target: remove duplicate target events
[openocd.git] / src / target / target.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007-2010 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008, Duane Ellis *
9 * openocd@duaneeellis.com *
10 * *
11 * Copyright (C) 2008 by Spencer Oliver *
12 * spen@spen-soft.co.uk *
13 * *
14 * Copyright (C) 2008 by Rick Altherr *
15 * kc8apf@kc8apf.net> *
16 * *
17 * Copyright (C) 2011 by Broadcom Corporation *
18 * Evan Hunter - ehunter@broadcom.com *
19 * *
20 * Copyright (C) ST-Ericsson SA 2011 *
21 * michel.jaouen@stericsson.com : smp minimum support *
22 * *
23 * Copyright (C) 2011 Andreas Fritiofson *
24 * andreas.fritiofson@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program; if not, write to the *
38 * Free Software Foundation, Inc., *
39 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
40 ***************************************************************************/
41
42 #ifdef HAVE_CONFIG_H
43 #include "config.h"
44 #endif
45
46 #include <helper/time_support.h>
47 #include <jtag/jtag.h>
48 #include <flash/nor/core.h>
49
50 #include "target.h"
51 #include "target_type.h"
52 #include "target_request.h"
53 #include "breakpoints.h"
54 #include "register.h"
55 #include "trace.h"
56 #include "image.h"
57 #include "rtos/rtos.h"
58
59 static int target_read_buffer_default(struct target *target, uint32_t address,
60 uint32_t size, uint8_t *buffer);
61 static int target_write_buffer_default(struct target *target, uint32_t address,
62 uint32_t size, const uint8_t *buffer);
63 static int target_array2mem(Jim_Interp *interp, struct target *target,
64 int argc, Jim_Obj * const *argv);
65 static int target_mem2array(Jim_Interp *interp, struct target *target,
66 int argc, Jim_Obj * const *argv);
67 static int target_register_user_commands(struct command_context *cmd_ctx);
68
69 /* targets */
70 extern struct target_type arm7tdmi_target;
71 extern struct target_type arm720t_target;
72 extern struct target_type arm9tdmi_target;
73 extern struct target_type arm920t_target;
74 extern struct target_type arm966e_target;
75 extern struct target_type arm946e_target;
76 extern struct target_type arm926ejs_target;
77 extern struct target_type fa526_target;
78 extern struct target_type feroceon_target;
79 extern struct target_type dragonite_target;
80 extern struct target_type xscale_target;
81 extern struct target_type cortexm3_target;
82 extern struct target_type cortexa8_target;
83 extern struct target_type arm11_target;
84 extern struct target_type mips_m4k_target;
85 extern struct target_type avr_target;
86 extern struct target_type dsp563xx_target;
87 extern struct target_type dsp5680xx_target;
88 extern struct target_type testee_target;
89 extern struct target_type avr32_ap7k_target;
90 extern struct target_type stm32_stlink_target;
91
92 static struct target_type *target_types[] = {
93 &arm7tdmi_target,
94 &arm9tdmi_target,
95 &arm920t_target,
96 &arm720t_target,
97 &arm966e_target,
98 &arm946e_target,
99 &arm926ejs_target,
100 &fa526_target,
101 &feroceon_target,
102 &dragonite_target,
103 &xscale_target,
104 &cortexm3_target,
105 &cortexa8_target,
106 &arm11_target,
107 &mips_m4k_target,
108 &avr_target,
109 &dsp563xx_target,
110 &dsp5680xx_target,
111 &testee_target,
112 &avr32_ap7k_target,
113 &stm32_stlink_target,
114 NULL,
115 };
116
117 struct target *all_targets;
118 static struct target_event_callback *target_event_callbacks;
119 static struct target_timer_callback *target_timer_callbacks;
120 static const int polling_interval = 100;
121
122 static const Jim_Nvp nvp_assert[] = {
123 { .name = "assert", NVP_ASSERT },
124 { .name = "deassert", NVP_DEASSERT },
125 { .name = "T", NVP_ASSERT },
126 { .name = "F", NVP_DEASSERT },
127 { .name = "t", NVP_ASSERT },
128 { .name = "f", NVP_DEASSERT },
129 { .name = NULL, .value = -1 }
130 };
131
132 static const Jim_Nvp nvp_error_target[] = {
133 { .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
134 { .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
135 { .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
136 { .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
137 { .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
138 { .value = ERROR_TARGET_UNALIGNED_ACCESS , .name = "err-unaligned-access" },
139 { .value = ERROR_TARGET_DATA_ABORT , .name = "err-data-abort" },
140 { .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE , .name = "err-resource-not-available" },
141 { .value = ERROR_TARGET_TRANSLATION_FAULT , .name = "err-translation-fault" },
142 { .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
143 { .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
144 { .value = -1, .name = NULL }
145 };
146
147 static const char *target_strerror_safe(int err)
148 {
149 const Jim_Nvp *n;
150
151 n = Jim_Nvp_value2name_simple(nvp_error_target, err);
152 if (n->name == NULL)
153 return "unknown";
154 else
155 return n->name;
156 }
157
158 static const Jim_Nvp nvp_target_event[] = {
159 { .value = TARGET_EVENT_OLD_gdb_program_config , .name = "old-gdb_program_config" },
160 { .value = TARGET_EVENT_OLD_pre_resume , .name = "old-pre_resume" },
161
162 { .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
163 { .value = TARGET_EVENT_HALTED, .name = "halted" },
164 { .value = TARGET_EVENT_RESUMED, .name = "resumed" },
165 { .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
166 { .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
167
168 { .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
169 { .name = "gdb-end", .value = TARGET_EVENT_GDB_END },
170
171 /* historical name */
172
173 { .value = TARGET_EVENT_RESET_START, .name = "reset-start" },
174
175 { .value = TARGET_EVENT_RESET_ASSERT_PRE, .name = "reset-assert-pre" },
176 { .value = TARGET_EVENT_RESET_ASSERT, .name = "reset-assert" },
177 { .value = TARGET_EVENT_RESET_ASSERT_POST, .name = "reset-assert-post" },
178 { .value = TARGET_EVENT_RESET_DEASSERT_PRE, .name = "reset-deassert-pre" },
179 { .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
180 { .value = TARGET_EVENT_RESET_HALT_PRE, .name = "reset-halt-pre" },
181 { .value = TARGET_EVENT_RESET_HALT_POST, .name = "reset-halt-post" },
182 { .value = TARGET_EVENT_RESET_WAIT_PRE, .name = "reset-wait-pre" },
183 { .value = TARGET_EVENT_RESET_WAIT_POST, .name = "reset-wait-post" },
184 { .value = TARGET_EVENT_RESET_INIT, .name = "reset-init" },
185 { .value = TARGET_EVENT_RESET_END, .name = "reset-end" },
186
187 { .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
188 { .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },
189
190 { .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
191 { .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },
192
193 { .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
194 { .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },
195
196 { .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
197 { .value = TARGET_EVENT_GDB_FLASH_WRITE_END , .name = "gdb-flash-write-end" },
198
199 { .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
200 { .value = TARGET_EVENT_GDB_FLASH_ERASE_END , .name = "gdb-flash-erase-end" },
201
202 { .name = NULL, .value = -1 }
203 };
204
205 static const Jim_Nvp nvp_target_state[] = {
206 { .name = "unknown", .value = TARGET_UNKNOWN },
207 { .name = "running", .value = TARGET_RUNNING },
208 { .name = "halted", .value = TARGET_HALTED },
209 { .name = "reset", .value = TARGET_RESET },
210 { .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
211 { .name = NULL, .value = -1 },
212 };
213
214 static const Jim_Nvp nvp_target_debug_reason[] = {
215 { .name = "debug-request" , .value = DBG_REASON_DBGRQ },
216 { .name = "breakpoint" , .value = DBG_REASON_BREAKPOINT },
217 { .name = "watchpoint" , .value = DBG_REASON_WATCHPOINT },
218 { .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
219 { .name = "single-step" , .value = DBG_REASON_SINGLESTEP },
220 { .name = "target-not-halted" , .value = DBG_REASON_NOTHALTED },
221 { .name = "undefined" , .value = DBG_REASON_UNDEFINED },
222 { .name = NULL, .value = -1 },
223 };
224
225 static const Jim_Nvp nvp_target_endian[] = {
226 { .name = "big", .value = TARGET_BIG_ENDIAN },
227 { .name = "little", .value = TARGET_LITTLE_ENDIAN },
228 { .name = "be", .value = TARGET_BIG_ENDIAN },
229 { .name = "le", .value = TARGET_LITTLE_ENDIAN },
230 { .name = NULL, .value = -1 },
231 };
232
233 static const Jim_Nvp nvp_reset_modes[] = {
234 { .name = "unknown", .value = RESET_UNKNOWN },
235 { .name = "run" , .value = RESET_RUN },
236 { .name = "halt" , .value = RESET_HALT },
237 { .name = "init" , .value = RESET_INIT },
238 { .name = NULL , .value = -1 },
239 };
240
241 const char *debug_reason_name(struct target *t)
242 {
243 const char *cp;
244
245 cp = Jim_Nvp_value2name_simple(nvp_target_debug_reason,
246 t->debug_reason)->name;
247 if (!cp) {
248 LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
249 cp = "(*BUG*unknown*BUG*)";
250 }
251 return cp;
252 }
253
254 const char *target_state_name(struct target *t)
255 {
256 const char *cp;
257 cp = Jim_Nvp_value2name_simple(nvp_target_state, t->state)->name;
258 if (!cp) {
259 LOG_ERROR("Invalid target state: %d", (int)(t->state));
260 cp = "(*BUG*unknown*BUG*)";
261 }
262 return cp;
263 }
264
265 /* determine the number of the new target */
266 static int new_target_number(void)
267 {
268 struct target *t;
269 int x;
270
271 /* number is 0 based */
272 x = -1;
273 t = all_targets;
274 while (t) {
275 if (x < t->target_number)
276 x = t->target_number;
277 t = t->next;
278 }
279 return x + 1;
280 }
281
282 /* read a uint32_t from a buffer in target memory endianness */
283 uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
284 {
285 if (target->endianness == TARGET_LITTLE_ENDIAN)
286 return le_to_h_u32(buffer);
287 else
288 return be_to_h_u32(buffer);
289 }
290
291 /* read a uint24_t from a buffer in target memory endianness */
292 uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
293 {
294 if (target->endianness == TARGET_LITTLE_ENDIAN)
295 return le_to_h_u24(buffer);
296 else
297 return be_to_h_u24(buffer);
298 }
299
300 /* read a uint16_t from a buffer in target memory endianness */
301 uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
302 {
303 if (target->endianness == TARGET_LITTLE_ENDIAN)
304 return le_to_h_u16(buffer);
305 else
306 return be_to_h_u16(buffer);
307 }
308
309 /* read a uint8_t from a buffer in target memory endianness */
310 static uint8_t target_buffer_get_u8(struct target *target, const uint8_t *buffer)
311 {
312 return *buffer & 0x0ff;
313 }
314
315 /* write a uint32_t to a buffer in target memory endianness */
316 void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
317 {
318 if (target->endianness == TARGET_LITTLE_ENDIAN)
319 h_u32_to_le(buffer, value);
320 else
321 h_u32_to_be(buffer, value);
322 }
323
324 /* write a uint24_t to a buffer in target memory endianness */
325 void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
326 {
327 if (target->endianness == TARGET_LITTLE_ENDIAN)
328 h_u24_to_le(buffer, value);
329 else
330 h_u24_to_be(buffer, value);
331 }
332
333 /* write a uint16_t to a buffer in target memory endianness */
334 void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
335 {
336 if (target->endianness == TARGET_LITTLE_ENDIAN)
337 h_u16_to_le(buffer, value);
338 else
339 h_u16_to_be(buffer, value);
340 }
341
342 /* write a uint8_t to a buffer in target memory endianness */
343 static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
344 {
345 *buffer = value;
346 }
347
348 /* write a uint32_t array to a buffer in target memory endianness */
349 void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
350 {
351 uint32_t i;
352 for (i = 0; i < count; i++)
353 dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
354 }
355
356 /* write a uint16_t array to a buffer in target memory endianness */
357 void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
358 {
359 uint32_t i;
360 for (i = 0; i < count; i++)
361 dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
362 }
363
364 /* write a uint32_t array to a buffer in target memory endianness */
365 void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, uint32_t *srcbuf)
366 {
367 uint32_t i;
368 for (i = 0; i < count; i++)
369 target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
370 }
371
372 /* write a uint16_t array to a buffer in target memory endianness */
373 void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, uint16_t *srcbuf)
374 {
375 uint32_t i;
376 for (i = 0; i < count; i++)
377 target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
378 }
379
380 /* return a pointer to a configured target; id is name or number */
381 struct target *get_target(const char *id)
382 {
383 struct target *target;
384
385 /* try as tcltarget name */
386 for (target = all_targets; target; target = target->next) {
387 if (target->cmd_name == NULL)
388 continue;
389 if (strcmp(id, target->cmd_name) == 0)
390 return target;
391 }
392
393 /* It's OK to remove this fallback sometime after August 2010 or so */
394
395 /* no match, try as number */
396 unsigned num;
397 if (parse_uint(id, &num) != ERROR_OK)
398 return NULL;
399
400 for (target = all_targets; target; target = target->next) {
401 if (target->target_number == (int)num) {
402 LOG_WARNING("use '%s' as target identifier, not '%u'",
403 target->cmd_name, num);
404 return target;
405 }
406 }
407
408 return NULL;
409 }
410
411 /* returns a pointer to the n-th configured target */
412 static struct target *get_target_by_num(int num)
413 {
414 struct target *target = all_targets;
415
416 while (target) {
417 if (target->target_number == num)
418 return target;
419 target = target->next;
420 }
421
422 return NULL;
423 }
424
425 struct target *get_current_target(struct command_context *cmd_ctx)
426 {
427 struct target *target = get_target_by_num(cmd_ctx->current_target);
428
429 if (target == NULL) {
430 LOG_ERROR("BUG: current_target out of bounds");
431 exit(-1);
432 }
433
434 return target;
435 }
436
437 int target_poll(struct target *target)
438 {
439 int retval;
440
441 /* We can't poll until after examine */
442 if (!target_was_examined(target)) {
443 /* Fail silently lest we pollute the log */
444 return ERROR_FAIL;
445 }
446
447 retval = target->type->poll(target);
448 if (retval != ERROR_OK)
449 return retval;
450
451 if (target->halt_issued) {
452 if (target->state == TARGET_HALTED)
453 target->halt_issued = false;
454 else {
455 long long t = timeval_ms() - target->halt_issued_time;
456 if (t > 1000) {
457 target->halt_issued = false;
458 LOG_INFO("Halt timed out, wake up GDB.");
459 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
460 }
461 }
462 }
463
464 return ERROR_OK;
465 }
466
467 int target_halt(struct target *target)
468 {
469 int retval;
470 /* We can't poll until after examine */
471 if (!target_was_examined(target)) {
472 LOG_ERROR("Target not examined yet");
473 return ERROR_FAIL;
474 }
475
476 retval = target->type->halt(target);
477 if (retval != ERROR_OK)
478 return retval;
479
480 target->halt_issued = true;
481 target->halt_issued_time = timeval_ms();
482
483 return ERROR_OK;
484 }
485
486 /**
487 * Make the target (re)start executing using its saved execution
488 * context (possibly with some modifications).
489 *
490 * @param target Which target should start executing.
491 * @param current True to use the target's saved program counter instead
492 * of the address parameter
493 * @param address Optionally used as the program counter.
494 * @param handle_breakpoints True iff breakpoints at the resumption PC
495 * should be skipped. (For example, maybe execution was stopped by
496 * such a breakpoint, in which case it would be counterprodutive to
497 * let it re-trigger.
498 * @param debug_execution False if all working areas allocated by OpenOCD
499 * should be released and/or restored to their original contents.
500 * (This would for example be true to run some downloaded "helper"
501 * algorithm code, which resides in one such working buffer and uses
502 * another for data storage.)
503 *
504 * @todo Resolve the ambiguity about what the "debug_execution" flag
505 * signifies. For example, Target implementations don't agree on how
506 * it relates to invalidation of the register cache, or to whether
507 * breakpoints and watchpoints should be enabled. (It would seem wrong
508 * to enable breakpoints when running downloaded "helper" algorithms
509 * (debug_execution true), since the breakpoints would be set to match
510 * target firmware being debugged, not the helper algorithm.... and
511 * enabling them could cause such helpers to malfunction (for example,
512 * by overwriting data with a breakpoint instruction. On the other
513 * hand the infrastructure for running such helpers might use this
514 * procedure but rely on hardware breakpoint to detect termination.)
515 */
516 int target_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution)
517 {
518 int retval;
519
520 /* We can't poll until after examine */
521 if (!target_was_examined(target)) {
522 LOG_ERROR("Target not examined yet");
523 return ERROR_FAIL;
524 }
525
526 /* note that resume *must* be asynchronous. The CPU can halt before
527 * we poll. The CPU can even halt at the current PC as a result of
528 * a software breakpoint being inserted by (a bug?) the application.
529 */
530 retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
531 if (retval != ERROR_OK)
532 return retval;
533
534 return retval;
535 }
536
537 static int target_process_reset(struct command_context *cmd_ctx, enum target_reset_mode reset_mode)
538 {
539 char buf[100];
540 int retval;
541 Jim_Nvp *n;
542 n = Jim_Nvp_value2name_simple(nvp_reset_modes, reset_mode);
543 if (n->name == NULL) {
544 LOG_ERROR("invalid reset mode");
545 return ERROR_FAIL;
546 }
547
548 /* disable polling during reset to make reset event scripts
549 * more predictable, i.e. dr/irscan & pathmove in events will
550 * not have JTAG operations injected into the middle of a sequence.
551 */
552 bool save_poll = jtag_poll_get_enabled();
553
554 jtag_poll_set_enabled(false);
555
556 sprintf(buf, "ocd_process_reset %s", n->name);
557 retval = Jim_Eval(cmd_ctx->interp, buf);
558
559 jtag_poll_set_enabled(save_poll);
560
561 if (retval != JIM_OK) {
562 Jim_MakeErrorMessage(cmd_ctx->interp);
563 command_print(NULL, "%s\n", Jim_GetString(Jim_GetResult(cmd_ctx->interp), NULL));
564 return ERROR_FAIL;
565 }
566
567 /* We want any events to be processed before the prompt */
568 retval = target_call_timer_callbacks_now();
569
570 struct target *target;
571 for (target = all_targets; target; target = target->next)
572 target->type->check_reset(target);
573
574 return retval;
575 }
576
577 static int identity_virt2phys(struct target *target,
578 uint32_t virtual, uint32_t *physical)
579 {
580 *physical = virtual;
581 return ERROR_OK;
582 }
583
584 static int no_mmu(struct target *target, int *enabled)
585 {
586 *enabled = 0;
587 return ERROR_OK;
588 }
589
590 static int default_examine(struct target *target)
591 {
592 target_set_examined(target);
593 return ERROR_OK;
594 }
595
596 /* no check by default */
597 static int default_check_reset(struct target *target)
598 {
599 return ERROR_OK;
600 }
601
602 int target_examine_one(struct target *target)
603 {
604 return target->type->examine(target);
605 }
606
607 static int jtag_enable_callback(enum jtag_event event, void *priv)
608 {
609 struct target *target = priv;
610
611 if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
612 return ERROR_OK;
613
614 jtag_unregister_event_callback(jtag_enable_callback, target);
615 return target_examine_one(target);
616 }
617
618
619 /* Targets that correctly implement init + examine, i.e.
620 * no communication with target during init:
621 *
622 * XScale
623 */
624 int target_examine(void)
625 {
626 int retval = ERROR_OK;
627 struct target *target;
628
629 for (target = all_targets; target; target = target->next) {
630 /* defer examination, but don't skip it */
631 if (!target->tap->enabled) {
632 jtag_register_event_callback(jtag_enable_callback,
633 target);
634 continue;
635 }
636 retval = target_examine_one(target);
637 if (retval != ERROR_OK)
638 return retval;
639 }
640 return retval;
641 }
642 const char *target_type_name(struct target *target)
643 {
644 return target->type->name;
645 }
646
647 static int target_write_memory_imp(struct target *target, uint32_t address,
648 uint32_t size, uint32_t count, const uint8_t *buffer)
649 {
650 if (!target_was_examined(target)) {
651 LOG_ERROR("Target not examined yet");
652 return ERROR_FAIL;
653 }
654 return target->type->write_memory_imp(target, address, size, count, buffer);
655 }
656
657 static int target_read_memory_imp(struct target *target, uint32_t address,
658 uint32_t size, uint32_t count, uint8_t *buffer)
659 {
660 if (!target_was_examined(target)) {
661 LOG_ERROR("Target not examined yet");
662 return ERROR_FAIL;
663 }
664 return target->type->read_memory_imp(target, address, size, count, buffer);
665 }
666
667 static int target_soft_reset_halt_imp(struct target *target)
668 {
669 if (!target_was_examined(target)) {
670 LOG_ERROR("Target not examined yet");
671 return ERROR_FAIL;
672 }
673 if (!target->type->soft_reset_halt_imp) {
674 LOG_ERROR("Target %s does not support soft_reset_halt",
675 target_name(target));
676 return ERROR_FAIL;
677 }
678 return target->type->soft_reset_halt_imp(target);
679 }
680
681 /**
682 * Downloads a target-specific native code algorithm to the target,
683 * and executes it. * Note that some targets may need to set up, enable,
684 * and tear down a breakpoint (hard or * soft) to detect algorithm
685 * termination, while others may support lower overhead schemes where
686 * soft breakpoints embedded in the algorithm automatically terminate the
687 * algorithm.
688 *
689 * @param target used to run the algorithm
690 * @param arch_info target-specific description of the algorithm.
691 */
692 int target_run_algorithm(struct target *target,
693 int num_mem_params, struct mem_param *mem_params,
694 int num_reg_params, struct reg_param *reg_param,
695 uint32_t entry_point, uint32_t exit_point,
696 int timeout_ms, void *arch_info)
697 {
698 int retval = ERROR_FAIL;
699
700 if (!target_was_examined(target)) {
701 LOG_ERROR("Target not examined yet");
702 goto done;
703 }
704 if (!target->type->run_algorithm) {
705 LOG_ERROR("Target type '%s' does not support %s",
706 target_type_name(target), __func__);
707 goto done;
708 }
709
710 target->running_alg = true;
711 retval = target->type->run_algorithm(target,
712 num_mem_params, mem_params,
713 num_reg_params, reg_param,
714 entry_point, exit_point, timeout_ms, arch_info);
715 target->running_alg = false;
716
717 done:
718 return retval;
719 }
720
721 /**
722 * Downloads a target-specific native code algorithm to the target,
723 * executes and leaves it running.
724 *
725 * @param target used to run the algorithm
726 * @param arch_info target-specific description of the algorithm.
727 */
728 int target_start_algorithm(struct target *target,
729 int num_mem_params, struct mem_param *mem_params,
730 int num_reg_params, struct reg_param *reg_params,
731 uint32_t entry_point, uint32_t exit_point,
732 void *arch_info)
733 {
734 int retval = ERROR_FAIL;
735
736 if (!target_was_examined(target)) {
737 LOG_ERROR("Target not examined yet");
738 goto done;
739 }
740 if (!target->type->start_algorithm) {
741 LOG_ERROR("Target type '%s' does not support %s",
742 target_type_name(target), __func__);
743 goto done;
744 }
745 if (target->running_alg) {
746 LOG_ERROR("Target is already running an algorithm");
747 goto done;
748 }
749
750 target->running_alg = true;
751 retval = target->type->start_algorithm(target,
752 num_mem_params, mem_params,
753 num_reg_params, reg_params,
754 entry_point, exit_point, arch_info);
755
756 done:
757 return retval;
758 }
759
760 /**
761 * Waits for an algorithm started with target_start_algorithm() to complete.
762 *
763 * @param target used to run the algorithm
764 * @param arch_info target-specific description of the algorithm.
765 */
766 int target_wait_algorithm(struct target *target,
767 int num_mem_params, struct mem_param *mem_params,
768 int num_reg_params, struct reg_param *reg_params,
769 uint32_t exit_point, int timeout_ms,
770 void *arch_info)
771 {
772 int retval = ERROR_FAIL;
773
774 if (!target->type->wait_algorithm) {
775 LOG_ERROR("Target type '%s' does not support %s",
776 target_type_name(target), __func__);
777 goto done;
778 }
779 if (!target->running_alg) {
780 LOG_ERROR("Target is not running an algorithm");
781 goto done;
782 }
783
784 retval = target->type->wait_algorithm(target,
785 num_mem_params, mem_params,
786 num_reg_params, reg_params,
787 exit_point, timeout_ms, arch_info);
788 if (retval != ERROR_TARGET_TIMEOUT)
789 target->running_alg = false;
790
791 done:
792 return retval;
793 }
794
795 /**
796 * Executes a target-specific native code algorithm in the target.
797 * It differs from target_run_algorithm in that the algorithm is asynchronous.
798 * Because of this it requires an compliant algorithm:
799 * see contrib/loaders/flash/stm32f1x.S for example.
800 *
801 * @param target used to run the algorithm
802 */
803
804 int target_run_flash_async_algorithm(struct target *target,
805 uint8_t *buffer, uint32_t count, int block_size,
806 int num_mem_params, struct mem_param *mem_params,
807 int num_reg_params, struct reg_param *reg_params,
808 uint32_t buffer_start, uint32_t buffer_size,
809 uint32_t entry_point, uint32_t exit_point, void *arch_info)
810 {
811 int retval;
812
813 /* Set up working area. First word is write pointer, second word is read pointer,
814 * rest is fifo data area. */
815 uint32_t wp_addr = buffer_start;
816 uint32_t rp_addr = buffer_start + 4;
817 uint32_t fifo_start_addr = buffer_start + 8;
818 uint32_t fifo_end_addr = buffer_start + buffer_size;
819
820 uint32_t wp = fifo_start_addr;
821 uint32_t rp = fifo_start_addr;
822
823 /* validate block_size is 2^n */
824 assert(!block_size || !(block_size & (block_size - 1)));
825
826 retval = target_write_u32(target, wp_addr, wp);
827 if (retval != ERROR_OK)
828 return retval;
829 retval = target_write_u32(target, rp_addr, rp);
830 if (retval != ERROR_OK)
831 return retval;
832
833 /* Start up algorithm on target and let it idle while writing the first chunk */
834 retval = target_start_algorithm(target, num_mem_params, mem_params,
835 num_reg_params, reg_params,
836 entry_point,
837 exit_point,
838 arch_info);
839
840 if (retval != ERROR_OK) {
841 LOG_ERROR("error starting target flash write algorithm");
842 return retval;
843 }
844
845 while (count > 0) {
846
847 retval = target_read_u32(target, rp_addr, &rp);
848 if (retval != ERROR_OK) {
849 LOG_ERROR("failed to get read pointer");
850 break;
851 }
852
853 LOG_DEBUG("count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32, count, wp, rp);
854
855 if (rp == 0) {
856 LOG_ERROR("flash write algorithm aborted by target");
857 retval = ERROR_FLASH_OPERATION_FAILED;
858 break;
859 }
860
861 if ((rp & (block_size - 1)) || rp < fifo_start_addr || rp >= fifo_end_addr) {
862 LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
863 break;
864 }
865
866 /* Count the number of bytes available in the fifo without
867 * crossing the wrap around. Make sure to not fill it completely,
868 * because that would make wp == rp and that's the empty condition. */
869 uint32_t thisrun_bytes;
870 if (rp > wp)
871 thisrun_bytes = rp - wp - block_size;
872 else if (rp > fifo_start_addr)
873 thisrun_bytes = fifo_end_addr - wp;
874 else
875 thisrun_bytes = fifo_end_addr - wp - block_size;
876
877 if (thisrun_bytes == 0) {
878 /* Throttle polling a bit if transfer is (much) faster than flash
879 * programming. The exact delay shouldn't matter as long as it's
880 * less than buffer size / flash speed. This is very unlikely to
881 * run when using high latency connections such as USB. */
882 alive_sleep(10);
883 continue;
884 }
885
886 /* Limit to the amount of data we actually want to write */
887 if (thisrun_bytes > count * block_size)
888 thisrun_bytes = count * block_size;
889
890 /* Write data to fifo */
891 retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
892 if (retval != ERROR_OK)
893 break;
894
895 /* Update counters and wrap write pointer */
896 buffer += thisrun_bytes;
897 count -= thisrun_bytes / block_size;
898 wp += thisrun_bytes;
899 if (wp >= fifo_end_addr)
900 wp = fifo_start_addr;
901
902 /* Store updated write pointer to target */
903 retval = target_write_u32(target, wp_addr, wp);
904 if (retval != ERROR_OK)
905 break;
906 }
907
908 if (retval != ERROR_OK) {
909 /* abort flash write algorithm on target */
910 target_write_u32(target, wp_addr, 0);
911 }
912
913 int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
914 num_reg_params, reg_params,
915 exit_point,
916 10000,
917 arch_info);
918
919 if (retval2 != ERROR_OK) {
920 LOG_ERROR("error waiting for target flash write algorithm");
921 retval = retval2;
922 }
923
924 return retval;
925 }
926
927 int target_read_memory(struct target *target,
928 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
929 {
930 return target->type->read_memory(target, address, size, count, buffer);
931 }
932
933 static int target_read_phys_memory(struct target *target,
934 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer)
935 {
936 return target->type->read_phys_memory(target, address, size, count, buffer);
937 }
938
939 int target_write_memory(struct target *target,
940 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
941 {
942 return target->type->write_memory(target, address, size, count, buffer);
943 }
944
945 static int target_write_phys_memory(struct target *target,
946 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
947 {
948 return target->type->write_phys_memory(target, address, size, count, buffer);
949 }
950
951 int target_bulk_write_memory(struct target *target,
952 uint32_t address, uint32_t count, const uint8_t *buffer)
953 {
954 return target->type->bulk_write_memory(target, address, count, buffer);
955 }
956
957 int target_add_breakpoint(struct target *target,
958 struct breakpoint *breakpoint)
959 {
960 if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
961 LOG_WARNING("target %s is not halted", target->cmd_name);
962 return ERROR_TARGET_NOT_HALTED;
963 }
964 return target->type->add_breakpoint(target, breakpoint);
965 }
966
967 int target_add_context_breakpoint(struct target *target,
968 struct breakpoint *breakpoint)
969 {
970 if (target->state != TARGET_HALTED) {
971 LOG_WARNING("target %s is not halted", target->cmd_name);
972 return ERROR_TARGET_NOT_HALTED;
973 }
974 return target->type->add_context_breakpoint(target, breakpoint);
975 }
976
977 int target_add_hybrid_breakpoint(struct target *target,
978 struct breakpoint *breakpoint)
979 {
980 if (target->state != TARGET_HALTED) {
981 LOG_WARNING("target %s is not halted", target->cmd_name);
982 return ERROR_TARGET_NOT_HALTED;
983 }
984 return target->type->add_hybrid_breakpoint(target, breakpoint);
985 }
986
987 int target_remove_breakpoint(struct target *target,
988 struct breakpoint *breakpoint)
989 {
990 return target->type->remove_breakpoint(target, breakpoint);
991 }
992
993 int target_add_watchpoint(struct target *target,
994 struct watchpoint *watchpoint)
995 {
996 if (target->state != TARGET_HALTED) {
997 LOG_WARNING("target %s is not halted", target->cmd_name);
998 return ERROR_TARGET_NOT_HALTED;
999 }
1000 return target->type->add_watchpoint(target, watchpoint);
1001 }
1002 int target_remove_watchpoint(struct target *target,
1003 struct watchpoint *watchpoint)
1004 {
1005 return target->type->remove_watchpoint(target, watchpoint);
1006 }
1007
1008 int target_get_gdb_reg_list(struct target *target,
1009 struct reg **reg_list[], int *reg_list_size)
1010 {
1011 return target->type->get_gdb_reg_list(target, reg_list, reg_list_size);
1012 }
1013 int target_step(struct target *target,
1014 int current, uint32_t address, int handle_breakpoints)
1015 {
1016 return target->type->step(target, current, address, handle_breakpoints);
1017 }
1018
1019 /**
1020 * Reset the @c examined flag for the given target.
1021 * Pure paranoia -- targets are zeroed on allocation.
1022 */
1023 static void target_reset_examined(struct target *target)
1024 {
1025 target->examined = false;
1026 }
1027
1028 static int err_read_phys_memory(struct target *target, uint32_t address,
1029 uint32_t size, uint32_t count, uint8_t *buffer)
1030 {
1031 LOG_ERROR("Not implemented: %s", __func__);
1032 return ERROR_FAIL;
1033 }
1034
1035 static int err_write_phys_memory(struct target *target, uint32_t address,
1036 uint32_t size, uint32_t count, const uint8_t *buffer)
1037 {
1038 LOG_ERROR("Not implemented: %s", __func__);
1039 return ERROR_FAIL;
1040 }
1041
1042 static int handle_target(void *priv);
1043
1044 static int target_init_one(struct command_context *cmd_ctx,
1045 struct target *target)
1046 {
1047 target_reset_examined(target);
1048
1049 struct target_type *type = target->type;
1050 if (type->examine == NULL)
1051 type->examine = default_examine;
1052
1053 if (type->check_reset == NULL)
1054 type->check_reset = default_check_reset;
1055
1056 assert(type->init_target != NULL);
1057
1058 int retval = type->init_target(cmd_ctx, target);
1059 if (ERROR_OK != retval) {
1060 LOG_ERROR("target '%s' init failed", target_name(target));
1061 return retval;
1062 }
1063
1064 /**
1065 * @todo get rid of those *memory_imp() methods, now that all
1066 * callers are using target_*_memory() accessors ... and make
1067 * sure the "physical" paths handle the same issues.
1068 */
1069 /* a non-invasive way(in terms of patches) to add some code that
1070 * runs before the type->write/read_memory implementation
1071 */
1072 type->write_memory_imp = target->type->write_memory;
1073 type->write_memory = target_write_memory_imp;
1074
1075 type->read_memory_imp = target->type->read_memory;
1076 type->read_memory = target_read_memory_imp;
1077
1078 type->soft_reset_halt_imp = target->type->soft_reset_halt;
1079 type->soft_reset_halt = target_soft_reset_halt_imp;
1080
1081 /* Sanity-check MMU support ... stub in what we must, to help
1082 * implement it in stages, but warn if we need to do so.
1083 */
1084 if (type->mmu) {
1085 if (type->write_phys_memory == NULL) {
1086 LOG_ERROR("type '%s' is missing write_phys_memory",
1087 type->name);
1088 type->write_phys_memory = err_write_phys_memory;
1089 }
1090 if (type->read_phys_memory == NULL) {
1091 LOG_ERROR("type '%s' is missing read_phys_memory",
1092 type->name);
1093 type->read_phys_memory = err_read_phys_memory;
1094 }
1095 if (type->virt2phys == NULL) {
1096 LOG_ERROR("type '%s' is missing virt2phys", type->name);
1097 type->virt2phys = identity_virt2phys;
1098 }
1099 } else {
1100 /* Make sure no-MMU targets all behave the same: make no
1101 * distinction between physical and virtual addresses, and
1102 * ensure that virt2phys() is always an identity mapping.
1103 */
1104 if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
1105 LOG_WARNING("type '%s' has bad MMU hooks", type->name);
1106
1107 type->mmu = no_mmu;
1108 type->write_phys_memory = type->write_memory;
1109 type->read_phys_memory = type->read_memory;
1110 type->virt2phys = identity_virt2phys;
1111 }
1112
1113 if (target->type->read_buffer == NULL)
1114 target->type->read_buffer = target_read_buffer_default;
1115
1116 if (target->type->write_buffer == NULL)
1117 target->type->write_buffer = target_write_buffer_default;
1118
1119 return ERROR_OK;
1120 }
1121
1122 static int target_init(struct command_context *cmd_ctx)
1123 {
1124 struct target *target;
1125 int retval;
1126
1127 for (target = all_targets; target; target = target->next) {
1128 retval = target_init_one(cmd_ctx, target);
1129 if (ERROR_OK != retval)
1130 return retval;
1131 }
1132
1133 if (!all_targets)
1134 return ERROR_OK;
1135
1136 retval = target_register_user_commands(cmd_ctx);
1137 if (ERROR_OK != retval)
1138 return retval;
1139
1140 retval = target_register_timer_callback(&handle_target,
1141 polling_interval, 1, cmd_ctx->interp);
1142 if (ERROR_OK != retval)
1143 return retval;
1144
1145 return ERROR_OK;
1146 }
1147
1148 COMMAND_HANDLER(handle_target_init_command)
1149 {
1150 int retval;
1151
1152 if (CMD_ARGC != 0)
1153 return ERROR_COMMAND_SYNTAX_ERROR;
1154
1155 static bool target_initialized;
1156 if (target_initialized) {
1157 LOG_INFO("'target init' has already been called");
1158 return ERROR_OK;
1159 }
1160 target_initialized = true;
1161
1162 retval = command_run_line(CMD_CTX, "init_targets");
1163 if (ERROR_OK != retval)
1164 return retval;
1165
1166 retval = command_run_line(CMD_CTX, "init_board");
1167 if (ERROR_OK != retval)
1168 return retval;
1169
1170 LOG_DEBUG("Initializing targets...");
1171 return target_init(CMD_CTX);
1172 }
1173
1174 int target_register_event_callback(int (*callback)(struct target *target,
1175 enum target_event event, void *priv), void *priv)
1176 {
1177 struct target_event_callback **callbacks_p = &target_event_callbacks;
1178
1179 if (callback == NULL)
1180 return ERROR_COMMAND_SYNTAX_ERROR;
1181
1182 if (*callbacks_p) {
1183 while ((*callbacks_p)->next)
1184 callbacks_p = &((*callbacks_p)->next);
1185 callbacks_p = &((*callbacks_p)->next);
1186 }
1187
1188 (*callbacks_p) = malloc(sizeof(struct target_event_callback));
1189 (*callbacks_p)->callback = callback;
1190 (*callbacks_p)->priv = priv;
1191 (*callbacks_p)->next = NULL;
1192
1193 return ERROR_OK;
1194 }
1195
1196 int target_register_timer_callback(int (*callback)(void *priv), int time_ms, int periodic, void *priv)
1197 {
1198 struct target_timer_callback **callbacks_p = &target_timer_callbacks;
1199 struct timeval now;
1200
1201 if (callback == NULL)
1202 return ERROR_COMMAND_SYNTAX_ERROR;
1203
1204 if (*callbacks_p) {
1205 while ((*callbacks_p)->next)
1206 callbacks_p = &((*callbacks_p)->next);
1207 callbacks_p = &((*callbacks_p)->next);
1208 }
1209
1210 (*callbacks_p) = malloc(sizeof(struct target_timer_callback));
1211 (*callbacks_p)->callback = callback;
1212 (*callbacks_p)->periodic = periodic;
1213 (*callbacks_p)->time_ms = time_ms;
1214
1215 gettimeofday(&now, NULL);
1216 (*callbacks_p)->when.tv_usec = now.tv_usec + (time_ms % 1000) * 1000;
1217 time_ms -= (time_ms % 1000);
1218 (*callbacks_p)->when.tv_sec = now.tv_sec + (time_ms / 1000);
1219 if ((*callbacks_p)->when.tv_usec > 1000000) {
1220 (*callbacks_p)->when.tv_usec = (*callbacks_p)->when.tv_usec - 1000000;
1221 (*callbacks_p)->when.tv_sec += 1;
1222 }
1223
1224 (*callbacks_p)->priv = priv;
1225 (*callbacks_p)->next = NULL;
1226
1227 return ERROR_OK;
1228 }
1229
1230 int target_unregister_event_callback(int (*callback)(struct target *target,
1231 enum target_event event, void *priv), void *priv)
1232 {
1233 struct target_event_callback **p = &target_event_callbacks;
1234 struct target_event_callback *c = target_event_callbacks;
1235
1236 if (callback == NULL)
1237 return ERROR_COMMAND_SYNTAX_ERROR;
1238
1239 while (c) {
1240 struct target_event_callback *next = c->next;
1241 if ((c->callback == callback) && (c->priv == priv)) {
1242 *p = next;
1243 free(c);
1244 return ERROR_OK;
1245 } else
1246 p = &(c->next);
1247 c = next;
1248 }
1249
1250 return ERROR_OK;
1251 }
1252
1253 static int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
1254 {
1255 struct target_timer_callback **p = &target_timer_callbacks;
1256 struct target_timer_callback *c = target_timer_callbacks;
1257
1258 if (callback == NULL)
1259 return ERROR_COMMAND_SYNTAX_ERROR;
1260
1261 while (c) {
1262 struct target_timer_callback *next = c->next;
1263 if ((c->callback == callback) && (c->priv == priv)) {
1264 *p = next;
1265 free(c);
1266 return ERROR_OK;
1267 } else
1268 p = &(c->next);
1269 c = next;
1270 }
1271
1272 return ERROR_OK;
1273 }
1274
1275 int target_call_event_callbacks(struct target *target, enum target_event event)
1276 {
1277 struct target_event_callback *callback = target_event_callbacks;
1278 struct target_event_callback *next_callback;
1279
1280 if (event == TARGET_EVENT_HALTED) {
1281 /* execute early halted first */
1282 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
1283 }
1284
1285 LOG_DEBUG("target event %i (%s)", event,
1286 Jim_Nvp_value2name_simple(nvp_target_event, event)->name);
1287
1288 target_handle_event(target, event);
1289
1290 while (callback) {
1291 next_callback = callback->next;
1292 callback->callback(target, event, callback->priv);
1293 callback = next_callback;
1294 }
1295
1296 return ERROR_OK;
1297 }
1298
1299 static int target_timer_callback_periodic_restart(
1300 struct target_timer_callback *cb, struct timeval *now)
1301 {
1302 int time_ms = cb->time_ms;
1303 cb->when.tv_usec = now->tv_usec + (time_ms % 1000) * 1000;
1304 time_ms -= (time_ms % 1000);
1305 cb->when.tv_sec = now->tv_sec + time_ms / 1000;
1306 if (cb->when.tv_usec > 1000000) {
1307 cb->when.tv_usec = cb->when.tv_usec - 1000000;
1308 cb->when.tv_sec += 1;
1309 }
1310 return ERROR_OK;
1311 }
1312
1313 static int target_call_timer_callback(struct target_timer_callback *cb,
1314 struct timeval *now)
1315 {
1316 cb->callback(cb->priv);
1317
1318 if (cb->periodic)
1319 return target_timer_callback_periodic_restart(cb, now);
1320
1321 return target_unregister_timer_callback(cb->callback, cb->priv);
1322 }
1323
1324 static int target_call_timer_callbacks_check_time(int checktime)
1325 {
1326 keep_alive();
1327
1328 struct timeval now;
1329 gettimeofday(&now, NULL);
1330
1331 struct target_timer_callback *callback = target_timer_callbacks;
1332 while (callback) {
1333 /* cleaning up may unregister and free this callback */
1334 struct target_timer_callback *next_callback = callback->next;
1335
1336 bool call_it = callback->callback &&
1337 ((!checktime && callback->periodic) ||
1338 now.tv_sec > callback->when.tv_sec ||
1339 (now.tv_sec == callback->when.tv_sec &&
1340 now.tv_usec >= callback->when.tv_usec));
1341
1342 if (call_it) {
1343 int retval = target_call_timer_callback(callback, &now);
1344 if (retval != ERROR_OK)
1345 return retval;
1346 }
1347
1348 callback = next_callback;
1349 }
1350
1351 return ERROR_OK;
1352 }
1353
1354 int target_call_timer_callbacks(void)
1355 {
1356 return target_call_timer_callbacks_check_time(1);
1357 }
1358
1359 /* invoke periodic callbacks immediately */
1360 int target_call_timer_callbacks_now(void)
1361 {
1362 return target_call_timer_callbacks_check_time(0);
1363 }
1364
1365 /* Prints the working area layout for debug purposes */
1366 static void print_wa_layout(struct target *target)
1367 {
1368 struct working_area *c = target->working_areas;
1369
1370 while (c) {
1371 LOG_DEBUG("%c%c 0x%08"PRIx32"-0x%08"PRIx32" (%"PRIu32" bytes)",
1372 c->backup ? 'b' : ' ', c->free ? ' ' : '*',
1373 c->address, c->address + c->size - 1, c->size);
1374 c = c->next;
1375 }
1376 }
1377
1378 /* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
1379 static void target_split_working_area(struct working_area *area, uint32_t size)
1380 {
1381 assert(area->free); /* Shouldn't split an allocated area */
1382 assert(size <= area->size); /* Caller should guarantee this */
1383
1384 /* Split only if not already the right size */
1385 if (size < area->size) {
1386 struct working_area *new_wa = malloc(sizeof(*new_wa));
1387
1388 if (new_wa == NULL)
1389 return;
1390
1391 new_wa->next = area->next;
1392 new_wa->size = area->size - size;
1393 new_wa->address = area->address + size;
1394 new_wa->backup = NULL;
1395 new_wa->user = NULL;
1396 new_wa->free = true;
1397
1398 area->next = new_wa;
1399 area->size = size;
1400
1401 /* If backup memory was allocated to this area, it has the wrong size
1402 * now so free it and it will be reallocated if/when needed */
1403 if (area->backup) {
1404 free(area->backup);
1405 area->backup = NULL;
1406 }
1407 }
1408 }
1409
1410 /* Merge all adjacent free areas into one */
1411 static void target_merge_working_areas(struct target *target)
1412 {
1413 struct working_area *c = target->working_areas;
1414
1415 while (c && c->next) {
1416 assert(c->next->address == c->address + c->size); /* This is an invariant */
1417
1418 /* Find two adjacent free areas */
1419 if (c->free && c->next->free) {
1420 /* Merge the last into the first */
1421 c->size += c->next->size;
1422
1423 /* Remove the last */
1424 struct working_area *to_be_freed = c->next;
1425 c->next = c->next->next;
1426 if (to_be_freed->backup)
1427 free(to_be_freed->backup);
1428 free(to_be_freed);
1429
1430 /* If backup memory was allocated to the remaining area, it's has
1431 * the wrong size now */
1432 if (c->backup) {
1433 free(c->backup);
1434 c->backup = NULL;
1435 }
1436 } else {
1437 c = c->next;
1438 }
1439 }
1440 }
1441
1442 int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
1443 {
1444 /* Reevaluate working area address based on MMU state*/
1445 if (target->working_areas == NULL) {
1446 int retval;
1447 int enabled;
1448
1449 retval = target->type->mmu(target, &enabled);
1450 if (retval != ERROR_OK)
1451 return retval;
1452
1453 if (!enabled) {
1454 if (target->working_area_phys_spec) {
1455 LOG_DEBUG("MMU disabled, using physical "
1456 "address for working memory 0x%08"PRIx32,
1457 target->working_area_phys);
1458 target->working_area = target->working_area_phys;
1459 } else {
1460 LOG_ERROR("No working memory available. "
1461 "Specify -work-area-phys to target.");
1462 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1463 }
1464 } else {
1465 if (target->working_area_virt_spec) {
1466 LOG_DEBUG("MMU enabled, using virtual "
1467 "address for working memory 0x%08"PRIx32,
1468 target->working_area_virt);
1469 target->working_area = target->working_area_virt;
1470 } else {
1471 LOG_ERROR("No working memory available. "
1472 "Specify -work-area-virt to target.");
1473 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1474 }
1475 }
1476
1477 /* Set up initial working area on first call */
1478 struct working_area *new_wa = malloc(sizeof(*new_wa));
1479 if (new_wa) {
1480 new_wa->next = NULL;
1481 new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
1482 new_wa->address = target->working_area;
1483 new_wa->backup = NULL;
1484 new_wa->user = NULL;
1485 new_wa->free = true;
1486 }
1487
1488 target->working_areas = new_wa;
1489 }
1490
1491 /* only allocate multiples of 4 byte */
1492 if (size % 4)
1493 size = (size + 3) & (~3UL);
1494
1495 struct working_area *c = target->working_areas;
1496
1497 /* Find the first large enough working area */
1498 while (c) {
1499 if (c->free && c->size >= size)
1500 break;
1501 c = c->next;
1502 }
1503
1504 if (c == NULL)
1505 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1506
1507 /* Split the working area into the requested size */
1508 target_split_working_area(c, size);
1509
1510 LOG_DEBUG("allocated new working area of %"PRIu32" bytes at address 0x%08"PRIx32, size, c->address);
1511
1512 if (target->backup_working_area) {
1513 if (c->backup == NULL) {
1514 c->backup = malloc(c->size);
1515 if (c->backup == NULL)
1516 return ERROR_FAIL;
1517 }
1518
1519 int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
1520 if (retval != ERROR_OK)
1521 return retval;
1522 }
1523
1524 /* mark as used, and return the new (reused) area */
1525 c->free = false;
1526 *area = c;
1527
1528 /* user pointer */
1529 c->user = area;
1530
1531 print_wa_layout(target);
1532
1533 return ERROR_OK;
1534 }
1535
1536 int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
1537 {
1538 int retval;
1539
1540 retval = target_alloc_working_area_try(target, size, area);
1541 if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1542 LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
1543 return retval;
1544
1545 }
1546
1547 static int target_restore_working_area(struct target *target, struct working_area *area)
1548 {
1549 int retval = ERROR_OK;
1550
1551 if (target->backup_working_area && area->backup != NULL) {
1552 retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
1553 if (retval != ERROR_OK)
1554 LOG_ERROR("failed to restore %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1555 area->size, area->address);
1556 }
1557
1558 return retval;
1559 }
1560
1561 /* Restore the area's backup memory, if any, and return the area to the allocation pool */
1562 static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
1563 {
1564 int retval = ERROR_OK;
1565
1566 if (area->free)
1567 return retval;
1568
1569 if (restore) {
1570 retval = target_restore_working_area(target, area);
1571 /* REVISIT: Perhaps the area should be freed even if restoring fails. */
1572 if (retval != ERROR_OK)
1573 return retval;
1574 }
1575
1576 area->free = true;
1577
1578 LOG_DEBUG("freed %"PRIu32" bytes of working area at address 0x%08"PRIx32,
1579 area->size, area->address);
1580
1581 /* mark user pointer invalid */
1582 /* TODO: Is this really safe? It points to some previous caller's memory.
1583 * How could we know that the area pointer is still in that place and not
1584 * some other vital data? What's the purpose of this, anyway? */
1585 *area->user = NULL;
1586 area->user = NULL;
1587
1588 target_merge_working_areas(target);
1589
1590 print_wa_layout(target);
1591
1592 return retval;
1593 }
1594
1595 int target_free_working_area(struct target *target, struct working_area *area)
1596 {
1597 return target_free_working_area_restore(target, area, 1);
1598 }
1599
1600 /* free resources and restore memory, if restoring memory fails,
1601 * free up resources anyway
1602 */
1603 static void target_free_all_working_areas_restore(struct target *target, int restore)
1604 {
1605 struct working_area *c = target->working_areas;
1606
1607 LOG_DEBUG("freeing all working areas");
1608
1609 /* Loop through all areas, restoring the allocated ones and marking them as free */
1610 while (c) {
1611 if (!c->free) {
1612 if (restore)
1613 target_restore_working_area(target, c);
1614 c->free = true;
1615 *c->user = NULL; /* Same as above */
1616 c->user = NULL;
1617 }
1618 c = c->next;
1619 }
1620
1621 /* Run a merge pass to combine all areas into one */
1622 target_merge_working_areas(target);
1623
1624 print_wa_layout(target);
1625 }
1626
1627 void target_free_all_working_areas(struct target *target)
1628 {
1629 target_free_all_working_areas_restore(target, 1);
1630 }
1631
1632 /* Find the largest number of bytes that can be allocated */
1633 uint32_t target_get_working_area_avail(struct target *target)
1634 {
1635 struct working_area *c = target->working_areas;
1636 uint32_t max_size = 0;
1637
1638 if (c == NULL)
1639 return target->working_area_size;
1640
1641 while (c) {
1642 if (c->free && max_size < c->size)
1643 max_size = c->size;
1644
1645 c = c->next;
1646 }
1647
1648 return max_size;
1649 }
1650
1651 int target_arch_state(struct target *target)
1652 {
1653 int retval;
1654 if (target == NULL) {
1655 LOG_USER("No target has been configured");
1656 return ERROR_OK;
1657 }
1658
1659 LOG_USER("target state: %s", target_state_name(target));
1660
1661 if (target->state != TARGET_HALTED)
1662 return ERROR_OK;
1663
1664 retval = target->type->arch_state(target);
1665 return retval;
1666 }
1667
1668 /* Single aligned words are guaranteed to use 16 or 32 bit access
1669 * mode respectively, otherwise data is handled as quickly as
1670 * possible
1671 */
1672 int target_write_buffer(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1673 {
1674 LOG_DEBUG("writing buffer of %i byte at 0x%8.8x",
1675 (int)size, (unsigned)address);
1676
1677 if (!target_was_examined(target)) {
1678 LOG_ERROR("Target not examined yet");
1679 return ERROR_FAIL;
1680 }
1681
1682 if (size == 0)
1683 return ERROR_OK;
1684
1685 if ((address + size - 1) < address) {
1686 /* GDB can request this when e.g. PC is 0xfffffffc*/
1687 LOG_ERROR("address + size wrapped(0x%08x, 0x%08x)",
1688 (unsigned)address,
1689 (unsigned)size);
1690 return ERROR_FAIL;
1691 }
1692
1693 return target->type->write_buffer(target, address, size, buffer);
1694 }
1695
1696 static int target_write_buffer_default(struct target *target, uint32_t address, uint32_t size, const uint8_t *buffer)
1697 {
1698 int retval = ERROR_OK;
1699
1700 if (((address % 2) == 0) && (size == 2))
1701 return target_write_memory(target, address, 2, 1, buffer);
1702
1703 /* handle unaligned head bytes */
1704 if (address % 4) {
1705 uint32_t unaligned = 4 - (address % 4);
1706
1707 if (unaligned > size)
1708 unaligned = size;
1709
1710 retval = target_write_memory(target, address, 1, unaligned, buffer);
1711 if (retval != ERROR_OK)
1712 return retval;
1713
1714 buffer += unaligned;
1715 address += unaligned;
1716 size -= unaligned;
1717 }
1718
1719 /* handle aligned words */
1720 if (size >= 4) {
1721 int aligned = size - (size % 4);
1722
1723 /* use bulk writes above a certain limit. This may have to be changed */
1724 if (aligned > 128) {
1725 retval = target->type->bulk_write_memory(target, address, aligned / 4, buffer);
1726 if (retval != ERROR_OK)
1727 return retval;
1728 } else {
1729 retval = target_write_memory(target, address, 4, aligned / 4, buffer);
1730 if (retval != ERROR_OK)
1731 return retval;
1732 }
1733
1734 buffer += aligned;
1735 address += aligned;
1736 size -= aligned;
1737 }
1738
1739 /* handle tail writes of less than 4 bytes */
1740 if (size > 0) {
1741 retval = target_write_memory(target, address, 1, size, buffer);
1742 if (retval != ERROR_OK)
1743 return retval;
1744 }
1745
1746 return retval;
1747 }
1748
1749 /* Single aligned words are guaranteed to use 16 or 32 bit access
1750 * mode respectively, otherwise data is handled as quickly as
1751 * possible
1752 */
1753 int target_read_buffer(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1754 {
1755 LOG_DEBUG("reading buffer of %i byte at 0x%8.8x",
1756 (int)size, (unsigned)address);
1757
1758 if (!target_was_examined(target)) {
1759 LOG_ERROR("Target not examined yet");
1760 return ERROR_FAIL;
1761 }
1762
1763 if (size == 0)
1764 return ERROR_OK;
1765
1766 if ((address + size - 1) < address) {
1767 /* GDB can request this when e.g. PC is 0xfffffffc*/
1768 LOG_ERROR("address + size wrapped(0x%08" PRIx32 ", 0x%08" PRIx32 ")",
1769 address,
1770 size);
1771 return ERROR_FAIL;
1772 }
1773
1774 return target->type->read_buffer(target, address, size, buffer);
1775 }
1776
1777 static int target_read_buffer_default(struct target *target, uint32_t address, uint32_t size, uint8_t *buffer)
1778 {
1779 int retval = ERROR_OK;
1780
1781 if (((address % 2) == 0) && (size == 2))
1782 return target_read_memory(target, address, 2, 1, buffer);
1783
1784 /* handle unaligned head bytes */
1785 if (address % 4) {
1786 uint32_t unaligned = 4 - (address % 4);
1787
1788 if (unaligned > size)
1789 unaligned = size;
1790
1791 retval = target_read_memory(target, address, 1, unaligned, buffer);
1792 if (retval != ERROR_OK)
1793 return retval;
1794
1795 buffer += unaligned;
1796 address += unaligned;
1797 size -= unaligned;
1798 }
1799
1800 /* handle aligned words */
1801 if (size >= 4) {
1802 int aligned = size - (size % 4);
1803
1804 retval = target_read_memory(target, address, 4, aligned / 4, buffer);
1805 if (retval != ERROR_OK)
1806 return retval;
1807
1808 buffer += aligned;
1809 address += aligned;
1810 size -= aligned;
1811 }
1812
1813 /*prevent byte access when possible (avoid AHB access limitations in some cases)*/
1814 if (size >= 2) {
1815 int aligned = size - (size % 2);
1816 retval = target_read_memory(target, address, 2, aligned / 2, buffer);
1817 if (retval != ERROR_OK)
1818 return retval;
1819
1820 buffer += aligned;
1821 address += aligned;
1822 size -= aligned;
1823 }
1824 /* handle tail writes of less than 4 bytes */
1825 if (size > 0) {
1826 retval = target_read_memory(target, address, 1, size, buffer);
1827 if (retval != ERROR_OK)
1828 return retval;
1829 }
1830
1831 return ERROR_OK;
1832 }
1833
1834 int target_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* crc)
1835 {
1836 uint8_t *buffer;
1837 int retval;
1838 uint32_t i;
1839 uint32_t checksum = 0;
1840 if (!target_was_examined(target)) {
1841 LOG_ERROR("Target not examined yet");
1842 return ERROR_FAIL;
1843 }
1844
1845 retval = target->type->checksum_memory(target, address, size, &checksum);
1846 if (retval != ERROR_OK) {
1847 buffer = malloc(size);
1848 if (buffer == NULL) {
1849 LOG_ERROR("error allocating buffer for section (%d bytes)", (int)size);
1850 return ERROR_COMMAND_SYNTAX_ERROR;
1851 }
1852 retval = target_read_buffer(target, address, size, buffer);
1853 if (retval != ERROR_OK) {
1854 free(buffer);
1855 return retval;
1856 }
1857
1858 /* convert to target endianness */
1859 for (i = 0; i < (size/sizeof(uint32_t)); i++) {
1860 uint32_t target_data;
1861 target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
1862 target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
1863 }
1864
1865 retval = image_calculate_checksum(buffer, size, &checksum);
1866 free(buffer);
1867 }
1868
1869 *crc = checksum;
1870
1871 return retval;
1872 }
1873
1874 int target_blank_check_memory(struct target *target, uint32_t address, uint32_t size, uint32_t* blank)
1875 {
1876 int retval;
1877 if (!target_was_examined(target)) {
1878 LOG_ERROR("Target not examined yet");
1879 return ERROR_FAIL;
1880 }
1881
1882 if (target->type->blank_check_memory == 0)
1883 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1884
1885 retval = target->type->blank_check_memory(target, address, size, blank);
1886
1887 return retval;
1888 }
1889
1890 int target_read_u32(struct target *target, uint32_t address, uint32_t *value)
1891 {
1892 uint8_t value_buf[4];
1893 if (!target_was_examined(target)) {
1894 LOG_ERROR("Target not examined yet");
1895 return ERROR_FAIL;
1896 }
1897
1898 int retval = target_read_memory(target, address, 4, 1, value_buf);
1899
1900 if (retval == ERROR_OK) {
1901 *value = target_buffer_get_u32(target, value_buf);
1902 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1903 address,
1904 *value);
1905 } else {
1906 *value = 0x0;
1907 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1908 address);
1909 }
1910
1911 return retval;
1912 }
1913
1914 int target_read_u16(struct target *target, uint32_t address, uint16_t *value)
1915 {
1916 uint8_t value_buf[2];
1917 if (!target_was_examined(target)) {
1918 LOG_ERROR("Target not examined yet");
1919 return ERROR_FAIL;
1920 }
1921
1922 int retval = target_read_memory(target, address, 2, 1, value_buf);
1923
1924 if (retval == ERROR_OK) {
1925 *value = target_buffer_get_u16(target, value_buf);
1926 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%4.4x",
1927 address,
1928 *value);
1929 } else {
1930 *value = 0x0;
1931 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1932 address);
1933 }
1934
1935 return retval;
1936 }
1937
1938 int target_read_u8(struct target *target, uint32_t address, uint8_t *value)
1939 {
1940 int retval = target_read_memory(target, address, 1, 1, value);
1941 if (!target_was_examined(target)) {
1942 LOG_ERROR("Target not examined yet");
1943 return ERROR_FAIL;
1944 }
1945
1946 if (retval == ERROR_OK) {
1947 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
1948 address,
1949 *value);
1950 } else {
1951 *value = 0x0;
1952 LOG_DEBUG("address: 0x%8.8" PRIx32 " failed",
1953 address);
1954 }
1955
1956 return retval;
1957 }
1958
1959 int target_write_u32(struct target *target, uint32_t address, uint32_t value)
1960 {
1961 int retval;
1962 uint8_t value_buf[4];
1963 if (!target_was_examined(target)) {
1964 LOG_ERROR("Target not examined yet");
1965 return ERROR_FAIL;
1966 }
1967
1968 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8" PRIx32 "",
1969 address,
1970 value);
1971
1972 target_buffer_set_u32(target, value_buf, value);
1973 retval = target_write_memory(target, address, 4, 1, value_buf);
1974 if (retval != ERROR_OK)
1975 LOG_DEBUG("failed: %i", retval);
1976
1977 return retval;
1978 }
1979
1980 int target_write_u16(struct target *target, uint32_t address, uint16_t value)
1981 {
1982 int retval;
1983 uint8_t value_buf[2];
1984 if (!target_was_examined(target)) {
1985 LOG_ERROR("Target not examined yet");
1986 return ERROR_FAIL;
1987 }
1988
1989 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%8.8x",
1990 address,
1991 value);
1992
1993 target_buffer_set_u16(target, value_buf, value);
1994 retval = target_write_memory(target, address, 2, 1, value_buf);
1995 if (retval != ERROR_OK)
1996 LOG_DEBUG("failed: %i", retval);
1997
1998 return retval;
1999 }
2000
2001 int target_write_u8(struct target *target, uint32_t address, uint8_t value)
2002 {
2003 int retval;
2004 if (!target_was_examined(target)) {
2005 LOG_ERROR("Target not examined yet");
2006 return ERROR_FAIL;
2007 }
2008
2009 LOG_DEBUG("address: 0x%8.8" PRIx32 ", value: 0x%2.2x",
2010 address, value);
2011
2012 retval = target_write_memory(target, address, 1, 1, &value);
2013 if (retval != ERROR_OK)
2014 LOG_DEBUG("failed: %i", retval);
2015
2016 return retval;
2017 }
2018
2019 static int find_target(struct command_context *cmd_ctx, const char *name)
2020 {
2021 struct target *target = get_target(name);
2022 if (target == NULL) {
2023 LOG_ERROR("Target: %s is unknown, try one of:\n", name);
2024 return ERROR_FAIL;
2025 }
2026 if (!target->tap->enabled) {
2027 LOG_USER("Target: TAP %s is disabled, "
2028 "can't be the current target\n",
2029 target->tap->dotted_name);
2030 return ERROR_FAIL;
2031 }
2032
2033 cmd_ctx->current_target = target->target_number;
2034 return ERROR_OK;
2035 }
2036
2037
2038 COMMAND_HANDLER(handle_targets_command)
2039 {
2040 int retval = ERROR_OK;
2041 if (CMD_ARGC == 1) {
2042 retval = find_target(CMD_CTX, CMD_ARGV[0]);
2043 if (retval == ERROR_OK) {
2044 /* we're done! */
2045 return retval;
2046 }
2047 }
2048
2049 struct target *target = all_targets;
2050 command_print(CMD_CTX, " TargetName Type Endian TapName State ");
2051 command_print(CMD_CTX, "-- ------------------ ---------- ------ ------------------ ------------");
2052 while (target) {
2053 const char *state;
2054 char marker = ' ';
2055
2056 if (target->tap->enabled)
2057 state = target_state_name(target);
2058 else
2059 state = "tap-disabled";
2060
2061 if (CMD_CTX->current_target == target->target_number)
2062 marker = '*';
2063
2064 /* keep columns lined up to match the headers above */
2065 command_print(CMD_CTX,
2066 "%2d%c %-18s %-10s %-6s %-18s %s",
2067 target->target_number,
2068 marker,
2069 target_name(target),
2070 target_type_name(target),
2071 Jim_Nvp_value2name_simple(nvp_target_endian,
2072 target->endianness)->name,
2073 target->tap->dotted_name,
2074 state);
2075 target = target->next;
2076 }
2077
2078 return retval;
2079 }
2080
2081 /* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */
2082
2083 static int powerDropout;
2084 static int srstAsserted;
2085
2086 static int runPowerRestore;
2087 static int runPowerDropout;
2088 static int runSrstAsserted;
2089 static int runSrstDeasserted;
2090
2091 static int sense_handler(void)
2092 {
2093 static int prevSrstAsserted;
2094 static int prevPowerdropout;
2095
2096 int retval = jtag_power_dropout(&powerDropout);
2097 if (retval != ERROR_OK)
2098 return retval;
2099
2100 int powerRestored;
2101 powerRestored = prevPowerdropout && !powerDropout;
2102 if (powerRestored)
2103 runPowerRestore = 1;
2104
2105 long long current = timeval_ms();
2106 static long long lastPower;
2107 int waitMore = lastPower + 2000 > current;
2108 if (powerDropout && !waitMore) {
2109 runPowerDropout = 1;
2110 lastPower = current;
2111 }
2112
2113 retval = jtag_srst_asserted(&srstAsserted);
2114 if (retval != ERROR_OK)
2115 return retval;
2116
2117 int srstDeasserted;
2118 srstDeasserted = prevSrstAsserted && !srstAsserted;
2119
2120 static long long lastSrst;
2121 waitMore = lastSrst + 2000 > current;
2122 if (srstDeasserted && !waitMore) {
2123 runSrstDeasserted = 1;
2124 lastSrst = current;
2125 }
2126
2127 if (!prevSrstAsserted && srstAsserted)
2128 runSrstAsserted = 1;
2129
2130 prevSrstAsserted = srstAsserted;
2131 prevPowerdropout = powerDropout;
2132
2133 if (srstDeasserted || powerRestored) {
2134 /* Other than logging the event we can't do anything here.
2135 * Issuing a reset is a particularly bad idea as we might
2136 * be inside a reset already.
2137 */
2138 }
2139
2140 return ERROR_OK;
2141 }
2142
2143 static int backoff_times;
2144 static int backoff_count;
2145
2146 /* process target state changes */
2147 static int handle_target(void *priv)
2148 {
2149 Jim_Interp *interp = (Jim_Interp *)priv;
2150 int retval = ERROR_OK;
2151
2152 if (!is_jtag_poll_safe()) {
2153 /* polling is disabled currently */
2154 return ERROR_OK;
2155 }
2156
2157 /* we do not want to recurse here... */
2158 static int recursive;
2159 if (!recursive) {
2160 recursive = 1;
2161 sense_handler();
2162 /* danger! running these procedures can trigger srst assertions and power dropouts.
2163 * We need to avoid an infinite loop/recursion here and we do that by
2164 * clearing the flags after running these events.
2165 */
2166 int did_something = 0;
2167 if (runSrstAsserted) {
2168 LOG_INFO("srst asserted detected, running srst_asserted proc.");
2169 Jim_Eval(interp, "srst_asserted");
2170 did_something = 1;
2171 }
2172 if (runSrstDeasserted) {
2173 Jim_Eval(interp, "srst_deasserted");
2174 did_something = 1;
2175 }
2176 if (runPowerDropout) {
2177 LOG_INFO("Power dropout detected, running power_dropout proc.");
2178 Jim_Eval(interp, "power_dropout");
2179 did_something = 1;
2180 }
2181 if (runPowerRestore) {
2182 Jim_Eval(interp, "power_restore");
2183 did_something = 1;
2184 }
2185
2186 if (did_something) {
2187 /* clear detect flags */
2188 sense_handler();
2189 }
2190
2191 /* clear action flags */
2192
2193 runSrstAsserted = 0;
2194 runSrstDeasserted = 0;
2195 runPowerRestore = 0;
2196 runPowerDropout = 0;
2197
2198 recursive = 0;
2199 }
2200
2201 if (backoff_times > backoff_count) {
2202 /* do not poll this time as we failed previously */
2203 backoff_count++;
2204 return ERROR_OK;
2205 }
2206 backoff_count = 0;
2207
2208 /* Poll targets for state changes unless that's globally disabled.
2209 * Skip targets that are currently disabled.
2210 */
2211 for (struct target *target = all_targets;
2212 is_jtag_poll_safe() && target;
2213 target = target->next) {
2214 if (!target->tap->enabled)
2215 continue;
2216
2217 /* only poll target if we've got power and srst isn't asserted */
2218 if (!powerDropout && !srstAsserted) {
2219 /* polling may fail silently until the target has been examined */
2220 retval = target_poll(target);
2221 if (retval != ERROR_OK) {
2222 /* 100ms polling interval. Increase interval between polling up to 5000ms */
2223 if (backoff_times * polling_interval < 5000) {
2224 backoff_times *= 2;
2225 backoff_times++;
2226 }
2227 LOG_USER("Polling target failed, GDB will be halted. Polling again in %dms",
2228 backoff_times * polling_interval);
2229
2230 /* Tell GDB to halt the debugger. This allows the user to
2231 * run monitor commands to handle the situation.
2232 */
2233 target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
2234 return retval;
2235 }
2236 /* Since we succeeded, we reset backoff count */
2237 if (backoff_times > 0)
2238 LOG_USER("Polling succeeded again");
2239 backoff_times = 0;
2240 }
2241 }
2242
2243 return retval;
2244 }
2245
2246 COMMAND_HANDLER(handle_reg_command)
2247 {
2248 struct target *target;
2249 struct reg *reg = NULL;
2250 unsigned count = 0;
2251 char *value;
2252
2253 LOG_DEBUG("-");
2254
2255 target = get_current_target(CMD_CTX);
2256
2257 /* list all available registers for the current target */
2258 if (CMD_ARGC == 0) {
2259 struct reg_cache *cache = target->reg_cache;
2260
2261 count = 0;
2262 while (cache) {
2263 unsigned i;
2264
2265 command_print(CMD_CTX, "===== %s", cache->name);
2266
2267 for (i = 0, reg = cache->reg_list;
2268 i < cache->num_regs;
2269 i++, reg++, count++) {
2270 /* only print cached values if they are valid */
2271 if (reg->valid) {
2272 value = buf_to_str(reg->value,
2273 reg->size, 16);
2274 command_print(CMD_CTX,
2275 "(%i) %s (/%" PRIu32 "): 0x%s%s",
2276 count, reg->name,
2277 reg->size, value,
2278 reg->dirty
2279 ? " (dirty)"
2280 : "");
2281 free(value);
2282 } else {
2283 command_print(CMD_CTX, "(%i) %s (/%" PRIu32 ")",
2284 count, reg->name,
2285 reg->size) ;
2286 }
2287 }
2288 cache = cache->next;
2289 }
2290
2291 return ERROR_OK;
2292 }
2293
2294 /* access a single register by its ordinal number */
2295 if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
2296 unsigned num;
2297 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);
2298
2299 struct reg_cache *cache = target->reg_cache;
2300 count = 0;
2301 while (cache) {
2302 unsigned i;
2303 for (i = 0; i < cache->num_regs; i++) {
2304 if (count++ == num) {
2305 reg = &cache->reg_list[i];
2306 break;
2307 }
2308 }
2309 if (reg)
2310 break;
2311 cache = cache->next;
2312 }
2313
2314 if (!reg) {
2315 command_print(CMD_CTX, "%i is out of bounds, the current target "
2316 "has only %i registers (0 - %i)", num, count, count - 1);
2317 return ERROR_OK;
2318 }
2319 } else {
2320 /* access a single register by its name */
2321 reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], 1);
2322
2323 if (!reg) {
2324 command_print(CMD_CTX, "register %s not found in current target", CMD_ARGV[0]);
2325 return ERROR_OK;
2326 }
2327 }
2328
2329 assert(reg != NULL); /* give clang a hint that we *know* reg is != NULL here */
2330
2331 /* display a register */
2332 if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
2333 && (CMD_ARGV[1][0] <= '9')))) {
2334 if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
2335 reg->valid = 0;
2336
2337 if (reg->valid == 0)
2338 reg->type->get(reg);
2339 value = buf_to_str(reg->value, reg->size, 16);
2340 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2341 free(value);
2342 return ERROR_OK;
2343 }
2344
2345 /* set register value */
2346 if (CMD_ARGC == 2) {
2347 uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
2348 if (buf == NULL)
2349 return ERROR_FAIL;
2350 str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);
2351
2352 reg->type->set(reg, buf);
2353
2354 value = buf_to_str(reg->value, reg->size, 16);
2355 command_print(CMD_CTX, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
2356 free(value);
2357
2358 free(buf);
2359
2360 return ERROR_OK;
2361 }
2362
2363 return ERROR_COMMAND_SYNTAX_ERROR;
2364 }
2365
2366 COMMAND_HANDLER(handle_poll_command)
2367 {
2368 int retval = ERROR_OK;
2369 struct target *target = get_current_target(CMD_CTX);
2370
2371 if (CMD_ARGC == 0) {
2372 command_print(CMD_CTX, "background polling: %s",
2373 jtag_poll_get_enabled() ? "on" : "off");
2374 command_print(CMD_CTX, "TAP: %s (%s)",
2375 target->tap->dotted_name,
2376 target->tap->enabled ? "enabled" : "disabled");
2377 if (!target->tap->enabled)
2378 return ERROR_OK;
2379 retval = target_poll(target);
2380 if (retval != ERROR_OK)
2381 return retval;
2382 retval = target_arch_state(target);
2383 if (retval != ERROR_OK)
2384 return retval;
2385 } else if (CMD_ARGC == 1) {
2386 bool enable;
2387 COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
2388 jtag_poll_set_enabled(enable);
2389 } else
2390 return ERROR_COMMAND_SYNTAX_ERROR;
2391
2392 return retval;
2393 }
2394
2395 COMMAND_HANDLER(handle_wait_halt_command)
2396 {
2397 if (CMD_ARGC > 1)
2398 return ERROR_COMMAND_SYNTAX_ERROR;
2399
2400 unsigned ms = 5000;
2401 if (1 == CMD_ARGC) {
2402 int retval = parse_uint(CMD_ARGV[0], &ms);
2403 if (ERROR_OK != retval)
2404 return ERROR_COMMAND_SYNTAX_ERROR;
2405 /* convert seconds (given) to milliseconds (needed) */
2406 ms *= 1000;
2407 }
2408
2409 struct target *target = get_current_target(CMD_CTX);
2410 return target_wait_state(target, TARGET_HALTED, ms);
2411 }
2412
2413 /* wait for target state to change. The trick here is to have a low
2414 * latency for short waits and not to suck up all the CPU time
2415 * on longer waits.
2416 *
2417 * After 500ms, keep_alive() is invoked
2418 */
2419 int target_wait_state(struct target *target, enum target_state state, int ms)
2420 {
2421 int retval;
2422 long long then = 0, cur;
2423 int once = 1;
2424
2425 for (;;) {
2426 retval = target_poll(target);
2427 if (retval != ERROR_OK)
2428 return retval;
2429 if (target->state == state)
2430 break;
2431 cur = timeval_ms();
2432 if (once) {
2433 once = 0;
2434 then = timeval_ms();
2435 LOG_DEBUG("waiting for target %s...",
2436 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2437 }
2438
2439 if (cur-then > 500)
2440 keep_alive();
2441
2442 if ((cur-then) > ms) {
2443 LOG_ERROR("timed out while waiting for target %s",
2444 Jim_Nvp_value2name_simple(nvp_target_state, state)->name);
2445 return ERROR_FAIL;
2446 }
2447 }
2448
2449 return ERROR_OK;
2450 }
2451
2452 COMMAND_HANDLER(handle_halt_command)
2453 {
2454 LOG_DEBUG("-");
2455
2456 struct target *target = get_current_target(CMD_CTX);
2457 int retval = target_halt(target);
2458 if (ERROR_OK != retval)
2459 return retval;
2460
2461 if (CMD_ARGC == 1) {
2462 unsigned wait_local;
2463 retval = parse_uint(CMD_ARGV[0], &wait_local);
2464 if (ERROR_OK != retval)
2465 return ERROR_COMMAND_SYNTAX_ERROR;
2466 if (!wait_local)
2467 return ERROR_OK;
2468 }
2469
2470 return CALL_COMMAND_HANDLER(handle_wait_halt_command);
2471 }
2472
2473 COMMAND_HANDLER(handle_soft_reset_halt_command)
2474 {
2475 struct target *target = get_current_target(CMD_CTX);
2476
2477 LOG_USER("requesting target halt and executing a soft reset");
2478
2479 target->type->soft_reset_halt(target);
2480
2481 return ERROR_OK;
2482 }
2483
2484 COMMAND_HANDLER(handle_reset_command)
2485 {
2486 if (CMD_ARGC > 1)
2487 return ERROR_COMMAND_SYNTAX_ERROR;
2488
2489 enum target_reset_mode reset_mode = RESET_RUN;
2490 if (CMD_ARGC == 1) {
2491 const Jim_Nvp *n;
2492 n = Jim_Nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
2493 if ((n->name == NULL) || (n->value == RESET_UNKNOWN))
2494 return ERROR_COMMAND_SYNTAX_ERROR;
2495 reset_mode = n->value;
2496 }
2497
2498 /* reset *all* targets */
2499 return target_process_reset(CMD_CTX, reset_mode);
2500 }
2501
2502
2503 COMMAND_HANDLER(handle_resume_command)
2504 {
2505 int current = 1;
2506 if (CMD_ARGC > 1)
2507 return ERROR_COMMAND_SYNTAX_ERROR;
2508
2509 struct target *target = get_current_target(CMD_CTX);
2510 target_handle_event(target, TARGET_EVENT_OLD_pre_resume);
2511
2512 /* with no CMD_ARGV, resume from current pc, addr = 0,
2513 * with one arguments, addr = CMD_ARGV[0],
2514 * handle breakpoints, not debugging */
2515 uint32_t addr = 0;
2516 if (CMD_ARGC == 1) {
2517 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2518 current = 0;
2519 }
2520
2521 return target_resume(target, current, addr, 1, 0);
2522 }
2523
2524 COMMAND_HANDLER(handle_step_command)
2525 {
2526 if (CMD_ARGC > 1)
2527 return ERROR_COMMAND_SYNTAX_ERROR;
2528
2529 LOG_DEBUG("-");
2530
2531 /* with no CMD_ARGV, step from current pc, addr = 0,
2532 * with one argument addr = CMD_ARGV[0],
2533 * handle breakpoints, debugging */
2534 uint32_t addr = 0;
2535 int current_pc = 1;
2536 if (CMD_ARGC == 1) {
2537 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
2538 current_pc = 0;
2539 }
2540
2541 struct target *target = get_current_target(CMD_CTX);
2542
2543 return target->type->step(target, current_pc, addr, 1);
2544 }
2545
2546 static void handle_md_output(struct command_context *cmd_ctx,
2547 struct target *target, uint32_t address, unsigned size,
2548 unsigned count, const uint8_t *buffer)
2549 {
2550 const unsigned line_bytecnt = 32;
2551 unsigned line_modulo = line_bytecnt / size;
2552
2553 char output[line_bytecnt * 4 + 1];
2554 unsigned output_len = 0;
2555
2556 const char *value_fmt;
2557 switch (size) {
2558 case 4:
2559 value_fmt = "%8.8x ";
2560 break;
2561 case 2:
2562 value_fmt = "%4.4x ";
2563 break;
2564 case 1:
2565 value_fmt = "%2.2x ";
2566 break;
2567 default:
2568 /* "can't happen", caller checked */
2569 LOG_ERROR("invalid memory read size: %u", size);
2570 return;
2571 }
2572
2573 for (unsigned i = 0; i < count; i++) {
2574 if (i % line_modulo == 0) {
2575 output_len += snprintf(output + output_len,
2576 sizeof(output) - output_len,
2577 "0x%8.8x: ",
2578 (unsigned)(address + (i*size)));
2579 }
2580
2581 uint32_t value = 0;
2582 const uint8_t *value_ptr = buffer + i * size;
2583 switch (size) {
2584 case 4:
2585 value = target_buffer_get_u32(target, value_ptr);
2586 break;
2587 case 2:
2588 value = target_buffer_get_u16(target, value_ptr);
2589 break;
2590 case 1:
2591 value = *value_ptr;
2592 }
2593 output_len += snprintf(output + output_len,
2594 sizeof(output) - output_len,
2595 value_fmt, value);
2596
2597 if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
2598 command_print(cmd_ctx, "%s", output);
2599 output_len = 0;
2600 }
2601 }
2602 }
2603
2604 COMMAND_HANDLER(handle_md_command)
2605 {
2606 if (CMD_ARGC < 1)
2607 return ERROR_COMMAND_SYNTAX_ERROR;
2608
2609 unsigned size = 0;
2610 switch (CMD_NAME[2]) {
2611 case 'w':
2612 size = 4;
2613 break;
2614 case 'h':
2615 size = 2;
2616 break;
2617 case 'b':
2618 size = 1;
2619 break;
2620 default:
2621 return ERROR_COMMAND_SYNTAX_ERROR;
2622 }
2623
2624 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2625 int (*fn)(struct target *target,
2626 uint32_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
2627 if (physical) {
2628 CMD_ARGC--;
2629 CMD_ARGV++;
2630 fn = target_read_phys_memory;
2631 } else
2632 fn = target_read_memory;
2633 if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
2634 return ERROR_COMMAND_SYNTAX_ERROR;
2635
2636 uint32_t address;
2637 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2638
2639 unsigned count = 1;
2640 if (CMD_ARGC == 2)
2641 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
2642
2643 uint8_t *buffer = calloc(count, size);
2644
2645 struct target *target = get_current_target(CMD_CTX);
2646 int retval = fn(target, address, size, count, buffer);
2647 if (ERROR_OK == retval)
2648 handle_md_output(CMD_CTX, target, address, size, count, buffer);
2649
2650 free(buffer);
2651
2652 return retval;
2653 }
2654
2655 typedef int (*target_write_fn)(struct target *target,
2656 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer);
2657
2658 static int target_write_memory_fast(struct target *target,
2659 uint32_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
2660 {
2661 return target_write_buffer(target, address, size * count, buffer);
2662 }
2663
2664 static int target_fill_mem(struct target *target,
2665 uint32_t address,
2666 target_write_fn fn,
2667 unsigned data_size,
2668 /* value */
2669 uint32_t b,
2670 /* count */
2671 unsigned c)
2672 {
2673 /* We have to write in reasonably large chunks to be able
2674 * to fill large memory areas with any sane speed */
2675 const unsigned chunk_size = 16384;
2676 uint8_t *target_buf = malloc(chunk_size * data_size);
2677 if (target_buf == NULL) {
2678 LOG_ERROR("Out of memory");
2679 return ERROR_FAIL;
2680 }
2681
2682 for (unsigned i = 0; i < chunk_size; i++) {
2683 switch (data_size) {
2684 case 4:
2685 target_buffer_set_u32(target, target_buf + i * data_size, b);
2686 break;
2687 case 2:
2688 target_buffer_set_u16(target, target_buf + i * data_size, b);
2689 break;
2690 case 1:
2691 target_buffer_set_u8(target, target_buf + i * data_size, b);
2692 break;
2693 default:
2694 exit(-1);
2695 }
2696 }
2697
2698 int retval = ERROR_OK;
2699
2700 for (unsigned x = 0; x < c; x += chunk_size) {
2701 unsigned current;
2702 current = c - x;
2703 if (current > chunk_size)
2704 current = chunk_size;
2705 retval = fn(target, address + x * data_size, data_size, current, target_buf);
2706 if (retval != ERROR_OK)
2707 break;
2708 /* avoid GDB timeouts */
2709 keep_alive();
2710 }
2711 free(target_buf);
2712
2713 return retval;
2714 }
2715
2716
2717 COMMAND_HANDLER(handle_mw_command)
2718 {
2719 if (CMD_ARGC < 2)
2720 return ERROR_COMMAND_SYNTAX_ERROR;
2721 bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
2722 target_write_fn fn;
2723 if (physical) {
2724 CMD_ARGC--;
2725 CMD_ARGV++;
2726 fn = target_write_phys_memory;
2727 } else
2728 fn = target_write_memory_fast;
2729 if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
2730 return ERROR_COMMAND_SYNTAX_ERROR;
2731
2732 uint32_t address;
2733 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
2734
2735 uint32_t value;
2736 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2737
2738 unsigned count = 1;
2739 if (CMD_ARGC == 3)
2740 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);
2741
2742 struct target *target = get_current_target(CMD_CTX);
2743 unsigned wordsize;
2744 switch (CMD_NAME[2]) {
2745 case 'w':
2746 wordsize = 4;
2747 break;
2748 case 'h':
2749 wordsize = 2;
2750 break;
2751 case 'b':
2752 wordsize = 1;
2753 break;
2754 default:
2755 return ERROR_COMMAND_SYNTAX_ERROR;
2756 }
2757
2758 return target_fill_mem(target, address, fn, wordsize, value, count);
2759 }
2760
2761 static COMMAND_HELPER(parse_load_image_command_CMD_ARGV, struct image *image,
2762 uint32_t *min_address, uint32_t *max_address)
2763 {
2764 if (CMD_ARGC < 1 || CMD_ARGC > 5)
2765 return ERROR_COMMAND_SYNTAX_ERROR;
2766
2767 /* a base address isn't always necessary,
2768 * default to 0x0 (i.e. don't relocate) */
2769 if (CMD_ARGC >= 2) {
2770 uint32_t addr;
2771 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2772 image->base_address = addr;
2773 image->base_address_set = 1;
2774 } else
2775 image->base_address_set = 0;
2776
2777 image->start_address_set = 0;
2778
2779 if (CMD_ARGC >= 4)
2780 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], *min_address);
2781 if (CMD_ARGC == 5) {
2782 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], *max_address);
2783 /* use size (given) to find max (required) */
2784 *max_address += *min_address;
2785 }
2786
2787 if (*min_address > *max_address)
2788 return ERROR_COMMAND_SYNTAX_ERROR;
2789
2790 return ERROR_OK;
2791 }
2792
2793 COMMAND_HANDLER(handle_load_image_command)
2794 {
2795 uint8_t *buffer;
2796 size_t buf_cnt;
2797 uint32_t image_size;
2798 uint32_t min_address = 0;
2799 uint32_t max_address = 0xffffffff;
2800 int i;
2801 struct image image;
2802
2803 int retval = CALL_COMMAND_HANDLER(parse_load_image_command_CMD_ARGV,
2804 &image, &min_address, &max_address);
2805 if (ERROR_OK != retval)
2806 return retval;
2807
2808 struct target *target = get_current_target(CMD_CTX);
2809
2810 struct duration bench;
2811 duration_start(&bench);
2812
2813 if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
2814 return ERROR_OK;
2815
2816 image_size = 0x0;
2817 retval = ERROR_OK;
2818 for (i = 0; i < image.num_sections; i++) {
2819 buffer = malloc(image.sections[i].size);
2820 if (buffer == NULL) {
2821 command_print(CMD_CTX,
2822 "error allocating buffer for section (%d bytes)",
2823 (int)(image.sections[i].size));
2824 break;
2825 }
2826
2827 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2828 if (retval != ERROR_OK) {
2829 free(buffer);
2830 break;
2831 }
2832
2833 uint32_t offset = 0;
2834 uint32_t length = buf_cnt;
2835
2836 /* DANGER!!! beware of unsigned comparision here!!! */
2837
2838 if ((image.sections[i].base_address + buf_cnt >= min_address) &&
2839 (image.sections[i].base_address < max_address)) {
2840
2841 if (image.sections[i].base_address < min_address) {
2842 /* clip addresses below */
2843 offset += min_address-image.sections[i].base_address;
2844 length -= offset;
2845 }
2846
2847 if (image.sections[i].base_address + buf_cnt > max_address)
2848 length -= (image.sections[i].base_address + buf_cnt)-max_address;
2849
2850 retval = target_write_buffer(target,
2851 image.sections[i].base_address + offset, length, buffer + offset);
2852 if (retval != ERROR_OK) {
2853 free(buffer);
2854 break;
2855 }
2856 image_size += length;
2857 command_print(CMD_CTX, "%u bytes written at address 0x%8.8" PRIx32 "",
2858 (unsigned int)length,
2859 image.sections[i].base_address + offset);
2860 }
2861
2862 free(buffer);
2863 }
2864
2865 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2866 command_print(CMD_CTX, "downloaded %" PRIu32 " bytes "
2867 "in %fs (%0.3f KiB/s)", image_size,
2868 duration_elapsed(&bench), duration_kbps(&bench, image_size));
2869 }
2870
2871 image_close(&image);
2872
2873 return retval;
2874
2875 }
2876
2877 COMMAND_HANDLER(handle_dump_image_command)
2878 {
2879 struct fileio fileio;
2880 uint8_t *buffer;
2881 int retval, retvaltemp;
2882 uint32_t address, size;
2883 struct duration bench;
2884 struct target *target = get_current_target(CMD_CTX);
2885
2886 if (CMD_ARGC != 3)
2887 return ERROR_COMMAND_SYNTAX_ERROR;
2888
2889 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], address);
2890 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);
2891
2892 uint32_t buf_size = (size > 4096) ? 4096 : size;
2893 buffer = malloc(buf_size);
2894 if (!buffer)
2895 return ERROR_FAIL;
2896
2897 retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
2898 if (retval != ERROR_OK) {
2899 free(buffer);
2900 return retval;
2901 }
2902
2903 duration_start(&bench);
2904
2905 while (size > 0) {
2906 size_t size_written;
2907 uint32_t this_run_size = (size > buf_size) ? buf_size : size;
2908 retval = target_read_buffer(target, address, this_run_size, buffer);
2909 if (retval != ERROR_OK)
2910 break;
2911
2912 retval = fileio_write(&fileio, this_run_size, buffer, &size_written);
2913 if (retval != ERROR_OK)
2914 break;
2915
2916 size -= this_run_size;
2917 address += this_run_size;
2918 }
2919
2920 free(buffer);
2921
2922 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
2923 int filesize;
2924 retval = fileio_size(&fileio, &filesize);
2925 if (retval != ERROR_OK)
2926 return retval;
2927 command_print(CMD_CTX,
2928 "dumped %ld bytes in %fs (%0.3f KiB/s)", (long)filesize,
2929 duration_elapsed(&bench), duration_kbps(&bench, filesize));
2930 }
2931
2932 retvaltemp = fileio_close(&fileio);
2933 if (retvaltemp != ERROR_OK)
2934 return retvaltemp;
2935
2936 return retval;
2937 }
2938
2939 static COMMAND_HELPER(handle_verify_image_command_internal, int verify)
2940 {
2941 uint8_t *buffer;
2942 size_t buf_cnt;
2943 uint32_t image_size;
2944 int i;
2945 int retval;
2946 uint32_t checksum = 0;
2947 uint32_t mem_checksum = 0;
2948
2949 struct image image;
2950
2951 struct target *target = get_current_target(CMD_CTX);
2952
2953 if (CMD_ARGC < 1)
2954 return ERROR_COMMAND_SYNTAX_ERROR;
2955
2956 if (!target) {
2957 LOG_ERROR("no target selected");
2958 return ERROR_FAIL;
2959 }
2960
2961 struct duration bench;
2962 duration_start(&bench);
2963
2964 if (CMD_ARGC >= 2) {
2965 uint32_t addr;
2966 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], addr);
2967 image.base_address = addr;
2968 image.base_address_set = 1;
2969 } else {
2970 image.base_address_set = 0;
2971 image.base_address = 0x0;
2972 }
2973
2974 image.start_address_set = 0;
2975
2976 retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
2977 if (retval != ERROR_OK)
2978 return retval;
2979
2980 image_size = 0x0;
2981 int diffs = 0;
2982 retval = ERROR_OK;
2983 for (i = 0; i < image.num_sections; i++) {
2984 buffer = malloc(image.sections[i].size);
2985 if (buffer == NULL) {
2986 command_print(CMD_CTX,
2987 "error allocating buffer for section (%d bytes)",
2988 (int)(image.sections[i].size));
2989 break;
2990 }
2991 retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
2992 if (retval != ERROR_OK) {
2993 free(buffer);
2994 break;
2995 }
2996
2997 if (verify) {
2998 /* calculate checksum of image */
2999 retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
3000 if (retval != ERROR_OK) {
3001 free(buffer);
3002 break;
3003 }
3004
3005 retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
3006 if (retval != ERROR_OK) {
3007 free(buffer);
3008 break;
3009 }
3010
3011 if (checksum != mem_checksum) {
3012 /* failed crc checksum, fall back to a binary compare */
3013 uint8_t *data;
3014
3015 if (diffs == 0)
3016 LOG_ERROR("checksum mismatch - attempting binary compare");
3017
3018 data = (uint8_t *)malloc(buf_cnt);
3019
3020 /* Can we use 32bit word accesses? */
3021 int size = 1;
3022 int count = buf_cnt;
3023 if ((count % 4) == 0) {
3024 size *= 4;
3025 count /= 4;
3026 }
3027 retval = target_read_memory(target, image.sections[i].base_address, size, count, data);
3028 if (retval == ERROR_OK) {
3029 uint32_t t;
3030 for (t = 0; t < buf_cnt; t++) {
3031 if (data[t] != buffer[t]) {
3032 command_print(CMD_CTX,
3033 "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
3034 diffs,
3035 (unsigned)(t + image.sections[i].base_address),
3036 data[t],
3037 buffer[t]);
3038 if (diffs++ >= 127) {
3039 command_print(CMD_CTX, "More than 128 errors, the rest are not printed.");
3040 free(data);
3041 free(buffer);
3042 goto done;
3043 }
3044 }
3045 keep_alive();
3046 }
3047 }
3048 free(data);
3049 }
3050 } else {
3051 command_print(CMD_CTX, "address 0x%08" PRIx32 " length 0x%08zx",
3052 image.sections[i].base_address,
3053 buf_cnt);
3054 }
3055
3056 free(buffer);
3057 image_size += buf_cnt;
3058 }
3059 if (diffs > 0)
3060 command_print(CMD_CTX, "No more differences found.");
3061 done:
3062 if (diffs > 0)
3063 retval = ERROR_FAIL;
3064 if ((ERROR_OK == retval) && (duration_measure(&bench) == ERROR_OK)) {
3065 command_print(CMD_CTX, "verified %" PRIu32 " bytes "
3066 "in %fs (%0.3f KiB/s)", image_size,
3067 duration_elapsed(&bench), duration_kbps(&bench, image_size));
3068 }
3069
3070 image_close(&image);
3071
3072 return retval;
3073 }
3074
3075 COMMAND_HANDLER(handle_verify_image_command)
3076 {
3077 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 1);
3078 }
3079
3080 COMMAND_HANDLER(handle_test_image_command)
3081 {
3082 return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, 0);
3083 }
3084
3085 static int handle_bp_command_list(struct command_context *cmd_ctx)
3086 {
3087 struct target *target = get_current_target(cmd_ctx);
3088 struct breakpoint *breakpoint = target->breakpoints;
3089 while (breakpoint) {
3090 if (breakpoint->type == BKPT_SOFT) {
3091 char *buf = buf_to_str(breakpoint->orig_instr,
3092 breakpoint->length, 16);
3093 command_print(cmd_ctx, "IVA breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i, 0x%s",
3094 breakpoint->address,
3095 breakpoint->length,
3096 breakpoint->set, buf);
3097 free(buf);
3098 } else {
3099 if ((breakpoint->address == 0) && (breakpoint->asid != 0))
3100 command_print(cmd_ctx, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %i",
3101 breakpoint->asid,
3102 breakpoint->length, breakpoint->set);
3103 else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
3104 command_print(cmd_ctx, "Hybrid breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3105 breakpoint->address,
3106 breakpoint->length, breakpoint->set);
3107 command_print(cmd_ctx, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
3108 breakpoint->asid);
3109 } else
3110 command_print(cmd_ctx, "Breakpoint(IVA): 0x%8.8" PRIx32 ", 0x%x, %i",
3111 breakpoint->address,
3112 breakpoint->length, breakpoint->set);
3113 }
3114
3115 breakpoint = breakpoint->next;
3116 }
3117 return ERROR_OK;
3118 }
3119
3120 static int handle_bp_command_set(struct command_context *cmd_ctx,
3121 uint32_t addr, uint32_t asid, uint32_t length, int hw)
3122 {
3123 struct target *target = get_current_target(cmd_ctx);
3124
3125 if (asid == 0) {
3126 int retval = breakpoint_add(target, addr, length, hw);
3127 if (ERROR_OK == retval)
3128 command_print(cmd_ctx, "breakpoint set at 0x%8.8" PRIx32 "", addr);
3129 else {
3130 LOG_ERROR("Failure setting breakpoint, the same address(IVA) is already used");
3131 return retval;
3132 }
3133 } else if (addr == 0) {
3134 int retval = context_breakpoint_add(target, asid, length, hw);
3135 if (ERROR_OK == retval)
3136 command_print(cmd_ctx, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);
3137 else {
3138 LOG_ERROR("Failure setting breakpoint, the same address(CONTEXTID) is already used");
3139 return retval;
3140 }
3141 } else {
3142 int retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
3143 if (ERROR_OK == retval)
3144 command_print(cmd_ctx, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
3145 else {
3146 LOG_ERROR("Failure setting breakpoint, the same address is already used");
3147 return retval;
3148 }
3149 }
3150 return ERROR_OK;
3151 }
3152
3153 COMMAND_HANDLER(handle_bp_command)
3154 {
3155 uint32_t addr;
3156 uint32_t asid;
3157 uint32_t length;
3158 int hw = BKPT_SOFT;
3159
3160 switch (CMD_ARGC) {
3161 case 0:
3162 return handle_bp_command_list(CMD_CTX);
3163
3164 case 2:
3165 asid = 0;
3166 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], addr);
3167 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
3168 return handle_bp_command_set(CMD_CTX, addr, asid, length, hw);
3169
3170 case 3:
3171 if (strcmp(CMD_ARGV[2], "hw") == 0) {
3172 hw = BKPT_HARD;