add const keyword to some APIs
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2009 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program; if not, write to the *
29 * Free Software Foundation, Inc., *
30 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
31 ***************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 #include "config.h"
34 #endif
35
36 #include "target.h"
37 #include "target_type.h"
38 #include "target_request.h"
39 #include "time_support.h"
40 #include "register.h"
41 #include "trace.h"
42 #include "image.h"
43 #include "jtag.h"
44
45
46 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj *const *argv);
47
48 static int target_array2mem(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
49 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv);
50
51 /* targets */
52 extern target_type_t arm7tdmi_target;
53 extern target_type_t arm720t_target;
54 extern target_type_t arm9tdmi_target;
55 extern target_type_t arm920t_target;
56 extern target_type_t arm966e_target;
57 extern target_type_t arm926ejs_target;
58 extern target_type_t fa526_target;
59 extern target_type_t feroceon_target;
60 extern target_type_t dragonite_target;
61 extern target_type_t xscale_target;
62 extern target_type_t cortexm3_target;
63 extern target_type_t cortexa8_target;
64 extern target_type_t arm11_target;
65 extern target_type_t mips_m4k_target;
66 extern target_type_t avr_target;
67
68 target_type_t *target_types[] =
69 {
70 &arm7tdmi_target,
71 &arm9tdmi_target,
72 &arm920t_target,
73 &arm720t_target,
74 &arm966e_target,
75 &arm926ejs_target,
76 &fa526_target,
77 &feroceon_target,
78 &dragonite_target,
79 &xscale_target,
80 &cortexm3_target,
81 &cortexa8_target,
82 &arm11_target,
83 &mips_m4k_target,
84 &avr_target,
85 NULL,
86 };
87
88 target_t *all_targets = NULL;
89 target_event_callback_t *target_event_callbacks = NULL;
90 target_timer_callback_t *target_timer_callbacks = NULL;
91
92 const Jim_Nvp nvp_assert[] = {
93 { .name = "assert", NVP_ASSERT },
94 { .name = "deassert", NVP_DEASSERT },
95 { .name = "T", NVP_ASSERT },
96 { .name = "F", NVP_DEASSERT },
97 { .name = "t", NVP_ASSERT },
98 { .name = "f", NVP_DEASSERT },
99 { .name = NULL, .value = -1 }
100 };
101
102 const Jim_Nvp nvp_error_target[] = {
103 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
104 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
105 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
106 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
107 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
108 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
109 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
110 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
111 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
112 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
113 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
114 { .value = -1, .name = NULL }
115 };
116
117 const char *target_strerror_safe(int err)
118 {
119 const Jim_Nvp *n;
120
121 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
122 if (n->name == NULL) {
123 return "unknown";
124 } else {
125 return n->name;
126 }
127 }
128
129 static const Jim_Nvp nvp_target_event[] = {
130 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
131 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
132
133 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
134 { .value = TARGET_EVENT_HALTED, .name = "halted" },
135 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
136 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
137 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
138
139 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
140 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
141
142 /* historical name */
143
144 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
145
146 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
147 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
148 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
149 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
150 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
151 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
152 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
153 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
154 { .value = TARGET_EVENT_RESET_INIT , .name = "reset-init" },
155 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
156
157 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
158 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
159
160 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
161 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
162
163 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
164 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
165
166 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
167 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
168
169 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
170 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
171
172 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
173 { .value = TARGET_EVENT_RESUMED , .name = "resume-ok" },
174 { .value = TARGET_EVENT_RESUME_END , .name = "resume-end" },
175
176 { .name = NULL, .value = -1 }
177 };
178
179 const Jim_Nvp nvp_target_state[] = {
180 { .name = "unknown", .value = TARGET_UNKNOWN },
181 { .name = "running", .value = TARGET_RUNNING },
182 { .name = "halted", .value = TARGET_HALTED },
183 { .name = "reset", .value = TARGET_RESET },
184 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
185 { .name = NULL, .value = -1 },
186 };
187
188 const Jim_Nvp nvp_target_debug_reason [] = {
189 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
190 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
191 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
192 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
193 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
194 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
195 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
196 { .name = NULL, .value = -1 },
197 };
198
199 const Jim_Nvp nvp_target_endian[] = {
200 { .name = "big", .value = TARGET_BIG_ENDIAN },
201 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
202 { .name = "be", .value = TARGET_BIG_ENDIAN },
203 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
204 { .name = NULL, .value = -1 },
205 };
206
207 const Jim_Nvp nvp_reset_modes[] = {
208 { .name = "unknown", .value = RESET_UNKNOWN },
209 { .name = "run" , .value = RESET_RUN },
210 { .name = "halt" , .value = RESET_HALT },
211 { .name = "init" , .value = RESET_INIT },
212 { .name = NULL , .value = -1 },
213 };
214
215 const char *
216 target_state_name( target_t *t )
217 {
218 const char *cp;
219 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
220 if( !cp ){
221 LOG_ERROR("Invalid target state: %d", (int)(t->state));
222 cp = "(*BUG*unknown*BUG*)";
223 }
224 return cp;
225 }
226
227 /* determine the number of the new target */
228 static int new_target_number(void)
229 {
230 target_t *t;
231 int x;
232
233 /* number is 0 based */
234 x = -1;
235 t = all_targets;
236 while (t) {
237 if (x < t->target_number) {
238 x = t->target_number;
239 }
240 t = t->next;
241 }
242 return x + 1;
243 }
244
245 /* read a uint32_t from a buffer in target memory endianness */
246 uint32_t target_buffer_get_u32(target_t *target, const uint8_t *buffer)
247 {
248 if (target->endianness == TARGET_LITTLE_ENDIAN)
249 return le_to_h_u32(buffer);
250 else
251 return be_to_h_u32(buffer);
252 }
253
254 /* read a uint16_t from a buffer in target memory endianness */
255 uint16_t target_buffer_get_u16(target_t *target, const uint8_t *buffer)
256 {
257 if (target->endianness == TARGET_LITTLE_ENDIAN)
258 return le_to_h_u16(buffer);
259 else
260 return be_to_h_u16(buffer);
261 }
262
263 /* read a uint8_t from a buffer in target memory endianness */
264 uint8_t target_buffer_get_u8(target_t *target, const uint8_t *buffer)
265 {
266 return *buffer & 0x0ff;
267 }
268
269 /* write a uint32_t to a buffer in target memory endianness */
270 void target_buffer_set_u32(target_t *target, uint8_t *buffer, uint32_t value)
271 {
272 if (target->endianness == TARGET_LITTLE_ENDIAN)
273 h_u32_to_le(buffer, value);
274 else
275 h_u32_to_be(buffer, value);
276 }
277
278 /* write a uint16_t to a buffer in target memory endianness */
279 void target_buffer_set_u16(target_t *target, uint8_t *buffer, uint16_t value)
280 {
281 if (target->endianness == TARGET_LITTLE_ENDIAN)
282 h_u16_to_le(buffer, value);
283 else
284 h_u16_to_be(buffer, value);
285 }
286
287 /* write a uint8_t to a buffer in target memory endianness */
288 void target_buffer_set_u8(target_t *target, uint8_t *buffer, uint8_t value)
289 {
290 *buffer = value;
291 }
292
293 /* return a pointer to a configured target; id is name or number */
294 target_t *get_target(const char *id)
295 {
296 target_t *target;
297
298 /* try as tcltarget name */
299 for (target = all_targets; target; target = target->next) {
300 if (target->cmd_name == NULL)
301 continue;
302 if (strcmp(id, target->cmd_name) == 0)
303 return target;
304 }
305
306 /* It's OK to remove this fallback sometime after August 2010 or so */
307
308 /* no match, try as number */
309 unsigned num;
310 if (parse_uint(id, &num) != ERROR_OK)
311 return NULL;
312
313 for (target = all_targets; target; target = target->next) {
314 if (target->target_number == (int)num) {
315 LOG_WARNING("use '%s' as target identifier, not '%u'",
316 target->cmd_name, num);
317 return target;
318 }
319 }
320
321 return NULL;
322 }
323
324 /* returns a pointer to the n-th configured target */
325 static target_t *get_target_by_num(int num)
326 {
327 target_t *target = all_targets;
328
329 while (target) {
330 if (target->target_number == num) {
331 return target;
332 }
333 target = target->next;
334 }
335
336 return NULL;
337 }
338
339 target_t* get_current_target(command_context_t *cmd_ctx)
340 {
341 target_t *target = get_target_by_num(cmd_ctx->current_target);
342
343 if (target == NULL)
344 {
345 LOG_ERROR("BUG: current_target out of bounds");
346 exit(-1);
347 }
348
349 return target;
350 }
351
352 int target_poll(struct target_s *target)
353 {
354 int retval;
355
356 /* We can't poll until after examine */
357 if (!target_was_examined(target))
358 {
359 /* Fail silently lest we pollute the log */
360 return ERROR_FAIL;
361 }
362
363 retval = target->type->poll(target);
364 if (retval != ERROR_OK)
365 return retval;
366
367 if (target->halt_issued)
368 {
369 if (target->state == TARGET_HALTED)
370 {
371 target->halt_issued = false;
372 } else
373 {
374 long long t = timeval_ms() - target->halt_issued_time;
375 if (t>1000)
376 {
377 target->halt_issued = false;
378 LOG_INFO("Halt timed out, wake up GDB.");
379 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
380 }
381 }
382 }
383
384 return ERROR_OK;
385 }
386
387 int target_halt(struct target_s *target)
388 {
389 int retval;
390 /* We can't poll until after examine */
391 if (!target_was_examined(target))
392 {
393 LOG_ERROR("Target not examined yet");
394 return ERROR_FAIL;
395 }
396
397 retval = target->type->halt(target);
398 if (retval != ERROR_OK)
399 return retval;
400
401 target->halt_issued = true;
402 target->halt_issued_time = timeval_ms();
403
404 return ERROR_OK;
405 }
406
407 int target_resume(struct target_s *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
408 {
409 int retval;
410
411 /* We can't poll until after examine */
412 if (!target_was_examined(target))
413 {
414 LOG_ERROR("Target not examined yet");
415 return ERROR_FAIL;
416 }
417
418 /* note that resume *must* be asynchronous. The CPU can halt before we poll. The CPU can
419 * even halt at the current PC as a result of a software breakpoint being inserted by (a bug?)
420 * the application.
421 */
422 if ((retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution)) != ERROR_OK)
423 return retval;
424
425 return retval;
426 }
427
428 int target_process_reset(struct command_context_s *cmd_ctx, enum target_reset_mode reset_mode)
429 {
430 char buf[100];
431 int retval;
432 Jim_Nvp *n;
433 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
434 if (n->name == NULL) {
435 LOG_ERROR("invalid reset mode");
436 return ERROR_FAIL;
437 }
438
439 /* disable polling during reset to make reset event scripts
440 * more predictable, i.e. dr/irscan & pathmove in events will
441 * not have JTAG operations injected into the middle of a sequence.
442 */
443 bool save_poll = jtag_poll_get_enabled();
444
445 jtag_poll_set_enabled(false);
446
447 sprintf(buf, "ocd_process_reset %s", n->name);
448 retval = Jim_Eval(interp, buf);
449
450 jtag_poll_set_enabled(save_poll);
451
452 if (retval != JIM_OK) {
453 Jim_PrintErrorMessage(interp);
454 return ERROR_FAIL;
455 }
456
457 /* We want any events to be processed before the prompt */
458 retval = target_call_timer_callbacks_now();
459
460 return retval;
461 }
462
463 static int identity_virt2phys(struct target_s *target,
464 uint32_t virtual, uint32_t *physical)
465 {
466 *physical = virtual;
467 return ERROR_OK;
468 }
469
470 static int no_mmu(struct target_s *target, int *enabled)
471 {
472 *enabled = 0;
473 return ERROR_OK;
474 }
475
476 static int default_examine(struct target_s *target)
477 {
478 target_set_examined(target);
479 return ERROR_OK;
480 }
481
482 int target_examine_one(struct target_s *target)
483 {
484 return target->type->examine(target);
485 }
486
487 static int jtag_enable_callback(enum jtag_event event, void *priv)
488 {
489 target_t *target = priv;
490
491 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
492 return ERROR_OK;
493
494 jtag_unregister_event_callback(jtag_enable_callback, target);
495 return target_examine_one(target);
496 }
497
498
499 /* Targets that correctly implement init + examine, i.e.
500 * no communication with target during init:
501 *
502 * XScale
503 */
504 int target_examine(void)
505 {
506 int retval = ERROR_OK;
507 target_t *target;
508
509 for (target = all_targets; target; target = target->next)
510 {
511 /* defer examination, but don't skip it */
512 if (!target->tap->enabled) {
513 jtag_register_event_callback(jtag_enable_callback,
514 target);
515 continue;
516 }
517 if ((retval = target_examine_one(target)) != ERROR_OK)
518 return retval;
519 }
520 return retval;
521 }
522 const char *target_get_name(struct target_s *target)
523 {
524 return target->type->name;
525 }
526
527 static int target_write_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
528 {
529 if (!target_was_examined(target))
530 {
531 LOG_ERROR("Target not examined yet");
532 return ERROR_FAIL;
533 }
534 return target->type->write_memory_imp(target, address, size, count, buffer);
535 }
536
537 static int target_read_memory_imp(struct target_s *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
538 {
539 if (!target_was_examined(target))
540 {
541 LOG_ERROR("Target not examined yet");
542 return ERROR_FAIL;
543 }
544 return target->type->read_memory_imp(target, address, size, count, buffer);
545 }
546
547 static int target_soft_reset_halt_imp(struct target_s *target)
548 {
549 if (!target_was_examined(target))
550 {
551 LOG_ERROR("Target not examined yet");
552 return ERROR_FAIL;
553 }
554 if (!target->type->soft_reset_halt_imp) {
555 LOG_ERROR("Target %s does not support soft_reset_halt",
556 target->cmd_name);
557 return ERROR_FAIL;
558 }
559 return target->type->soft_reset_halt_imp(target);
560 }
561
562 static int target_run_algorithm_imp(struct target_s *target, int num_mem_params, mem_param_t *mem_params, int num_reg_params, reg_param_t *reg_param, uint32_t entry_point, uint32_t exit_point, int timeout_ms, void *arch_info)
563 {
564 if (!target_was_examined(target))
565 {
566 LOG_ERROR("Target not examined yet");
567 return ERROR_FAIL;
568 }
569 return target->type->run_algorithm_imp(target, num_mem_params, mem_params, num_reg_params, reg_param, entry_point, exit_point, timeout_ms, arch_info);
570 }
571
572 int target_read_memory(struct target_s *target,
573 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
574 {
575 return target->type->read_memory(target, address, size, count, buffer);
576 }
577
578 int target_read_phys_memory(struct target_s *target,
579 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
580 {
581 return target->type->read_phys_memory(target, address, size, count, buffer);
582 }
583
584 int target_write_memory(struct target_s *target,
585 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
586 {
587 return target->type->write_memory(target, address, size, count, buffer);
588 }
589
590 int target_write_phys_memory(struct target_s *target,
591 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
592 {
593 return target->type->write_phys_memory(target, address, size, count, buffer);
594 }
595
596 int target_bulk_write_memory(struct target_s *target,
597 uint32_t address, uint32_t count, uint8_t *buffer)
598 {
599 return target->type->bulk_write_memory(target, address, count, buffer);
600 }
601
602 int target_add_breakpoint(struct target_s *target,
603 struct breakpoint_s *breakpoint)
604 {
605 return target->type->add_breakpoint(target, breakpoint);
606 }
607 int target_remove_breakpoint(struct target_s *target,
608 struct breakpoint_s *breakpoint)
609 {
610 return target->type->remove_breakpoint(target, breakpoint);
611 }
612
613 int target_add_watchpoint(struct target_s *target,
614 struct watchpoint_s *watchpoint)
615 {
616 return target->type->add_watchpoint(target, watchpoint);
617 }
618 int target_remove_watchpoint(struct target_s *target,
619 struct watchpoint_s *watchpoint)
620 {
621 return target->type->remove_watchpoint(target, watchpoint);
622 }
623
624 int target_get_gdb_reg_list(struct target_s *target,
625 struct reg_s **reg_list[], int *reg_list_size)
626 {
627 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
628 }
629 int target_step(struct target_s *target,
630 int current, uint32_t address, int handle_breakpoints)
631 {
632 return target->type->step(target, current, address, handle_breakpoints);
633 }
634
635
636 int target_run_algorithm(struct target_s *target,
637 int num_mem_params, mem_param_t *mem_params,
638 int num_reg_params, reg_param_t *reg_param,
639 uint32_t entry_point, uint32_t exit_point,
640 int timeout_ms, void *arch_info)
641 {
642 return target->type->run_algorithm(target,
643 num_mem_params, mem_params, num_reg_params, reg_param,
644 entry_point, exit_point, timeout_ms, arch_info);
645 }
646
647 /// @returns @c true if the target has been examined.
648 bool target_was_examined(struct target_s *target)
649 {
650 return target->type->examined;
651 }
652 /// Sets the @c examined flag for the given target.
653 void target_set_examined(struct target_s *target)
654 {
655 target->type->examined = true;
656 }
657 // Reset the @c examined flag for the given target.
658 void target_reset_examined(struct target_s *target)
659 {
660 target->type->examined = false;
661 }
662
663
664
665 static int default_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
666 {
667 LOG_ERROR("Not implemented: %s", __func__);
668 return ERROR_FAIL;
669 }
670
671 static int default_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
672 {
673 LOG_ERROR("Not implemented: %s", __func__);
674 return ERROR_FAIL;
675 }
676
677 static int arm_cp_check(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm)
678 {
679 /* basic check */
680 if (!target_was_examined(target))
681 {
682 LOG_ERROR("Target not examined yet");
683 return ERROR_FAIL;
684 }
685
686 if ((cpnum <0) || (cpnum > 15))
687 {
688 LOG_ERROR("Illegal co-processor %d", cpnum);
689 return ERROR_FAIL;
690 }
691
692 if (op1 > 7)
693 {
694 LOG_ERROR("Illegal op1");
695 return ERROR_FAIL;
696 }
697
698 if (op2 > 7)
699 {
700 LOG_ERROR("Illegal op2");
701 return ERROR_FAIL;
702 }
703
704 if (CRn > 15)
705 {
706 LOG_ERROR("Illegal CRn");
707 return ERROR_FAIL;
708 }
709
710 if (CRm > 15)
711 {
712 LOG_ERROR("Illegal CRm");
713 return ERROR_FAIL;
714 }
715
716 return ERROR_OK;
717 }
718
719 int target_mrc(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value)
720 {
721 int retval;
722
723 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
724 if (retval != ERROR_OK)
725 return retval;
726
727 return target->type->mrc(target, cpnum, op1, op2, CRn, CRm, value);
728 }
729
730 int target_mcr(struct target_s *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value)
731 {
732 int retval;
733
734 retval = arm_cp_check(target, cpnum, op1, op2, CRn, CRm);
735 if (retval != ERROR_OK)
736 return retval;
737
738 return target->type->mcr(target, cpnum, op1, op2, CRn, CRm, value);
739 }
740
741 static int
742 err_read_phys_memory(struct target_s *target, uint32_t address,
743 uint32_t size, uint32_t count, uint8_t *buffer)
744 {
745 LOG_ERROR("Not implemented: %s", __func__);
746 return ERROR_FAIL;
747 }
748
749 static int
750 err_write_phys_memory(struct target_s *target, uint32_t address,
751 uint32_t size, uint32_t count, uint8_t *buffer)
752 {
753 LOG_ERROR("Not implemented: %s", __func__);
754 return ERROR_FAIL;
755 }
756
757 int target_init(struct command_context_s *cmd_ctx)
758 {
759 struct target_s *target;
760 int retval;
761
762 for (target = all_targets; target; target = target->next) {
763 struct target_type_s *type = target->type;
764
765 target_reset_examined(target);
766 if (target->type->examine == NULL)
767 {
768 target->type->examine = default_examine;
769 }
770
771 if ((retval = target->type->init_target(cmd_ctx, target)) != ERROR_OK)
772 {
773 LOG_ERROR("target '%s' init failed", target_get_name(target));
774 return retval;
775 }
776
777 /**
778 * @todo MCR/MRC are ARM-specific; don't require them in
779 * all targets, or for ARMs without coprocessors.
780 */
781 if (target->type->mcr == NULL)
782 {
783 target->type->mcr = default_mcr;
784 } else
785 {
786 /* FIX! multiple targets will generally register global commands
787 * multiple times. Only register this one if *one* of the
788 * targets need the command. Hmm... make it a command on the
789 * Jim Tcl target object?
790 */
791 register_jim(cmd_ctx, "mcr", jim_mcrmrc, "write coprocessor <cpnum> <op1> <op2> <CRn> <CRm> <value>");
792 }
793
794 if (target->type->mrc == NULL)
795 {
796 target->type->mrc = default_mrc;
797 } else
798 {
799 register_jim(cmd_ctx, "mrc", jim_mcrmrc, "read coprocessor <cpnum> <op1> <op2> <CRn> <CRm>");
800 }
801
802
803 /**
804 * @todo get rid of those *memory_imp() methods, now that all
805 * callers are using target_*_memory() accessors ... and make
806 * sure the "physical" paths handle the same issues.
807 */
808
809 /* a non-invasive way(in terms of patches) to add some code that
810 * runs before the type->write/read_memory implementation
811 */
812 target->type->write_memory_imp = target->type->write_memory;
813 target->type->write_memory = target_write_memory_imp;
814 target->type->read_memory_imp = target->type->read_memory;
815 target->type->read_memory = target_read_memory_imp;
816 target->type->soft_reset_halt_imp = target->type->soft_reset_halt;
817 target->type->soft_reset_halt = target_soft_reset_halt_imp;
818 target->type->run_algorithm_imp = target->type->run_algorithm;
819 target->type->run_algorithm = target_run_algorithm_imp;
820
821 /* Sanity-check MMU support ... stub in what we must, to help
822 * implement it in stages, but warn if we need to do so.
823 */
824 if (type->mmu) {
825 if (type->write_phys_memory == NULL) {
826 LOG_ERROR("type '%s' is missing %s",
827 type->name,
828 "write_phys_memory");
829 type->write_phys_memory = err_write_phys_memory;
830 }
831 if (type->read_phys_memory == NULL) {
832 LOG_ERROR("type '%s' is missing %s",
833 type->name,
834 "read_phys_memory");
835 type->read_phys_memory = err_read_phys_memory;
836 }
837 if (type->virt2phys == NULL) {
838 LOG_ERROR("type '%s' is missing %s",
839 type->name,
840 "virt2phys");
841 type->virt2phys = identity_virt2phys;
842 }
843
844 /* Make sure no-MMU targets all behave the same: make no
845 * distinction between physical and virtual addresses, and
846 * ensure that virt2phys() is always an identity mapping.
847 */
848 } else {
849 if (type->write_phys_memory
850 || type->read_phys_memory
851 || type->virt2phys)
852 LOG_WARNING("type '%s' has broken MMU hooks",
853 type->name);
854
855 type->mmu = no_mmu;
856 type->write_phys_memory = type->write_memory;
857 type->read_phys_memory = type->read_memory;
858 type->virt2phys = identity_virt2phys;
859 }
860 }
861
862 if (all_targets)
863 {
864 if ((retval = target_register_user_commands(cmd_ctx)) != ERROR_OK)
865 return retval;
866 if ((retval = target_register_timer_callback(handle_target, 100, 1, NULL)) != ERROR_OK)
867 return retval;
868 }
869
870 return ERROR_OK;
871 }
872
873 int target_register_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
874 {
875 target_event_callback_t **callbacks_p = &target_event_callbacks;
876
877 if (callback == NULL)
878 {
879 return ERROR_INVALID_ARGUMENTS;
880 }
881
882 if (*callbacks_p)
883 {
884 while ((*callbacks_p)->next)
885 callbacks_p = &((*callbacks_p)->next);
886 callbacks_p = &((*callbacks_p)->next);
887 }
888
889 (*callbacks_p) = malloc(sizeof(target_event_callback_t));
890 (*callbacks_p)->callback = callback;
891 (*callbacks_p)->priv = priv;
892 (*callbacks_p)->next = NULL;
893
894 return ERROR_OK;
895 }
896
897 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
898 {
899 target_timer_callback_t **callbacks_p = &target_timer_callbacks;
900 struct timeval now;
901
902 if (callback == NULL)
903 {
904 return ERROR_INVALID_ARGUMENTS;
905 }
906
907 if (*callbacks_p)
908 {
909 while ((*callbacks_p)->next)
910 callbacks_p = &((*callbacks_p)->next);
911 callbacks_p = &((*callbacks_p)->next);
912 }
913
914 (*callbacks_p) = malloc(sizeof(target_timer_callback_t));
915 (*callbacks_p)->callback = callback;
916 (*callbacks_p)->periodic = periodic;
917 (*callbacks_p)->time_ms = time_ms;
918
919 gettimeofday(&now, NULL);
920 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
921 time_ms -= (time_ms % 1000);
922 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
923 if ((*callbacks_p)->when.tv_usec > 1000000)
924 {
925 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
926 (*callbacks_p)->when.tv_sec += 1;
927 }
928
929 (*callbacks_p)->priv = priv;
930 (*callbacks_p)->next = NULL;
931
932 return ERROR_OK;
933 }
934
935 int target_unregister_event_callback(int (*callback)(struct target_s *target, enum target_event event, void *priv), void *priv)
936 {
937 target_event_callback_t **p = &target_event_callbacks;
938 target_event_callback_t *c = target_event_callbacks;
939
940 if (callback == NULL)
941 {
942 return ERROR_INVALID_ARGUMENTS;
943 }
944
945 while (c)
946 {
947 target_event_callback_t *next = c->next;
948 if ((c->callback == callback) && (c->priv == priv))
949 {
950 *p = next;
951 free(c);
952 return ERROR_OK;
953 }
954 else
955 p = &(c->next);
956 c = next;
957 }
958
959 return ERROR_OK;
960 }
961
962 int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
963 {
964 target_timer_callback_t **p = &target_timer_callbacks;
965 target_timer_callback_t *c = target_timer_callbacks;
966
967 if (callback == NULL)
968 {
969 return ERROR_INVALID_ARGUMENTS;
970 }
971
972 while (c)
973 {
974 target_timer_callback_t *next = c->next;
975 if ((c->callback == callback) && (c->priv == priv))
976 {
977 *p = next;
978 free(c);
979 return ERROR_OK;
980 }
981 else
982 p = &(c->next);
983 c = next;
984 }
985
986 return ERROR_OK;
987 }
988
989 int target_call_event_callbacks(target_t *target, enum target_event event)
990 {
991 target_event_callback_t *callback = target_event_callbacks;
992 target_event_callback_t *next_callback;
993
994 if (event == TARGET_EVENT_HALTED)
995 {
996 /* execute early halted first */
997 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
998 }
999
1000 LOG_DEBUG("target event %i (%s)",
1001 event,
1002 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1003
1004 target_handle_event(target, event);
1005
1006 while (callback)
1007 {
1008 next_callback = callback->next;
1009 callback->callback(target, event, callback->priv);
1010 callback = next_callback;
1011 }
1012
1013 return ERROR_OK;
1014 }
1015
1016 static int target_timer_callback_periodic_restart(
1017 target_timer_callback_t *cb, struct timeval *now)
1018 {
1019 int time_ms = cb->time_ms;
1020 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1021 time_ms -= (time_ms % 1000);
1022 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1023 if (cb->when.tv_usec > 1000000)
1024 {
1025 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1026 cb->when.tv_sec += 1;
1027 }
1028 return ERROR_OK;
1029 }
1030
1031 static int target_call_timer_callback(target_timer_callback_t *cb,
1032 struct timeval *now)
1033 {
1034 cb->callback(cb->priv);
1035
1036 if (cb->periodic)
1037 return target_timer_callback_periodic_restart(cb, now);
1038
1039 return target_unregister_timer_callback(cb->callback, cb->priv);
1040 }
1041
1042 static int target_call_timer_callbacks_check_time(int checktime)
1043 {
1044 keep_alive();
1045
1046 struct timeval now;
1047 gettimeofday(&now, NULL);
1048
1049 target_timer_callback_t *callback = target_timer_callbacks;
1050 while (callback)
1051 {
1052 // cleaning up may unregister and free this callback
1053 target_timer_callback_t *next_callback = callback->next;
1054
1055 bool call_it = callback->callback &&
1056 ((!checktime && callback->periodic) ||
1057 now.tv_sec > callback->when.tv_sec ||
1058 (now.tv_sec == callback->when.tv_sec &&
1059 now.tv_usec >= callback->when.tv_usec));
1060
1061 if (call_it)
1062 {
1063 int retval = target_call_timer_callback(callback, &now);
1064 if (retval != ERROR_OK)
1065 return retval;
1066 }
1067
1068 callback = next_callback;
1069 }
1070
1071 return ERROR_OK;
1072 }
1073
1074 int target_call_timer_callbacks(void)
1075 {
1076 return target_call_timer_callbacks_check_time(1);
1077 }
1078
1079 /* invoke periodic callbacks immediately */
1080 int target_call_timer_callbacks_now(void)
1081 {
1082 return target_call_timer_callbacks_check_time(0);
1083 }
1084
1085 int target_alloc_working_area(struct target_s *target, uint32_t size, working_area_t **area)
1086 {
1087 working_area_t *c = target->working_areas;
1088 working_area_t *new_wa = NULL;
1089
1090 /* Reevaluate working area address based on MMU state*/
1091 if (target->working_areas == NULL)
1092 {
1093 int retval;
1094 int enabled;
1095
1096 retval = target->type->mmu(target, &enabled);
1097 if (retval != ERROR_OK)
1098 {
1099 return retval;
1100 }
1101
1102 if (!enabled) {
1103 if (target->working_area_phys_spec) {
1104 LOG_DEBUG("MMU disabled, using physical "
1105 "address for working memory 0x%08x",
1106 (unsigned)target->working_area_phys);
1107 target->working_area = target->working_area_phys;
1108 } else {
1109 LOG_ERROR("No working memory available. "
1110 "Specify -work-area-phys to target.");
1111 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1112 }
1113 } else {
1114 if (target->working_area_virt_spec) {
1115 LOG_DEBUG("MMU enabled, using virtual "
1116 "address for working memory 0x%08x",
1117 (unsigned)target->working_area_virt);
1118 target->working_area = target->working_area_virt;
1119 } else {
1120 LOG_ERROR("No working memory available. "
1121 "Specify -work-area-virt to target.");
1122 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1123 }
1124 }
1125 }
1126
1127 /* only allocate multiples of 4 byte */
1128 if (size % 4)
1129 {
1130 LOG_ERROR("BUG: code tried to allocate unaligned number of bytes (0x%08x), padding", ((unsigned)(size)));
1131 size = (size + 3) & (~3);
1132 }
1133
1134 /* see if there's already a matching working area */
1135 while (c)
1136 {
1137 if ((c->free) && (c->size == size))
1138 {
1139 new_wa = c;
1140 break;
1141 }
1142 c = c->next;
1143 }
1144
1145 /* if not, allocate a new one */
1146 if (!new_wa)
1147 {
1148 working_area_t **p = &target->working_areas;
1149 uint32_t first_free = target->working_area;
1150 uint32_t free_size = target->working_area_size;
1151
1152 c = target->working_areas;
1153 while (c)
1154 {
1155 first_free += c->size;
1156 free_size -= c->size;
1157 p = &c->next;
1158 c = c->next;
1159 }
1160
1161 if (free_size < size)
1162 {
1163 LOG_WARNING("not enough working area available(requested %u, free %u)",
1164 (unsigned)(size), (unsigned)(free_size));
1165 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1166 }
1167
1168 LOG_DEBUG("allocated new working area at address 0x%08x", (unsigned)first_free);
1169
1170 new_wa = malloc(sizeof(working_area_t));
1171 new_wa->next = NULL;
1172 new_wa->size = size;
1173 new_wa->address = first_free;
1174
1175 if (target->backup_working_area)
1176 {
1177 int retval;
1178 new_wa->backup = malloc(new_wa->size);
1179 if ((retval = target_read_memory(target, new_wa->address, 4, new_wa->size / 4, new_wa->backup)) != ERROR_OK)
1180 {
1181 free(new_wa->backup);
1182 free(new_wa);
1183 return retval;
1184 }
1185 }
1186 else
1187 {
1188 new_wa->backup = NULL;
1189 }
1190
1191 /* put new entry in list */
1192 *p = new_wa;
1193 }
1194
1195 /* mark as used, and return the new (reused) area */
1196 new_wa->free = 0;
1197 *area = new_wa;
1198
1199 /* user pointer */
1200 new_wa->user = area;
1201
1202 return ERROR_OK;
1203 }
1204
1205 int target_free_working_area_restore(struct target_s *target, working_area_t *area, int restore)
1206 {
1207 if (area->free)
1208 return ERROR_OK;
1209
1210 if (restore && target->backup_working_area)
1211 {
1212 int retval;
1213 if ((retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup)) != ERROR_OK)
1214 return retval;
1215 }
1216
1217 area->free = 1;
1218
1219 /* mark user pointer invalid */
1220 *area->user = NULL;
1221 area->user = NULL;
1222
1223 return ERROR_OK;
1224 }
1225
1226 int target_free_working_area(struct target_s *target, working_area_t *area)
1227 {
1228 return target_free_working_area_restore(target, area, 1);
1229 }
1230
1231 /* free resources and restore memory, if restoring memory fails,
1232 * free up resources anyway
1233 */
1234 void target_free_all_working_areas_restore(struct target_s *target, int restore)
1235 {
1236 working_area_t *c = target->working_areas;
1237
1238 while (c)
1239 {
1240 working_area_t *next = c->next;
1241 target_free_working_area_restore(target, c, restore);
1242
1243 if (c->backup)
1244 free(c->backup);
1245
1246 free(c);
1247
1248 c = next;
1249 }
1250
1251 target->working_areas = NULL;
1252 }
1253
1254 void target_free_all_working_areas(struct target_s *target)
1255 {
1256 target_free_all_working_areas_restore(target, 1);
1257 }
1258
1259 int target_arch_state(struct target_s *target)
1260 {
1261 int retval;
1262 if (target == NULL)
1263 {
1264 LOG_USER("No target has been configured");
1265 return ERROR_OK;
1266 }
1267
1268 LOG_USER("target state: %s", target_state_name( target ));
1269
1270 if (target->state != TARGET_HALTED)
1271 return ERROR_OK;
1272
1273 retval = target->type->arch_state(target);
1274 return retval;
1275 }
1276
1277 /* Single aligned words are guaranteed to use 16 or 32 bit access
1278 * mode respectively, otherwise data is handled as quickly as
1279 * possible
1280 */
1281 int target_write_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1282 {
1283 int retval;
1284 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1285 (int)size, (unsigned)address);
1286
1287 if (!target_was_examined(target))
1288 {
1289 LOG_ERROR("Target not examined yet");
1290 return ERROR_FAIL;
1291 }
1292
1293 if (size == 0) {
1294 return ERROR_OK;
1295 }
1296
1297 if ((address + size - 1) < address)
1298 {
1299 /* GDB can request this when e.g. PC is 0xfffffffc*/
1300 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1301 (unsigned)address,
1302 (unsigned)size);
1303 return ERROR_FAIL;
1304 }
1305
1306 if (((address % 2) == 0) && (size == 2))
1307 {
1308 return target_write_memory(target, address, 2, 1, buffer);
1309 }
1310
1311 /* handle unaligned head bytes */
1312 if (address % 4)
1313 {
1314 uint32_t unaligned = 4 - (address % 4);
1315
1316 if (unaligned > size)
1317 unaligned = size;
1318
1319 if ((retval = target_write_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1320 return retval;
1321
1322 buffer += unaligned;
1323 address += unaligned;
1324 size -= unaligned;
1325 }
1326
1327 /* handle aligned words */
1328 if (size >= 4)
1329 {
1330 int aligned = size - (size % 4);
1331
1332 /* use bulk writes above a certain limit. This may have to be changed */
1333 if (aligned > 128)
1334 {
1335 if ((retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer)) != ERROR_OK)
1336 return retval;
1337 }
1338 else
1339 {
1340 if ((retval = target_write_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1341 return retval;
1342 }
1343
1344 buffer += aligned;
1345 address += aligned;
1346 size -= aligned;
1347 }
1348
1349 /* handle tail writes of less than 4 bytes */
1350 if (size > 0)
1351 {
1352 if ((retval = target_write_memory(target, address, 1, size, buffer)) != ERROR_OK)
1353 return retval;
1354 }
1355
1356 return ERROR_OK;
1357 }
1358
1359 /* Single aligned words are guaranteed to use 16 or 32 bit access
1360 * mode respectively, otherwise data is handled as quickly as
1361 * possible
1362 */
1363 int target_read_buffer(struct target_s *target, uint32_t address, uint32_t size, uint8_t *buffer)
1364 {
1365 int retval;
1366 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1367 (int)size, (unsigned)address);
1368
1369 if (!target_was_examined(target))
1370 {
1371 LOG_ERROR("Target not examined yet");
1372 return ERROR_FAIL;
1373 }
1374
1375 if (size == 0) {
1376 return ERROR_OK;
1377 }
1378
1379 if ((address + size - 1) < address)
1380 {
1381 /* GDB can request this when e.g. PC is 0xfffffffc*/
1382 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1383 address,
1384 size);
1385 return ERROR_FAIL;
1386 }
1387
1388 if (((address % 2) == 0) && (size == 2))
1389 {
1390 return target_read_memory(target, address, 2, 1, buffer);
1391 }
1392
1393 /* handle unaligned head bytes */
1394 if (address % 4)
1395 {
1396 uint32_t unaligned = 4 - (address % 4);
1397
1398 if (unaligned > size)
1399 unaligned = size;
1400
1401 if ((retval = target_read_memory(target, address, 1, unaligned, buffer)) != ERROR_OK)
1402 return retval;
1403
1404 buffer += unaligned;
1405 address += unaligned;
1406 size -= unaligned;
1407 }
1408
1409 /* handle aligned words */
1410 if (size >= 4)
1411 {
1412 int aligned = size - (size % 4);
1413
1414 if ((retval = target_read_memory(target, address, 4, aligned / 4, buffer)) != ERROR_OK)
1415 return retval;
1416
1417 buffer += aligned;
1418 address += aligned;
1419 size -= aligned;
1420 }
1421
1422 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1423 if(size >=2)
1424 {
1425 int aligned = size - (size%2);
1426 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1427 if (retval != ERROR_OK)
1428 return retval;
1429
1430 buffer += aligned;
1431 address += aligned;
1432 size -= aligned;
1433 }
1434 /* handle tail writes of less than 4 bytes */
1435 if (size > 0)
1436 {
1437 if ((retval = target_read_memory(target, address, 1, size, buffer)) != ERROR_OK)
1438 return retval;
1439 }
1440
1441 return ERROR_OK;
1442 }
1443
1444 int target_checksum_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* crc)
1445 {
1446 uint8_t *buffer;
1447 int retval;
1448 uint32_t i;
1449 uint32_t checksum = 0;
1450 if (!target_was_examined(target))
1451 {
1452 LOG_ERROR("Target not examined yet");
1453 return ERROR_FAIL;
1454 }
1455
1456 if ((retval = target->type->checksum_memory(target, address,
1457 size, &checksum)) != ERROR_OK)
1458 {
1459 buffer = malloc(size);
1460 if (buffer == NULL)
1461 {
1462 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1463 return ERROR_INVALID_ARGUMENTS;
1464 }
1465 retval = target_read_buffer(target, address, size, buffer);
1466 if (retval != ERROR_OK)
1467 {
1468 free(buffer);
1469 return retval;
1470 }
1471
1472 /* convert to target endianess */
1473 for (i = 0; i < (size/sizeof(uint32_t)); i++)
1474 {
1475 uint32_t target_data;
1476 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1477 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1478 }
1479
1480 retval = image_calculate_checksum(buffer, size, &checksum);
1481 free(buffer);
1482 }
1483
1484 *crc = checksum;
1485
1486 return retval;
1487 }
1488
1489 int target_blank_check_memory(struct target_s *target, uint32_t address, uint32_t size, uint32_t* blank)
1490 {
1491 int retval;
1492 if (!target_was_examined(target))
1493 {
1494 LOG_ERROR("Target not examined yet");
1495 return ERROR_FAIL;
1496 }
1497
1498 if (target->type->blank_check_memory == 0)
1499 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1500
1501 retval = target->type->blank_check_memory(target, address, size, blank);
1502
1503 return retval;
1504 }
1505
1506 int target_read_u32(struct target_s *target, uint32_t address, uint32_t *value)
1507 {
1508 uint8_t value_buf[4];
1509 if (!target_was_examined(target))
1510 {
1511 LOG_ERROR("Target not examined yet");
1512 return ERROR_FAIL;
1513 }
1514
1515 int retval = target_read_memory(target, address, 4, 1, value_buf);
1516
1517 if (retval == ERROR_OK)
1518 {
1519 *value = target_buffer_get_u32(target, value_buf);
1520 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1521 address,
1522 *value);
1523 }
1524 else
1525 {
1526 *value = 0x0;
1527 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1528 address);
1529 }
1530
1531 return retval;
1532 }
1533
1534 int target_read_u16(struct target_s *target, uint32_t address, uint16_t *value)
1535 {
1536 uint8_t value_buf[2];
1537 if (!target_was_examined(target))
1538 {
1539 LOG_ERROR("Target not examined yet");
1540 return ERROR_FAIL;
1541 }
1542
1543 int retval = target_read_memory(target, address, 2, 1, value_buf);
1544
1545 if (retval == ERROR_OK)
1546 {
1547 *value = target_buffer_get_u16(target, value_buf);
1548 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1549 address,
1550 *value);
1551 }
1552 else
1553 {
1554 *value = 0x0;
1555 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1556 address);
1557 }
1558
1559 return retval;
1560 }
1561
1562 int target_read_u8(struct target_s *target, uint32_t address, uint8_t *value)
1563 {
1564 int retval = target_read_memory(target, address, 1, 1, value);
1565 if (!target_was_examined(target))
1566 {
1567 LOG_ERROR("Target not examined yet");
1568 return ERROR_FAIL;
1569 }
1570
1571 if (retval == ERROR_OK)
1572 {
1573 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1574 address,
1575 *value);
1576 }
1577 else
1578 {
1579 *value = 0x0;
1580 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1581 address);
1582 }
1583
1584 return retval;
1585 }
1586
1587 int target_write_u32(struct target_s *target, uint32_t address, uint32_t value)
1588 {
1589 int retval;
1590 uint8_t value_buf[4];
1591 if (!target_was_examined(target))
1592 {
1593 LOG_ERROR("Target not examined yet");
1594 return ERROR_FAIL;
1595 }
1596
1597 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1598 address,
1599 value);
1600
1601 target_buffer_set_u32(target, value_buf, value);
1602 if ((retval = target_write_memory(target, address, 4, 1, value_buf)) != ERROR_OK)
1603 {
1604 LOG_DEBUG("failed: %i", retval);
1605 }
1606
1607 return retval;
1608 }
1609
1610 int target_write_u16(struct target_s *target, uint32_t address, uint16_t value)
1611 {
1612 int retval;
1613 uint8_t value_buf[2];
1614 if (!target_was_examined(target))
1615 {
1616 LOG_ERROR("Target not examined yet");
1617 return ERROR_FAIL;
1618 }
1619
1620 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1621 address,
1622 value);
1623
1624 target_buffer_set_u16(target, value_buf, value);
1625 if ((retval = target_write_memory(target, address, 2, 1, value_buf)) != ERROR_OK)
1626 {
1627 LOG_DEBUG("failed: %i", retval);
1628 }
1629
1630 return retval;
1631 }
1632
1633 int target_write_u8(struct target_s *target, uint32_t address, uint8_t value)
1634 {
1635 int retval;
1636 if (!target_was_examined(target))
1637 {
1638 LOG_ERROR("Target not examined yet");
1639 return ERROR_FAIL;
1640 }
1641
1642 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1643 address, value);
1644
1645 if ((retval = target_write_memory(target, address, 1, 1, &value)) != ERROR_OK)
1646 {
1647 LOG_DEBUG("failed: %i", retval);
1648 }
1649
1650 return retval;
1651 }
1652
1653 static int handle_targets_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1654 {
1655 target_t *target = all_targets;
1656
1657 if (argc == 1)
1658 {
1659 target = get_target(args[0]);
1660 if (target == NULL) {
1661 command_print(cmd_ctx,"Target: %s is unknown, try one of:\n", args[0]);
1662 goto DumpTargets;
1663 }
1664 if (!target->tap->enabled) {
1665 command_print(cmd_ctx,"Target: TAP %s is disabled, "
1666 "can't be the current target\n",
1667 target->tap->dotted_name);
1668 return ERROR_FAIL;
1669 }
1670
1671 cmd_ctx->current_target = target->target_number;
1672 return ERROR_OK;
1673 }
1674 DumpTargets:
1675
1676 target = all_targets;
1677 command_print(cmd_ctx, " TargetName Type Endian TapName State ");
1678 command_print(cmd_ctx, "-- ------------------ ---------- ------ ------------------ ------------");
1679 while (target)
1680 {
1681 const char *state;
1682 char marker = ' ';
1683
1684 if (target->tap->enabled)
1685 state = target_state_name( target );
1686 else
1687 state = "tap-disabled";
1688
1689 if (cmd_ctx->current_target == target->target_number)
1690 marker = '*';
1691
1692 /* keep columns lined up to match the headers above */
1693 command_print(cmd_ctx, "%2d%c %-18s %-10s %-6s %-18s %s",
1694 target->target_number,
1695 marker,
1696 target->cmd_name,
1697 target_get_name(target),
1698 Jim_Nvp_value2name_simple(nvp_target_endian,
1699 target->endianness)->name,
1700 target->tap->dotted_name,
1701 state);
1702 target = target->next;
1703 }
1704
1705 return ERROR_OK;
1706 }
1707
1708 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
1709
1710 static int powerDropout;
1711 static int srstAsserted;
1712
1713 static int runPowerRestore;
1714 static int runPowerDropout;
1715 static int runSrstAsserted;
1716 static int runSrstDeasserted;
1717
1718 static int sense_handler(void)
1719 {
1720 static int prevSrstAsserted = 0;
1721 static int prevPowerdropout = 0;
1722
1723 int retval;
1724 if ((retval = jtag_power_dropout(&powerDropout)) != ERROR_OK)
1725 return retval;
1726
1727 int powerRestored;
1728 powerRestored = prevPowerdropout && !powerDropout;
1729 if (powerRestored)
1730 {
1731 runPowerRestore = 1;
1732 }
1733
1734 long long current = timeval_ms();
1735 static long long lastPower = 0;
1736 int waitMore = lastPower + 2000 > current;
1737 if (powerDropout && !waitMore)
1738 {
1739 runPowerDropout = 1;
1740 lastPower = current;
1741 }
1742
1743 if ((retval = jtag_srst_asserted(&srstAsserted)) != ERROR_OK)
1744 return retval;
1745
1746 int srstDeasserted;
1747 srstDeasserted = prevSrstAsserted && !srstAsserted;
1748
1749 static long long lastSrst = 0;
1750 waitMore = lastSrst + 2000 > current;
1751 if (srstDeasserted && !waitMore)
1752 {
1753 runSrstDeasserted = 1;
1754 lastSrst = current;
1755 }
1756
1757 if (!prevSrstAsserted && srstAsserted)
1758 {
1759 runSrstAsserted = 1;
1760 }
1761
1762 prevSrstAsserted = srstAsserted;
1763 prevPowerdropout = powerDropout;
1764
1765 if (srstDeasserted || powerRestored)
1766 {
1767 /* Other than logging the event we can't do anything here.
1768 * Issuing a reset is a particularly bad idea as we might
1769 * be inside a reset already.
1770 */
1771 }
1772
1773 return ERROR_OK;
1774 }
1775
1776 static void target_call_event_callbacks_all(enum target_event e) {
1777 target_t *target;
1778 target = all_targets;
1779 while (target) {
1780 target_call_event_callbacks(target, e);
1781 target = target->next;
1782 }
1783 }
1784
1785 /* process target state changes */
1786 int handle_target(void *priv)
1787 {
1788 int retval = ERROR_OK;
1789
1790 /* we do not want to recurse here... */
1791 static int recursive = 0;
1792 if (! recursive)
1793 {
1794 recursive = 1;
1795 sense_handler();
1796 /* danger! running these procedures can trigger srst assertions and power dropouts.
1797 * We need to avoid an infinite loop/recursion here and we do that by
1798 * clearing the flags after running these events.
1799 */
1800 int did_something = 0;
1801 if (runSrstAsserted)
1802 {
1803 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1804 Jim_Eval(interp, "srst_asserted");
1805 did_something = 1;
1806 }
1807 if (runSrstDeasserted)
1808 {
1809 Jim_Eval(interp, "srst_deasserted");
1810 did_something = 1;
1811 }
1812 if (runPowerDropout)
1813 {
1814 target_call_event_callbacks_all(TARGET_EVENT_GDB_HALT);
1815 Jim_Eval(interp, "power_dropout");
1816 did_something = 1;
1817 }
1818 if (runPowerRestore)
1819 {
1820 Jim_Eval(interp, "power_restore");
1821 did_something = 1;
1822 }
1823
1824 if (did_something)
1825 {
1826 /* clear detect flags */
1827 sense_handler();
1828 }
1829
1830 /* clear action flags */
1831
1832 runSrstAsserted = 0;
1833 runSrstDeasserted = 0;
1834 runPowerRestore = 0;
1835 runPowerDropout = 0;
1836
1837 recursive = 0;
1838 }
1839
1840 /* Poll targets for state changes unless that's globally disabled.
1841 * Skip targets that are currently disabled.
1842 */
1843 for (target_t *target = all_targets;
1844 is_jtag_poll_safe() && target;
1845 target = target->next)
1846 {
1847 if (!target->tap->enabled)
1848 continue;
1849
1850 /* only poll target if we've got power and srst isn't asserted */
1851 if (!powerDropout && !srstAsserted)
1852 {
1853 /* polling may fail silently until the target has been examined */
1854 if ((retval = target_poll(target)) != ERROR_OK)
1855 {
1856 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1857 return retval;
1858 }
1859 }
1860 }
1861
1862 return retval;
1863 }
1864
1865 static int handle_reg_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1866 {
1867 target_t *target;
1868 reg_t *reg = NULL;
1869 int count = 0;
1870 char *value;
1871
1872 LOG_DEBUG("-");
1873
1874 target = get_current_target(cmd_ctx);
1875
1876 /* list all available registers for the current target */
1877 if (argc == 0)
1878 {
1879 reg_cache_t *cache = target->reg_cache;
1880
1881 count = 0;
1882 while (cache)
1883 {
1884 int i;
1885
1886 command_print(cmd_ctx, "===== %s", cache->name);
1887
1888 for (i = 0, reg = cache->reg_list;
1889 i < cache->num_regs;
1890 i++, reg++, count++)
1891 {
1892 /* only print cached values if they are valid */
1893 if (reg->valid) {
1894 value = buf_to_str(reg->value,
1895 reg->size, 16);
1896 command_print(cmd_ctx,
1897 "(%i) %s (/%" PRIu32 "): 0x%s%s",
1898 count, reg->name,
1899 reg->size, value,
1900 reg->dirty
1901 ? " (dirty)"
1902 : "");
1903 free(value);
1904 } else {
1905 command_print(cmd_ctx, "(%i) %s (/%" PRIu32 ")",
1906 count, reg->name,
1907 reg->size) ;
1908 }
1909 }
1910 cache = cache->next;
1911 }
1912
1913 return ERROR_OK;
1914 }
1915
1916 /* access a single register by its ordinal number */
1917 if ((args[0][0] >= '0') && (args[0][0] <= '9'))
1918 {
1919 unsigned num;
1920 COMMAND_PARSE_NUMBER(uint, args[0], num);
1921
1922 reg_cache_t *cache = target->reg_cache;
1923 count = 0;
1924 while (cache)
1925 {
1926 int i;
1927 for (i = 0; i < cache->num_regs; i++)
1928 {
1929 if (count++ == (int)num)
1930 {
1931 reg = &cache->reg_list[i];
1932 break;
1933 }
1934 }
1935 if (reg)
1936 break;
1937 cache = cache->next;
1938 }
1939
1940 if (!reg)
1941 {
1942 command_print(cmd_ctx, "%i is out of bounds, the current target has only %i registers (0 - %i)", num, count, count - 1);
1943 return ERROR_OK;
1944 }
1945 } else /* access a single register by its name */
1946 {
1947 reg = register_get_by_name(target->reg_cache, args[0], 1);
1948
1949 if (!reg)
1950 {
1951 command_print(cmd_ctx, "register %s not found in current target", args[0]);
1952 return ERROR_OK;
1953 }
1954 }
1955
1956 /* display a register */
1957 if ((argc == 1) || ((argc == 2) && !((args[1][0] >= '0') && (args[1][0] <= '9'))))
1958 {
1959 if ((argc == 2) && (strcmp(args[1], "force") == 0))
1960 reg->valid = 0;
1961
1962 if (reg->valid == 0)
1963 {
1964 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1965 arch_type->get(reg);
1966 }
1967 value = buf_to_str(reg->value, reg->size, 16);
1968 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1969 free(value);
1970 return ERROR_OK;
1971 }
1972
1973 /* set register value */
1974 if (argc == 2)
1975 {
1976 uint8_t *buf = malloc(CEIL(reg->size, 8));
1977 str_to_buf(args[1], strlen(args[1]), buf, reg->size, 0);
1978
1979 reg_arch_type_t *arch_type = register_get_arch_type(reg->arch_type);
1980 arch_type->set(reg, buf);
1981
1982 value = buf_to_str(reg->value, reg->size, 16);
1983 command_print(cmd_ctx, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
1984 free(value);
1985
1986 free(buf);
1987
1988 return ERROR_OK;
1989 }
1990
1991 command_print(cmd_ctx, "usage: reg <#|name> [value]");
1992
1993 return ERROR_OK;
1994 }
1995
1996 static int handle_poll_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
1997 {
1998 int retval = ERROR_OK;
1999 target_t *target = get_current_target(cmd_ctx);
2000
2001 if (argc == 0)
2002 {
2003 command_print(cmd_ctx, "background polling: %s",
2004 jtag_poll_get_enabled() ? "on" : "off");
2005 command_print(cmd_ctx, "TAP: %s (%s)",
2006 target->tap->dotted_name,
2007 target->tap->enabled ? "enabled" : "disabled");
2008 if (!target->tap->enabled)
2009 return ERROR_OK;
2010 if ((retval = target_poll(target)) != ERROR_OK)
2011 return retval;
2012 if ((retval = target_arch_state(target)) != ERROR_OK)
2013 return retval;
2014
2015 }
2016 else if (argc == 1)
2017 {
2018 if (strcmp(args[0], "on") == 0)
2019 {
2020 jtag_poll_set_enabled(true);
2021 }
2022 else if (strcmp(args[0], "off") == 0)
2023 {
2024 jtag_poll_set_enabled(false);
2025 }
2026 else
2027 {
2028 command_print(cmd_ctx, "arg is \"on\" or \"off\"");
2029 }
2030 } else
2031 {
2032 return ERROR_COMMAND_SYNTAX_ERROR;
2033 }
2034
2035 return retval;
2036 }
2037
2038 static int handle_wait_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2039 {
2040 if (argc > 1)
2041 return ERROR_COMMAND_SYNTAX_ERROR;
2042
2043 unsigned ms = 5000;
2044 if (1 == argc)
2045 {
2046 int retval = parse_uint(args[0], &ms);
2047 if (ERROR_OK != retval)
2048 {
2049 command_print(cmd_ctx, "usage: %s [seconds]", cmd);
2050 return ERROR_COMMAND_SYNTAX_ERROR;
2051 }
2052 // convert seconds (given) to milliseconds (needed)
2053 ms *= 1000;
2054 }
2055
2056 target_t *target = get_current_target(cmd_ctx);
2057 return target_wait_state(target, TARGET_HALTED, ms);
2058 }
2059
2060 /* wait for target state to change. The trick here is to have a low
2061 * latency for short waits and not to suck up all the CPU time
2062 * on longer waits.
2063 *
2064 * After 500ms, keep_alive() is invoked
2065 */
2066 int target_wait_state(target_t *target, enum target_state state, int ms)
2067 {
2068 int retval;
2069 long long then = 0, cur;
2070 int once = 1;
2071
2072 for (;;)
2073 {
2074 if ((retval = target_poll(target)) != ERROR_OK)
2075 return retval;
2076 if (target->state == state)
2077 {
2078 break;
2079 }
2080 cur = timeval_ms();
2081 if (once)
2082 {
2083 once = 0;
2084 then = timeval_ms();
2085 LOG_DEBUG("waiting for target %s...",
2086 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2087 }
2088
2089 if (cur-then > 500)
2090 {
2091 keep_alive();
2092 }
2093
2094 if ((cur-then) > ms)
2095 {
2096 LOG_ERROR("timed out while waiting for target %s",
2097 Jim_Nvp_value2name_simple(nvp_target_state,state)->name);
2098 return ERROR_FAIL;
2099 }
2100 }
2101
2102 return ERROR_OK;
2103 }
2104
2105 static int handle_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2106 {
2107 LOG_DEBUG("-");
2108
2109 target_t *target = get_current_target(cmd_ctx);
2110 int retval = target_halt(target);
2111 if (ERROR_OK != retval)
2112 return retval;
2113
2114 if (argc == 1)
2115 {
2116 unsigned wait;
2117 retval = parse_uint(args[0], &wait);
2118 if (ERROR_OK != retval)
2119 return ERROR_COMMAND_SYNTAX_ERROR;
2120 if (!wait)
2121 return ERROR_OK;
2122 }
2123
2124 return handle_wait_halt_command(cmd_ctx, cmd, args, argc);
2125 }
2126
2127 static int handle_soft_reset_halt_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2128 {
2129 target_t *target = get_current_target(cmd_ctx);
2130
2131 LOG_USER("requesting target halt and executing a soft reset");
2132
2133 target->type->soft_reset_halt(target);
2134
2135 return ERROR_OK;
2136 }
2137
2138 static int handle_reset_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2139 {
2140 if (argc > 1)
2141 return ERROR_COMMAND_SYNTAX_ERROR;
2142
2143 enum target_reset_mode reset_mode = RESET_RUN;
2144 if (argc == 1)
2145 {
2146 const Jim_Nvp *n;
2147 n = Jim_Nvp_name2value_simple(nvp_reset_modes, args[0]);
2148 if ((n->name == NULL) || (n->value == RESET_UNKNOWN)) {
2149 return ERROR_COMMAND_SYNTAX_ERROR;
2150 }
2151 reset_mode = n->value;
2152 }
2153
2154 /* reset *all* targets */
2155 return target_process_reset(cmd_ctx, reset_mode);
2156 }
2157
2158
2159 static int handle_resume_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2160 {
2161 int current = 1;
2162 if (argc > 1)
2163 return ERROR_COMMAND_SYNTAX_ERROR;
2164
2165 target_t *target = get_current_target(cmd_ctx);
2166 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2167
2168 /* with no args, resume from current pc, addr = 0,
2169 * with one arguments, addr = args[0],
2170 * handle breakpoints, not debugging */
2171 uint32_t addr = 0;
2172 if (argc == 1)
2173 {
2174 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2175 current = 0;
2176 }
2177
2178 return target_resume(target, current, addr, 1, 0);
2179 }
2180
2181 static int handle_step_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2182 {
2183 if (argc > 1)
2184 return ERROR_COMMAND_SYNTAX_ERROR;
2185
2186 LOG_DEBUG("-");
2187
2188 /* with no args, step from current pc, addr = 0,
2189 * with one argument addr = args[0],
2190 * handle breakpoints, debugging */
2191 uint32_t addr = 0;
2192 int current_pc = 1;
2193 if (argc == 1)
2194 {
2195 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2196 current_pc = 0;
2197 }
2198
2199 target_t *target = get_current_target(cmd_ctx);
2200
2201 return target->type->step(target, current_pc, addr, 1);
2202 }
2203
2204 static void handle_md_output(struct command_context_s *cmd_ctx,
2205 struct target_s *target, uint32_t address, unsigned size,
2206 unsigned count, const uint8_t *buffer)
2207 {
2208 const unsigned line_bytecnt = 32;
2209 unsigned line_modulo = line_bytecnt / size;
2210
2211 char output[line_bytecnt * 4 + 1];
2212 unsigned output_len = 0;
2213
2214 const char *value_fmt;
2215 switch (size) {
2216 case 4: value_fmt = "%8.8x "; break;
2217 case 2: value_fmt = "%4.2x "; break;
2218 case 1: value_fmt = "%2.2x "; break;
2219 default:
2220 LOG_ERROR("invalid memory read size: %u", size);
2221 exit(-1);
2222 }
2223
2224 for (unsigned i = 0; i < count; i++)
2225 {
2226 if (i % line_modulo == 0)
2227 {
2228 output_len += snprintf(output + output_len,
2229 sizeof(output) - output_len,
2230 "0x%8.8x: ",
2231 (unsigned)(address + (i*size)));
2232 }
2233
2234 uint32_t value = 0;
2235 const uint8_t *value_ptr = buffer + i * size;
2236 switch (size) {
2237 case 4: value = target_buffer_get_u32(target, value_ptr); break;
2238 case 2: value = target_buffer_get_u16(target, value_ptr); break;
2239 case 1: value = *value_ptr;
2240 }
2241 output_len += snprintf(output + output_len,
2242 sizeof(output) - output_len,
2243 value_fmt, value);
2244
2245 if ((i % line_modulo == line_modulo - 1) || (i == count - 1))
2246 {
2247 command_print(cmd_ctx, "%s", output);
2248 output_len = 0;
2249 }
2250 }
2251 }
2252
2253 static int handle_md_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2254 {
2255 if (argc < 1)
2256 return ERROR_COMMAND_SYNTAX_ERROR;
2257
2258 unsigned size = 0;
2259 switch (cmd[2]) {
2260 case 'w': size = 4; break;
2261 case 'h': size = 2; break;
2262 case 'b': size = 1; break;
2263 default: return ERROR_COMMAND_SYNTAX_ERROR;
2264 }
2265
2266 bool physical=strcmp(args[0], "phys")==0;
2267 int (*fn)(struct target_s *target,
2268 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2269 if (physical)
2270 {
2271 argc--;
2272 args++;
2273 fn=target_read_phys_memory;
2274 } else
2275 {
2276 fn=target_read_memory;
2277 }
2278 if ((argc < 1) || (argc > 2))
2279 {
2280 return ERROR_COMMAND_SYNTAX_ERROR;
2281 }
2282
2283 uint32_t address;
2284 COMMAND_PARSE_NUMBER(u32, args[0], address);
2285
2286 unsigned count = 1;
2287 if (argc == 2)
2288 COMMAND_PARSE_NUMBER(uint, args[1], count);
2289
2290 uint8_t *buffer = calloc(count, size);
2291
2292 target_t *target = get_current_target(cmd_ctx);
2293 int retval = fn(target, address, size, count, buffer);
2294 if (ERROR_OK == retval)
2295 handle_md_output(cmd_ctx, target, address, size, count, buffer);
2296
2297 free(buffer);
2298
2299 return retval;
2300 }
2301
2302 static int handle_mw_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2303 {
2304 if (argc < 2)
2305 {
2306 return ERROR_COMMAND_SYNTAX_ERROR;
2307 }
2308 bool physical=strcmp(args[0], "phys")==0;
2309 int (*fn)(struct target_s *target,
2310 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
2311 if (physical)
2312 {
2313 argc--;
2314 args++;
2315 fn=target_write_phys_memory;
2316 } else
2317 {
2318 fn=target_write_memory;
2319 }
2320 if ((argc < 2) || (argc > 3))
2321 return ERROR_COMMAND_SYNTAX_ERROR;
2322
2323 uint32_t address;
2324 COMMAND_PARSE_NUMBER(u32, args[0], address);
2325
2326 uint32_t value;
2327 COMMAND_PARSE_NUMBER(u32, args[1], value);
2328
2329 unsigned count = 1;
2330 if (argc == 3)
2331 COMMAND_PARSE_NUMBER(uint, args[2], count);
2332
2333 target_t *target = get_current_target(cmd_ctx);
2334 unsigned wordsize;
2335 uint8_t value_buf[4];
2336 switch (cmd[2])
2337 {
2338 case 'w':
2339 wordsize = 4;
2340 target_buffer_set_u32(target, value_buf, value);
2341 break;
2342 case 'h':
2343 wordsize = 2;
2344 target_buffer_set_u16(target, value_buf, value);
2345 break;
2346 case 'b':
2347 wordsize = 1;
2348 value_buf[0] = value;
2349 break;
2350 default:
2351 return ERROR_COMMAND_SYNTAX_ERROR;
2352 }
2353 for (unsigned i = 0; i < count; i++)
2354 {
2355 int retval = fn(target,
2356 address + i * wordsize, wordsize, 1, value_buf);
2357 if (ERROR_OK != retval)
2358 return retval;
2359 keep_alive();
2360 }
2361
2362 return ERROR_OK;
2363
2364 }
2365
2366 static int parse_load_image_command_args(struct command_context_s *cmd_ctx,
2367 char **args, int argc, image_t *image,
2368 uint32_t *min_address, uint32_t *max_address)
2369 {
2370 if (argc < 1 || argc > 5)
2371 return ERROR_COMMAND_SYNTAX_ERROR;
2372
2373 /* a base address isn't always necessary,
2374 * default to 0x0 (i.e. don't relocate) */
2375 if (argc >= 2)
2376 {
2377 uint32_t addr;
2378 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2379 image->base_address = addr;
2380 image->base_address_set = 1;
2381 }
2382 else
2383 image->base_address_set = 0;
2384
2385 image->start_address_set = 0;
2386
2387 if (argc >= 4)
2388 {
2389 COMMAND_PARSE_NUMBER(u32, args[3], *min_address);
2390 }
2391 if (argc == 5)
2392 {
2393 COMMAND_PARSE_NUMBER(u32, args[4], *max_address);
2394 // use size (given) to find max (required)
2395 *max_address += *min_address;
2396 }
2397
2398 if (*min_address > *max_address)
2399 return ERROR_COMMAND_SYNTAX_ERROR;
2400
2401 return ERROR_OK;
2402 }
2403
2404 static int handle_load_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2405 {
2406 uint8_t *buffer;
2407 uint32_t buf_cnt;
2408 uint32_t image_size;
2409 uint32_t min_address = 0;
2410 uint32_t max_address = 0xffffffff;
2411 int i;
2412 image_t image;
2413
2414 int retval = parse_load_image_command_args(cmd_ctx, args, argc,
2415 &image, &min_address, &max_address);
2416 if (ERROR_OK != retval)
2417 return retval;
2418
2419 target_t *target = get_current_target(cmd_ctx);
2420
2421 struct duration bench;
2422 duration_start(&bench);
2423
2424 if (image_open(&image, args[0], (argc >= 3) ? args[2] : NULL) != ERROR_OK)
2425 {
2426 return ERROR_OK;
2427 }
2428
2429 image_size = 0x0;
2430 retval = ERROR_OK;
2431 for (i = 0; i < image.num_sections; i++)
2432 {
2433 buffer = malloc(image.sections[i].size);
2434 if (buffer == NULL)
2435 {
2436 command_print(cmd_ctx,
2437 "error allocating buffer for section (%d bytes)",
2438 (int)(image.sections[i].size));
2439 break;
2440 }
2441
2442 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2443 {
2444 free(buffer);
2445 break;
2446 }
2447
2448 uint32_t offset = 0;
2449 uint32_t length = buf_cnt;
2450
2451 /* DANGER!!! beware of unsigned comparision here!!! */
2452
2453 if ((image.sections[i].base_address + buf_cnt >= min_address)&&
2454 (image.sections[i].base_address < max_address))
2455 {
2456 if (image.sections[i].base_address < min_address)
2457 {
2458 /* clip addresses below */
2459 offset += min_address-image.sections[i].base_address;
2460 length -= offset;
2461 }
2462
2463 if (image.sections[i].base_address + buf_cnt > max_address)
2464 {
2465 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2466 }
2467
2468 if ((retval = target_write_buffer(target, image.sections[i].base_address + offset, length, buffer + offset)) != ERROR_OK)
2469 {
2470 free(buffer);
2471 break;
2472 }
2473 image_size += length;
2474 command_print(cmd_ctx, "%u bytes written at address 0x%8.8" PRIx32 "",
2475 (unsigned int)length,
2476 image.sections[i].base_address + offset);
2477 }
2478
2479 free(buffer);
2480 }
2481
2482 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2483 {
2484 command_print(cmd_ctx, "downloaded %" PRIu32 " bytes "
2485 "in %fs (%0.3f kb/s)", image_size,
2486 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2487 }
2488
2489 image_close(&image);
2490
2491 return retval;
2492
2493 }
2494
2495 static int handle_dump_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2496 {
2497 fileio_t fileio;
2498
2499 uint8_t buffer[560];
2500 int retvaltemp;
2501
2502
2503 target_t *target = get_current_target(cmd_ctx);
2504
2505 if (argc != 3)
2506 {
2507 command_print(cmd_ctx, "usage: dump_image <filename> <address> <size>");
2508 return ERROR_OK;
2509 }
2510
2511 uint32_t address;
2512 COMMAND_PARSE_NUMBER(u32, args[1], address);
2513 uint32_t size;
2514 COMMAND_PARSE_NUMBER(u32, args[2], size);
2515
2516 if (fileio_open(&fileio, args[0], FILEIO_WRITE, FILEIO_BINARY) != ERROR_OK)
2517 {
2518 return ERROR_OK;
2519 }
2520
2521 struct duration bench;
2522 duration_start(&bench);
2523
2524 int retval = ERROR_OK;
2525 while (size > 0)
2526 {
2527 uint32_t size_written;
2528 uint32_t this_run_size = (size > 560) ? 560 : size;
2529 retval = target_read_buffer(target, address, this_run_size, buffer);
2530 if (retval != ERROR_OK)
2531 {
2532 break;
2533 }
2534
2535 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2536 if (retval != ERROR_OK)
2537 {
2538 break;
2539 }
2540
2541 size -= this_run_size;
2542 address += this_run_size;
2543 }
2544
2545 if ((retvaltemp = fileio_close(&fileio)) != ERROR_OK)
2546 return retvaltemp;
2547
2548 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2549 {
2550 command_print(cmd_ctx,
2551 "dumped %lld bytes in %fs (%0.3f kb/s)", fileio.size,
2552 duration_elapsed(&bench), duration_kbps(&bench, fileio.size));
2553 }
2554
2555 return retval;
2556 }
2557
2558 static int handle_verify_image_command_internal(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, int verify)
2559 {
2560 uint8_t *buffer;
2561 uint32_t buf_cnt;
2562 uint32_t image_size;
2563 int i;
2564 int retval;
2565 uint32_t checksum = 0;
2566 uint32_t mem_checksum = 0;
2567
2568 image_t image;
2569
2570 target_t *target = get_current_target(cmd_ctx);
2571
2572 if (argc < 1)
2573 {
2574 return ERROR_COMMAND_SYNTAX_ERROR;
2575 }
2576
2577 if (!target)
2578 {
2579 LOG_ERROR("no target selected");
2580 return ERROR_FAIL;
2581 }
2582
2583 struct duration bench;
2584 duration_start(&bench);
2585
2586 if (argc >= 2)
2587 {
2588 uint32_t addr;
2589 COMMAND_PARSE_NUMBER(u32, args[1], addr);
2590 image.base_address = addr;
2591 image.base_address_set = 1;
2592 }
2593 else
2594 {
2595 image.base_address_set = 0;
2596 image.base_address = 0x0;
2597 }
2598
2599 image.start_address_set = 0;
2600
2601 if ((retval = image_open(&image, args[0], (argc == 3) ? args[2] : NULL)) != ERROR_OK)
2602 {
2603 return retval;
2604 }
2605
2606 image_size = 0x0;
2607 retval = ERROR_OK;
2608 for (i = 0; i < image.num_sections; i++)
2609 {
2610 buffer = malloc(image.sections[i].size);
2611 if (buffer == NULL)
2612 {
2613 command_print(cmd_ctx,
2614 "error allocating buffer for section (%d bytes)",
2615 (int)(image.sections[i].size));
2616 break;
2617 }
2618 if ((retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt)) != ERROR_OK)
2619 {
2620 free(buffer);
2621 break;
2622 }
2623
2624 if (verify)
2625 {
2626 /* calculate checksum of image */
2627 image_calculate_checksum(buffer, buf_cnt, &checksum);
2628
2629 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
2630 if (retval != ERROR_OK)
2631 {
2632 free(buffer);
2633 break;
2634 }
2635
2636 if (checksum != mem_checksum)
2637 {
2638 /* failed crc checksum, fall back to a binary compare */
2639 uint8_t *data;
2640
2641 command_print(cmd_ctx, "checksum mismatch - attempting binary compare");
2642
2643 data = (uint8_t*)malloc(buf_cnt);
2644
2645 /* Can we use 32bit word accesses? */
2646 int size = 1;
2647 int count = buf_cnt;
2648 if ((count % 4) == 0)
2649 {
2650 size *= 4;
2651 count /= 4;
2652 }
2653 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
2654 if (retval == ERROR_OK)
2655 {
2656 uint32_t t;
2657 for (t = 0; t < buf_cnt; t++)
2658 {
2659 if (data[t] != buffer[t])
2660 {
2661 command_print(cmd_ctx,
2662 "Verify operation failed address 0x%08x. Was 0x%02x instead of 0x%02x\n",
2663 (unsigned)(t + image.sections[i].base_address),
2664 data[t],
2665 buffer[t]);
2666 free(data);
2667 free(buffer);
2668 retval = ERROR_FAIL;
2669 goto done;
2670 }
2671 if ((t%16384) == 0)
2672 {
2673 keep_alive();
2674 }
2675 }
2676 }
2677
2678 free(data);
2679 }
2680 } else
2681 {
2682 command_print(cmd_ctx, "address 0x%08" PRIx32 " length 0x%08" PRIx32 "",
2683 image.sections[i].base_address,
2684 buf_cnt);
2685 }
2686
2687 free(buffer);
2688 image_size += buf_cnt;
2689 }
2690 done:
2691 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK))
2692 {
2693 command_print(cmd_ctx, "verified %" PRIu32 " bytes "
2694 "in %fs (%0.3f kb/s)", image_size,
2695 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2696 }
2697
2698 image_close(&image);
2699
2700 return retval;
2701 }
2702
2703 static int handle_verify_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2704 {
2705 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 1);
2706 }
2707
2708 static int handle_test_image_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2709 {
2710 return handle_verify_image_command_internal(cmd_ctx, cmd, args, argc, 0);
2711 }
2712
2713 static int handle_bp_command_list(struct command_context_s *cmd_ctx)
2714 {
2715 target_t *target = get_current_target(cmd_ctx);
2716 breakpoint_t *breakpoint = target->breakpoints;
2717 while (breakpoint)
2718 {
2719 if (breakpoint->type == BKPT_SOFT)
2720 {
2721 char* buf = buf_to_str(breakpoint->orig_instr,
2722 breakpoint->length, 16);
2723 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
2724 breakpoint->address,
2725 breakpoint->length,
2726 breakpoint->set, buf);
2727 free(buf);
2728 }
2729 else
2730 {
2731 command_print(cmd_ctx, "0x%8.8" PRIx32 ", 0x%x, %i",
2732 breakpoint->address,
2733 breakpoint->length, breakpoint->set);
2734 }
2735
2736 breakpoint = breakpoint->next;
2737 }
2738 return ERROR_OK;
2739 }
2740
2741 static int handle_bp_command_set(struct command_context_s *cmd_ctx,
2742 uint32_t addr, uint32_t length, int hw)
2743 {
2744 target_t *target = get_current_target(cmd_ctx);
2745 int retval = breakpoint_add(target, addr, length, hw);
2746 if (ERROR_OK == retval)
2747 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
2748 else
2749 LOG_ERROR("Failure setting breakpoint");
2750 return retval;
2751 }
2752
2753 static int handle_bp_command(struct command_context_s *cmd_ctx,
2754 char *cmd, char **args, int argc)
2755 {
2756 if (argc == 0)
2757 return handle_bp_command_list(cmd_ctx);
2758
2759 if (argc < 2 || argc > 3)
2760 {
2761 command_print(cmd_ctx, "usage: bp <address> <length> ['hw']");
2762 return ERROR_COMMAND_SYNTAX_ERROR;
2763 }
2764
2765 uint32_t addr;
2766 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2767 uint32_t length;
2768 COMMAND_PARSE_NUMBER(u32, args[1], length);
2769
2770 int hw = BKPT_SOFT;
2771 if (argc == 3)
2772 {
2773 if (strcmp(args[2], "hw") == 0)
2774 hw = BKPT_HARD;
2775 else
2776 return ERROR_COMMAND_SYNTAX_ERROR;
2777 }
2778
2779 return handle_bp_command_set(cmd_ctx, addr, length, hw);
2780 }
2781
2782 static int handle_rbp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2783 {
2784 if (argc != 1)
2785 return ERROR_COMMAND_SYNTAX_ERROR;
2786
2787 uint32_t addr;
2788 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2789
2790 target_t *target = get_current_target(cmd_ctx);
2791 breakpoint_remove(target, addr);
2792
2793 return ERROR_OK;
2794 }
2795
2796 static int handle_wp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2797 {
2798 target_t *target = get_current_target(cmd_ctx);
2799
2800 if (argc == 0)
2801 {
2802 watchpoint_t *watchpoint = target->watchpoints;
2803
2804 while (watchpoint)
2805 {
2806 command_print(cmd_ctx,
2807 "address: 0x%8.8" PRIx32 ", len: 0x%8.8x, r/w/a: %i, value: 0x%8.8" PRIx32 ", mask: 0x%8.8" PRIx32 "",
2808 watchpoint->address,
2809 watchpoint->length,
2810 (int)(watchpoint->rw),
2811 watchpoint->value,
2812 watchpoint->mask);
2813 watchpoint = watchpoint->next;
2814 }
2815 return ERROR_OK;
2816 }
2817
2818 enum watchpoint_rw type = WPT_ACCESS;
2819 uint32_t addr = 0;
2820 uint32_t length = 0;
2821 uint32_t data_value = 0x0;
2822 uint32_t data_mask = 0xffffffff;
2823
2824 switch (argc)
2825 {
2826 case 5:
2827 COMMAND_PARSE_NUMBER(u32, args[4], data_mask);
2828 // fall through
2829 case 4:
2830 COMMAND_PARSE_NUMBER(u32, args[3], data_value);
2831 // fall through
2832 case 3:
2833 switch (args[2][0])
2834 {
2835 case 'r':
2836 type = WPT_READ;
2837 break;
2838 case 'w':
2839 type = WPT_WRITE;
2840 break;
2841 case 'a':
2842 type = WPT_ACCESS;
2843 break;
2844 default:
2845 LOG_ERROR("invalid watchpoint mode ('%c')", args[2][0]);
2846 return ERROR_COMMAND_SYNTAX_ERROR;
2847 }
2848 // fall through
2849 case 2:
2850 COMMAND_PARSE_NUMBER(u32, args[1], length);
2851 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2852 break;
2853
2854 default:
2855 command_print(cmd_ctx, "usage: wp [address length "
2856 "[(r|w|a) [value [mask]]]]");
2857 return ERROR_COMMAND_SYNTAX_ERROR;
2858 }
2859
2860 int retval = watchpoint_add(target, addr, length, type,
2861 data_value, data_mask);
2862 if (ERROR_OK != retval)
2863 LOG_ERROR("Failure setting watchpoints");
2864
2865 return retval;
2866 }
2867
2868 static int handle_rwp_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
2869 {
2870 if (argc != 1)
2871 return ERROR_COMMAND_SYNTAX_ERROR;
2872
2873 uint32_t addr;
2874 COMMAND_PARSE_NUMBER(u32, args[0], addr);
2875
2876 target_t *target = get_current_target(cmd_ctx);
2877 watchpoint_remove(target, addr);
2878
2879 return ERROR_OK;
2880 }
2881
2882
2883 /**
2884 * Translate a virtual address to a physical address.
2885 *
2886 * The low-level target implementation must have logged a detailed error
2887 * which is forwarded to telnet/GDB session.
2888 */
2889 static int handle_virt2phys_command(command_context_t *cmd_ctx,
2890 char *cmd, char **args, int argc)
2891 {
2892 if (argc != 1)
2893 return ERROR_COMMAND_SYNTAX_ERROR;
2894
2895 uint32_t va;
2896 COMMAND_PARSE_NUMBER(u32, args[0], va);
2897 uint32_t pa;
2898
2899 target_t *target = get_current_target(cmd_ctx);
2900 int retval = target->type->virt2phys(target, va, &pa);
2901 if (retval == ERROR_OK)
2902 command_print(cmd_ctx, "Physical address 0x%08" PRIx32 "", pa);
2903
2904 return retval;
2905 }
2906
2907 static void writeData(FILE *f, const void *data, size_t len)
2908 {
2909 size_t written = fwrite(data, 1, len, f);
2910 if (written != len)
2911 LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
2912 }
2913
2914 static void writeLong(FILE *f, int l)
2915 {
2916 int i;
2917 for (i = 0; i < 4; i++)
2918 {
2919 char c = (l >> (i*8))&0xff;
2920 writeData(f, &c, 1);
2921 }
2922
2923 }
2924
2925 static void writeString(FILE *f, char *s)
2926 {
2927 writeData(f, s, strlen(s));
2928 }
2929
2930 /* Dump a gmon.out histogram file. */
2931 static void writeGmon(uint32_t *samples, uint32_t sampleNum, const char *filename)
2932 {
2933 uint32_t i;
2934 FILE *f = fopen(filename, "w");
2935 if (f == NULL)
2936 return;
2937 writeString(f, "gmon");
2938 writeLong(f, 0x00000001); /* Version */
2939 writeLong(f, 0); /* padding */
2940 writeLong(f, 0); /* padding */
2941 writeLong(f, 0); /* padding */
2942
2943 uint8_t zero = 0; /* GMON_TAG_TIME_HIST */
2944 writeData(f, &zero, 1);
2945
2946 /* figure out bucket size */
2947 uint32_t min = samples[0];
2948 uint32_t max = samples[0];
2949 for (i = 0; i < sampleNum; i++)
2950 {
2951 if (min > samples[i])
2952 {
2953 min = samples[i];
2954 }
2955 if (max < samples[i])
2956 {
2957 max = samples[i];
2958 }
2959 }
2960
2961 int addressSpace = (max-min + 1);
2962
2963 static const uint32_t maxBuckets = 256 * 1024; /* maximum buckets. */
2964 uint32_t length = addressSpace;
2965 if (length > maxBuckets)
2966 {
2967 length = maxBuckets;
2968 }
2969 int *buckets = malloc(sizeof(int)*length);
2970 if (buckets == NULL)
2971 {
2972 fclose(f);
2973 return;
2974 }
2975 memset(buckets, 0, sizeof(int)*length);
2976 for (i = 0; i < sampleNum;i++)
2977 {
2978 uint32_t address = samples[i];
2979 long long a = address-min;
2980 long long b = length-1;
2981 long long c = addressSpace-1;
2982 int index = (a*b)/c; /* danger!!!! int32 overflows */
2983 buckets[index]++;
2984 }
2985
2986 /* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
2987 writeLong(f, min); /* low_pc */
2988 writeLong(f, max); /* high_pc */
2989 writeLong(f, length); /* # of samples */
2990 writeLong(f, 64000000); /* 64MHz */
2991 writeString(f, "seconds");
2992 for (i = 0; i < (15-strlen("seconds")); i++)
2993 writeData(f, &zero, 1);
2994 writeString(f, "s");
2995
2996 /*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */
2997
2998 char *data = malloc(2*length);
2999 if (data != NULL)
3000 {
3001 for (i = 0; i < length;i++)
3002 {
3003 int val;
3004 val = buckets[i];
3005 if (val > 65535)
3006 {
3007 val = 65535;
3008 }
3009 data[i*2]=val&0xff;
3010 data[i*2 + 1]=(val >> 8)&0xff;
3011 }
3012 free(buckets);
3013 writeData(f, data, length * 2);
3014 free(data);
3015 } else
3016 {
3017 free(buckets);
3018 }
3019
3020 fclose(f);
3021 }
3022
3023 /* profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC */
3024 static int handle_profile_command(struct command_context_s *cmd_ctx, char *cmd, char **args, int argc)
3025 {
3026 target_t *target = get_current_target(cmd_ctx);
3027 struct timeval timeout, now;
3028
3029 gettimeofday(&timeout, NULL);
3030 if (argc != 2)
3031 {
3032 return ERROR_COMMAND_SYNTAX_ERROR;
3033 }
3034 unsigned offset;
3035 COMMAND_PARSE_NUMBER(uint, args[0], offset);
3036
3037 timeval_add_time(&timeout, offset, 0);
3038
3039 command_print(cmd_ctx, "Starting profiling. Halting and resuming the target as often as we can...");
3040
3041 static const int maxSample = 10000;
3042 uint32_t *samples = malloc(sizeof(uint32_t)*maxSample);
3043 if (samples == NULL)
3044 return ERROR_OK;
3045
3046 int numSamples = 0;
3047 /* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
3048 reg_t *reg = register_get_by_name(target->reg_cache, "pc", 1);
3049
3050 for (;;)
3051 {
3052 int retval;
3053 target_poll(target);
3054 if (target->state == TARGET_HALTED)
3055 {
3056 uint32_t t=*((uint32_t *)reg->value);
3057 samples[numSamples++]=t;
3058 retval = target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3059 target_poll(target);
3060 alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
3061 } else if (target->state == TARGET_RUNNING)
3062 {
3063 /* We want to quickly sample the PC. */
3064 if ((retval = target_halt(target)) != ERROR_OK)
3065 {
3066 free(samples);
3067 return retval;
3068 }
3069 } else
3070 {
3071 command_print(cmd_ctx, "Target not halted or running");
3072 retval = ERROR_OK;
3073 break;
3074 }
3075 if (retval != ERROR_OK)
3076 {
3077 break;
3078 }
3079
3080 gettimeofday(&now, NULL);
3081 if ((numSamples >= maxSample) || ((now.tv_sec >= timeout.tv_sec) && (now.tv_usec >= timeout.tv_usec)))
3082 {
3083 command_print(cmd_ctx, "Profiling completed. %d samples.", numSamples);
3084 if ((retval = target_poll(target)) != ERROR_OK)
3085 {
3086 free(samples);
3087 return retval;
3088 }
3089 if (target->state == TARGET_HALTED)
3090 {
3091 target_resume(target, 1, 0, 0, 0); /* current pc, addr = 0, do not handle breakpoints, not debugging */
3092 }
3093 if ((retval = target_poll(target)) != ERROR_OK)
3094 {
3095 free(samples);
3096 return retval;
3097 }
3098 writeGmon(samples, numSamples, args[1]);
3099 command_print(cmd_ctx, "Wrote %s", args[1]);
3100 break;
3101 }
3102 }
3103 free(samples);
3104
3105 return ERROR_OK;
3106 }
3107
3108 static int new_int_array_element(Jim_Interp * interp, const char *varname, int idx, uint32_t val)
3109 {
3110 char *namebuf;
3111 Jim_Obj *nameObjPtr, *valObjPtr;
3112 int result;
3113
3114 namebuf = alloc_printf("%s(%d)", varname, idx);
3115 if (!namebuf)
3116 return JIM_ERR;
3117
3118 nameObjPtr = Jim_NewStringObj(interp, namebuf, -1);
3119 valObjPtr = Jim_NewIntObj(interp, val);
3120 if (!nameObjPtr || !valObjPtr)
3121 {
3122 free(namebuf);
3123 return JIM_ERR;
3124 }
3125
3126 Jim_IncrRefCount(nameObjPtr);
3127 Jim_IncrRefCount(valObjPtr);
3128 result = Jim_SetVariable(interp, nameObjPtr, valObjPtr);
3129 Jim_DecrRefCount(interp, nameObjPtr);
3130 Jim_DecrRefCount(interp, valObjPtr);
3131 free(namebuf);
3132 /* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
3133 return result;
3134 }
3135
3136 static int jim_mem2array(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
3137 {
3138 command_context_t *context;
3139 target_t *target;
3140
3141 context = Jim_GetAssocData(interp, "context");
3142 if (context == NULL)
3143 {
3144 LOG_ERROR("mem2array: no command context");
3145 return JIM_ERR;
3146 }
3147 target = get_current_target(context);
3148 if (target == NULL)
3149 {
3150 LOG_ERROR("mem2array: no current target");
3151 return JIM_ERR;
3152 }
3153
3154 return target_mem2array(interp, target, argc-1, argv + 1);
3155 }
3156
3157 static int target_mem2array(Jim_Interp *interp, target_t *target, int argc, Jim_Obj *const *argv)
3158 {
3159 long l;
3160 uint32_t width;
3161 int len;
3162 uint32_t addr;
3163 uint32_t count;
3164 uint32_t v;
3165 const char *varname;
3166 uint8_t buffer[4096];
3167 int n, e, retval;
3168 uint32_t i;
3169
3170 /* argv[1] = name of array to receive the data
3171 * argv[2] = desired width
3172 * argv[3] = memory address
3173 * argv[4] = count of times to read
3174 */
3175 if (argc != 4) {
3176 Jim_WrongNumArgs(interp, 1, argv, "varname width addr nelems");
3177 return JIM_ERR;
3178 }
3179 varname = Jim_GetString(argv[0], &len);
3180 /* given "foo" get space for worse case "foo(%d)" .. add 20 */
3181
3182 e = Jim_GetLong(interp, argv[1], &l);
3183 width = l;
3184 if (e != JIM_OK) {
3185 return e;