp > fifo_start_addr)
1012 thisrun_bytes = fifo_end_addr - wp;
1013 else
1014 thisrun_bytes = fifo_end_addr - wp - block_size;
1015
1016 if (thisrun_bytes == 0) {
1017 /* Throttle polling a bit if transfer is (much) faster than flash
1018 * programming. The exact delay shouldn't matter as long as it's
1019 * less than buffer size / flash speed. This is very unlikely to
1020 * run when using high latency connections such as USB. */
1021 alive_sleep(10);
1022
1023 /* to stop an infinite loop on some targets check and increment a timeout
1024 * this issue was observed on a stellaris using the new ICDI interface */
1025 if (timeout++ >= 500) {
1026 LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
1027 return ERROR_FLASH_OPERATION_FAILED;
1028 }
1029 continue;
1030 }
1031
1032 /* reset our timeout */
1033 timeout = 0;
1034
1035 /* Limit to the amount of data we actually want to write */
1036 if (thisrun_bytes > count * block_size)
1037 thisrun_bytes = count * block_size;
1038
1039 /* Write data to fifo */
1040 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
1041 if (retval != ERROR_OK)
1042 break;
1043
1044 /* Update counters and wrap write pointer */
1045 buffer += thisrun_bytes;
1046 count -= thisrun_bytes / block_size;
1047 wp += thisrun_bytes;
1048 if (wp >= fifo_end_addr)
1049 wp = fifo_start_addr;
1050
1051 /* Store updated write pointer to target */
1052 retval = target_write_u32(target, wp_addr, wp);
1053 if (retval != ERROR_OK)
1054 break;
1055
1056 /* Avoid GDB timeouts */
1057 keep_alive();
1058 }
1059
1060 if (retval != ERROR_OK) {
1061 /* abort flash write algorithm on target */
1062 target_write_u32(target, wp_addr, 0);
1063 }
1064
1065 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
1066 num_reg_params, reg_params,
1067 exit_point,
1068 10000,
1069 arch_info);
1070
1071 if (retval2 != ERROR_OK) {
1072 LOG_ERROR("error waiting for target flash write algorithm");
1073 retval = retval2;
1074 }
1075
1076 if (retval == ERROR_OK) {
1077 /* check if algorithm set rp = 0 after fifo writer loop finished */
1078 retval = target_read_u32(target, rp_addr, &rp);
1079 if (retval == ERROR_OK && rp == 0) {
1080 LOG_ERROR("flash write algorithm aborted by target");
1081 retval = ERROR_FLASH_OPERATION_FAILED;
1082 }
1083 }
1084
1085 return retval;
1086 }
1087
1088 int target_read_memory(struct target *target,
1089 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1090 {
1091 if (!target_was_examined(target)) {
1092 LOG_ERROR("Target not examined yet");
1093 return ERROR_FAIL;
1094 }
1095 if (!target->type->read_memory) {
1096 LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
1097 return ERROR_FAIL;
1098 }
1099 return target->type->read_memory(target, address, size, count, buffer);
1100 }
1101
1102 int target_read_phys_memory(struct target *target,
1103 target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
1104 {
1105 if (!target_was_examined(target)) {
1106 LOG_ERROR("Target not examined yet");
1107 return ERROR_FAIL;
1108 }
1109 if (!target->type->read_phys_memory) {
1110 LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
1111 return ERROR_FAIL;
1112 }
1113 return target->type->read_phys_memory(target, address, size, count, buffer);
1114 }
1115
1116 int target_write_memory(struct target *target,
1117 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1118 {
1119 if (!target_was_examined(target)) {
1120 LOG_ERROR("Target not examined yet");
1121 return ERROR_FAIL;
1122 }
1123 if (!target->type->write_memory) {
1124 LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
1125 return ERROR_FAIL;
1126 }
1127 return target->type->write_memory(target, address, size, count, buffer);
1128 }
1129
1130 int target_write_phys_memory(struct target *target,
1131 target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
1132 {
1133 if (!target_was_examined(target)) {
1134 LOG_ERROR("Target not examined yet");
1135 return ERROR_FAIL;
1136 }
1137 if (!target->type->write_phys_memory) {
1138 LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
1139 return ERROR_FAIL;
1140 }
1141 return target->type->write_phys_memory(target, address, size, count, buffer);
1142 }
1143
1144 int target_add_breakpoint(struct target *target,
1145 struct breakpoint *breakpoint)
1146 {
1147 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
1148 LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
1149 return ERROR_TARGET_NOT_HALTED;
1150 }
1151 return target->type->add_breakpoint(target, breakpoint);
1152 }
1153
1154 int target_add_context_breakpoint(struct target *target,
1155 struct breakpoint *breakpoint)
1156 {
1157 if (target->state != TARGET_HALTED) {
1158 LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
1159 return ERROR_TARGET_NOT_HALTED;
1160 }
1161 return target->type->add_context_breakpoint(target, breakpoint);
1162 }
1163
1164 int target_add_hybrid_breakpoint(struct target *target,
1165 struct breakpoint *breakpoint)
1166 {
1167 if (target->state != TARGET_HALTED) {
1168 LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
1169 return ERROR_TARGET_NOT_HALTED;
1170 }
1171 return target->type->add_hybrid_breakpoint(target, breakpoint);
1172 }
1173
1174 int target_remove_breakpoint(struct target *target,
1175 struct breakpoint *breakpoint)
1176 {
1177 return target->type->remove_breakpoint(target, breakpoint);
1178 }
1179
1180 int target_add_watchpoint(struct target *target,
1181 struct watchpoint *watchpoint)
1182 {
1183 if (target->state != TARGET_HALTED) {
1184 LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
1185 return ERROR_TARGET_NOT_HALTED;
1186 }
1187 return target->type->add_watchpoint(target, watchpoint);
1188 }
1189 int target_remove_watchpoint(struct target *target,
1190 struct watchpoint *watchpoint)
1191 {
1192 return target->type->remove_watchpoint(target, watchpoint);
1193 }
1194 int target_hit_watchpoint(struct target *target,
1195 struct watchpoint **hit_watchpoint)
1196 {
1197 if (target->state != TARGET_HALTED) {
1198 LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
1199 return ERROR_TARGET_NOT_HALTED;
1200 }
1201
1202 if (target->type->hit_watchpoint == NULL) {
1203 /* For backward compatible, if hit_watchpoint is not implemented,
1204 * return ERROR_FAIL such that gdb_server will not take the nonsense
1205 * information. */
1206 return ERROR_FAIL;
1207 }
1208
1209 return target->type->hit_watchpoint(target, hit_watchpoint);
1210 }
1211
1212 const char *target_get_gdb_arch(struct target *target)
1213 {
1214 if (target->type->get_gdb_arch == NULL)
1215 return NULL;
1216 return target->type->get_gdb_arch(target);
1217 }
1218
1219 int target_get_gdb_reg_list(struct target *target,
1220 struct reg **reg_list[], int *reg_list_size,
1221 enum target_register_class reg_class)
1222 {
1223 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
1224 }
1225
1226 bool target_supports_gdb_connection(struct target *target)
1227 {
1228 /*
1229 * based on current code, we can simply exclude all the targets that
1230 * don't provide get_gdb_reg_list; this could change with new targets.
1231 */
1232 return !!target->type->get_gdb_reg_list;
1233 }
1234
1235 int target_step(struct target *target,
1236 int current, target_addr_t address, int handle_breakpoints)
1237 {
1238 return target->type->step(target, current, address, handle_breakpoints);
1239 }
1240
1241 int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
1242 {
1243 if (target->state != TARGET_HALTED) {
1244 LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
1245 return ERROR_TARGET_NOT_HALTED;
1246 }
1247 return target->type->get_gdb_fileio_info(target, fileio_info);
1248 }
1249
1250 int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
1251 {
1252 if (target->state != TARGET_HALTED) {
1253 LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
1254 return ERROR_TARGET_NOT_HALTED;
1255 }
1256 return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
1257 }
1258
1259 int target_profiling(struct target *target, uint32_t *samples,
1260 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
1261 {
1262 if (target->state != TARGET_HALTED) {
1263 LOG_WARNING("target %s is not halted (profiling)", target->cmd_name);
1264 return ERROR_TARGET_NOT_HALTED;
1265 }
1266 return target->type->profiling(target, samples, max_num_samples,
1267 num_samples, seconds);
1268 }
1269
1270 /**
1271 * Reset the @c examined flag for the given target.
1272 * Pure paranoia -- targets are zeroed on allocation.
1273 */
1274 static void target_reset_examined(struct target *target)
1275 {
1276 target->examined = false;
1277 }
1278
1279 static int handle_target(void *priv);
1280
1281 static int target_init_one(struct command_context *cmd_ctx,
1282 struct target *target)
1283 {
1284 target_reset_examined(target);
1285
1286 struct target_type *type = target->type;
1287 if (type->examine == NULL)
1288 type->examine = default_examine;
1289
1290 if (type->check_reset == NULL)
1291 type->check_reset = default_check_reset;
1292
1293 assert(type->init_target != NULL);
1294
1295 int retval = type->init_target(cmd_ctx, target);
1296 if (ERROR_OK != retval) {
1297 LOG_ERROR("target '%s' init failed", target_name(target));
1298 return retval;
1299 }
1300
1301 /* Sanity-check MMU support ... stub in what we must, to help
1302 * implement it in stages, but warn if we need to do so.
1303 */
1304 if (type->mmu) {
1305 if (type->virt2phys == NULL) {
1306 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1307 type->virt2phys = identity_virt2phys;
1308 }
1309 } else {
1310 /* Make sure no-MMU targets all behave the same: make no
1311 * distinction between physical and virtual addresses, and
1312 * ensure that virt2phys() is always an identity mapping.
1313 */
1314 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1315 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1316
1317 type->mmu = no_mmu;
1318 type->write_phys_memory = type->write_memory;
1319 type->read_phys_memory = type->read_memory;
1320 type->virt2phys = identity_virt2phys;
1321 }
1322
1323 if (target->type->read_buffer == NULL)
1324 target->type->read_buffer = target_read_buffer_default;
1325
1326 if (target->type->write_buffer == NULL)
1327 target->type->write_buffer = target_write_buffer_default;
1328
1329 if (target->type->get_gdb_fileio_info == NULL)
1330 target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;
1331
1332 if (target->type->gdb_fileio_end == NULL)
1333 target->type->gdb_fileio_end = target_gdb_fileio_end_default;
1334
1335 if (target->type->profiling == NULL)
1336 target->type->profiling = target_profiling_default;
1337
1338 return ERROR_OK;
1339 }
1340
1341 static int target_init(struct command_context *cmd_ctx)
1342 {
1343 struct target *target;
1344 int retval;
1345
1346 for (target = all_targets; target; target = target->next) {
1347 retval = target_init_one(cmd_ctx, target);
1348 if (ERROR_OK != retval)
1349 return retval;
1350 }
1351
1352 if (!all_targets)
1353 return ERROR_OK;
1354
1355 retval = target_register_user_commands(cmd_ctx);
1356 if (ERROR_OK != retval)
1357 return retval;
1358
1359 retval = target_register_timer_callback(&handle_target,
1360 polling_interval, 1, cmd_ctx->interp);
1361 if (ERROR_OK != retval)
1362 return retval;
1363
1364 return ERROR_OK;
1365 }
1366
1367 COMMAND_HANDLER(handle_target_init_command)
1368 {
1369 int retval;
1370
1371 if (CMD_ARGC != 0)
1372 return ERROR_COMMAND_SYNTAX_ERROR;
1373
1374 static bool target_initialized;
1375 if (target_initialized) {
1376 LOG_INFO("'target init' has already been called");
1377 return ERROR_OK;
1378 }
1379 target_initialized = true;
1380
1381 retval = command_run_line(CMD_CTX, "init_targets");
1382 if (ERROR_OK != retval)
1383 return retval;
1384
1385 retval = command_run_line(CMD_CTX, "init_target_events");
1386 if (ERROR_OK != retval)
1387 return retval;
1388
1389 retval = command_run_line(CMD_CTX, "init_board");
1390 if (ERROR_OK != retval)
1391 return retval;
1392
1393 LOG_DEBUG("Initializing targets...");
1394 return target_init(CMD_CTX);
1395 }
1396
1397 int target_register_event_callback(int (*callback)(struct target *target,
1398 enum target_event event, void *priv), void *priv)
1399 {
1400 struct target_event_callback **callbacks_p = &target_event_callbacks;
1401
1402 if (callback == NULL)
1403 return ERROR_COMMAND_SYNTAX_ERROR;
1404
1405 if (*callbacks_p) {
1406 while ((*callbacks_p)->next)
1407 callbacks_p = &((*callbacks_p)->next);
1408 callbacks_p = &((*callbacks_p)->next);
1409 }
1410
1411 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1412 (*callbacks_p)->callback = callback;
1413 (*callbacks_p)->priv = priv;
1414 (*callbacks_p)->next = NULL;
1415
1416 return ERROR_OK;
1417 }
1418
1419 int target_register_reset_callback(int (*callback)(struct target *target,
1420 enum target_reset_mode reset_mode, void *priv), void *priv)
1421 {
1422 struct target_reset_callback *entry;
1423
1424 if (callback == NULL)
1425 return ERROR_COMMAND_SYNTAX_ERROR;
1426
1427 entry = malloc(sizeof(struct target_reset_callback));
1428 if (entry == NULL) {
1429 LOG_ERROR("error allocating buffer for reset callback entry");
1430 return ERROR_COMMAND_SYNTAX_ERROR;
1431 }
1432
1433 entry->callback = callback;
1434 entry->priv = priv;
1435 list_add(&entry->list, &target_reset_callback_list);
1436
1437
1438 return ERROR_OK;
1439 }
1440
1441 int target_register_trace_callback(int (*callback)(struct target *target,
1442 size_t len, uint8_t *data, void *priv), void *priv)
1443 {
1444 struct target_trace_callback *entry;
1445
1446 if (callback == NULL)
1447 return ERROR_COMMAND_SYNTAX_ERROR;
1448
1449 entry = malloc(sizeof(struct target_trace_callback));
1450 if (entry == NULL) {
1451 LOG_ERROR("error allocating buffer for trace callback entry");
1452 return ERROR_COMMAND_SYNTAX_ERROR;
1453 }
1454
1455 entry->callback = callback;
1456 entry->priv = priv;
1457 list_add(&entry->list, &target_trace_callback_list);
1458
1459
1460 return ERROR_OK;
1461 }
1462
1463 int target_register_timer_callback(int (*callback)(void *priv),
1464 unsigned int time_ms, enum target_timer_type type, void *priv)
1465 {
1466 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1467
1468 if (callback == NULL)
1469 return ERROR_COMMAND_SYNTAX_ERROR;
1470
1471 if (*callbacks_p) {
1472 while ((*callbacks_p)->next)
1473 callbacks_p = &((*callbacks_p)->next);
1474 callbacks_p = &((*callbacks_p)->next);
1475 }
1476
1477 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1478 (*callbacks_p)->callback = callback;
1479 (*callbacks_p)->type = type;
1480 (*callbacks_p)->time_ms = time_ms;
1481 (*callbacks_p)->removed = false;
1482
1483 gettimeofday(&(*callbacks_p)->when, NULL);
1484 timeval_add_time(&(*callbacks_p)->when, 0, time_ms * 1000);
1485
1486 (*callbacks_p)->priv = priv;
1487 (*callbacks_p)->next = NULL;
1488
1489 return ERROR_OK;
1490 }
1491
1492 int target_unregister_event_callback(int (*callback)(struct target *target,
1493 enum target_event event, void *priv), void *priv)
1494 {
1495 struct target_event_callback **p = &target_event_callbacks;
1496 struct target_event_callback *c = target_event_callbacks;
1497
1498 if (callback == NULL)
1499 return ERROR_COMMAND_SYNTAX_ERROR;
1500
1501 while (c) {
1502 struct target_event_callback *next = c->next;
1503 if ((c->callback == callback) && (c->priv == priv)) {
1504 *p = next;
1505 free(c);
1506 return ERROR_OK;
1507 } else
1508 p = &(c->next);
1509 c = next;
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515 int target_unregister_reset_callback(int (*callback)(struct target *target,
1516 enum target_reset_mode reset_mode, void *priv), void *priv)
1517 {
1518 struct target_reset_callback *entry;
1519
1520 if (callback == NULL)
1521 return ERROR_COMMAND_SYNTAX_ERROR;
1522
1523 list_for_each_entry(entry, &target_reset_callback_list, list) {
1524 if (entry->callback == callback && entry->priv == priv) {
1525 list_del(&entry->list);
1526 free(entry);
1527 break;
1528 }
1529 }
1530
1531 return ERROR_OK;
1532 }
1533
1534 int target_unregister_trace_callback(int (*callback)(struct target *target,
1535 size_t len, uint8_t *data, void *priv), void *priv)
1536 {
1537 struct target_trace_callback *entry;
1538
1539 if (callback == NULL)
1540 return ERROR_COMMAND_SYNTAX_ERROR;
1541
1542 list_for_each_entry(entry, &target_trace_callback_list, list) {
1543 if (entry->callback == callback && entry->priv == priv) {
1544 list_del(&entry->list);
1545 free(entry);
1546 break;
1547 }
1548 }
1549
1550 return ERROR_OK;
1551 }
1552
1553 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1554 {
1555 if (callback == NULL)
1556 return ERROR_COMMAND_SYNTAX_ERROR;
1557
1558 for (struct target_timer_callback *c = target_timer_callbacks;
1559 c; c = c->next) {
1560 if ((c->callback == callback) && (c->priv == priv)) {
1561 c->removed = true;
1562 return ERROR_OK;
1563 }
1564 }
1565
1566 return ERROR_FAIL;
1567 }
1568
1569 int target_call_event_callbacks(struct target *target, enum target_event event)
1570 {
1571 struct target_event_callback *callback = target_event_callbacks;
1572 struct target_event_callback *next_callback;
1573
1574 if (event == TARGET_EVENT_HALTED) {
1575 /* execute early halted first */
1576 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1577 }
1578
1579 LOG_DEBUG("target event %i (%s)", event,
1580 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1581
1582 target_handle_event(target, event);
1583
1584 while (callback) {
1585 next_callback = callback->next;
1586 callback->callback(target, event, callback->priv);
1587 callback = next_callback;
1588 }
1589
1590 return ERROR_OK;
1591 }
1592
1593 int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
1594 {
1595 struct target_reset_callback *callback;
1596
1597 LOG_DEBUG("target reset %i (%s)", reset_mode,
1598 Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);
1599
1600 list_for_each_entry(callback, &target_reset_callback_list, list)
1601 callback->callback(target, reset_mode, callback->priv);
1602
1603 return ERROR_OK;
1604 }
1605
1606 int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
1607 {
1608 struct target_trace_callback *callback;
1609
1610 list_for_each_entry(callback, &target_trace_callback_list, list)
1611 callback->callback(target, len, data, callback->priv);
1612
1613 return ERROR_OK;
1614 }
1615
1616 static int target_timer_callback_periodic_restart(
1617 struct target_timer_callback *cb, struct timeval *now)
1618 {
1619 cb->when = *now;
1620 timeval_add_time(&cb->when, 0, cb->time_ms * 1000L);
1621 return ERROR_OK;
1622 }
1623
1624 static int target_call_timer_callback(struct target_timer_callback *cb,
1625 struct timeval *now)
1626 {
1627 cb->callback(cb->priv);
1628
1629 if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
1630 return target_timer_callback_periodic_restart(cb, now);
1631
1632 return target_unregister_timer_callback(cb->callback, cb->priv);
1633 }
1634
1635 static int target_call_timer_callbacks_check_time(int checktime)
1636 {
1637 static bool callback_processing;
1638
1639 /* Do not allow nesting */
1640 if (callback_processing)
1641 return ERROR_OK;
1642
1643 callback_processing = true;
1644
1645 keep_alive();
1646
1647 struct timeval now;
1648 gettimeofday(&now, NULL);
1649
1650 /* Store an address of the place containing a pointer to the
1651 * next item; initially, that's a standalone "root of the
1652 * list" variable. */
1653 struct target_timer_callback **callback = &target_timer_callbacks;
1654 while (*callback) {
1655 if ((*callback)->removed) {
1656 struct target_timer_callback *p = *callback;
1657 *callback = (*callback)->next;
1658 free(p);
1659 continue;
1660 }
1661
1662 bool call_it = (*callback)->callback &&
1663 ((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
1664 timeval_compare(&now, &(*callback)->when) >= 0);
1665
1666 if (call_it)
1667 target_call_timer_callback(*callback, &now);
1668
1669 callback = &(*callback)->next;
1670 }
1671
1672 callback_processing = false;
1673 return ERROR_OK;
1674 }
1675
1676 int target_call_timer_callbacks(void)
1677 {
1678 return target_call_timer_callbacks_check_time(1);
1679 }
1680
1681 /* invoke periodic callbacks immediately */
1682 int target_call_timer_callbacks_now(void)
1683 {
1684 return target_call_timer_callbacks_check_time(0);
1685 }
1686
1687 /* Prints the working area layout for debug purposes */
1688 static void print_wa_layout(struct target *target)
1689 {
1690 struct working_area *c = target->working_areas;
1691
1692 while (c) {
1693 LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
1694 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1695 c->address, c->address + c->size - 1, c->size);
1696 c = c->next;
1697 }
1698 }
1699
1700 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1701 static void target_split_working_area(struct working_area *area, uint32_t size)
1702 {
1703 assert(area->free); /* Shouldn't split an allocated area */
1704 assert(size <= area->size); /* Caller should guarantee this */
1705
1706 /* Split only if not already the right size */
1707 if (size < area->size) {
1708 struct working_area *new_wa = malloc(sizeof(*new_wa));
1709
1710 if (new_wa == NULL)
1711 return;
1712
1713 new_wa->next = area->next;
1714 new_wa->size = area->size - size;
1715 new_wa->address = area->address + size;
1716 new_wa->backup = NULL;
1717 new_wa->user = NULL;
1718 new_wa->free = true;
1719
1720 area->next = new_wa;
1721 area->size = size;
1722
1723 /* If backup memory was allocated to this area, it has the wrong size
1724 * now so free it and it will be reallocated if/when needed */
1725 if (area->backup) {
1726 free(area->backup);
1727 area->backup = NULL;
1728 }
1729 }
1730 }
1731
1732 /* Merge all adjacent free areas into one */
1733 static void target_merge_working_areas(struct target *target)
1734 {
1735 struct working_area *c = target->working_areas;
1736
1737 while (c && c->next) {
1738 assert(c->next->address == c->address + c->size); /* This is an invariant */
1739
1740 /* Find two adjacent free areas */
1741 if (c->free && c->next->free) {
1742 /* Merge the last into the first */
1743 c->size += c->next->size;
1744
1745 /* Remove the last */
1746 struct working_area *to_be_freed = c->next;
1747 c->next = c->next->next;
1748 if (to_be_freed->backup)
1749 free(to_be_freed->backup);
1750 free(to_be_freed);
1751
1752 /* If backup memory was allocated to the remaining area, it's has
1753 * the wrong size now */
1754 if (c->backup) {
1755 free(c->backup);
1756 c->backup = NULL;
1757 }
1758 } else {
1759 c = c->next;
1760 }
1761 }
1762 }
1763
1764 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1765 {
1766 /* Reevaluate working area address based on MMU state*/
1767 if (target->working_areas == NULL) {
1768 int retval;
1769 int enabled;
1770
1771 retval = target->type->mmu(target, &enabled);
1772 if (retval != ERROR_OK)
1773 return retval;
1774
1775 if (!enabled) {
1776 if (target->working_area_phys_spec) {
1777 LOG_DEBUG("MMU disabled, using physical "
1778 "address for working memory " TARGET_ADDR_FMT,
1779 target->working_area_phys);
1780 target->working_area = target->working_area_phys;
1781 } else {
1782 LOG_ERROR("No working memory available. "
1783 "Specify -work-area-phys to target.");
1784 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1785 }
1786 } else {
1787 if (target->working_area_virt_spec) {
1788 LOG_DEBUG("MMU enabled, using virtual "
1789 "address for working memory " TARGET_ADDR_FMT,
1790 target->working_area_virt);
1791 target->working_area = target->working_area_virt;
1792 } else {
1793 LOG_ERROR("No working memory available. "
1794 "Specify -work-area-virt to target.");
1795 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1796 }
1797 }
1798
1799 /* Set up initial working area on first call */
1800 struct working_area *new_wa = malloc(sizeof(*new_wa));
1801 if (new_wa) {
1802 new_wa->next = NULL;
1803 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1804 new_wa->address = target->working_area;
1805 new_wa->backup = NULL;
1806 new_wa->user = NULL;
1807 new_wa->free = true;
1808 }
1809
1810 target->working_areas = new_wa;
1811 }
1812
1813 /* only allocate multiples of 4 byte */
1814 if (size % 4)
1815 size = (size + 3) & (~3UL);
1816
1817 struct working_area *c = target->working_areas;
1818
1819 /* Find the first large enough working area */
1820 while (c) {
1821 if (c->free && c->size >= size)
1822 break;
1823 c = c->next;
1824 }
1825
1826 if (c == NULL)
1827 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1828
1829 /* Split the working area into the requested size */
1830 target_split_working_area(c, size);
1831
1832 LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
1833 size, c->address);
1834
1835 if (target->backup_working_area) {
1836 if (c->backup == NULL) {
1837 c->backup = malloc(c->size);
1838 if (c->backup == NULL)
1839 return ERROR_FAIL;
1840 }
1841
1842 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1843 if (retval != ERROR_OK)
1844 return retval;
1845 }
1846
1847 /* mark as used, and return the new (reused) area */
1848 c->free = false;
1849 *area = c;
1850
1851 /* user pointer */
1852 c->user = area;
1853
1854 print_wa_layout(target);
1855
1856 return ERROR_OK;
1857 }
1858
1859 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1860 {
1861 int retval;
1862
1863 retval = target_alloc_working_area_try(target, size, area);
1864 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1865 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1866 return retval;
1867
1868 }
1869
1870 static int target_restore_working_area(struct target *target, struct working_area *area)
1871 {
1872 int retval = ERROR_OK;
1873
1874 if (target->backup_working_area && area->backup != NULL) {
1875 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1876 if (retval != ERROR_OK)
1877 LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1878 area->size, area->address);
1879 }
1880
1881 return retval;
1882 }
1883
1884 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1885 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1886 {
1887 int retval = ERROR_OK;
1888
1889 if (area->free)
1890 return retval;
1891
1892 if (restore) {
1893 retval = target_restore_working_area(target, area);
1894 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1895 if (retval != ERROR_OK)
1896 return retval;
1897 }
1898
1899 area->free = true;
1900
1901 LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
1902 area->size, area->address);
1903
1904 /* mark user pointer invalid */
1905 /* TODO: Is this really safe? It points to some previous caller's memory.
1906 * How could we know that the area pointer is still in that place and not
1907 * some other vital data? What's the purpose of this, anyway? */
1908 *area->user = NULL;
1909 area->user = NULL;
1910
1911 target_merge_working_areas(target);
1912
1913 print_wa_layout(target);
1914
1915 return retval;
1916 }
1917
1918 int target_free_working_area(struct target *target, struct working_area *area)
1919 {
1920 return target_free_working_area_restore(target, area, 1);
1921 }
1922
1923 /* free resources and restore memory, if restoring memory fails,
1924 * free up resources anyway
1925 */
1926 static void target_free_all_working_areas_restore(struct target *target, int restore)
1927 {
1928 struct working_area *c = target->working_areas;
1929
1930 LOG_DEBUG("freeing all working areas");
1931
1932 /* Loop through all areas, restoring the allocated ones and marking them as free */
1933 while (c) {
1934 if (!c->free) {
1935 if (restore)
1936 target_restore_working_area(target, c);
1937 c->free = true;
1938 *c->user = NULL; /* Same as above */
1939 c->user = NULL;
1940 }
1941 c = c->next;
1942 }
1943
1944 /* Run a merge pass to combine all areas into one */
1945 target_merge_working_areas(target);
1946
1947 print_wa_layout(target);
1948 }
1949
1950 void target_free_all_working_areas(struct target *target)
1951 {
1952 target_free_all_working_areas_restore(target, 1);
1953
1954 /* Now we have none or only one working area marked as free */
1955 if (target->working_areas) {
1956 /* Free the last one to allow on-the-fly moving and resizing */
1957 free(target->working_areas->backup);
1958 free(target->working_areas);
1959 target->working_areas = NULL;
1960 }
1961 }
1962
1963 /* Find the largest number of bytes that can be allocated */
1964 uint32_t target_get_working_area_avail(struct target *target)
1965 {
1966 struct working_area *c = target->working_areas;
1967 uint32_t max_size = 0;
1968
1969 if (c == NULL)
1970 return target->working_area_size;
1971
1972 while (c) {
1973 if (c->free && max_size < c->size)
1974 max_size = c->size;
1975
1976 c = c->next;
1977 }
1978
1979 return max_size;
1980 }
1981
1982 static void target_destroy(struct target *target)
1983 {
1984 if (target->type->deinit_target)
1985 target->type->deinit_target(target);
1986
1987 if (target->semihosting)
1988 free(target->semihosting);
1989
1990 jtag_unregister_event_callback(jtag_enable_callback, target);
1991
1992 struct target_event_action *teap = target->event_action;
1993 while (teap) {
1994 struct target_event_action *next = teap->next;
1995 Jim_DecrRefCount(teap->interp, teap->body);
1996 free(teap);
1997 teap = next;
1998 }
1999
2000 target_free_all_working_areas(target);
2001
2002 /* release the targets SMP list */
2003 if (target->smp) {
2004 struct target_list *head = target->head;
2005 while (head != NULL) {
2006 struct target_list *pos = head->next;
2007 head->target->smp = 0;
2008 free(head);
2009 head = pos;
2010 }
2011 target->smp = 0;
2012 }
2013
2014 free(target->gdb_port_override);
2015 free(target->type);
2016 free(target->trace_info);
2017 free(target->fileio_info);
2018 free(target->cmd_name);
2019 free(target);
2020 }
2021
2022 void target_quit(void)
2023 {
2024 struct target_event_callback *pe = target_event_callbacks;
2025 while (pe) {
2026 struct target_event_callback *t = pe->next;
2027 free(pe);
2028 pe = t;
2029 }
2030 target_event_callbacks = NULL;
2031
2032 struct target_timer_callback *pt = target_timer_callbacks;
2033 while (pt) {
2034 struct target_timer_callback *t = pt->next;
2035 free(pt);
2036 pt = t;
2037 }
2038 target_timer_callbacks = NULL;
2039
2040 for (struct target *target = all_targets; target;) {
2041 struct target *tmp;
2042
2043 tmp = target->next;
2044 target_destroy(target);
2045 target = tmp;
2046 }
2047
2048 all_targets = NULL;
2049 }
2050
2051 int target_arch_state(struct target *target)
2052 {
2053 int retval;
2054 if (target == NULL) {
2055 LOG_WARNING("No target has been configured");
2056 return ERROR_OK;
2057 }
2058
2059 if (target->state != TARGET_HALTED)
2060 return ERROR_OK;
2061
2062 retval = target->type->arch_state(target);
2063 return retval;
2064 }
2065
2066 static int target_get_gdb_fileio_info_default(struct target *target,
2067 struct gdb_fileio_info *fileio_info)
2068 {
2069 /* If target does not support semi-hosting function, target
2070 has no need to provide .get_gdb_fileio_info callback.
2071 It just return ERROR_FAIL and gdb_server will return "Txx"
2072 as target halted every time. */
2073 return ERROR_FAIL;
2074 }
2075
2076 static int target_gdb_fileio_end_default(struct target *target,
2077 int retcode, int fileio_errno, bool ctrl_c)
2078 {
2079 return ERROR_OK;
2080 }
2081
2082 static int target_profiling_default(struct target *target, uint32_t *samples,
2083 uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
2084 {
2085 struct timeval timeout, now;
2086
2087 gettimeofday(&timeout, NULL);
2088 timeval_add_time(&timeout, seconds, 0);
2089
2090 LOG_INFO("Starting profiling. Halting and resuming the"
2091 " target as often as we can...");
2092
2093 uint32_t sample_count = 0;
2094 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
2095 struct reg *reg = register_get_by_name(target->reg_cache, "pc", 1);
2096
2097 int retval = ERROR_OK;
2098 for (;;) {
2099 target_poll(target);
2100 if (target->state == TARGET_HALTED) {
2101 uint32_t t = buf_get_u32(reg->value, 0, 32);
2102 samples[sample_count++] = t;
2103 /* current pc, addr = 0, do not handle breakpoints, not debugging */
2104 retval = target_resume(target, 1, 0, 0, 0);
2105 target_poll(target);
2106 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
2107 } else if (target->state == TARGET_RUNNING) {
2108 /* We want to quickly sample the PC. */
2109 retval = target_halt(target);
2110 } else {
2111 LOG_INFO("Target not halted or running");
2112 retval = ERROR_OK;
2113 break;
2114 }
2115
2116 if (retval != ERROR_OK)
2117 break;
2118
2119 gettimeofday(&now, NULL);
2120 if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
2121 LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
2122 break;
2123 }
2124 }
2125
2126 *num_samples = sample_count;
2127 return retval;
2128 }
2129
2130 /* Single aligned words are guaranteed to use 16 or 32 bit access
2131 * mode respectively, otherwise data is handled as quickly as
2132 * possible
2133 */
2134 int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
2135 {
2136 LOG_DEBUG("writing buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2137 size, address);
2138
2139 if (!target_was_examined(target)) {
2140 LOG_ERROR("Target not examined yet");
2141 return ERROR_FAIL;
2142 }
2143
2144 if (size == 0)
2145 return ERROR_OK;
2146
2147 if ((address + size - 1) < address) {
2148 /* GDB can request this when e.g. PC is 0xfffffffc */
2149 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2150 address,
2151 size);
2152 return ERROR_FAIL;
2153 }
2154
2155 return target->type->write_buffer(target, address, size, buffer);
2156 }
2157
2158 static int target_write_buffer_default(struct target *target,
2159 target_addr_t address, uint32_t count, const uint8_t *buffer)
2160 {
2161 uint32_t size;
2162
2163 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2164 * will have something to do with the size we leave to it. */
2165 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2166 if (address & size) {
2167 int retval = target_write_memory(target, address, size, 1, buffer);
2168 if (retval != ERROR_OK)
2169 return retval;
2170 address += size;
2171 count -= size;
2172 buffer += size;
2173 }
2174 }
2175
2176 /* Write the data with as large access size as possible. */
2177 for (; size > 0; size /= 2) {
2178 uint32_t aligned = count - count % size;
2179 if (aligned > 0) {
2180 int retval = target_write_memory(target, address, size, aligned / size, buffer);
2181 if (retval != ERROR_OK)
2182 return retval;
2183 address += aligned;
2184 count -= aligned;
2185 buffer += aligned;
2186 }
2187 }
2188
2189 return ERROR_OK;
2190 }
2191
2192 /* Single aligned words are guaranteed to use 16 or 32 bit access
2193 * mode respectively, otherwise data is handled as quickly as
2194 * possible
2195 */
2196 int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
2197 {
2198 LOG_DEBUG("reading buffer of %" PRIi32 " byte at " TARGET_ADDR_FMT,
2199 size, address);
2200
2201 if (!target_was_examined(target)) {
2202 LOG_ERROR("Target not examined yet");
2203 return ERROR_FAIL;
2204 }
2205
2206 if (size == 0)
2207 return ERROR_OK;
2208
2209 if ((address + size - 1) < address) {
2210 /* GDB can request this when e.g. PC is 0xfffffffc */
2211 LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
2212 address,
2213 size);
2214 return ERROR_FAIL;
2215 }
2216
2217 return target->type->read_buffer(target, address, size, buffer);
2218 }
2219
2220 static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
2221 {
2222 uint32_t size;
2223
2224 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2225 * will have something to do with the size we leave to it. */
2226 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2227 if (address & size) {
2228 int retval = target_read_memory(target, address, size, 1, buffer);
2229 if (retval != ERROR_OK)
2230 return retval;
2231 address += size;
2232 count -= size;
2233 buffer += size;
2234 }
2235 }
2236
2237 /* Read the data with as large access size as possible. */
2238 for (; size > 0; size /= 2) {
2239 uint32_t aligned = count - count % size;
2240 if (aligned > 0) {
2241 int retval = target_read_memory(target, address, size, aligned / size, buffer);
2242 if (retval != ERROR_OK)
2243 return retval;
2244 address += aligned;
2245 count -= aligned;
2246 buffer += aligned;
2247 }
2248 }
2249
2250 return ERROR_OK;
2251 }
2252
2253 int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t* crc)
2254 {
2255 uint8_t *buffer;
2256 int retval;
2257 uint32_t i;
2258 uint32_t checksum = 0;
2259 if (!target_was_examined(target)) {
2260 LOG_ERROR("Target not examined yet");
2261 return ERROR_FAIL;
2262 }
2263
2264 retval = target->type->checksum_memory(target, address, size, &checksum);
2265 if (retval != ERROR_OK) {
2266 buffer = malloc(size);
2267 if (buffer == NULL) {
2268 LOG_ERROR("error allocating buffer for section (%" PRId32 " bytes)", size);
2269 return ERROR_COMMAND_SYNTAX_ERROR;
2270 }
2271 retval = target_read_buffer(target, address, size, buffer);
2272 if (retval != ERROR_OK) {
2273 free(buffer);
2274 return retval;
2275 }
2276
2277 /* convert to target endianness */
2278 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
2279 uint32_t target_data;
2280 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
2281 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
2282 }
2283
2284 retval = image_calculate_checksum(buffer, size, &checksum);
2285 free(buffer);
2286 }
2287
2288 *crc = checksum;
2289
2290 return retval;
2291 }
2292
2293 int target_blank_check_memory(struct target *target,
2294 struct target_memory_check_block *blocks, int num_blocks,
2295 uint8_t erased_value)
2296 {
2297 if (!target_was_examined(target)) {
2298 LOG_ERROR("Target not examined yet");
2299 return ERROR_FAIL;
2300 }
2301
2302 if (target->type->blank_check_memory == NULL)
2303 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
2304
2305 return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
2306 }
2307
2308 int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
2309 {
2310 uint8_t value_buf[8];
2311 if (!target_was_examined(target)) {
2312 LOG_ERROR("Target not examined yet");
2313 return ERROR_FAIL;
2314 }
2315
2316 int retval = target_read_memory(target, address, 8, 1, value_buf);
2317
2318 if (retval == ERROR_OK) {
2319 *value = target_buffer_get_u64(target, value_buf);
2320 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2321 address,
2322 *value);
2323 } else {
2324 *value = 0x0;
2325 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2326 address);
2327 }
2328
2329 return retval;
2330 }
2331
2332 int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
2333 {
2334 uint8_t value_buf[4];
2335 if (!target_was_examined(target)) {
2336 LOG_ERROR("Target not examined yet");
2337 return ERROR_FAIL;
2338 }
2339
2340 int retval = target_read_memory(target, address, 4, 1, value_buf);
2341
2342 if (retval == ERROR_OK) {
2343 *value = target_buffer_get_u32(target, value_buf);
2344 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2345 address,
2346 *value);
2347 } else {
2348 *value = 0x0;
2349 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2350 address);
2351 }
2352
2353 return retval;
2354 }
2355
2356 int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
2357 {
2358 uint8_t value_buf[2];
2359 if (!target_was_examined(target)) {
2360 LOG_ERROR("Target not examined yet");
2361 return ERROR_FAIL;
2362 }
2363
2364 int retval = target_read_memory(target, address, 2, 1, value_buf);
2365
2366 if (retval == ERROR_OK) {
2367 *value = target_buffer_get_u16(target, value_buf);
2368 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
2369 address,
2370 *value);
2371 } else {
2372 *value = 0x0;
2373 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2374 address);
2375 }
2376
2377 return retval;
2378 }
2379
2380 int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
2381 {
2382 if (!target_was_examined(target)) {
2383 LOG_ERROR("Target not examined yet");
2384 return ERROR_FAIL;
2385 }
2386
2387 int retval = target_read_memory(target, address, 1, 1, value);
2388
2389 if (retval == ERROR_OK) {
2390 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2391 address,
2392 *value);
2393 } else {
2394 *value = 0x0;
2395 LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
2396 address);
2397 }
2398
2399 return retval;
2400 }
2401
2402 int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
2403 {
2404 int retval;
2405 uint8_t value_buf[8];
2406 if (!target_was_examined(target)) {
2407 LOG_ERROR("Target not examined yet");
2408 return ERROR_FAIL;
2409 }
2410
2411 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2412 address,
2413 value);
2414
2415 target_buffer_set_u64(target, value_buf, value);
2416 retval = target_write_memory(target, address, 8, 1, value_buf);
2417 if (retval != ERROR_OK)
2418 LOG_DEBUG("failed: %i", retval);
2419
2420 return retval;
2421 }
2422
2423 int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
2424 {
2425 int retval;
2426 uint8_t value_buf[4];
2427 if (!target_was_examined(target)) {
2428 LOG_ERROR("Target not examined yet");
2429 return ERROR_FAIL;
2430 }
2431
2432 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2433 address,
2434 value);
2435
2436 target_buffer_set_u32(target, value_buf, value);
2437 retval = target_write_memory(target, address, 4, 1, value_buf);
2438 if (retval != ERROR_OK)
2439 LOG_DEBUG("failed: %i", retval);
2440
2441 return retval;
2442 }
2443
2444 int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
2445 {
2446 int retval;
2447 uint8_t value_buf[2];
2448 if (!target_was_examined(target)) {
2449 LOG_ERROR("Target not examined yet");
2450 return ERROR_FAIL;
2451 }
2452
2453 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2454 address,
2455 value);
2456
2457 target_buffer_set_u16(target, value_buf, value);
2458 retval = target_write_memory(target, address, 2, 1, value_buf);
2459 if (retval != ERROR_OK)
2460 LOG_DEBUG("failed: %i", retval);
2461
2462 return retval;
2463 }
2464
2465 int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
2466 {
2467 int retval;
2468 if (!target_was_examined(target)) {
2469 LOG_ERROR("Target not examined yet");
2470 return ERROR_FAIL;
2471 }
2472
2473 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2474 address, value);
2475
2476 retval = target_write_memory(target, address, 1, 1, &value);
2477 if (retval != ERROR_OK)
2478 LOG_DEBUG("failed: %i", retval);
2479
2480 return retval;
2481 }
2482
2483 int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
2484 {
2485 int retval;
2486 uint8_t value_buf[8];
2487 if (!target_was_examined(target)) {
2488 LOG_ERROR("Target not examined yet");
2489 return ERROR_FAIL;
2490 }
2491
2492 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
2493 address,
2494 value);
2495
2496 target_buffer_set_u64(target, value_buf, value);
2497 retval = target_write_phys_memory(target, address, 8, 1, value_buf);
2498 if (retval != ERROR_OK)
2499 LOG_DEBUG("failed: %i", retval);
2500
2501 return retval;
2502 }
2503
2504 int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
2505 {
2506 int retval;
2507 uint8_t value_buf[4];
2508 if (!target_was_examined(target)) {
2509 LOG_ERROR("Target not examined yet");
2510 return ERROR_FAIL;
2511 }
2512
2513 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
2514 address,
2515 value);
2516
2517 target_buffer_set_u32(target, value_buf, value);
2518 retval = target_write_phys_memory(target, address, 4, 1, value_buf);
2519 if (retval != ERROR_OK)
2520 LOG_DEBUG("failed: %i", retval);
2521
2522 return retval;
2523 }
2524
2525 int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
2526 {
2527 int retval;
2528 uint8_t value_buf[2];
2529 if (!target_was_examined(target)) {
2530 LOG_ERROR("Target not examined yet");
2531 return ERROR_FAIL;
2532 }
2533
2534 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
2535 address,
2536 value);
2537
2538 target_buffer_set_u16(target, value_buf, value);
2539 retval = target_write_phys_memory(target, address, 2, 1, value_buf);
2540 if (retval != ERROR_OK)
2541 LOG_DEBUG("failed: %i", retval);
2542
2543 return retval;
2544 }
2545
2546 int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
2547 {
2548 int retval;
2549 if (!target_was_examined(target)) {
2550 LOG_ERROR("Target not examined yet");
2551 return ERROR_FAIL;
2552 }
2553
2554 LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
2555 address, value);
2556
2557 retval = target_write_phys_memory(target, address, 1, 1, &value);
2558 if (retval != ERROR_OK)
2559 LOG_DEBUG("failed: %i", retval);
2560
2561 return retval;
2562 }
2563
2564 static int find_target(struct command_context *cmd_ctx, const char *name)
2565 {
2566 struct target *target = get_target(name);
2567 if (target == NULL) {
2568 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2569 return ERROR_FAIL;
2570 }
2571 if (!target->tap->enabled) {
2572 LOG_USER("Target: TAP %s is disabled, "
2573 "can't be the current target\n",
2574 target->tap->dotted_name);
2575 return ERROR_FAIL;
2576 }
2577
2578 cmd_ctx->current_target = target;
2579 if (cmd_ctx->current_target_override)
2580 cmd_ctx->current_target_override = target;
2581
2582 return ERROR_OK;
2583 }
2584
2585
2586 COMMAND_HANDLER(handle_targets_command)
2587 {
2588 int retval = ERROR_OK;
2589 if (CMD_ARGC == 1) {
2590 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2591 if (retval == ERROR_OK) {
2592 /* we're done! */
2593 return retval;
2594 }
2595 }
2596
2597 struct target *target = all_targets;
2598 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2599 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2600 while (target) {
2601 const char *state;
2602 char marker = ' ';
2603
2604 if (target->tap->enabled)
2605 state = target_state_name(target);
2606 else
2607 state = "tap-disabled";
2608
2609 if (CMD_CTX->current_target == target)
2610 marker = '*';
2611
2612 /* keep columns lined up to match the headers above */
2613 command_print(CMD_CTX,
2614 "%2d%c %-18s %-10s %-6s %-18s %s",
2615 target->target_number,
2616 marker,
2617 target_name(target),
2618 target_type_name(target),
2619 Jim_Nvp_value2name_simple(nvp_target_endian,
2620 target->endianness)->name,
2621 target->tap->dotted_name,
2622 state);
2623 target = target->next;
2624 }
2625
2626 return retval;
2627 }
2628
2629 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2630
2631 static int powerDropout;
2632 static int srstAsserted;
2633
2634 static int runPowerRestore;
2635 static int runPowerDropout;
2636 static int runSrstAsserted;
2637 static int runSrstDeasserted;
2638
2639 static int sense_handler(void)
2640 {
2641 static int prevSrstAsserted;
2642 static int prevPowerdropout;
2643
2644 int retval = jtag_power_dropout(&powerDropout);
2645 if (retval != ERROR_OK)
2646 return retval;
2647
2648 int powerRestored;
2649 powerRestored = prevPowerdropout && !powerDropout;
2650 if (powerRestored)
2651 runPowerRestore = 1;
2652
2653 int64_t current = timeval_ms();
2654 static int64_t lastPower;
2655 bool waitMore = lastPower + 2000 > current;
2656 if (powerDropout && !waitMore) {
2657 runPowerDropout = 1;
2658 lastPower = current;
2659 }
2660
2661 retval = jtag_srst_asserted(&srstAsserted);
2662 if (retval != ERROR_OK)
2663 return retval;
2664
2665 int srstDeasserted;
2666 srstDeasserted = prevSrstAsserted && !srstAsserted;
2667
2668 static int64_t lastSrst;
2669 waitMore = lastSrst + 2000 > current;
2670 if (srstDeasserted && !waitMore) {
2671 runSrstDeasserted = 1;
2672 lastSrst = current;
2673 }
2674
2675 if (!prevSrstAsserted && srstAsserted)
2676 runSrstAsserted = 1;
2677
2678 prevSrstAsserted = srstAsserted;
2679 prevPowerdropout = powerDropout;
2680
2681 if (srstDeasserted || powerRestored) {
2682 /* Other than logging the event we can't do anything here.
2683 * Issuing a reset is a particularly bad idea as we might
2684 * be inside a reset already.
2685 */
2686 }
2687
2688 return ERROR_OK;
2689 }
2690
2691 /* process target state changes */
2692 static int handle_target(void *priv)
2693 {
2694 Jim_Interp *interp = (Jim_Interp *)priv;
2695 int retval = ERROR_OK;
2696
2697 if (!is_jtag_poll_safe()) {
2698 /* polling is disabled currently */
2699 return ERROR_OK;
2700 }
2701
2702 /* we do not want to recurse here... */
2703 static int recursive;
2704 if (!recursive) {
2705 recursive = 1;
2706 sense_handler();
2707 /* danger! running these procedures can trigger srst assertions and power dropouts.
2708 * We need to avoid an infinite loop/recursion here and we do that by
2709 * clearing the flags after running these events.
2710 */
2711 int did_something = 0;
2712 if (runSrstAsserted) {
2713 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2714 Jim_Eval(interp, "srst_asserted");
2715 did_something = 1;
2716 }
2717 if (runSrstDeasserted) {
2718 Jim_Eval(interp, "srst_deasserted");
2719 did_something = 1;
2720 }
2721 if (runPowerDropout) {
2722 LOG_INFO("Power dropout detected, running power_dropout proc.");
2723 Jim_Eval(interp, "power_dropout");
2724 did_something = 1;
2725 }
2726 if (runPowerRestore) {
2727 Jim_Eval(interp, "power_restore");
2728 did_something = 1;
2729 }
2730
2731 if (did_something) {
2732 /* clear detect flags */
2733 sense_handler();
2734 }
2735
2736 /* clear action flags */
2737
2738 runSrstAsserted = 0;
2739 runSrstDeasserted = 0;
2740 runPowerRestore = 0;
2741 runPowerDropout = 0;
2742
2743 recursive = 0;
2744 }
2745
2746 /* Poll targets for state changes unless that's globally disabled.
2747 * Skip targets that are currently disabled.
2748 */
2749 for (struct target *target = all_targets;
2750 is_jtag_poll_safe() && target;
2751 target = target->next) {
2752
2753 if (!target_was_examined(target))
2754 continue;
2755
2756 if (!target->tap->enabled)
2757 continue;
2758
2759 if (target->backoff.times > target->backoff.count) {
2760 /* do not poll this time as we failed previously */
2761 target->backoff.count++;
2762 continue;
2763 }
2764 target->backoff.count = 0;
2765
2766 /* only poll target if we've got power and srst isn't asserted */
2767 if (!powerDropout && !srstAsserted) {
2768 /* polling may fail silently until the target has been examined */
2769 retval = target_poll(target);
2770 if (retval != ERROR_OK) {
2771 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2772 if (target->backoff.times * polling_interval < 5000) {
2773 target->backoff.times *= 2;
2774 target->backoff.times++;
2775 }
2776
2777 /* Tell GDB to halt the debugger. This allows the user to
2778 * run monitor commands to handle the situation.
2779 */
2780 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2781 }
2782 if (target->backoff.times > 0) {
2783 LOG_USER("Polling target %s failed, trying to reexamine", target_name(target));
2784 target_reset_examined(target);
2785 retval = target_examine_one(target);
2786 /* Target examination could have failed due to unstable connection,
2787 * but we set the examined flag anyway to repoll it later */
2788 if (retval != ERROR_OK) {
2789 target->examined = true;
2790 LOG_USER("Examination failed, GDB will be halted. Polling again in %dms",
2791 target->backoff.times * polling_interval);
2792 return retval;
2793 }
2794 }
2795
2796 /* Since we succeeded, we reset backoff count */
2797 target->backoff.times = 0;
2798 }
2799 }
2800
2801 return retval;
2802 }
2803
2804 COMMAND_HANDLER(handle_reg_command)
2805 {
2806 struct target *target;
2807 struct reg *reg = NULL;
2808 unsigned count = 0;
2809 char *value;
2810
2811 LOG_DEBUG("-");
2812
2813 target = get_current_target(CMD_CTX);
2814
2815 /* list all available registers for the current target */
2816 if (CMD_ARGC == 0) {
2817 struct reg_cache *cache = target->reg_cache;
2818
2819 count = 0;
2820 while (cache) {
2821 unsigned i;
2822
2823 command_print(CMD_CTX, "===== %s", cache->name);
2824
2825 for (i = 0, reg = cache->reg_list;
2826 i < cache->num_regs;
2827 i++, reg++, count++) {
2828 if (reg->exist == false)
2829 continue;
2830 /* only print cached values if they are valid */
2831 if (reg->valid) {
2832 value = buf_to_str(reg->value,
2833 reg->size, 16);
2834 command_print(CMD_CTX,
2835 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2836 count, reg->name,
2837 reg->size, value,
2838 reg->dirty
2839 ? " (dirty)"
2840 : "");
2841 free(value);
2842 } else {
2843 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2844 count, reg->name,
2845 reg->size) ;
2846 }
2847 }
2848 cache = cache->next;
2849 }
2850
2851 return ERROR_OK;
2852 }
2853
2854 /* access a single register by its ordinal number */
2855 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2856 unsigned num;
2857 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2858
2859 struct reg_cache *cache = target->reg_cache;
2860 count = 0;
2861 while (cache) {
2862 unsigned i;
2863 for (i = 0; i < cache->num_regs; i++) {
2864 if (count++ == num) {
2865 reg = &cache->reg_list[i];
2866 break;
2867 }
2868 }
2869 if (reg)
2870 break;
2871 cache = cache->next;
2872 }
2873
2874 if (!reg) {
2875 command_print(CMD_CTX, "%i is out of bounds, the current target "
2876 "has only %i registers (0 - %i)", num, count, count - 1);
2877 return ERROR_OK;
2878 }
2879 } else {
2880 /* access a single register by its name */
2881 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2882
2883 if (!reg)
2884 goto not_found;
2885 }
2886
2887 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2888
2889 if (!reg->exist)
2890 goto not_found;
2891
2892 /* display a register */
2893 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2894 && (CMD_ARGV[1][0] <= '9')))) {
2895 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2896 reg->valid = 0;
2897
2898 if (reg->valid == 0)
2899 reg->type->get(reg);
2900 value = buf_to_str(reg->value, reg->size, 16);
2901 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2902 free(value);
2903 return ERROR_OK;
2904 }
2905
2906 /* set register value */
2907 if (CMD_ARGC == 2) {
2908 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2909 if (buf == NULL)
2910 return ERROR_FAIL;
2911 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2912
2913 reg->type->set(reg, buf);
2914
2915 value = buf_to_str(reg->value, reg->size, 16);
2916 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2917 free(value);
2918
2919 free(buf);
2920
2921 return ERROR_OK;
2922 }
2923
2924 return ERROR_COMMAND_SYNTAX_ERROR;
2925
2926 not_found:
2927 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2928 return ERROR_OK;
2929 }
2930
2931 COMMAND_HANDLER(handle_poll_command)
2932 {
2933 int retval = ERROR_OK;
2934 struct target *target = get_current_target(CMD_CTX);
2935
2936 if (CMD_ARGC == 0) {
2937 command_print(CMD_CTX, "background polling: %s",
2938 jtag_poll_get_enabled() ? "on" : "off");
2939 command_print(CMD_CTX, "TAP: %s (%s)",
2940 target->tap->dotted_name,
2941 target->tap->enabled ? "enabled" : "disabled");
2942 if (!target->tap->enabled)
2943 return ERROR_OK;
2944 retval = target_poll(target);
2945 if (retval != ERROR_OK)
2946 return retval;
2947 retval = target_arch_state(target);
2948 if (retval != ERROR_OK)
2949 return retval;
2950 } else if (CMD_ARGC == 1) {
2951 bool enable;
2952 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2953 jtag_poll_set_enabled(enable);
2954 } else
2955 return ERROR_COMMAND_SYNTAX_ERROR;
2956
2957 return retval;
2958 }
2959
2960 COMMAND_HANDLER(handle_wait_halt_command)
2961 {
2962 if (CMD_ARGC > 1)
2963 return ERROR_COMMAND_SYNTAX_ERROR;
2964
2965 unsigned ms = DEFAULT_HALT_TIMEOUT;
2966 if (1 == CMD_ARGC) {
2967 int retval = parse_uint(CMD_ARGV[0], &ms);
2968 if (ERROR_OK != retval)
2969 return ERROR_COMMAND_SYNTAX_ERROR;
2970 }
2971
2972 struct target *target = get_current_target(CMD_CTX);
2973 return target_wait_state(target, TARGET_HALTED, ms);
2974 }
2975
2976 /* wait for target state to change. The trick here is to have a low
2977 * latency for short waits and not to suck up all the CPU time
2978 * on longer waits.
2979 *
2980 * After 500ms, keep_alive() is invoked
2981 */
2982 int target_wait_state(struct target *target, enum target_state state, int ms)
2983 {
2984 int retval;
2985 int64_t then = 0, cur;
2986 bool once = true;
2987
2988 for (;;) {
2989 retval = target_poll(target);
2990 if (retval != ERROR_OK)
2991 return retval;
2992 if (target->state == state)
2993 break;
2994 cur = timeval_ms();
2995 if (once) {
2996 once = false;
2997 then = timeval_ms();
2998 LOG_DEBUG("waiting for target %s...",
2999 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3000 }
3001
3002 if (cur-then > 500)
3003 keep_alive();
3004
3005 if ((cur-then) > ms) {
3006 LOG_ERROR("timed out while waiting for target %s",
3007 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
3008 return ERROR_FAIL;
3009 }
3010 }
3011
3012 return ERROR_OK;
3013 }
3014
3015 COMMAND_HANDLER(handle_halt_command)
3016 {
3017 LOG_DEBUG("-");
3018
3019 struct target *target = get_current_target(CMD_CTX);
3020
3021 target->verbose_halt_msg = true;
3022
3023 int retval = target_halt(target);
3024 if (ERROR_OK != retval)
3025 return retval;
3026
3027 if (CMD_ARGC == 1) {
3028 unsigned wait_local;
3029 retval = parse_uint(CMD_ARGV[0], &wait_local);
3030 if (ERROR_OK != retval)
3031 return ERROR_COMMAND_SYNTAX_ERROR;
3032 if (!wait_local)
3033 return ERROR_OK;
3034 }
3035
3036 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
3037 }
3038
3039 COMMAND_HANDLER(handle_soft_reset_halt_command)
3040 {
3041 struct target *target = get_current_target(CMD_CTX);
3042
3043 LOG_USER("requesting target halt and executing a soft reset");
3044
3045 target_soft_reset_halt(target);
3046
3047 return ERROR_OK;
3048 }
3049
3050 COMMAND_HANDLER(handle_reset_command)
3051 {
3052 if (CMD_ARGC > 1)
3053 return ERROR_COMMAND_SYNTAX_ERROR;
3054
3055 enum target_reset_mode reset_mode = RESET_RUN;
3056 if (CMD_ARGC == 1) {
3057 const Jim_Nvp *n;
3058 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
3059 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
3060 return ERROR_COMMAND_SYNTAX_ERROR;
3061 reset_mode = n->value;
3062 }
3063
3064 /* reset *all* targets */
3065 return target_process_reset(CMD_CTX, reset_mode);
3066 }
3067
3068
3069 COMMAND_HANDLER(handle_resume_command)
3070 {
3071 int current = 1;
3072 if (CMD_ARGC > 1)
3073 return ERROR_COMMAND_SYNTAX_ERROR;
3074
3075 struct target *target = get_current_target(CMD_CTX);
3076
3077 /* with no CMD_ARGV, resume from current pc, addr = 0,
3078 * with one arguments, addr = CMD_ARGV[0],
3079 * handle breakpoints, not debugging */
3080 target_addr_t addr = 0;
3081 if (CMD_ARGC == 1) {
3082 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3083 current = 0;
3084 }
3085
3086 return target_resume(target, current, addr, 1, 0);
3087 }
3088
3089 COMMAND_HANDLER(handle_step_command)
3090 {
3091 if (CMD_ARGC > 1)
3092 return ERROR_COMMAND_SYNTAX_ERROR;
3093
3094 LOG_DEBUG("-");
3095
3096 /* with no CMD_ARGV, step from current pc, addr = 0,
3097 * with one argument addr = CMD_ARGV[0],
3098 * handle breakpoints, debugging */
3099 target_addr_t addr = 0;
3100 int current_pc = 1;
3101 if (CMD_ARGC == 1) {
3102 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
3103 current_pc = 0;
3104 }
3105
3106 struct target *target = get_current_target(CMD_CTX);
3107
3108 return target->type->step(target, current_pc, addr, 1);
3109 }
3110
3111 static void handle_md_output(struct command_context *cmd_ctx,
3112 struct target *target, target_addr_t address, unsigned size,
3113 unsigned count, const uint8_t *buffer)
3114 {
3115 const unsigned line_bytecnt = 32;
3116 unsigned line_modulo = line_bytecnt / size;
3117
3118 char output[line_bytecnt * 4 + 1];
3119 unsigned output_len = 0;
3120
3121 const char *value_fmt;
3122 switch (size) {
3123 case 8:
3124 value_fmt = "%16.16"PRIx64" ";
3125 break;
3126 case 4:
3127 value_fmt = "%8.8"PRIx64" ";
3128 break;
3129 case 2:
3130 value_fmt = "%4.4"PRIx64" ";
3131 break;
3132 case 1:
3133 value_fmt = "%2.2"PRIx64" ";
3134 break;
3135 default:
3136 /* "can't happen", caller checked */
3137 LOG_ERROR("invalid memory read size: %u", size);
3138 return;
3139 }
3140
3141 for (unsigned i = 0; i < count; i++) {
3142 if (i % line_modulo == 0) {
3143 output_len += snprintf(output + output_len,
3144 sizeof(output) - output_len,
3145 TARGET_ADDR_FMT ": ",
3146 (address + (i * size)));
3147 }
3148
3149 uint64_t value = 0;
3150 const uint8_t *value_ptr = buffer + i * size;
3151 switch (size) {
3152 case 8:
3153 value = target_buffer_get_u64(target, value_ptr);
3154 break;
3155 case 4:
3156 value = target_buffer_get_u32(target, value_ptr);
3157 break;
3158 case 2:
3159 value = target_buffer_get_u16(target, value_ptr);
3160 break;
3161 case 1:
3162 value = *value_ptr;
3163 }
3164 output_len += snprintf(output + output_len,
3165 sizeof(output) - output_len,
3166 value_fmt, value);
3167
3168 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
3169 command_print(cmd_ctx, "%s", output);
3170 output_len = 0;
3171 }
3172 }
3173 }
3174
3175 COMMAND_HANDLER(handle_md_command)
3176 {
3177 if (CMD_ARGC < 1)
3178 return ERROR_COMMAND_SYNTAX_ERROR;
3179
3180 unsigned size = 0;
3181 switch (CMD_NAME[2]) {
3182 case 'd':
3183 size = 8;
3184 break;
3185 case 'w':
3186 size = 4;
3187 break;
3188 case 'h':
3189 size = 2;
3190 break;
3191 case 'b':
3192 size = 1;
3193 break;
3194 default:
3195 return ERROR_COMMAND_SYNTAX_ERROR;
3196 }
3197
3198 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
3199 int (*fn)(struct target *target,
3200 target_addr_t address,