2ccbfc7fc4891484e41beae4892554799591b085
[openocd.git] / src / target / mips32_pracc.c
1 /***************************************************************************
2 * Copyright (C) 2008 by Spencer Oliver *
3 * spen@spen-soft.co.uk *
4 * *
5 * Copyright (C) 2008 by David T.L. Wong *
6 * *
7 * Copyright (C) 2009 by David N. Claffey <dnclaffey@gmail.com> *
8 * *
9 * Copyright (C) 2011 by Drasko DRASKOVIC *
10 * drasko.draskovic@gmail.com *
11 * *
12 * This program is free software; you can redistribute it and/or modify *
13 * it under the terms of the GNU General Public License as published by *
14 * the Free Software Foundation; either version 2 of the License, or *
15 * (at your option) any later version. *
16 * *
17 * This program is distributed in the hope that it will be useful, *
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
20 * GNU General Public License for more details. *
21 * *
22 * You should have received a copy of the GNU General Public License *
23 * along with this program; if not, write to the *
24 * Free Software Foundation, Inc., *
25 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
26 ***************************************************************************/
27
28 /*
29 * This version has optimized assembly routines for 32 bit operations:
30 * - read word
31 * - write word
32 * - write array of words
33 *
34 * One thing to be aware of is that the MIPS32 cpu will execute the
35 * instruction after a branch instruction (one delay slot).
36 *
37 * For example:
38 * LW $2, ($5 +10)
39 * B foo
40 * LW $1, ($2 +100)
41 *
42 * The LW $1, ($2 +100) instruction is also executed. If this is
43 * not wanted a NOP can be inserted:
44 *
45 * LW $2, ($5 +10)
46 * B foo
47 * NOP
48 * LW $1, ($2 +100)
49 *
50 * or the code can be changed to:
51 *
52 * B foo
53 * LW $2, ($5 +10)
54 * LW $1, ($2 +100)
55 *
56 * The original code contained NOPs. I have removed these and moved
57 * the branches.
58 *
59 * I also moved the PRACC_STACK to 0xFF204000. This allows
60 * the use of 16 bits offsets to get pointers to the input
61 * and output area relative to the stack. Note that the stack
62 * isn't really a stack (the stack pointer is not 'moving')
63 * but a FIFO simulated in software.
64 *
65 * These changes result in a 35% speed increase when programming an
66 * external flash.
67 *
68 * More improvement could be gained if the registers do no need
69 * to be preserved but in that case the routines should be aware
70 * OpenOCD is used as a flash programmer or as a debug tool.
71 *
72 * Nico Coesel
73 */
74
75 #ifdef HAVE_CONFIG_H
76 #include "config.h"
77 #endif
78
79 #include <helper/time_support.h>
80
81 #include "mips32.h"
82 #include "mips32_pracc.h"
83
84 struct mips32_pracc_context {
85 uint32_t *local_iparam;
86 int num_iparam;
87 uint32_t *local_oparam;
88 int num_oparam;
89 const uint32_t *code;
90 int code_len;
91 uint32_t stack[32];
92 int stack_offset;
93 struct mips_ejtag *ejtag_info;
94 };
95
96 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
97 uint32_t start_addr, uint32_t end_addr);
98 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
99 uint32_t start_addr, uint32_t end_addr);
100
101 static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl)
102 {
103 uint32_t ejtag_ctrl;
104 long long then = timeval_ms();
105 int timeout;
106 int retval;
107
108 /* wait for the PrAcc to become "1" */
109 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
110
111 while (1) {
112 ejtag_ctrl = ejtag_info->ejtag_ctrl;
113 retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl);
114 if (retval != ERROR_OK)
115 return retval;
116
117 if (ejtag_ctrl & EJTAG_CTRL_PRACC)
118 break;
119
120 timeout = timeval_ms() - then;
121 if (timeout > 1000) {
122 LOG_DEBUG("DEBUGMODULE: No memory access in progress!");
123 return ERROR_JTAG_DEVICE_ERROR;
124 }
125 }
126
127 *ctrl = ejtag_ctrl;
128 return ERROR_OK;
129 }
130
131 static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address)
132 {
133 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
134 int offset;
135 uint32_t ejtag_ctrl, data;
136
137 if ((address >= MIPS32_PRACC_PARAM_IN)
138 && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) {
139 offset = (address - MIPS32_PRACC_PARAM_IN) / 4;
140 data = ctx->local_iparam[offset];
141 } else if ((address >= MIPS32_PRACC_PARAM_OUT)
142 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
143 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
144 data = ctx->local_oparam[offset];
145 } else if ((address >= MIPS32_PRACC_TEXT)
146 && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) {
147 offset = (address - MIPS32_PRACC_TEXT) / 4;
148 data = ctx->code[offset];
149 } else if (address == MIPS32_PRACC_STACK) {
150 if (ctx->stack_offset <= 0) {
151 LOG_ERROR("Error: Pracc stack out of bounds");
152 return ERROR_JTAG_DEVICE_ERROR;
153 }
154 /* save to our debug stack */
155 data = ctx->stack[--ctx->stack_offset];
156 } else {
157 /* TODO: send JMP 0xFF200000 instruction. Hopefully processor jump back
158 * to start of debug vector */
159
160 LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address);
161 return ERROR_JTAG_DEVICE_ERROR;
162 }
163
164 /* Send the data out */
165 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
166 mips_ejtag_drscan_32_out(ctx->ejtag_info, data);
167
168 /* Clear the access pending bit (let the processor eat!) */
169 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
170 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
171 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
172
173 return jtag_execute_queue();
174 }
175
176 static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address)
177 {
178 uint32_t ejtag_ctrl, data;
179 int offset;
180 struct mips_ejtag *ejtag_info = ctx->ejtag_info;
181 int retval;
182
183 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA);
184 retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data);
185 if (retval != ERROR_OK)
186 return retval;
187
188 /* Clear access pending bit */
189 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
190 mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL);
191 mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl);
192
193 retval = jtag_execute_queue();
194 if (retval != ERROR_OK)
195 return retval;
196
197 if ((address >= MIPS32_PRACC_PARAM_OUT)
198 && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) {
199 offset = (address - MIPS32_PRACC_PARAM_OUT) / 4;
200 ctx->local_oparam[offset] = data;
201 } else if (address == MIPS32_PRACC_STACK) {
202 if (ctx->stack_offset >= 32) {
203 LOG_ERROR("Error: Pracc stack out of bounds");
204 return ERROR_JTAG_DEVICE_ERROR;
205 }
206 /* save data onto our stack */
207 ctx->stack[ctx->stack_offset++] = data;
208 } else {
209 LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address);
210 return ERROR_JTAG_DEVICE_ERROR;
211 }
212
213 return ERROR_OK;
214 }
215
216 int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code,
217 int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle)
218 {
219 uint32_t ejtag_ctrl;
220 uint32_t address;
221 struct mips32_pracc_context ctx;
222 int retval;
223 int pass = 0;
224
225 ctx.local_iparam = param_in;
226 ctx.local_oparam = param_out;
227 ctx.num_iparam = num_param_in;
228 ctx.num_oparam = num_param_out;
229 ctx.code = code;
230 ctx.code_len = code_len;
231 ctx.ejtag_info = ejtag_info;
232 ctx.stack_offset = 0;
233
234 while (1) {
235 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
236 if (retval != ERROR_OK)
237 return retval;
238
239 address = 0;
240 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
241 retval = mips_ejtag_drscan_32(ejtag_info, &address);
242 if (retval != ERROR_OK)
243 return retval;
244
245 /* Check for read or write */
246 if (ejtag_ctrl & EJTAG_CTRL_PRNW) {
247 retval = mips32_pracc_exec_write(&ctx, address);
248 if (retval != ERROR_OK)
249 return retval;
250 } else {
251 /* Check to see if its reading at the debug vector. The first pass through
252 * the module is always read at the vector, so the first one we allow. When
253 * the second read from the vector occurs we are done and just exit. */
254 if ((address == MIPS32_PRACC_TEXT) && (pass++))
255 break;
256
257 retval = mips32_pracc_exec_read(&ctx, address);
258 if (retval != ERROR_OK)
259 return retval;
260 }
261
262 if (cycle == 0)
263 break;
264 }
265
266 /* stack sanity check */
267 if (ctx.stack_offset != 0)
268 LOG_DEBUG("Pracc Stack not zero");
269
270 return ERROR_OK;
271 }
272
273 static int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf)
274 {
275 uint32_t code[] = {
276 /* start: */
277 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
278 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR), /* $15 = MIPS32_PRACC_BASE_ADDR */
279
280 MIPS32_LUI(8, UPPER16((addr + 0x8000))), /* load $8 with modified upper address */
281 MIPS32_LW(8, LOWER16(addr), 8), /* lw $8, LOWER16(addr)($8) */
282 MIPS32_SW(8, PRACC_OUT_OFFSET, 15), /* sw $8,PRACC_OUT_OFFSET($15) */
283
284 MIPS32_LUI(8, UPPER16(ejtag_info->reg8)), /* restore upper 16 bits of reg 8 */
285 MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)), /* restore lower 16 bits of reg 8 */
286 MIPS32_B(NEG16(8)), /* b start */
287 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
288 };
289
290 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, buf, 1);
291 }
292
293 int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
294 {
295 if (count == 1 && size == 4)
296 return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf);
297
298 int retval = ERROR_FAIL;
299
300 uint32_t *code = NULL;
301 uint32_t *data = NULL;
302
303 code = malloc((256 * 2 + 10) * sizeof(uint32_t));
304 if (code == NULL) {
305 LOG_ERROR("Out of memory");
306 goto exit;
307 }
308
309 if (size != 4) {
310 data = malloc(256 * sizeof(uint32_t));
311 if (data == NULL) {
312 LOG_ERROR("Out of memory");
313 goto exit;
314 }
315 }
316
317 uint32_t *buf32 = buf;
318 uint16_t *buf16 = buf;
319 uint8_t *buf8 = buf;
320
321 int i;
322 uint32_t upper_base_addr, last_upper_base_addr;
323 int this_round_count;
324 int code_len;
325
326 while (count) {
327 this_round_count = (count > 256) ? 256 : count;
328 last_upper_base_addr = UPPER16((addr + 0x8000));
329 uint32_t *code_p = code;
330
331 *code_p++ = MIPS32_MTC0(15, 31, 0); /* save $15 in DeSave */
332 *code_p++ = MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR); /* $15 = MIPS32_PRACC_BASE_ADDR */
333 *code_p++ = MIPS32_LUI(9, last_upper_base_addr); /* load the upper memory address in $9*/
334 code_len = 3;
335
336 for (i = 0; i != this_round_count; i++) { /* Main code loop */
337 upper_base_addr = UPPER16((addr + 0x8000));
338 if (last_upper_base_addr != upper_base_addr) {
339 *code_p++ = MIPS32_LUI(9, upper_base_addr); /* if needed, change upper address in $9*/
340 code_len++;
341 last_upper_base_addr = upper_base_addr;
342 }
343
344 if (size == 4)
345 *code_p++ = MIPS32_LW(8, LOWER16(addr), 9); /* load from memory to $8 */
346 else if (size == 2)
347 *code_p++ = MIPS32_LHU(8, LOWER16(addr), 9);
348 else
349 *code_p++ = MIPS32_LBU(8, LOWER16(addr), 9);
350
351 *code_p++ = MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15); /* store $8 at param out */
352
353 code_len += 2;
354 addr += size;
355 }
356
357 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8)); /* restore upper 16 bits of reg 8 */
358 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)); /* restore lower 16 bits of reg 8 */
359 *code_p++ = MIPS32_LUI(9, UPPER16(ejtag_info->reg8)); /* restore upper 16 bits of reg 9 */
360 *code_p++ = MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg8)); /* restore lower 16 bits of reg 9 */
361
362 code_len += 6;
363 *code_p++ = MIPS32_B(NEG16(code_len - 1)); /* jump to start */
364 *code_p = MIPS32_MFC0(15, 31, 0); /* restore $15 from DeSave */
365
366 if (size == 4) {
367 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, buf32, 1);
368 if (retval != ERROR_OK)
369 goto exit;
370 buf32 += this_round_count;
371 } else {
372 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, this_round_count, data, 1);
373 if (retval != ERROR_OK)
374 goto exit;
375 uint32_t *data_p = data;
376 for (i = 0; i != this_round_count; i++) {
377 if (size == 2)
378 *buf16++ = *data_p++;
379 else
380 *buf8++ = *data_p++;
381 }
382 }
383 count -= this_round_count;
384 }
385
386 exit:
387 if (code)
388 free(code);
389 if (data)
390 free(data);
391 return retval;
392 }
393
394 int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel)
395 {
396 /**
397 * Do not make this code static, but regenerate it every time,
398 * as 2th element has to be changed to add parameters
399 */
400 uint32_t code[] = {
401 /* start: */
402 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
403 MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR), /* $15 = MIPS32_PRACC_BASE_ADDR */
404
405 /* 2 */ MIPS32_MFC0(8, 0, 0), /* move COP0 [cp0_reg select] to $8 */
406 MIPS32_SW(8, PRACC_OUT_OFFSET, 15), /* sw $8,PRACC_OUT_OFFSET($15) */
407
408 MIPS32_LUI(8, UPPER16(ejtag_info->reg8)), /* restore upper 16 bits of reg 8 */
409 MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)), /* restore lower 16 bits of reg 8 */
410 MIPS32_B(NEG16(7)), /* b start */
411 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
412 };
413
414 /**
415 * Note that our input parametes cp0_reg and cp0_sel
416 * are numbers (not gprs) which make part of mfc0 instruction opcode.
417 *
418 * These are not fix, but can be different for each mips32_cp0_read() function call,
419 * and that is why we must insert them directly into opcode,
420 * i.e. we can not pass it on EJTAG microprogram stack (via param_in),
421 * and put them into the gprs later from MIPS32_PRACC_STACK
422 * because mfc0 do not use gpr as a parameter for the cp0_reg and select part,
423 * but plain (immediate) number.
424 *
425 * MIPS32_MTC0 is implemented via MIPS32_R_INST macro.
426 * In order to insert our parameters, we must change rd and funct fields.
427 */
428 code[2] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct of MIPS32_R_INST macro */
429
430 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 1, val, 1);
431 }
432
433 int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel)
434 {
435 uint32_t code[] = {
436 /* start: */
437 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
438 MIPS32_LUI(15, UPPER16(val)), /* Load val to $15 */
439 MIPS32_ORI(15, 15, LOWER16(val)),
440
441 /* 3 */ MIPS32_MTC0(15, 0, 0), /* move $15 to COP0 [cp0_reg select] */
442
443 MIPS32_B(NEG16(5)), /* b start */
444 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
445 };
446
447 /**
448 * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro.
449 * In order to insert our parameters, we must change rd and funct fields.
450 */
451 code[3] |= (cp0_reg << 11) | cp0_sel; /* change rd and funct fields of MIPS32_R_INST macro */
452
453 return mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 0, NULL, 0, NULL, 1);
454 }
455
456 /**
457 * \b mips32_pracc_sync_cache
458 *
459 * Synchronize Caches to Make Instruction Writes Effective
460 * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,
461 * Document Number: MD00086, Revision 2.00, June 9, 2003)
462 *
463 * When the instruction stream is written, the SYNCI instruction should be used
464 * in conjunction with other instructions to make the newly-written instructions effective.
465 *
466 * Explanation :
467 * A program that loads another program into memory is actually writing the D- side cache.
468 * The instructions it has loaded can't be executed until they reach the I-cache.
469 *
470 * After the instructions have been written, the loader should arrange
471 * to write back any containing D-cache line and invalidate any locations
472 * already in the I-cache.
473 *
474 * You can do that with cache instructions, but those instructions are only available in kernel mode,
475 * and a loader writing instructions for the use of its own process need not be privileged software.
476 *
477 * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction,
478 * which does the whole job for a cache-line-sized chunk of the memory you just loaded:
479 * That is, it arranges a D-cache write-back and an I-cache invalidate.
480 *
481 * To employ synci at user level, you need to know the size of a cache line,
482 * and that can be obtained with a rdhwr SYNCI_Step
483 * from one of the standard “hardware registers”.
484 */
485 static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info,
486 uint32_t start_addr, uint32_t end_addr)
487 {
488 static const uint32_t code[] = {
489 /* start: */
490 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
491 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
492 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
493 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
494 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
495 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
496 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
497
498 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
499 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
500 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
501 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
502
503 MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */
504 MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */
505 MIPS32_NOP,
506 /* synci_loop : */
507 MIPS32_SYNCI(0, 9), /* synci 0($9) */
508 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */
509 MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */
510 MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */
511 MIPS32_SYNC,
512 /* end: */
513 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
514 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
515 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
516 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
517 MIPS32_B(NEG16(24)), /* b start */
518 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
519 };
520
521 /* TODO remove array */
522 uint32_t *param_in = malloc(2 * sizeof(uint32_t));
523 int retval;
524 param_in[0] = start_addr;
525 param_in[1] = end_addr;
526
527 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1);
528
529 free(param_in);
530
531 return retval;
532 }
533
534 /**
535 * \b mips32_pracc_clean_invalidate_cache
536 *
537 * Writeback D$ and Invalidate I$
538 * so that the instructions written can be visible to CPU
539 */
540 static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info,
541 uint32_t start_addr, uint32_t end_addr)
542 {
543 static const uint32_t code[] = {
544 /* start: */
545 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
546 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */
547 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)),
548 MIPS32_SW(8, 0, 15), /* sw $8,($15) */
549 MIPS32_SW(9, 0, 15), /* sw $9,($15) */
550 MIPS32_SW(10, 0, 15), /* sw $10,($15) */
551 MIPS32_SW(11, 0, 15), /* sw $11,($15) */
552
553 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */
554 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)),
555 MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */
556 MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */
557 MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */
558
559 /* cache_loop: */
560 MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */
561 MIPS32_BGTZ(8, 6), /* bgtz $8, end */
562 MIPS32_NOP,
563
564 MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */
565 MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */
566
567 MIPS32_ADDU(9, 9, 11), /* $9 += $11 */
568
569 MIPS32_B(NEG16(7)), /* b cache_loop */
570 MIPS32_NOP,
571 /* end: */
572 MIPS32_LW(11, 0, 15), /* lw $11,($15) */
573 MIPS32_LW(10, 0, 15), /* lw $10,($15) */
574 MIPS32_LW(9, 0, 15), /* lw $9,($15) */
575 MIPS32_LW(8, 0, 15), /* lw $8,($15) */
576 MIPS32_B(NEG16(25)), /* b start */
577 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
578 };
579
580 /**
581 * Find cache line size in bytes
582 */
583 uint32_t conf;
584 uint32_t dl, clsiz;
585
586 mips32_cp0_read(ejtag_info, &conf, 16, 1);
587 dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT;
588
589 /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */
590 clsiz = 0x2 << dl;
591
592 /* TODO remove array */
593 uint32_t *param_in = malloc(3 * sizeof(uint32_t));
594 int retval;
595 param_in[0] = start_addr;
596 param_in[1] = end_addr;
597 param_in[2] = clsiz;
598
599 retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1);
600
601 free(param_in);
602
603 return retval;
604 }
605
606 static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
607 {
608 uint32_t *code;
609 code = malloc((128 * 3 + 9) * sizeof(uint32_t)); /* alloc memory for the worst case */
610 if (code == NULL) {
611 LOG_ERROR("Out of memory");
612 return ERROR_FAIL;
613 }
614
615 uint32_t *buf32 = buf;
616 uint16_t *buf16 = buf;
617 uint8_t *buf8 = buf;
618
619 int i;
620 int retval = ERROR_FAIL;
621 uint32_t *code_p;
622 uint32_t upper_base_addr, last_upper_base_addr;
623 int this_round_count;
624 int code_len;
625
626 while (count) {
627 this_round_count = (count > 128) ? 128 : count;
628 last_upper_base_addr = UPPER16((addr + 0x8000));
629 code_p = code;
630
631 *code_p++ = MIPS32_MTC0(15, 31, 0); /* save $15 in DeSave */
632 *code_p++ = MIPS32_LUI(15, last_upper_base_addr); /* load $15 with memory base address */
633 code_len = 2;
634
635 for (i = 0; i != this_round_count; i++) {
636 upper_base_addr = UPPER16((addr + 0x8000));
637 if (last_upper_base_addr != upper_base_addr) {
638 *code_p++ = MIPS32_LUI(15, upper_base_addr); /* if needed, change upper address in $15*/
639 code_len++;
640 last_upper_base_addr = upper_base_addr;
641 }
642
643 if (size == 4) { /* for word write check if one half word is 0 and load it accordingly */
644 if (LOWER16(*buf32) == 0) {
645 *code_p++ = MIPS32_LUI(8, UPPER16(*buf32)); /* load only upper value */
646 code_len++;
647 } else if (UPPER16(*buf32) == 0) {
648 *code_p++ = MIPS32_ORI(8, 0, LOWER16(*buf32)); /* load only lower value */
649 code_len++;
650 } else {
651 *code_p++ = MIPS32_LUI(8, UPPER16(*buf32)); /* load upper and lower */
652 *code_p++ = MIPS32_ORI(8, 8, LOWER16(*buf32));
653 code_len += 2;
654 }
655 *code_p++ = MIPS32_SW(8, LOWER16(addr), 15); /* store word to memory */
656 code_len++;
657 buf32++;
658
659 } else if (size == 2) {
660 *code_p++ = MIPS32_ORI(8, 0, *buf16); /* load lower value */
661 *code_p++ = MIPS32_SH(8, LOWER16(addr), 15); /* store half word to memory */
662 code_len += 2;
663 buf16++;
664
665 } else {
666 *code_p++ = MIPS32_ORI(8, 0, *buf8); /* load lower value */
667 *code_p++ = MIPS32_SB(8, LOWER16(addr), 15); /* store byte to memory */
668 code_len += 2;
669 buf8++;
670 }
671
672 addr += size;
673 }
674
675 *code_p++ = MIPS32_LUI(8, UPPER16(ejtag_info->reg8)), /* restore upper 16 bits of reg 8 */
676 *code_p++ = MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8)), /* restore lower 16 bits of reg 8 */
677
678 code_len += 4;
679 *code_p++ = MIPS32_B(NEG16(code_len - 1)); /* jump to start */
680 *code_p = MIPS32_MFC0(15, 31, 0); /* restore $15 from DeSave */
681
682 retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
683 if (retval != ERROR_OK)
684 goto exit;
685
686 count -= this_round_count;
687 }
688
689 exit:
690 free(code);
691 return retval;
692 }
693
694 int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf)
695 {
696 int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf);
697 if (retval != ERROR_OK)
698 return retval;
699
700 /**
701 * If we are in the cachable regoion and cache is activated,
702 * we must clean D$ + invalidate I$ after we did the write,
703 * so that changes do not continue to live only in D$, but to be
704 * replicated in I$ also (maybe we wrote the istructions)
705 */
706 uint32_t conf = 0;
707 int cached = 0;
708
709 if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff)))
710 return retval; /*Nothing to do*/
711
712 mips32_cp0_read(ejtag_info, &conf, 16, 0);
713
714 switch (KSEGX(addr)) {
715 case KUSEG:
716 cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT;
717 break;
718 case KSEG0:
719 cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT;
720 break;
721 case KSEG2:
722 case KSEG3:
723 cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT;
724 break;
725 default:
726 /* what ? */
727 break;
728 }
729
730 /**
731 * Check cachablitiy bits coherency algorithm -
732 * is the region cacheable or uncached.
733 * If cacheable we have to synchronize the cache
734 */
735 if (cached == 0x3) {
736 uint32_t start_addr, end_addr;
737 uint32_t rel;
738
739 start_addr = addr;
740 end_addr = addr + count * size;
741
742 /** select cache synchronisation mechanism based on Architecture Release */
743 rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT;
744 switch (rel) {
745 case MIPS32_ARCH_REL1:
746 /* MIPS32/64 Release 1 - we must use cache instruction */
747 mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr);
748 break;
749 case MIPS32_ARCH_REL2:
750 /* MIPS32/64 Release 2 - we can use synci instruction */
751 mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr);
752 break;
753 default:
754 /* what ? */
755 break;
756 }
757 }
758
759 return retval;
760 }
761
762 int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
763 {
764 static const uint32_t cp0_write_code[] = {
765 MIPS32_MTC0(1, 12, 0), /* move $1 to status */
766 MIPS32_MTLO(1), /* move $1 to lo */
767 MIPS32_MTHI(1), /* move $1 to hi */
768 MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */
769 MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/
770 MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */
771 };
772
773 uint32_t *code;
774 code = malloc((37 * 2 + 6 + 1) * sizeof(uint32_t)); /* alloc memory for the worst case */
775 if (code == NULL) {
776 LOG_ERROR("Out of memory");
777 return ERROR_FAIL;
778 }
779
780 uint32_t *code_p = code;
781 int code_len = 0;
782 /* load registers 2 to 31 with lui an ori instructions, check if same instructions can be saved */
783 for (int i = 2; i < 32; i++) {
784 if (LOWER16((regs[i])) == 0) {
785 *code_p++ = MIPS32_LUI(i, UPPER16((regs[i]))); /* if lower half word is 0, lui instruction only */
786 code_len++;
787 } else if (UPPER16((regs[i])) == 0) {
788 *code_p++ = MIPS32_ORI(i, 0, LOWER16((regs[i]))); /* if upper half word is 0, ori with $0 only*/
789 code_len++;
790 } else {
791 *code_p++ = MIPS32_LUI(i, UPPER16((regs[i]))); /* default, load with lui and ori instructions */
792 *code_p++ = MIPS32_ORI(i, i, LOWER16((regs[i])));
793 code_len += 2;
794 }
795 }
796
797 for (int i = 0; i != 6; i++) {
798 *code_p++ = MIPS32_LUI(1, UPPER16((regs[i + 32]))); /* load CPO value in $1, with lui and ori */
799 *code_p++ = MIPS32_ORI(1, 1, LOWER16((regs[i + 32])));
800 *code_p++ = cp0_write_code[i]; /* write value from $1 to CPO register */
801 code_len += 3;
802 }
803
804 *code_p++ = MIPS32_LUI(1, UPPER16((regs[1]))); /* load upper half word in $1 */
805 code_len += 3;
806 *code_p++ = MIPS32_B(NEG16(code_len - 1)), /* b start */
807 *code_p = MIPS32_ORI(1, 1, LOWER16((regs[1]))); /* load lower half word in $1 */
808
809 int retval = mips32_pracc_exec(ejtag_info, code_len, code, 0, NULL, 0, NULL, 1);
810 free(code);
811
812 ejtag_info->reg8 = regs[8];
813 ejtag_info->reg9 = regs[9];
814 return retval;
815 }
816
817 int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs)
818 {
819 static int cp0_read_code[] = {
820 MIPS32_MFC0(2, 12, 0), /* move status to $2 */
821 MIPS32_MFLO(2), /* move lo to $2 */
822 MIPS32_MFHI(2), /* move hi to $2 */
823 MIPS32_MFC0(2, 8, 0), /* move badvaddr to $2 */
824 MIPS32_MFC0(2, 13, 0), /* move cause to $2 */
825 MIPS32_MFC0(2, 24, 0), /* move depc (pc) to $2 */
826 };
827
828 uint32_t *code;
829 code = malloc(49 * sizeof(uint32_t));
830 if (code == NULL) {
831 LOG_ERROR("Out of memory");
832 return ERROR_FAIL;
833 }
834
835 uint32_t *code_p = code;
836
837 *code_p++ = MIPS32_MTC0(1, 31, 0), /* move $1 to COP0 DeSave */
838 *code_p++ = MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR); /* $1 = MIP32_PRACC_BASE_ADDR */
839
840 for (int i = 2; i != 32; i++)
841 *code_p++ = MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1); /* store GPR's 2 to 31 */
842
843 for (int i = 0; i != 6; i++) {
844 *code_p++ = cp0_read_code[i]; /* load COP0 needed registers to $2 */
845 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + (i + 32) * 4, 1); /* store COP0 registers from $2 to param out */
846 }
847
848 *code_p++ = MIPS32_MFC0(2, 31, 0), /* move DeSave to $2, reg1 value */
849 *code_p++ = MIPS32_SW(2, PRACC_OUT_OFFSET + 4, 1); /* store reg1 value from $2 to param out */
850
851 *code_p++ = MIPS32_LW(2, PRACC_OUT_OFFSET + 8, 1); /* restore $2 from param out (singularity) */
852 *code_p++ = MIPS32_B(NEG16(48)); /* b start */
853 *code_p = MIPS32_MFC0(1, 31, 0); /* move COP0 DeSave to $1 */
854
855 int retval = mips32_pracc_exec(ejtag_info, 49, code, 0, NULL, MIPS32NUMCOREREGS, regs, 1);
856 free(code);
857
858 ejtag_info->reg8 = regs[8];
859 ejtag_info->reg9 = regs[9];
860 return retval;
861 }
862
863 /* fastdata upload/download requires an initialized working area
864 * to load the download code; it should not be called otherwise
865 * fetch order from the fastdata area
866 * 1. start addr
867 * 2. end addr
868 * 3. data ...
869 */
870 int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source,
871 int write_t, uint32_t addr, int count, uint32_t *buf)
872 {
873 uint32_t handler_code[] = {
874 /* caution when editing, table is modified below */
875 /* r15 points to the start of this code */
876 MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
877 MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
878 MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
879 MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
880 /* start of fastdata area in t0 */
881 MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)),
882 MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)),
883 MIPS32_LW(9, 0, 8), /* start addr in t1 */
884 MIPS32_LW(10, 0, 8), /* end addr to t2 */
885 /* loop: */
886 /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */
887 /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */
888 MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */
889 MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */
890
891 MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15),
892 MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15),
893 MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15),
894 MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15),
895
896 MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)),
897 MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)),
898 MIPS32_JR(15), /* jr start */
899 MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */
900 };
901
902 uint32_t jmp_code[] = {
903 MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */
904 /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */
905 /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */
906 MIPS32_JR(15), /* jump to ram program */
907 MIPS32_NOP,
908 };
909
910 int retval, i;
911 uint32_t val, ejtag_ctrl, address;
912
913 if (source->size < MIPS32_FASTDATA_HANDLER_SIZE)
914 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
915
916 if (write_t) {
917 handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */
918 handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */
919 } else {
920 handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */
921 handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */
922 }
923
924 /* write program into RAM */
925 if (write_t != ejtag_info->fast_access_save) {
926 mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code);
927 /* save previous operation to speed to any consecutive read/writes */
928 ejtag_info->fast_access_save = write_t;
929 }
930
931 LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address);
932
933 jmp_code[1] |= UPPER16(source->address);
934 jmp_code[2] |= LOWER16(source->address);
935
936 for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) {
937 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
938 if (retval != ERROR_OK)
939 return retval;
940
941 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA);
942 mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]);
943
944 /* Clear the access pending bit (let the processor eat!) */
945 ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC;
946 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL);
947 mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl);
948 }
949
950 /* wait PrAcc pending bit for FASTDATA write */
951 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
952 if (retval != ERROR_OK)
953 return retval;
954
955 /* next fetch to dmseg should be in FASTDATA_AREA, check */
956 address = 0;
957 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
958 retval = mips_ejtag_drscan_32(ejtag_info, &address);
959 if (retval != ERROR_OK)
960 return retval;
961
962 if (address != MIPS32_PRACC_FASTDATA_AREA)
963 return ERROR_FAIL;
964
965 /* Send the load start address */
966 val = addr;
967 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
968 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
969
970 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
971 if (retval != ERROR_OK)
972 return retval;
973
974 /* Send the load end address */
975 val = addr + (count - 1) * 4;
976 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA);
977 mips_ejtag_fastdata_scan(ejtag_info, 1, &val);
978
979 for (i = 0; i < count; i++) {
980 retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++);
981 if (retval != ERROR_OK)
982 return retval;
983 }
984
985 retval = jtag_execute_queue();
986 if (retval != ERROR_OK) {
987 LOG_ERROR("fastdata load failed");
988 return retval;
989 }
990
991 retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl);
992 if (retval != ERROR_OK)
993 return retval;
994
995 address = 0;
996 mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS);
997 retval = mips_ejtag_drscan_32(ejtag_info, &address);
998 if (retval != ERROR_OK)
999 return retval;
1000
1001 if (address != MIPS32_PRACC_TEXT)
1002 LOG_ERROR("mini program did not return to start");
1003
1004 return retval;
1005 }