target: add async algorithm entries to the target type
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * This program is free software; you can redistribute it and/or modify *
24 * it under the terms of the GNU General Public License as published by *
25 * the Free Software Foundation; either version 2 of the License, or *
26 * (at your option) any later version. *
27 * *
28 * This program is distributed in the hope that it will be useful, *
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
31 * GNU General Public License for more details. *
32 * *
33 * You should have received a copy of the GNU General Public License *
34 * along with this program; if not, write to the *
35 * Free Software Foundation, Inc., *
36 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
37 ***************************************************************************/
38 #ifdef HAVE_CONFIG_H
39 #include "config.h"
40 #endif
41
42 #include <helper/time_support.h>
43 #include <jtag/jtag.h>
44 #include <flash/nor/core.h>
45
46 #include "target.h"
47 #include "target_type.h"
48 #include "target_request.h"
49 #include "breakpoints.h"
50 #include "register.h"
51 #include "trace.h"
52 #include "image.h"
53 #include "rtos/rtos.h"
54
55
56 static int target_read_buffer_default(struct target *target, uint32_t address,
57 uint32_t size, uint8_t *buffer);
58 static int target_write_buffer_default(struct target *target, uint32_t address,
59 uint32_t size, const uint8_t *buffer);
60 static int target_array2mem(Jim_Interp *interp, struct target *target,
61 int argc, Jim_Obj *const *argv);
62 static int target_mem2array(Jim_Interp *interp, struct target *target,
63 int argc, Jim_Obj *const *argv);
64 static int target_register_user_commands(struct command_context *cmd_ctx);
65
66 /* targets */
67 extern struct target_type arm7tdmi_target;
68 extern struct target_type arm720t_target;
69 extern struct target_type arm9tdmi_target;
70 extern struct target_type arm920t_target;
71 extern struct target_type arm966e_target;
72 extern struct target_type arm946e_target;
73 extern struct target_type arm926ejs_target;
74 extern struct target_type fa526_target;
75 extern struct target_type feroceon_target;
76 extern struct target_type dragonite_target;
77 extern struct target_type xscale_target;
78 extern struct target_type cortexm3_target;
79 extern struct target_type cortexa8_target;
80 extern struct target_type arm11_target;
81 extern struct target_type mips_m4k_target;
82 extern struct target_type avr_target;
83 extern struct target_type dsp563xx_target;
84 extern struct target_type dsp5680xx_target;
85 extern struct target_type testee_target;
86 extern struct target_type avr32_ap7k_target;
87
88 static struct target_type *target_types[] =
89 {
90 &arm7tdmi_target,
91 &arm9tdmi_target,
92 &arm920t_target,
93 &arm720t_target,
94 &arm966e_target,
95 &arm946e_target,
96 &arm926ejs_target,
97 &fa526_target,
98 &feroceon_target,
99 &dragonite_target,
100 &xscale_target,
101 &cortexm3_target,
102 &cortexa8_target,
103 &arm11_target,
104 &mips_m4k_target,
105 &avr_target,
106 &dsp563xx_target,
107 &dsp5680xx_target,
108 &testee_target,
109 &avr32_ap7k_target,
110 NULL,
111 };
112
113 struct target *all_targets = NULL;
114 static struct target_event_callback *target_event_callbacks = NULL;
115 static struct target_timer_callback *target_timer_callbacks = NULL;
116 static const int polling_interval = 100;
117
118 static const Jim_Nvp nvp_assert[] = {
119 { .name = "assert", NVP_ASSERT },
120 { .name = "deassert", NVP_DEASSERT },
121 { .name = "T", NVP_ASSERT },
122 { .name = "F", NVP_DEASSERT },
123 { .name = "t", NVP_ASSERT },
124 { .name = "f", NVP_DEASSERT },
125 { .name = NULL, .value = -1 }
126 };
127
128 static const Jim_Nvp nvp_error_target[] = {
129 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
130 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
131 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
132 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
133 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
134 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
135 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
136 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
137 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
138 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
139 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
140 { .value = -1, .name = NULL }
141 };
142
143 static const char *target_strerror_safe(int err)
144 {
145 const Jim_Nvp *n;
146
147 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
148 if (n->name == NULL) {
149 return "unknown";
150 } else {
151 return n->name;
152 }
153 }
154
155 static const Jim_Nvp nvp_target_event[] = {
156 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
157 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
158
159 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
160 { .value = TARGET_EVENT_HALTED, .name = "halted" },
161 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
162 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
163 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
164
165 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
166 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
167
168 /* historical name */
169
170 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
171
172 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
173 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
174 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
175 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
176 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
177 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
178 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
179 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
180 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
181 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
182 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
183
184 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
185 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
186
187 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
188 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
189
190 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
191 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
192
193 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
194 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
195
196 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
198
199 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
200 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
201 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
202
203 { .name = NULL, .value = -1 }
204 };
205
206 static const Jim_Nvp nvp_target_state[] = {
207 { .name = "unknown", .value = TARGET_UNKNOWN },
208 { .name = "running", .value = TARGET_RUNNING },
209 { .name = "halted", .value = TARGET_HALTED },
210 { .name = "reset", .value = TARGET_RESET },
211 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
212 { .name = NULL, .value = -1 },
213 };
214
215 static const Jim_Nvp nvp_target_debug_reason [] = {
216 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
217 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
218 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
219 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
220 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
221 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
222 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
223 { .name = NULL, .value = -1 },
224 };
225
226 static const Jim_Nvp nvp_target_endian[] = {
227 { .name = "big", .value = TARGET_BIG_ENDIAN },
228 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
229 { .name = "be", .value = TARGET_BIG_ENDIAN },
230 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
231 { .name = NULL, .value = -1 },
232 };
233
234 static const Jim_Nvp nvp_reset_modes[] = {
235 { .name = "unknown", .value = RESET_UNKNOWN },
236 { .name = "run" , .value = RESET_RUN },
237 { .name = "halt" , .value = RESET_HALT },
238 { .name = "init" , .value = RESET_INIT },
239 { .name = NULL , .value = -1 },
240 };
241
242 const char *debug_reason_name(struct target *t)
243 {
244 const char *cp;
245
246 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
247 t->debug_reason)->name;
248 if (!cp) {
249 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
250 cp = "(*BUG*unknown*BUG*)";
251 }
252 return cp;
253 }
254
255 const char *
256 target_state_name( struct target *t )
257 {
258 const char *cp;
259 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
260 if( !cp ){
261 LOG_ERROR("Invalid target state: %d", (int)(t->state));
262 cp = "(*BUG*unknown*BUG*)";
263 }
264 return cp;
265 }
266
267 /* determine the number of the new target */
268 static int new_target_number(void)
269 {
270 struct target *t;
271 int x;
272
273 /* number is 0 based */
274 x = -1;
275 t = all_targets;
276 while (t) {
277 if (x < t->target_number) {
278 x = t->target_number;
279 }
280 t = t->next;
281 }
282 return x + 1;
283 }
284
285 /* read a uint32_t from a buffer in target memory endianness */
286 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
287 {
288 if (target->endianness == TARGET_LITTLE_ENDIAN)
289 return le_to_h_u32(buffer);
290 else
291 return be_to_h_u32(buffer);
292 }
293
294 /* read a uint24_t from a buffer in target memory endianness */
295 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
296 {
297 if (target->endianness == TARGET_LITTLE_ENDIAN)
298 return le_to_h_u24(buffer);
299 else
300 return be_to_h_u24(buffer);
301 }
302
303 /* read a uint16_t from a buffer in target memory endianness */
304 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
305 {
306 if (target->endianness == TARGET_LITTLE_ENDIAN)
307 return le_to_h_u16(buffer);
308 else
309 return be_to_h_u16(buffer);
310 }
311
312 /* read a uint8_t from a buffer in target memory endianness */
313 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
314 {
315 return *buffer & 0x0ff;
316 }
317
318 /* write a uint32_t to a buffer in target memory endianness */
319 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
320 {
321 if (target->endianness == TARGET_LITTLE_ENDIAN)
322 h_u32_to_le(buffer, value);
323 else
324 h_u32_to_be(buffer, value);
325 }
326
327 /* write a uint24_t to a buffer in target memory endianness */
328 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
329 {
330 if (target->endianness == TARGET_LITTLE_ENDIAN)
331 h_u24_to_le(buffer, value);
332 else
333 h_u24_to_be(buffer, value);
334 }
335
336 /* write a uint16_t to a buffer in target memory endianness */
337 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
338 {
339 if (target->endianness == TARGET_LITTLE_ENDIAN)
340 h_u16_to_le(buffer, value);
341 else
342 h_u16_to_be(buffer, value);
343 }
344
345 /* write a uint8_t to a buffer in target memory endianness */
346 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
347 {
348 *buffer = value;
349 }
350
351 /* write a uint32_t array to a buffer in target memory endianness */
352 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
353 {
354 uint32_t i;
355 for(i = 0; i < count; i ++)
356 dstbuf[i] = target_buffer_get_u32(target,&buffer[i*4]);
357 }
358
359 /* write a uint16_t array to a buffer in target memory endianness */
360 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
361 {
362 uint32_t i;
363 for(i = 0; i < count; i ++)
364 dstbuf[i] = target_buffer_get_u16(target,&buffer[i*2]);
365 }
366
367 /* write a uint32_t array to a buffer in target memory endianness */
368 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
369 {
370 uint32_t i;
371 for(i = 0; i < count; i ++)
372 target_buffer_set_u32(target,&buffer[i*4],srcbuf[i]);
373 }
374
375 /* write a uint16_t array to a buffer in target memory endianness */
376 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
377 {
378 uint32_t i;
379 for(i = 0; i < count; i ++)
380 target_buffer_set_u16(target,&buffer[i*2],srcbuf[i]);
381 }
382
383 /* return a pointer to a configured target; id is name or number */
384 struct target *get_target(const char *id)
385 {
386 struct target *target;
387
388 /* try as tcltarget name */
389 for (target = all_targets; target; target = target->next) {
390 if (target->cmd_name == NULL)
391 continue;
392 if (strcmp(id, target->cmd_name) == 0)
393 return target;
394 }
395
396 /* It's OK to remove this fallback sometime after August 2010 or so */
397
398 /* no match, try as number */
399 unsigned num;
400 if (parse_uint(id, &num) != ERROR_OK)
401 return NULL;
402
403 for (target = all_targets; target; target = target->next) {
404 if (target->target_number == (int)num) {
405 LOG_WARNING("use '%s' as target identifier, not '%u'",
406 target->cmd_name, num);
407 return target;
408 }
409 }
410
411 return NULL;
412 }
413
414 /* returns a pointer to the n-th configured target */
415 static struct target *get_target_by_num(int num)
416 {
417 struct target *target = all_targets;
418
419 while (target) {
420 if (target->target_number == num) {
421 return target;
422 }
423 target = target->next;
424 }
425
426 return NULL;
427 }
428
429 struct target* get_current_target(struct command_context *cmd_ctx)
430 {
431 struct target *target = get_target_by_num(cmd_ctx->current_target);
432
433 if (target == NULL)
434 {
435 LOG_ERROR("BUG: current_target out of bounds");
436 exit(-1);
437 }
438
439 return target;
440 }
441
442 int target_poll(struct target *target)
443 {
444 int retval;
445
446 /* We can't poll until after examine */
447 if (!target_was_examined(target))
448 {
449 /* Fail silently lest we pollute the log */
450 return ERROR_FAIL;
451 }
452
453 retval = target->type->poll(target);
454 if (retval != ERROR_OK)
455 return retval;
456
457 if (target->halt_issued)
458 {
459 if (target->state == TARGET_HALTED)
460 {
461 target->halt_issued = false;
462 } else
463 {
464 long long t = timeval_ms() - target->halt_issued_time;
465 if (t>1000)
466 {
467 target->halt_issued = false;
468 LOG_INFO("Halt timed out, wake up GDB.");
469 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
470 }
471 }
472 }
473
474 return ERROR_OK;
475 }
476
477 int target_halt(struct target *target)
478 {
479 int retval;
480 /* We can't poll until after examine */
481 if (!target_was_examined(target))
482 {
483 LOG_ERROR("Target not examined yet");
484 return ERROR_FAIL;
485 }
486
487 retval = target->type->halt(target);
488 if (retval != ERROR_OK)
489 return retval;
490
491 target->halt_issued = true;
492 target->halt_issued_time = timeval_ms();
493
494 return ERROR_OK;
495 }
496
497 /**
498 * Make the target (re)start executing using its saved execution
499 * context (possibly with some modifications).
500 *
501 * @param target Which target should start executing.
502 * @param current True to use the target's saved program counter instead
503 * of the address parameter
504 * @param address Optionally used as the program counter.
505 * @param handle_breakpoints True iff breakpoints at the resumption PC
506 * should be skipped. (For example, maybe execution was stopped by
507 * such a breakpoint, in which case it would be counterprodutive to
508 * let it re-trigger.
509 * @param debug_execution False if all working areas allocated by OpenOCD
510 * should be released and/or restored to their original contents.
511 * (This would for example be true to run some downloaded "helper"
512 * algorithm code, which resides in one such working buffer and uses
513 * another for data storage.)
514 *
515 * @todo Resolve the ambiguity about what the "debug_execution" flag
516 * signifies. For example, Target implementations don't agree on how
517 * it relates to invalidation of the register cache, or to whether
518 * breakpoints and watchpoints should be enabled. (It would seem wrong
519 * to enable breakpoints when running downloaded "helper" algorithms
520 * (debug_execution true), since the breakpoints would be set to match
521 * target firmware being debugged, not the helper algorithm.... and
522 * enabling them could cause such helpers to malfunction (for example,
523 * by overwriting data with a breakpoint instruction. On the other
524 * hand the infrastructure for running such helpers might use this
525 * procedure but rely on hardware breakpoint to detect termination.)
526 */
527 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
528 {
529 int retval;
530
531 /* We can't poll until after examine */
532 if (!target_was_examined(target))
533 {
534 LOG_ERROR("Target not examined yet");
535 return ERROR_FAIL;
536 }
537
538 /* note that resume *must* be asynchronous. The CPU can halt before
539 * we poll. The CPU can even halt at the current PC as a result of
540 * a software breakpoint being inserted by (a bug?) the application.
541 */
542 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
543 return retval;
544
545 return retval;
546 }
547
548 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
549 {
550 char buf[100];
551 int retval;
552 Jim_Nvp *n;
553 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
554 if (n->name == NULL) {
555 LOG_ERROR("invalid reset mode");
556 return ERROR_FAIL;
557 }
558
559 /* disable polling during reset to make reset event scripts
560 * more predictable, i.e. dr/irscan & pathmove in events will
561 * not have JTAG operations injected into the middle of a sequence.
562 */
563 bool save_poll = jtag_poll_get_enabled();
564
565 jtag_poll_set_enabled(false);
566
567 sprintf(buf, "ocd_process_reset %s", n->name);
568 retval = Jim_Eval(cmd_ctx->interp, buf);
569
570 jtag_poll_set_enabled(save_poll);
571
572 if (retval != JIM_OK) {
573 Jim_MakeErrorMessage(cmd_ctx->interp);
574 command_print(NULL,"%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
575 return ERROR_FAIL;
576 }
577
578 /* We want any events to be processed before the prompt */
579 retval = target_call_timer_callbacks_now();
580
581 struct target *target;
582 for (target = all_targets; target; target = target->next) {
583 target->type->check_reset(target);
584 }
585
586 return retval;
587 }
588
589 static int identity_virt2phys(struct target *target,
590 uint32_t virtual, uint32_t *physical)
591 {
592 *physical = virtual;
593 return ERROR_OK;
594 }
595
596 static int no_mmu(struct target *target, int *enabled)
597 {
598 *enabled = 0;
599 return ERROR_OK;
600 }
601
602 static int default_examine(struct target *target)
603 {
604 target_set_examined(target);
605 return ERROR_OK;
606 }
607
608 /* no check by default */
609 static int default_check_reset(struct target *target)
610 {
611 return ERROR_OK;
612 }
613
614 int target_examine_one(struct target *target)
615 {
616 return target->type->examine(target);
617 }
618
619 static int jtag_enable_callback(enum jtag_event event, void *priv)
620 {
621 struct target *target = priv;
622
623 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
624 return ERROR_OK;
625
626 jtag_unregister_event_callback(jtag_enable_callback, target);
627 return target_examine_one(target);
628 }
629
630
631 /* Targets that correctly implement init + examine, i.e.
632 * no communication with target during init:
633 *
634 * XScale
635 */
636 int target_examine(void)
637 {
638 int retval = ERROR_OK;
639 struct target *target;
640
641 for (target = all_targets; target; target = target->next)
642 {
643 /* defer examination, but don't skip it */
644 if (!target->tap->enabled) {
645 jtag_register_event_callback(jtag_enable_callback,
646 target);
647 continue;
648 }
649 if ((retval = target_examine_one(target)) != ERROR_OK)
650 return retval;
651 }
652 return retval;
653 }
654 const char *target_type_name(struct target *target)
655 {
656 return target->type->name;
657 }
658
659 static int target_write_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
660 {
661 if (!target_was_examined(target))
662 {
663 LOG_ERROR("Target not examined yet");
664 return ERROR_FAIL;
665 }
666 return target->type->write_memory_imp(target, address, size, count, buffer);
667 }
668
669 static int target_read_memory_imp(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
670 {
671 if (!target_was_examined(target))
672 {
673 LOG_ERROR("Target not examined yet");
674 return ERROR_FAIL;
675 }
676 return target->type->read_memory_imp(target, address, size, count, buffer);
677 }
678
679 static int target_soft_reset_halt_imp(struct target *target)
680 {
681 if (!target_was_examined(target))
682 {
683 LOG_ERROR("Target not examined yet");
684 return ERROR_FAIL;
685 }
686 if (!target->type->soft_reset_halt_imp) {
687 LOG_ERROR("Target %s does not support soft_reset_halt",
688 target_name(target));
689 return ERROR_FAIL;
690 }
691 return target->type->soft_reset_halt_imp(target);
692 }
693
694 /**
695 * Downloads a target-specific native code algorithm to the target,
696 * and executes it. * Note that some targets may need to set up, enable,
697 * and tear down a breakpoint (hard or * soft) to detect algorithm
698 * termination, while others may support lower overhead schemes where
699 * soft breakpoints embedded in the algorithm automatically terminate the
700 * algorithm.
701 *
702 * @param target used to run the algorithm
703 * @param arch_info target-specific description of the algorithm.
704 */
705 int target_run_algorithm(struct target *target,
706 int num_mem_params, struct mem_param *mem_params,
707 int num_reg_params, struct reg_param *reg_param,
708 uint32_t entry_point, uint32_t exit_point,
709 int timeout_ms, void *arch_info)
710 {
711 int retval = ERROR_FAIL;
712
713 if (!target_was_examined(target))
714 {
715 LOG_ERROR("Target not examined yet");
716 goto done;
717 }
718 if (!target->type->run_algorithm) {
719 LOG_ERROR("Target type '%s' does not support %s",
720 target_type_name(target), __func__);
721 goto done;
722 }
723
724 target->running_alg = true;
725 retval = target->type->run_algorithm(target,
726 num_mem_params, mem_params,
727 num_reg_params, reg_param,
728 entry_point, exit_point, timeout_ms, arch_info);
729 target->running_alg = false;
730
731 done:
732 return retval;
733 }
734
735 /**
736 * Downloads a target-specific native code algorithm to the target,
737 * executes and leaves it running.
738 *
739 * @param target used to run the algorithm
740 * @param arch_info target-specific description of the algorithm.
741 */
742 int target_start_algorithm(struct target *target,
743 int num_mem_params, struct mem_param *mem_params,
744 int num_reg_params, struct reg_param *reg_params,
745 uint32_t entry_point, uint32_t exit_point,
746 void *arch_info)
747 {
748 int retval = ERROR_FAIL;
749
750 if (!target_was_examined(target))
751 {
752 LOG_ERROR("Target not examined yet");
753 goto done;
754 }
755 if (!target->type->start_algorithm) {
756 LOG_ERROR("Target type '%s' does not support %s",
757 target_type_name(target), __func__);
758 goto done;
759 }
760 if (target->running_alg) {
761 LOG_ERROR("Target is already running an algorithm");
762 goto done;
763 }
764
765 target->running_alg = true;
766 retval = target->type->start_algorithm(target,
767 num_mem_params, mem_params,
768 num_reg_params, reg_params,
769 entry_point, exit_point, arch_info);
770
771 done:
772 return retval;
773 }
774
775 /**
776 * Waits for an algorithm started with target_start_algorithm() to complete.
777 *
778 * @param target used to run the algorithm
779 * @param arch_info target-specific description of the algorithm.
780 */
781 int target_wait_algorithm(struct target *target,
782 int num_mem_params, struct mem_param *mem_params,
783 int num_reg_params, struct reg_param *reg_params,
784 uint32_t exit_point, int timeout_ms,
785 void *arch_info)
786 {
787 int retval = ERROR_FAIL;
788
789 if (!target->type->wait_algorithm) {
790 LOG_ERROR("Target type '%s' does not support %s",
791 target_type_name(target), __func__);
792 goto done;
793 }
794 if (!target->running_alg) {
795 LOG_ERROR("Target is not running an algorithm");
796 goto done;
797 }
798
799 retval = target->type->wait_algorithm(target,
800 num_mem_params, mem_params,
801 num_reg_params, reg_params,
802 exit_point, timeout_ms, arch_info);
803 if (retval != ERROR_TARGET_TIMEOUT)
804 target->running_alg = false;
805
806 done:
807 return retval;
808 }
809
810
811 int target_read_memory(struct target *target,
812 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
813 {
814 return target->type->read_memory(target, address, size, count, buffer);
815 }
816
817 static int target_read_phys_memory(struct target *target,
818 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
819 {
820 return target->type->read_phys_memory(target, address, size, count, buffer);
821 }
822
823 int target_write_memory(struct target *target,
824 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
825 {
826 return target->type->write_memory(target, address, size, count, buffer);
827 }
828
829 static int target_write_phys_memory(struct target *target,
830 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
831 {
832 return target->type->write_phys_memory(target, address, size, count, buffer);
833 }
834
835 int target_bulk_write_memory(struct target *target,
836 uint32_t address, uint32_t count, const uint8_t *buffer)
837 {
838 return target->type->bulk_write_memory(target, address, count, buffer);
839 }
840
841 int target_add_breakpoint(struct target *target,
842 struct breakpoint *breakpoint)
843 {
844 if ((target->state != TARGET_HALTED)&&(breakpoint->type!=BKPT_HARD)) {
845 LOG_WARNING("target %s is not halted", target->cmd_name);
846 return ERROR_TARGET_NOT_HALTED;
847 }
848 return target->type->add_breakpoint(target, breakpoint);
849 }
850
851 int target_add_context_breakpoint(struct target *target,
852 struct breakpoint *breakpoint)
853 {
854 if (target->state != TARGET_HALTED) {
855 LOG_WARNING("target %s is not halted", target->cmd_name);
856 return ERROR_TARGET_NOT_HALTED;
857 }
858 return target->type->add_context_breakpoint(target, breakpoint);
859 }
860
861 int target_add_hybrid_breakpoint(struct target *target,
862 struct breakpoint *breakpoint)
863 {
864 if (target->state != TARGET_HALTED) {
865 LOG_WARNING("target %s is not halted", target->cmd_name);
866 return ERROR_TARGET_NOT_HALTED;
867 }
868 return target->type->add_hybrid_breakpoint(target, breakpoint);
869 }
870
871 int target_remove_breakpoint(struct target *target,
872 struct breakpoint *breakpoint)
873 {
874 return target->type->remove_breakpoint(target, breakpoint);
875 }
876
877 int target_add_watchpoint(struct target *target,
878 struct watchpoint *watchpoint)
879 {
880 if (target->state != TARGET_HALTED) {
881 LOG_WARNING("target %s is not halted", target->cmd_name);
882 return ERROR_TARGET_NOT_HALTED;
883 }
884 return target->type->add_watchpoint(target, watchpoint);
885 }
886 int target_remove_watchpoint(struct target *target,
887 struct watchpoint *watchpoint)
888 {
889 return target->type->remove_watchpoint(target, watchpoint);
890 }
891
892 int target_get_gdb_reg_list(struct target *target,
893 struct reg **reg_list[], int *reg_list_size)
894 {
895 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
896 }
897 int target_step(struct target *target,
898 int current, uint32_t address, int handle_breakpoints)
899 {
900 return target->type->step(target, current, address, handle_breakpoints);
901 }
902
903
904 /**
905 * Reset the @c examined flag for the given target.
906 * Pure paranoia -- targets are zeroed on allocation.
907 */
908 static void target_reset_examined(struct target *target)
909 {
910 target->examined = false;
911 }
912
913 static int
914 err_read_phys_memory(struct target *target, uint32_t address,
915 uint32_t size, uint32_t count, uint8_t *buffer)
916 {
917 LOG_ERROR("Not implemented: %s", __func__);
918 return ERROR_FAIL;
919 }
920
921 static int
922 err_write_phys_memory(struct target *target, uint32_t address,
923 uint32_t size, uint32_t count, const uint8_t *buffer)
924 {
925 LOG_ERROR("Not implemented: %s", __func__);
926 return ERROR_FAIL;
927 }
928
929 static int handle_target(void *priv);
930
931 static int target_init_one(struct command_context *cmd_ctx,
932 struct target *target)
933 {
934 target_reset_examined(target);
935
936 struct target_type *type = target->type;
937 if (type->examine == NULL)
938 type->examine = default_examine;
939
940 if (type->check_reset== NULL)
941 type->check_reset = default_check_reset;
942
943 int retval = type->init_target(cmd_ctx, target);
944 if (ERROR_OK != retval)
945 {
946 LOG_ERROR("target '%s' init failed", target_name(target));
947 return retval;
948 }
949
950 /**
951 * @todo get rid of those *memory_imp() methods, now that all
952 * callers are using target_*_memory() accessors ... and make
953 * sure the "physical" paths handle the same issues.
954 */
955 /* a non-invasive way(in terms of patches) to add some code that
956 * runs before the type->write/read_memory implementation
957 */
958 type->write_memory_imp = target->type->write_memory;
959 type->write_memory = target_write_memory_imp;
960
961 type->read_memory_imp = target->type->read_memory;
962 type->read_memory = target_read_memory_imp;
963
964 type->soft_reset_halt_imp = target->type->soft_reset_halt;
965 type->soft_reset_halt = target_soft_reset_halt_imp;
966
967 /* Sanity-check MMU support ... stub in what we must, to help
968 * implement it in stages, but warn if we need to do so.
969 */
970 if (type->mmu)
971 {
972 if (type->write_phys_memory == NULL)
973 {
974 LOG_ERROR("type '%s' is missing write_phys_memory",
975 type->name);
976 type->write_phys_memory = err_write_phys_memory;
977 }
978 if (type->read_phys_memory == NULL)
979 {
980 LOG_ERROR("type '%s' is missing read_phys_memory",
981 type->name);
982 type->read_phys_memory = err_read_phys_memory;
983 }
984 if (type->virt2phys == NULL)
985 {
986 LOG_ERROR("type '%s' is missing virt2phys", type->name);
987 type->virt2phys = identity_virt2phys;
988 }
989 }
990 else
991 {
992 /* Make sure no-MMU targets all behave the same: make no
993 * distinction between physical and virtual addresses, and
994 * ensure that virt2phys() is always an identity mapping.
995 */
996 if (type->write_phys_memory || type->read_phys_memory
997 || type->virt2phys)
998 {
999 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1000 }
1001
1002 type->mmu = no_mmu;
1003 type->write_phys_memory = type->write_memory;
1004 type->read_phys_memory = type->read_memory;
1005 type->virt2phys = identity_virt2phys;
1006 }
1007
1008 if (target->type->read_buffer == NULL)
1009 target->type->read_buffer = target_read_buffer_default;
1010
1011 if (target->type->write_buffer == NULL)
1012 target->type->write_buffer = target_write_buffer_default;
1013
1014 return ERROR_OK;
1015 }
1016
1017 static int target_init(struct command_context *cmd_ctx)
1018 {
1019 struct target *target;
1020 int retval;
1021
1022 for (target = all_targets; target; target = target->next)
1023 {
1024 retval = target_init_one(cmd_ctx, target);
1025 if (ERROR_OK != retval)
1026 return retval;
1027 }
1028
1029 if (!all_targets)
1030 return ERROR_OK;
1031
1032 retval = target_register_user_commands(cmd_ctx);
1033 if (ERROR_OK != retval)
1034 return retval;
1035
1036 retval = target_register_timer_callback(&handle_target,
1037 polling_interval, 1, cmd_ctx->interp);
1038 if (ERROR_OK != retval)
1039 return retval;
1040
1041 return ERROR_OK;
1042 }
1043
1044 COMMAND_HANDLER(handle_target_init_command)
1045 {
1046 if (CMD_ARGC != 0)
1047 return ERROR_COMMAND_SYNTAX_ERROR;
1048
1049 static bool target_initialized = false;
1050 if (target_initialized)
1051 {
1052 LOG_INFO("'target init' has already been called");
1053 return ERROR_OK;
1054 }
1055 target_initialized = true;
1056
1057 LOG_DEBUG("Initializing targets...");
1058 return target_init(CMD_CTX);
1059 }
1060
1061 int target_register_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1062 {
1063 struct target_event_callback **callbacks_p = &target_event_callbacks;
1064
1065 if (callback == NULL)
1066 {
1067 return ERROR_INVALID_ARGUMENTS;
1068 }
1069
1070 if (*callbacks_p)
1071 {
1072 while ((*callbacks_p)->next)
1073 callbacks_p = &((*callbacks_p)->next);
1074 callbacks_p = &((*callbacks_p)->next);
1075 }
1076
1077 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1078 (*callbacks_p)->callback = callback;
1079 (*callbacks_p)->priv = priv;
1080 (*callbacks_p)->next = NULL;
1081
1082 return ERROR_OK;
1083 }
1084
1085 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1086 {
1087 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1088 struct timeval now;
1089
1090 if (callback == NULL)
1091 {
1092 return ERROR_INVALID_ARGUMENTS;
1093 }
1094
1095 if (*callbacks_p)
1096 {
1097 while ((*callbacks_p)->next)
1098 callbacks_p = &((*callbacks_p)->next);
1099 callbacks_p = &((*callbacks_p)->next);
1100 }
1101
1102 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1103 (*callbacks_p)->callback = callback;
1104 (*callbacks_p)->periodic = periodic;
1105 (*callbacks_p)->time_ms = time_ms;
1106
1107 gettimeofday(&now, NULL);
1108 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1109 time_ms -= (time_ms % 1000);
1110 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1111 if ((*callbacks_p)->when.tv_usec > 1000000)
1112 {
1113 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1114 (*callbacks_p)->when.tv_sec += 1;
1115 }
1116
1117 (*callbacks_p)->priv = priv;
1118 (*callbacks_p)->next = NULL;
1119
1120 return ERROR_OK;
1121 }
1122
1123 int target_unregister_event_callback(int (*callback)(struct target *target, enum target_event event, void *priv), void *priv)
1124 {
1125 struct target_event_callback **p = &target_event_callbacks;
1126 struct target_event_callback *c = target_event_callbacks;
1127
1128 if (callback == NULL)
1129 {
1130 return ERROR_INVALID_ARGUMENTS;
1131 }
1132
1133 while (c)
1134 {
1135 struct target_event_callback *next = c->next;
1136 if ((c->callback == callback) && (c->priv == priv))
1137 {
1138 *p = next;
1139 free(c);
1140 return ERROR_OK;
1141 }
1142 else
1143 p = &(c->next);
1144 c = next;
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1151 {
1152 struct target_timer_callback **p = &target_timer_callbacks;
1153 struct target_timer_callback *c = target_timer_callbacks;
1154
1155 if (callback == NULL)
1156 {
1157 return ERROR_INVALID_ARGUMENTS;
1158 }
1159
1160 while (c)
1161 {
1162 struct target_timer_callback *next = c->next;
1163 if ((c->callback == callback) && (c->priv == priv))
1164 {
1165 *p = next;
1166 free(c);
1167 return ERROR_OK;
1168 }
1169 else
1170 p = &(c->next);
1171 c = next;
1172 }
1173
1174 return ERROR_OK;
1175 }
1176
1177 int target_call_event_callbacks(struct target *target, enum target_event event)
1178 {
1179 struct target_event_callback *callback = target_event_callbacks;
1180 struct target_event_callback *next_callback;
1181
1182 if (event == TARGET_EVENT_HALTED)
1183 {
1184 /* execute early halted first */
1185 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1186 }
1187
1188 LOG_DEBUG("target event %i (%s)",
1189 event,
1190 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1191
1192 target_handle_event(target, event);
1193
1194 while (callback)
1195 {
1196 next_callback = callback->next;
1197 callback->callback(target, event, callback->priv);
1198 callback = next_callback;
1199 }
1200
1201 return ERROR_OK;
1202 }
1203
1204 static int target_timer_callback_periodic_restart(
1205 struct target_timer_callback *cb, struct timeval *now)
1206 {
1207 int time_ms = cb->time_ms;
1208 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1209 time_ms -= (time_ms % 1000);
1210 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1211 if (cb->when.tv_usec > 1000000)
1212 {
1213 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1214 cb->when.tv_sec += 1;
1215 }
1216 return ERROR_OK;
1217 }
1218
1219 static int target_call_timer_callback(struct target_timer_callback *cb,
1220 struct timeval *now)
1221 {
1222 cb->callback(cb->priv);
1223
1224 if (cb->periodic)
1225 return target_timer_callback_periodic_restart(cb, now);
1226
1227 return target_unregister_timer_callback(cb->callback, cb->priv);
1228 }
1229
1230 static int target_call_timer_callbacks_check_time(int checktime)
1231 {
1232 keep_alive();
1233
1234 struct timeval now;
1235 gettimeofday(&now, NULL);
1236
1237 struct target_timer_callback *callback = target_timer_callbacks;
1238 while (callback)
1239 {
1240 // cleaning up may unregister and free this callback
1241 struct target_timer_callback *next_callback = callback->next;
1242
1243 bool call_it = callback->callback &&
1244 ((!checktime && callback->periodic) ||
1245 now.tv_sec > callback->when.tv_sec ||
1246 (now.tv_sec == callback->when.tv_sec &&
1247 now.tv_usec >= callback->when.tv_usec));
1248
1249 if (call_it)
1250 {
1251 int retval = target_call_timer_callback(callback, &now);
1252 if (retval != ERROR_OK)
1253 return retval;
1254 }
1255
1256 callback = next_callback;
1257 }
1258
1259 return ERROR_OK;
1260 }
1261
1262 int target_call_timer_callbacks(void)
1263 {
1264 return target_call_timer_callbacks_check_time(1);
1265 }
1266
1267 /* invoke periodic callbacks immediately */
1268 int target_call_timer_callbacks_now(void)
1269 {
1270 return target_call_timer_callbacks_check_time(0);
1271 }
1272
1273 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1274 {
1275 struct working_area *c = target->working_areas;
1276 struct working_area *new_wa = NULL;
1277
1278 /* Reevaluate working area address based on MMU state*/
1279 if (target->working_areas == NULL)
1280 {
1281 int retval;
1282 int enabled;
1283
1284 retval = target->type->mmu(target, &enabled);
1285 if (retval != ERROR_OK)
1286 {
1287 return retval;
1288 }
1289
1290 if (!enabled) {
1291 if (target->working_area_phys_spec) {
1292 LOG_DEBUG("MMU disabled, using physical "
1293 "address for working memory 0x%08x",
1294 (unsigned)target->working_area_phys);
1295 target->working_area = target->working_area_phys;
1296 } else {
1297 LOG_ERROR("No working memory available. "
1298 "Specify -work-area-phys to target.");
1299 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1300 }
1301 } else {
1302 if (target->working_area_virt_spec) {
1303 LOG_DEBUG("MMU enabled, using virtual "
1304 "address for working memory 0x%08x",
1305 (unsigned)target->working_area_virt);
1306 target->working_area = target->working_area_virt;
1307 } else {
1308 LOG_ERROR("No working memory available. "
1309 "Specify -work-area-virt to target.");
1310 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1311 }
1312 }
1313 }
1314
1315 /* only allocate multiples of 4 byte */
1316 if (size % 4)
1317 {
1318 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1319 size = (size + 3) & (~3);
1320 }
1321
1322 /* see if there's already a matching working area */
1323 while (c)
1324 {
1325 if ((c->free) && (c->size == size))
1326 {
1327 new_wa = c;
1328 break;
1329 }
1330 c = c->next;
1331 }
1332
1333 /* if not, allocate a new one */
1334 if (!new_wa)
1335 {
1336 struct working_area **p = &target->working_areas;
1337 uint32_t first_free = target->working_area;
1338 uint32_t free_size = target->working_area_size;
1339
1340 c = target->working_areas;
1341 while (c)
1342 {
1343 first_free += c->size;
1344 free_size -= c->size;
1345 p = &c->next;
1346 c = c->next;
1347 }
1348
1349 if (free_size < size)
1350 {
1351 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1352 }
1353
1354 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1355
1356 new_wa = malloc(sizeof(struct working_area));
1357 new_wa->next = NULL;
1358 new_wa->size = size;
1359 new_wa->address = first_free;
1360
1361 if (target->backup_working_area)
1362 {
1363 int retval;
1364 new_wa->backup = malloc(new_wa->size);
1365 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1366 {
1367 free(new_wa->backup);
1368 free(new_wa);
1369 return retval;
1370 }
1371 }
1372 else
1373 {
1374 new_wa->backup = NULL;
1375 }
1376
1377 /* put new entry in list */
1378 *p = new_wa;
1379 }
1380
1381 /* mark as used, and return the new (reused) area */
1382 new_wa->free = false;
1383 *area = new_wa;
1384
1385 /* user pointer */
1386 new_wa->user = area;
1387
1388 return ERROR_OK;
1389 }
1390
1391 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1392 {
1393 int retval;
1394
1395 retval = target_alloc_working_area_try(target, size, area);
1396 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1397 {
1398 LOG_WARNING("not enough working area available(requested %u)", (unsigned)(size));
1399 }
1400 return retval;
1401
1402 }
1403
1404 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1405 {
1406 if (area->free)
1407 return ERROR_OK;
1408
1409 if (restore && target->backup_working_area)
1410 {
1411 int retval;
1412 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1413 return retval;
1414 }
1415
1416 area->free = true;
1417
1418 /* mark user pointer invalid */
1419 *area->user = NULL;
1420 area->user = NULL;
1421
1422 return ERROR_OK;
1423 }
1424
1425 int target_free_working_area(struct target *target, struct working_area *area)
1426 {
1427 return target_free_working_area_restore(target, area, 1);
1428 }
1429
1430 /* free resources and restore memory, if restoring memory fails,
1431 * free up resources anyway
1432 */
1433 static void target_free_all_working_areas_restore(struct target *target, int restore)
1434 {
1435 struct working_area *c = target->working_areas;
1436
1437 while (c)
1438 {
1439 struct working_area *next = c->next;
1440 target_free_working_area_restore(target, c, restore);
1441
1442 if (c->backup)
1443 free(c->backup);
1444
1445 free(c);
1446
1447 c = next;
1448 }
1449
1450 target->working_areas = NULL;
1451 }
1452
1453 void target_free_all_working_areas(struct target *target)
1454 {
1455 target_free_all_working_areas_restore(target, 1);
1456 }
1457
1458 int target_arch_state(struct target *target)
1459 {
1460 int retval;
1461 if (target == NULL)
1462 {
1463 LOG_USER("No target has been configured");
1464 return ERROR_OK;
1465 }
1466
1467 LOG_USER("target state: %s", target_state_name( target ));
1468
1469 if (target->state != TARGET_HALTED)
1470 return ERROR_OK;
1471
1472 retval = target->type->arch_state(target);
1473 return retval;
1474 }
1475
1476 /* Single aligned words are guaranteed to use 16 or 32 bit access
1477 * mode respectively, otherwise data is handled as quickly as
1478 * possible
1479 */
1480 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1481 {
1482 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1483 (int)size, (unsigned)address);
1484
1485 if (!target_was_examined(target))
1486 {
1487 LOG_ERROR("Target not examined yet");
1488 return ERROR_FAIL;
1489 }
1490
1491 if (size == 0) {
1492 return ERROR_OK;
1493 }
1494
1495 if ((address + size - 1) < address)
1496 {
1497 /* GDB can request this when e.g. PC is 0xfffffffc*/
1498 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1499 (unsigned)address,
1500 (unsigned)size);
1501 return ERROR_FAIL;
1502 }
1503
1504 return target->type->write_buffer(target, address, size, buffer);
1505 }
1506
1507 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1508 {
1509 int retval = ERROR_OK;
1510
1511 if (((address % 2) == 0) && (size == 2))
1512 {
1513 return target_write_memory(target, address, 2, 1, buffer);
1514 }
1515
1516 /* handle unaligned head bytes */
1517 if (address % 4)
1518 {
1519 uint32_t unaligned = 4 - (address % 4);
1520
1521 if (unaligned > size)
1522 unaligned = size;
1523
1524 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1525 return retval;
1526
1527 buffer += unaligned;
1528 address += unaligned;
1529 size -= unaligned;
1530 }
1531
1532 /* handle aligned words */
1533 if (size >= 4)
1534 {
1535 int aligned = size - (size % 4);
1536
1537 /* use bulk writes above a certain limit. This may have to be changed */
1538 if (aligned > 128)
1539 {
1540 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1541 return retval;
1542 }
1543 else
1544 {
1545 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1546 return retval;
1547 }
1548
1549 buffer += aligned;
1550 address += aligned;
1551 size -= aligned;
1552 }
1553
1554 /* handle tail writes of less than 4 bytes */
1555 if (size > 0)
1556 {
1557 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1558 return retval;
1559 }
1560
1561 return retval;
1562 }
1563
1564 /* Single aligned words are guaranteed to use 16 or 32 bit access
1565 * mode respectively, otherwise data is handled as quickly as
1566 * possible
1567 */
1568 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1569 {
1570 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1571 (int)size, (unsigned)address);
1572
1573 if (!target_was_examined(target))
1574 {
1575 LOG_ERROR("Target not examined yet");
1576 return ERROR_FAIL;
1577 }
1578
1579 if (size == 0) {
1580 return ERROR_OK;
1581 }
1582
1583 if ((address + size - 1) < address)
1584 {
1585 /* GDB can request this when e.g. PC is 0xfffffffc*/
1586 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1587 address,
1588 size);
1589 return ERROR_FAIL;
1590 }
1591
1592 return target->type->read_buffer(target, address, size, buffer);
1593 }
1594
1595 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1596 {
1597 int retval = ERROR_OK;
1598
1599 if (((address % 2) == 0) && (size == 2))
1600 {
1601 return target_read_memory(target, address, 2, 1, buffer);
1602 }
1603
1604 /* handle unaligned head bytes */
1605 if (address % 4)
1606 {
1607 uint32_t unaligned = 4 - (address % 4);
1608
1609 if (unaligned > size)
1610 unaligned = size;
1611
1612 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1613 return retval;
1614
1615 buffer += unaligned;
1616 address += unaligned;
1617 size -= unaligned;
1618 }
1619
1620 /* handle aligned words */
1621 if (size >= 4)
1622 {
1623 int aligned = size - (size % 4);
1624
1625 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1626 return retval;
1627
1628 buffer += aligned;
1629 address += aligned;
1630 size -= aligned;
1631 }
1632
1633 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1634 if(size >=2)
1635 {
1636 int aligned = size - (size%2);
1637 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1638 if (retval != ERROR_OK)
1639 return retval;
1640
1641 buffer += aligned;
1642 address += aligned;
1643 size -= aligned;
1644 }
1645 /* handle tail writes of less than 4 bytes */
1646 if (size > 0)
1647 {
1648 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1649 return retval;
1650 }
1651
1652 return ERROR_OK;
1653 }
1654
1655 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1656 {
1657 uint8_t *buffer;
1658 int retval;
1659 uint32_t i;
1660 uint32_t checksum = 0;
1661 if (!target_was_examined(target))
1662 {
1663 LOG_ERROR("Target not examined yet");
1664 return ERROR_FAIL;
1665 }
1666
1667 if ((retval = target->type->checksum_memory(target, address,
1668 size, &checksum)) != ERROR_OK)
1669 {
1670 buffer = malloc(size);
1671 if (buffer == NULL)
1672 {
1673 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1674 return ERROR_INVALID_ARGUMENTS;
1675 }
1676 retval = target_read_buffer(target, address, size, buffer);
1677 if (retval != ERROR_OK)
1678 {
1679 free(buffer);
1680 return retval;
1681 }
1682
1683 /* convert to target endianness */
1684 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1685 {
1686 uint32_t target_data;
1687 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1688 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1689 }
1690
1691 retval = image_calculate_checksum(buffer, size, &checksum);
1692 free(buffer);
1693 }
1694
1695 *crc = checksum;
1696
1697 return retval;
1698 }
1699
1700 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1701 {
1702 int retval;
1703 if (!target_was_examined(target))
1704 {
1705 LOG_ERROR("Target not examined yet");
1706 return ERROR_FAIL;
1707 }
1708
1709 if (target->type->blank_check_memory == 0)
1710 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1711
1712 retval = target->type->blank_check_memory(target, address, size, blank);
1713
1714 return retval;
1715 }
1716
1717 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1718 {
1719 uint8_t value_buf[4];
1720 if (!target_was_examined(target))
1721 {
1722 LOG_ERROR("Target not examined yet");
1723 return ERROR_FAIL;
1724 }
1725
1726 int retval = target_read_memory(target, address, 4, 1, value_buf);
1727
1728 if (retval == ERROR_OK)
1729 {
1730 *value = target_buffer_get_u32(target, value_buf);
1731 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1732 address,
1733 *value);
1734 }
1735 else
1736 {
1737 *value = 0x0;
1738 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1739 address);
1740 }
1741
1742 return retval;
1743 }
1744
1745 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1746 {
1747 uint8_t value_buf[2];
1748 if (!target_was_examined(target))
1749 {
1750 LOG_ERROR("Target not examined yet");
1751 return ERROR_FAIL;
1752 }
1753
1754 int retval = target_read_memory(target, address, 2, 1, value_buf);
1755
1756 if (retval == ERROR_OK)
1757 {
1758 *value = target_buffer_get_u16(target, value_buf);
1759 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1760 address,
1761 *value);
1762 }
1763 else
1764 {
1765 *value = 0x0;
1766 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1767 address);
1768 }
1769
1770 return retval;
1771 }
1772
1773 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1774 {
1775 int retval = target_read_memory(target, address, 1, 1, value);
1776 if (!target_was_examined(target))
1777 {
1778 LOG_ERROR("Target not examined yet");
1779 return ERROR_FAIL;
1780 }
1781
1782 if (retval == ERROR_OK)
1783 {
1784 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1785 address,
1786 *value);
1787 }
1788 else
1789 {
1790 *value = 0x0;
1791 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1792 address);
1793 }
1794
1795 return retval;
1796 }
1797
1798 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1799 {
1800 int retval;
1801 uint8_t value_buf[4];
1802 if (!target_was_examined(target))
1803 {
1804 LOG_ERROR("Target not examined yet");
1805 return ERROR_FAIL;
1806 }
1807
1808 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1809 address,
1810 value);
1811
1812 target_buffer_set_u32(target, value_buf, value);
1813 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1814 {
1815 LOG_DEBUG("failed: %i", retval);
1816 }
1817
1818 return retval;
1819 }
1820
1821 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1822 {
1823 int retval;
1824 uint8_t value_buf[2];
1825 if (!target_was_examined(target))
1826 {
1827 LOG_ERROR("Target not examined yet");
1828 return ERROR_FAIL;
1829 }
1830
1831 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1832 address,
1833 value);
1834
1835 target_buffer_set_u16(target, value_buf, value);
1836 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1837 {
1838 LOG_DEBUG("failed: %i", retval);
1839 }
1840
1841 return retval;
1842 }
1843
1844 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
1845 {
1846 int retval;
1847 if (!target_was_examined(target))
1848 {
1849 LOG_ERROR("Target not examined yet");
1850 return ERROR_FAIL;
1851 }
1852
1853 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1854 address, value);
1855
1856 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1857 {
1858 LOG_DEBUG("failed: %i", retval);
1859 }
1860
1861 return retval;
1862 }
1863
1864 COMMAND_HANDLER(handle_targets_command)
1865 {
1866 struct target *target = all_targets;
1867
1868 if (CMD_ARGC == 1)
1869 {
1870 target = get_target(CMD_ARGV[0]);
1871 if (target == NULL) {
1872 command_print(CMD_CTX,"Target: %s is unknown, try one of:\n", CMD_ARGV[0]);
1873 goto DumpTargets;
1874 }
1875 if (!target->tap->enabled) {
1876 command_print(CMD_CTX,"Target: TAP %s is disabled, "
1877 "can't be the current target\n",
1878 target->tap->dotted_name);
1879 return ERROR_FAIL;
1880 }
1881
1882 CMD_CTX->current_target = target->target_number;
1883 return ERROR_OK;
1884 }
1885 DumpTargets:
1886
1887 target = all_targets;
1888 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
1889 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
1890 while (target)
1891 {
1892 const char *state;
1893 char marker = ' ';
1894
1895 if (target->tap->enabled)
1896 state = target_state_name( target );
1897 else
1898 state = "tap-disabled";
1899
1900 if (CMD_CTX->current_target == target->target_number)
1901 marker = '*';
1902
1903 /* keep columns lined up to match the headers above */
1904 command_print(CMD_CTX, "%2d%c %-18s %-10s %-6s %-18s %s",
1905 target->target_number,
1906 marker,
1907 target_name(target),
1908 target_type_name(target),
1909 Jim_Nvp_value2name_simple(nvp_target_endian,
1910 target->endianness)->name,
1911 target->tap->dotted_name,
1912 state);
1913 target = target->next;
1914 }
1915
1916 return ERROR_OK;
1917 }
1918
1919 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1920
1921 static int powerDropout;
1922 static int srstAsserted;
1923
1924 static int runPowerRestore;
1925 static int runPowerDropout;
1926 static int runSrstAsserted;
1927 static int runSrstDeasserted;
1928
1929 static int sense_handler(void)
1930 {
1931 static int prevSrstAsserted = 0;
1932 static int prevPowerdropout = 0;
1933
1934 int retval;
1935 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1936 return retval;
1937
1938 int powerRestored;
1939 powerRestored = prevPowerdropout && !powerDropout;
1940 if (powerRestored)
1941 {
1942 runPowerRestore = 1;
1943 }
1944
1945 long long current = timeval_ms();
1946 static long long lastPower = 0;
1947 int waitMore = lastPower + 2000 > current;
1948 if (powerDropout && !waitMore)
1949 {
1950 runPowerDropout = 1;
1951 lastPower = current;
1952 }
1953
1954 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1955 return retval;
1956
1957 int srstDeasserted;
1958 srstDeasserted = prevSrstAsserted && !srstAsserted;
1959
1960 static long long lastSrst = 0;
1961 waitMore = lastSrst + 2000 > current;
1962 if (srstDeasserted && !waitMore)
1963 {
1964 runSrstDeasserted = 1;
1965 lastSrst = current;
1966 }
1967
1968 if (!prevSrstAsserted && srstAsserted)
1969 {
1970 runSrstAsserted = 1;
1971 }
1972
1973 prevSrstAsserted = srstAsserted;
1974 prevPowerdropout = powerDropout;
1975
1976 if (srstDeasserted || powerRestored)
1977 {
1978 /* Other than logging the event we can't do anything here.
1979 * Issuing a reset is a particularly bad idea as we might
1980 * be inside a reset already.
1981 */
1982 }
1983
1984 return ERROR_OK;
1985 }
1986
1987 static int backoff_times = 0;
1988 static int backoff_count = 0;
1989
1990 /* process target state changes */
1991 static int handle_target(void *priv)
1992 {
1993 Jim_Interp *interp = (Jim_Interp *)priv;
1994 int retval = ERROR_OK;
1995
1996 if (!is_jtag_poll_safe())
1997 {
1998 /* polling is disabled currently */
1999 return ERROR_OK;
2000 }
2001
2002 /* we do not want to recurse here... */
2003 static int recursive = 0;
2004 if (! recursive)
2005 {
2006 recursive = 1;
2007 sense_handler();
2008 /* danger! running these procedures can trigger srst assertions and power dropouts.
2009 * We need to avoid an infinite loop/recursion here and we do that by
2010 * clearing the flags after running these events.
2011 */
2012 int did_something = 0;
2013 if (runSrstAsserted)
2014 {
2015 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2016 Jim_Eval(interp, "srst_asserted");
2017 did_something = 1;
2018 }
2019 if (runSrstDeasserted)
2020 {
2021 Jim_Eval(interp, "srst_deasserted");
2022 did_something = 1;
2023 }
2024 if (runPowerDropout)
2025 {
2026 LOG_INFO("Power dropout detected, running power_dropout proc.");
2027 Jim_Eval(interp, "power_dropout");
2028 did_something = 1;
2029 }
2030 if (runPowerRestore)
2031 {
2032 Jim_Eval(interp, "power_restore");
2033 did_something = 1;
2034 }
2035
2036 if (did_something)
2037 {
2038 /* clear detect flags */
2039 sense_handler();
2040 }
2041
2042 /* clear action flags */
2043
2044 runSrstAsserted = 0;
2045 runSrstDeasserted = 0;
2046 runPowerRestore = 0;
2047 runPowerDropout = 0;
2048
2049 recursive = 0;
2050 }
2051
2052 if (backoff_times > backoff_count)
2053 {
2054 /* do not poll this time as we failed previously */
2055 backoff_count++;
2056 return ERROR_OK;
2057 }
2058 backoff_count = 0;
2059
2060 /* Poll targets for state changes unless that's globally disabled.
2061 * Skip targets that are currently disabled.
2062 */
2063 for (struct target *target = all_targets;
2064 is_jtag_poll_safe() && target;
2065 target = target->next)
2066 {
2067 if (!target->tap->enabled)
2068 continue;
2069
2070 /* only poll target if we've got power and srst isn't asserted */
2071 if (!powerDropout && !srstAsserted)
2072 {
2073 /* polling may fail silently until the target has been examined */
2074 if ((retval = target_poll(target)) != ERROR_OK)
2075 {
2076 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2077 if (backoff_times * polling_interval < 5000)
2078 {
2079 backoff_times *= 2;
2080 backoff_times++;
2081 }
2082 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms", backoff_times * polling_interval);
2083
2084 /* Tell GDB to halt the debugger. This allows the user to
2085 * run monitor commands to handle the situation.
2086 */
2087 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2088 return retval;
2089 }
2090 /* Since we succeeded, we reset backoff count */
2091 if (backoff_times > 0)
2092 {
2093 LOG_USER("Polling succeeded again");
2094 }
2095 backoff_times = 0;
2096 }
2097 }
2098
2099 return retval;
2100 }
2101
2102 COMMAND_HANDLER(handle_reg_command)
2103 {
2104 struct target *target;
2105 struct reg *reg = NULL;
2106 unsigned count = 0;
2107 char *value;
2108
2109 LOG_DEBUG("-");
2110
2111 target = get_current_target(CMD_CTX);
2112
2113 /* list all available registers for the current target */
2114 if (CMD_ARGC == 0)
2115 {
2116 struct reg_cache *cache = target->reg_cache;
2117
2118 count = 0;
2119 while (cache)
2120 {
2121 unsigned i;
2122
2123 command_print(CMD_CTX, "===== %s", cache->name);
2124
2125 for (i = 0, reg = cache->reg_list;
2126 i < cache->num_regs;
2127 i++, reg++, count++)
2128 {
2129 /* only print cached values if they are valid */
2130 if (reg->valid) {
2131 value = buf_to_str(reg->value,
2132 reg->size, 16);
2133 command_print(CMD_CTX,
2134 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2135 count, reg->name,
2136 reg->size, value,
2137 reg->dirty
2138 ? " (dirty)"
2139 : "");
2140 free(value);
2141 } else {
2142 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2143 count, reg->name,
2144 reg->size) ;
2145 }
2146 }
2147 cache = cache->next;
2148 }
2149
2150 return ERROR_OK;
2151 }
2152
2153 /* access a single register by its ordinal number */
2154 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9'))
2155 {
2156 unsigned num;
2157 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2158
2159 struct reg_cache *cache = target->reg_cache;
2160 count = 0;
2161 while (cache)
2162 {
2163 unsigned i;
2164 for (i = 0; i < cache->num_regs; i++)
2165 {
2166 if (count++ == num)
2167 {
2168 reg = &cache->reg_list[i];
2169 break;
2170 }
2171 }
2172 if (reg)
2173 break;
2174 cache = cache->next;
2175 }
2176
2177 if (!reg)
2178 {
2179 command_print(CMD_CTX, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
2180 return ERROR_OK;
2181 }
2182 } else /* access a single register by its name */
2183 {
2184 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2185
2186 if (!reg)
2187 {
2188 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2189 return ERROR_OK;
2190 }
2191 }
2192
2193 /* display a register */
2194 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0') && (CMD_ARGV[1][0] <= '9'))))
2195 {
2196 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2197 reg->valid = 0;
2198
2199 if (reg->valid == 0)
2200 {
2201 reg->type->get(reg);
2202 }
2203 value = buf_to_str(reg->value, reg->size, 16);
2204 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2205 free(value);
2206 return ERROR_OK;
2207 }
2208
2209 /* set register value */
2210 if (CMD_ARGC == 2)
2211 {
2212 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2213 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2214
2215 reg->type->set(reg, buf);
2216
2217 value = buf_to_str(reg->value, reg->size, 16);
2218 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2219 free(value);
2220
2221 free(buf);
2222
2223 return ERROR_OK;
2224 }
2225
2226 command_print(CMD_CTX, "usage: reg <#|name> [value]");
2227
2228 return ERROR_OK;
2229 }
2230
2231 COMMAND_HANDLER(handle_poll_command)
2232 {
2233 int retval = ERROR_OK;
2234 struct target *target = get_current_target(CMD_CTX);
2235
2236 if (CMD_ARGC == 0)
2237 {
2238 command_print(CMD_CTX, "background polling: %s",
2239 jtag_poll_get_enabled() ? "on" : "off");
2240 command_print(CMD_CTX, "TAP: %s (%s)",
2241 target->tap->dotted_name,
2242 target->tap->enabled ? "enabled" : "disabled");
2243 if (!target->tap->enabled)
2244 return ERROR_OK;
2245 if ((retval = target_poll(target)) != ERROR_OK)
2246 return retval;
2247 if ((retval = target_arch_state(target)) != ERROR_OK)
2248 return retval;
2249 }
2250 else if (CMD_ARGC == 1)
2251 {
2252 bool enable;
2253 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2254 jtag_poll_set_enabled(enable);
2255 }
2256 else
2257 {
2258 return ERROR_COMMAND_SYNTAX_ERROR;
2259 }
2260
2261 return retval;
2262 }
2263
2264 COMMAND_HANDLER(handle_wait_halt_command)
2265 {
2266 if (CMD_ARGC > 1)
2267 return ERROR_COMMAND_SYNTAX_ERROR;
2268
2269 unsigned ms = 5000;
2270 if (1 == CMD_ARGC)
2271 {
2272 int retval = parse_uint(CMD_ARGV[0], &ms);
2273 if (ERROR_OK != retval)
2274 {
2275 command_print(CMD_CTX, "usage: %s [seconds]", CMD_NAME);
2276 return ERROR_COMMAND_SYNTAX_ERROR;
2277 }
2278 // convert seconds (given) to milliseconds (needed)
2279 ms *= 1000;
2280 }
2281
2282 struct target *target = get_current_target(CMD_CTX);
2283 return target_wait_state(target, TARGET_HALTED, ms);
2284 }
2285
2286 /* wait for target state to change. The trick here is to have a low
2287 * latency for short waits and not to suck up all the CPU time
2288 * on longer waits.
2289 *
2290 * After 500ms, keep_alive() is invoked
2291 */
2292 int target_wait_state(struct target *target, enum target_state state, int ms)
2293 {
2294 int retval;
2295 long long then = 0, cur;
2296 int once = 1;
2297
2298 for (;;)
2299 {
2300 if ((retval = target_poll(target)) != ERROR_OK)
2301 return retval;
2302 if (target->state == state)
2303 {
2304 break;
2305 }
2306 cur = timeval_ms();
2307 if (once)
2308 {
2309 once = 0;
2310 then = timeval_ms();
2311 LOG_DEBUG("waiting for target %s...",
2312 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2313 }
2314
2315 if (cur-then > 500)
2316 {
2317 keep_alive();
2318 }
2319
2320 if ((cur-then) > ms)
2321 {
2322 LOG_ERROR("timed out while waiting for target %s",
2323 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2324 return ERROR_FAIL;
2325 }
2326 }
2327
2328 return ERROR_OK;
2329 }
2330
2331 COMMAND_HANDLER(handle_halt_command)
2332 {
2333 LOG_DEBUG("-");
2334
2335 struct target *target = get_current_target(CMD_CTX);
2336 int retval = target_halt(target);
2337 if (ERROR_OK != retval)
2338 return retval;
2339
2340 if (CMD_ARGC == 1)
2341 {
2342 unsigned wait_local;
2343 retval = parse_uint(CMD_ARGV[0], &wait_local);
2344 if (ERROR_OK != retval)
2345 return ERROR_COMMAND_SYNTAX_ERROR;
2346 if (!wait_local)
2347 return ERROR_OK;
2348 }
2349
2350 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2351 }
2352
2353 COMMAND_HANDLER(handle_soft_reset_halt_command)
2354 {
2355 struct target *target = get_current_target(CMD_CTX);
2356
2357 LOG_USER("requesting target halt and executing a soft reset");
2358
2359 target->type->soft_reset_halt(target);
2360
2361 return ERROR_OK;
2362 }
2363
2364 COMMAND_HANDLER(handle_reset_command)
2365 {
2366 if (CMD_ARGC > 1)
2367 return ERROR_COMMAND_SYNTAX_ERROR;
2368
2369 enum target_reset_mode reset_mode = RESET_RUN;
2370 if (CMD_ARGC == 1)
2371 {
2372 const Jim_Nvp *n;
2373 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2374 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2375 return ERROR_COMMAND_SYNTAX_ERROR;
2376 }
2377 reset_mode = n->value;
2378 }
2379
2380 /* reset *all* targets */
2381 return target_process_reset(CMD_CTX, reset_mode);
2382 }
2383
2384
2385 COMMAND_HANDLER(handle_resume_command)
2386 {
2387 int current = 1;
2388 if (CMD_ARGC > 1)
2389 return ERROR_COMMAND_SYNTAX_ERROR;
2390
2391 struct target *target = get_current_target(CMD_CTX);
2392 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2393
2394 /* with no CMD_ARGV, resume from current pc, addr = 0,
2395 * with one arguments, addr = CMD_ARGV[0],
2396 * handle breakpoints, not debugging */
2397 uint32_t addr = 0;
2398 if (CMD_ARGC == 1)
2399 {
2400 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2401 current = 0;
2402 }
2403
2404 return target_resume(target, current, addr, 1, 0);
2405 }
2406
2407 COMMAND_HANDLER(handle_step_command)
2408 {
2409 if (CMD_ARGC > 1)
2410 return ERROR_COMMAND_SYNTAX_ERROR;
2411
2412 LOG_DEBUG("-");
2413
2414 /* with no CMD_ARGV, step from current pc, addr = 0,
2415 * with one argument addr = CMD_ARGV[0],
2416 * handle breakpoints, debugging */
2417 uint32_t addr = 0;
2418 int current_pc = 1;
2419 if (CMD_ARGC == 1)
2420 {
2421 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2422 current_pc = 0;
2423 }
2424
2425 struct target *target = get_current_target(CMD_CTX);
2426
2427 return target->type->step(target, current_pc, addr, 1);
2428 }
2429
2430 static void handle_md_output(struct command_context *cmd_ctx,
2431 struct target *target, uint32_t address, unsigned size,
2432 unsigned count, const uint8_t *buffer)
2433 {
2434 const unsigned line_bytecnt = 32;
2435 unsigned line_modulo = line_bytecnt / size;
2436
2437 char output[line_bytecnt * 4 + 1];
2438 unsigned output_len = 0;
2439
2440 const char *value_fmt;
2441 switch (size) {
2442 case 4: value_fmt = "%8.8x "; break;
2443 case 2: value_fmt = "%4.4x "; break;
2444 case 1: value_fmt = "%2.2x "; break;
2445 default:
2446 /* "can't happen", caller checked */
2447 LOG_ERROR("invalid memory read size: %u", size);
2448 return;
2449 }
2450
2451 for (unsigned i = 0; i < count; i++)
2452 {
2453 if (i % line_modulo == 0)
2454 {
2455 output_len += snprintf(output + output_len,
2456 sizeof(output) - output_len,
2457 "0x%8.8x: ",
2458 (unsigned)(address + (i*size)));
2459 }
2460
2461 uint32_t value = 0;
2462 const uint8_t *value_ptr = buffer + i * size;
2463 switch (size) {
2464 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2465 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2466 case 1: value = *value_ptr;
2467 }
2468 output_len += snprintf(output + output_len,
2469 sizeof(output) - output_len,
2470 value_fmt, value);
2471
2472 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2473 {
2474 command_print(cmd_ctx, "%s", output);
2475 output_len = 0;
2476 }
2477 }
2478 }
2479
2480 COMMAND_HANDLER(handle_md_command)
2481 {
2482 if (CMD_ARGC < 1)
2483 return ERROR_COMMAND_SYNTAX_ERROR;
2484
2485 unsigned size = 0;
2486 switch (CMD_NAME[2]) {
2487 case 'w': size = 4; break;
2488 case 'h': size = 2; break;
2489 case 'b': size = 1; break;
2490 default: return ERROR_COMMAND_SYNTAX_ERROR;
2491 }
2492
2493 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2494 int (*fn)(struct target *target,
2495 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2496 if (physical)
2497 {
2498 CMD_ARGC--;
2499 CMD_ARGV++;
2500 fn=target_read_phys_memory;
2501 } else
2502 {
2503 fn=target_read_memory;
2504 }
2505 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2506 {
2507 return ERROR_COMMAND_SYNTAX_ERROR;
2508 }
2509
2510 uint32_t address;
2511 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2512
2513 unsigned count = 1;
2514 if (CMD_ARGC == 2)
2515 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2516
2517 uint8_t *buffer = calloc(count, size);
2518
2519 struct target *target = get_current_target(CMD_CTX);
2520 int retval = fn(target, address, size, count, buffer);
2521 if (ERROR_OK == retval)
2522 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2523
2524 free(buffer);
2525
2526 return retval;
2527 }
2528
2529 typedef int (*target_write_fn)(struct target *target,
2530 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2531
2532 static int target_write_memory_fast(struct target *target,
2533 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2534 {
2535 return target_write_buffer(target, address, size * count, buffer);
2536 }
2537
2538 static int target_fill_mem(struct target *target,
2539 uint32_t address,
2540 target_write_fn fn,
2541 unsigned data_size,
2542 /* value */
2543 uint32_t b,
2544 /* count */
2545 unsigned c)
2546 {
2547 /* We have to write in reasonably large chunks to be able
2548 * to fill large memory areas with any sane speed */
2549 const unsigned chunk_size = 16384;
2550 uint8_t *target_buf = malloc(chunk_size * data_size);
2551 if (target_buf == NULL)
2552 {
2553 LOG_ERROR("Out of memory");
2554 return ERROR_FAIL;
2555 }
2556
2557 for (unsigned i = 0; i < chunk_size; i ++)
2558 {
2559 switch (data_size)
2560 {
2561 case 4:
2562 target_buffer_set_u32(target, target_buf + i*data_size, b);
2563 break;
2564 case 2:
2565 target_buffer_set_u16(target, target_buf + i*data_size, b);
2566 break;
2567 case 1:
2568 target_buffer_set_u8(target, target_buf + i*data_size, b);
2569 break;
2570 default:
2571 exit(-1);
2572 }
2573 }
2574
2575 int retval = ERROR_OK;
2576
2577 for (unsigned x = 0; x < c; x += chunk_size)
2578 {
2579 unsigned current;
2580 current = c - x;
2581 if (current > chunk_size)
2582 {
2583 current = chunk_size;
2584 }
2585 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2586 if (retval != ERROR_OK)
2587 {
2588 break;
2589 }
2590 /* avoid GDB timeouts */
2591 keep_alive();
2592 }
2593 free(target_buf);
2594
2595 return retval;
2596 }
2597
2598
2599 COMMAND_HANDLER(handle_mw_command)
2600 {
2601 if (CMD_ARGC < 2)
2602 {
2603 return ERROR_COMMAND_SYNTAX_ERROR;
2604 }
2605 bool physical=strcmp(CMD_ARGV[0], "phys")==0;
2606 target_write_fn fn;
2607 if (physical)
2608 {
2609 CMD_ARGC--;
2610 CMD_ARGV++;
2611 fn=target_write_phys_memory;
2612 } else
2613 {
2614 fn = target_write_memory_fast;
2615 }
2616 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2617 return ERROR_COMMAND_SYNTAX_ERROR;
2618
2619 uint32_t address;
2620 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2621
2622 uint32_t value;
2623 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2624
2625 unsigned count = 1;
2626 if (CMD_ARGC == 3)
2627 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2628
2629 struct target *target = get_current_target(CMD_CTX);
2630 unsigned wordsize;
2631 switch (CMD_NAME[2])
2632 {
2633 case 'w':
2634 wordsize = 4;
2635 break;
2636 case 'h':
2637 wordsize = 2;
2638 break;
2639 case 'b':
2640 wordsize = 1;
2641 break;
2642 default:
2643 return ERROR_COMMAND_SYNTAX_ERROR;
2644 }
2645
2646 return target_fill_mem(target, address, fn, wordsize, value, count);
2647 }
2648
2649 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2650 uint32_t *min_address, uint32_t *max_address)
2651 {
2652 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2653 return ERROR_COMMAND_SYNTAX_ERROR;
2654
2655 /* a base address isn't always necessary,
2656 * default to 0x0 (i.e. don't relocate) */
2657 if (CMD_ARGC >= 2)
2658 {
2659 uint32_t addr;
2660 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2661 image->base_address = addr;
2662 image->base_address_set = 1;
2663 }
2664 else
2665 image->base_address_set = 0;
2666
2667 image->start_address_set = 0;
2668
2669 if (CMD_ARGC >= 4)
2670 {
2671 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2672 }
2673 if (CMD_ARGC == 5)
2674 {
2675 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2676 // use size (given) to find max (required)
2677 *max_address += *min_address;
2678 }
2679
2680 if (*min_address > *max_address)
2681 return ERROR_COMMAND_SYNTAX_ERROR;
2682
2683 return ERROR_OK;
2684 }
2685
2686 COMMAND_HANDLER(handle_load_image_command)
2687 {
2688 uint8_t *buffer;
2689 size_t buf_cnt;
2690 uint32_t image_size;
2691 uint32_t min_address = 0;
2692 uint32_t max_address = 0xffffffff;
2693 int i;
2694 struct image image;
2695
2696 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2697 &image, &min_address, &max_address);
2698 if (ERROR_OK != retval)
2699 return retval;
2700
2701 struct target *target = get_current_target(CMD_CTX);
2702
2703 struct duration bench;
2704 duration_start(&bench);
2705
2706 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2707 {
2708 return ERROR_OK;
2709 }
2710
2711 image_size = 0x0;
2712 retval = ERROR_OK;
2713 for (i = 0; i < image.num_sections; i++)
2714 {
2715 buffer = malloc(image.sections[i].size);
2716 if (buffer == NULL)
2717 {
2718 command_print(CMD_CTX,
2719 "error allocating buffer for section (%d bytes)",
2720 (int)(image.sections[i].size));
2721 break;
2722 }
2723
2724 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2725 {
2726 free(buffer);
2727 break;
2728 }
2729
2730 uint32_t offset = 0;
2731 uint32_t length = buf_cnt;
2732
2733 /* DANGER!!! beware of unsigned comparision here!!! */
2734
2735 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2736 (image.sections[i].base_address < max_address))
2737 {
2738 if (image.sections[i].base_address < min_address)
2739 {
2740 /* clip addresses below */
2741 offset += min_address-image.sections[i].base_address;
2742 length -= offset;
2743 }
2744
2745 if (image.sections[i].base_address + buf_cnt > max_address)
2746 {
2747 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2748 }
2749
2750 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2751 {
2752 free(buffer);
2753 break;
2754 }
2755 image_size += length;
2756 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2757 (unsigned int)length,
2758 image.sections[i].base_address + offset);
2759 }
2760
2761 free(buffer);
2762 }
2763
2764 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2765 {
2766 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2767 "in %fs (%0.3f KiB/s)", image_size,
2768 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2769 }
2770
2771 image_close(&image);
2772
2773 return retval;
2774
2775 }
2776
2777 COMMAND_HANDLER(handle_dump_image_command)
2778 {
2779 struct fileio fileio;
2780 uint8_t buffer[560];
2781 int retval, retvaltemp;
2782 uint32_t address, size;
2783 struct duration bench;
2784 struct target *target = get_current_target(CMD_CTX);
2785
2786 if (CMD_ARGC != 3)
2787 return ERROR_COMMAND_SYNTAX_ERROR;
2788
2789 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2790 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2791
2792 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2793 if (retval != ERROR_OK)
2794 return retval;
2795
2796 duration_start(&bench);
2797
2798 retval = ERROR_OK;
2799 while (size > 0)
2800 {
2801 size_t size_written;
2802 uint32_t this_run_size = (size > 560) ? 560 : size;
2803 retval = target_read_buffer(target, address, this_run_size, buffer);
2804 if (retval != ERROR_OK)
2805 {
2806 break;
2807 }
2808
2809 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2810 if (retval != ERROR_OK)
2811 {
2812 break;
2813 }
2814
2815 size -= this_run_size;
2816 address += this_run_size;
2817 }
2818
2819 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2820 {
2821 int filesize;
2822 retval = fileio_size(&fileio, &filesize);
2823 if (retval != ERROR_OK)
2824 return retval;
2825 command_print(CMD_CTX,
2826 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2827 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2828 }
2829
2830 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2831 return retvaltemp;
2832
2833 return retval;
2834 }
2835
2836 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2837 {
2838 uint8_t *buffer;
2839 size_t buf_cnt;
2840 uint32_t image_size;
2841 int i;
2842 int retval;
2843 uint32_t checksum = 0;
2844 uint32_t mem_checksum = 0;
2845
2846 struct image image;
2847
2848 struct target *target = get_current_target(CMD_CTX);
2849
2850 if (CMD_ARGC < 1)
2851 {
2852 return ERROR_COMMAND_SYNTAX_ERROR;
2853 }
2854
2855 if (!target)
2856 {
2857 LOG_ERROR("no target selected");
2858 return ERROR_FAIL;
2859 }
2860
2861 struct duration bench;
2862 duration_start(&bench);
2863
2864 if (CMD_ARGC >= 2)
2865 {
2866 uint32_t addr;
2867 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2868 image.base_address = addr;
2869 image.base_address_set = 1;
2870 }
2871 else
2872 {
2873 image.base_address_set = 0;
2874 image.base_address = 0x0;
2875 }
2876
2877 image.start_address_set = 0;
2878
2879 if ((retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL)) != ERROR_OK)
2880 {
2881 return retval;
2882 }
2883
2884 image_size = 0x0;
2885 int diffs = 0;
2886 retval = ERROR_OK;
2887 for (i = 0; i < image.num_sections; i++)
2888 {
2889 buffer = malloc(image.sections[i].size);
2890 if (buffer == NULL)
2891 {
2892 command_print(CMD_CTX,
2893 "error allocating buffer for section (%d bytes)",
2894 (int)(image.sections[i].size));
2895 break;
2896 }
2897 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2898 {
2899 free(buffer);
2900 break;
2901 }
2902
2903 if (verify)
2904 {
2905 /* calculate checksum of image */
2906 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
2907 if (retval != ERROR_OK)
2908 {
2909 free(buffer);
2910 break;
2911 }
2912
2913 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2914 if (retval != ERROR_OK)
2915 {
2916 free(buffer);
2917 break;
2918 }
2919
2920 if (checksum != mem_checksum)
2921 {
2922 /* failed crc checksum, fall back to a binary compare */
2923 uint8_t *data;
2924
2925 if (diffs == 0)
2926 {
2927 LOG_ERROR("checksum mismatch - attempting binary compare");
2928 }
2929
2930 data = (uint8_t*)malloc(buf_cnt);
2931
2932 /* Can we use 32bit word accesses? */
2933 int size = 1;
2934 int count = buf_cnt;
2935 if ((count % 4) == 0)
2936 {
2937 size *= 4;
2938 count /= 4;
2939 }
2940 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2941 if (retval == ERROR_OK)
2942 {
2943 uint32_t t;
2944 for (t = 0; t < buf_cnt; t++)
2945 {
2946 if (data[t] != buffer[t])
2947 {
2948 command_print(CMD_CTX,
2949 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
2950 diffs,
2951 (unsigned)(t + image.sections[i].base_address),
2952 data[t],
2953 buffer[t]);
2954 if (diffs++ >= 127)
2955 {
2956 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
2957 free(data);
2958 free(buffer);
2959 goto done;
2960 }
2961 }
2962 keep_alive();
2963 }
2964 }
2965 free(data);
2966 }
2967 } else
2968 {
2969 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
2970 image.sections[i].base_address,
2971 buf_cnt);
2972 }
2973
2974 free(buffer);
2975 image_size += buf_cnt;
2976 }
2977 if (diffs > 0)
2978 {
2979 command_print(CMD_CTX, "No more differences found.");
2980 }
2981 done:
2982 if (diffs > 0)
2983 {
2984 retval = ERROR_FAIL;
2985 }
2986 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2987 {
2988 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
2989 "in %fs (%0.3f KiB/s)", image_size,
2990 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2991 }
2992
2993 image_close(&image);
2994
2995 return retval;
2996 }
2997
2998 COMMAND_HANDLER(handle_verify_image_command)
2999 {
3000 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3001 }
3002
3003 COMMAND_HANDLER(handle_test_image_command)
3004 {
3005 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3006 }
3007
3008 static int handle_bp_command_list(struct command_context *cmd_ctx)
3009 {
3010 struct target *target = get_current_target(cmd_ctx);
3011 struct breakpoint *breakpoint = target->breakpoints;
3012 while (breakpoint)
3013 {
3014 if (breakpoint->type == BKPT_SOFT)
3015 {
3016 char* buf = buf_to_str(breakpoint->orig_instr,
3017 breakpoint->length, 16);
3018 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3019 breakpoint->address,
3020 breakpoint->length,
3021 breakpoint->set, buf);
3022 free(buf);
3023 }
3024 else
3025 {
3026 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3027 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3028 breakpoint->asid,
3029 breakpoint->length, breakpoint->set);
3030 else if ((breakpoint->address != 0) && (breakpoint->asid != 0))
3031 {
3032 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3033 breakpoint->address,
3034 breakpoint->length, breakpoint->set);
3035 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3036 breakpoint->asid);
3037 }
3038 else
3039 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3040 breakpoint->address,
3041 breakpoint->length, breakpoint->set);
3042 }
3043
3044 breakpoint = breakpoint->next;
3045 }
3046 return ERROR_OK;
3047 }
3048
3049 static int handle_bp_command_set(struct command_context *cmd_ctx,
3050 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3051 {
3052 struct target *target = get_current_target(cmd_ctx);
3053
3054 if (asid == 0)
3055 { int retval = breakpoint_add(target, addr, length, hw);
3056 if (ERROR_OK == retval)
3057 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3058 else
3059 {
3060 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3061 return retval;
3062 }
3063 }
3064 else if (addr == 0)
3065 {
3066 int retval = context_breakpoint_add(target, asid, length, hw);
3067 if (ERROR_OK == retval)
3068 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3069 else
3070 {
3071 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3072 return retval;
3073 }
3074 }
3075 else
3076 {
3077 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3078 if(ERROR_OK == retval)
3079 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3080 else
3081 {
3082 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3083 return retval;
3084 }
3085 }
3086 return ERROR_OK;
3087
3088
3089 }
3090
3091 COMMAND_HANDLER(handle_bp_command)
3092 {
3093 uint32_t addr;
3094 uint32_t asid;
3095 uint32_t length;
3096 int hw = BKPT_SOFT;
3097 switch(CMD_ARGC)
3098 {
3099 case 0:
3100 return handle_bp_command_list(CMD_CTX);
3101 case 3:
3102
3103 if(strcmp(CMD_ARGV[2], "hw") == 0)
3104 {
3105 hw = BKPT_HARD;
3106 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3107
3108 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3109
3110 asid = 0;
3111 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3112 }
3113 else if(strcmp(CMD_ARGV[2], "hw_ctx") == 0)
3114 {
3115 hw = BKPT_HARD;
3116 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
3117 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3118 addr = 0;
3119 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3120 }
3121
3122 case 4:
3123 hw = BKPT_HARD;
3124 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3125 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
3126 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
3127 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3128 default:
3129 command_print(CMD_CTX, "usage: bp <address> [<asid>]<length> ['hw'|'hw_ctx']");
3130 return ERROR_COMMAND_SYNTAX_ERROR;
3131 }
3132
3133
3134 }
3135
3136 COMMAND_HANDLER(handle_rbp_command)
3137 {
3138 if (CMD_ARGC != 1)
3139 return ERROR_COMMAND_SYNTAX_ERROR;
3140
3141 uint32_t addr;
3142 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3143
3144 struct target *target = get_current_target(CMD_CTX);
3145 breakpoint_remove(target, addr);
3146
3147 return ERROR_OK;
3148 }
3149
3150 COMMAND_HANDLER(handle_wp_command)
3151 {
3152 struct target *target = get_current_target(CMD_CTX);
3153
3154 if (CMD_ARGC == 0)
3155 {
3156 struct watchpoint *watchpoint = target->watchpoints;
3157
3158 while (watchpoint)
3159 {
3160 command_print(CMD_CTX, "address: 0x%8.8" PRIx32
3161 ", len: 0x%8.8" PRIx32
3162 ", r/w/a: %i, value: 0x%8.8" PRIx32
3163 ", mask: 0x%8.8" PRIx32,
3164 watchpoint->address,
3165 watchpoint->length,
3166 (int)watchpoint->rw,
3167 watchpoint->value,
3168 watchpoint->mask);
3169 watchpoint = watchpoint->next;
3170 }
3171 return ERROR_OK;
3172 }
3173
3174 enum watchpoint_rw type = WPT_ACCESS;
3175 uint32_t addr = 0;
3176 uint32_t length = 0;
3177 uint32_t data_value = 0x0;
3178 uint32_t data_mask = 0xffffffff;
3179
3180 switch (CMD_ARGC)
3181 {
3182 case 5:
3183 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
3184 // fall through
3185 case 4:
3186 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
3187 // fall through
3188 case 3:
3189 switch (CMD_ARGV[2][0])
3190 {
3191 case 'r':
3192 type = WPT_READ;
3193 break;
3194 case 'w':
3195 type = WPT_WRITE;
3196 break;
3197 case 'a':
3198 type = WPT_ACCESS;
3199 break;
3200 default:
3201 LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
3202 return ERROR_COMMAND_SYNTAX_ERROR;
3203 }
3204 // fall through
3205 case 2:
3206 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3207 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3208 break;
3209
3210 default:
3211 command_print(CMD_CTX, "usage: wp [address length "
3212 "[(r|w|a) [value [mask]]]]");
3213 return ERROR_COMMAND_SYNTAX_ERROR;
3214 }