0d98c57b2a5d414edb2e835e0b488fafd315216e
[openocd.git] / src / target / image.c
1 /***************************************************************************
2 * Copyright (C) 2007 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 √ėyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Franck Hereson *
12 * franck.hereson@secad.fr *
13 * *
14 * This program is free software; you can redistribute it and/or modify *
15 * it under the terms of the GNU General Public License as published by *
16 * the Free Software Foundation; either version 2 of the License, or *
17 * (at your option) any later version. *
18 * *
19 * This program is distributed in the hope that it will be useful, *
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
22 * GNU General Public License for more details. *
23 * *
24 * You should have received a copy of the GNU General Public License *
25 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
26 ***************************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 #include "image.h"
33 #include "target.h"
34 #include <helper/log.h>
35
36 /* convert ELF header field to host endianness */
37 #define field16(elf, field) \
38 ((elf->endianness == ELFDATA2LSB) ? \
39 le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field))
40
41 #define field32(elf, field) \
42 ((elf->endianness == ELFDATA2LSB) ? \
43 le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field))
44
45 static int autodetect_image_type(struct image *image, const char *url)
46 {
47 int retval;
48 struct fileio *fileio;
49 size_t read_bytes;
50 uint8_t buffer[9];
51
52 /* read the first 4 bytes of image */
53 retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY);
54 if (retval != ERROR_OK)
55 return retval;
56 retval = fileio_read(fileio, 9, buffer, &read_bytes);
57
58 if (retval == ERROR_OK) {
59 if (read_bytes != 9)
60 retval = ERROR_FILEIO_OPERATION_FAILED;
61 }
62 fileio_close(fileio);
63
64 if (retval != ERROR_OK)
65 return retval;
66
67 /* check header against known signatures */
68 if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) {
69 LOG_DEBUG("ELF image detected.");
70 image->type = IMAGE_ELF;
71 } else if ((buffer[0] == ':') /* record start byte */
72 && (isxdigit(buffer[1]))
73 && (isxdigit(buffer[2]))
74 && (isxdigit(buffer[3]))
75 && (isxdigit(buffer[4]))
76 && (isxdigit(buffer[5]))
77 && (isxdigit(buffer[6]))
78 && (buffer[7] == '0') /* record type : 00 -> 05 */
79 && (buffer[8] >= '0') && (buffer[8] < '6')) {
80 LOG_DEBUG("IHEX image detected.");
81 image->type = IMAGE_IHEX;
82 } else if ((buffer[0] == 'S') /* record start byte */
83 && (isxdigit(buffer[1]))
84 && (isxdigit(buffer[2]))
85 && (isxdigit(buffer[3]))
86 && (buffer[1] >= '0') && (buffer[1] < '9')) {
87 LOG_DEBUG("S19 image detected.");
88 image->type = IMAGE_SRECORD;
89 } else
90 image->type = IMAGE_BINARY;
91
92 return ERROR_OK;
93 }
94
95 static int identify_image_type(struct image *image, const char *type_string, const char *url)
96 {
97 if (type_string) {
98 if (!strcmp(type_string, "bin"))
99 image->type = IMAGE_BINARY;
100 else if (!strcmp(type_string, "ihex"))
101 image->type = IMAGE_IHEX;
102 else if (!strcmp(type_string, "elf"))
103 image->type = IMAGE_ELF;
104 else if (!strcmp(type_string, "mem"))
105 image->type = IMAGE_MEMORY;
106 else if (!strcmp(type_string, "s19"))
107 image->type = IMAGE_SRECORD;
108 else if (!strcmp(type_string, "build"))
109 image->type = IMAGE_BUILDER;
110 else
111 return ERROR_IMAGE_TYPE_UNKNOWN;
112 } else
113 return autodetect_image_type(image, url);
114
115 return ERROR_OK;
116 }
117
118 static int image_ihex_buffer_complete_inner(struct image *image,
119 char *lpszLine,
120 struct imagesection *section)
121 {
122 struct image_ihex *ihex = image->type_private;
123 struct fileio *fileio = ihex->fileio;
124 uint32_t full_address;
125 uint32_t cooked_bytes;
126 bool end_rec = false;
127 int i;
128
129 /* we can't determine the number of sections that we'll have to create ahead of time,
130 * so we locally hold them until parsing is finished */
131
132 size_t filesize;
133 int retval;
134 retval = fileio_size(fileio, &filesize);
135 if (retval != ERROR_OK)
136 return retval;
137
138 ihex->buffer = malloc(filesize >> 1);
139 cooked_bytes = 0x0;
140 image->num_sections = 0;
141
142 while (!fileio_feof(fileio)) {
143 full_address = 0x0;
144 section[image->num_sections].private = &ihex->buffer[cooked_bytes];
145 section[image->num_sections].base_address = 0x0;
146 section[image->num_sections].size = 0x0;
147 section[image->num_sections].flags = 0;
148
149 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
150 uint32_t count;
151 uint32_t address;
152 uint32_t record_type;
153 uint32_t checksum;
154 uint8_t cal_checksum = 0;
155 size_t bytes_read = 0;
156
157 /* skip comments and blank lines */
158 if ((lpszLine[0] == '#') || (strlen(lpszLine + strspn(lpszLine, "\n\t\r ")) == 0))
159 continue;
160
161 if (sscanf(&lpszLine[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count,
162 &address, &record_type) != 3)
163 return ERROR_IMAGE_FORMAT_ERROR;
164 bytes_read += 9;
165
166 cal_checksum += (uint8_t)count;
167 cal_checksum += (uint8_t)(address >> 8);
168 cal_checksum += (uint8_t)address;
169 cal_checksum += (uint8_t)record_type;
170
171 if (record_type == 0) { /* Data Record */
172 if ((full_address & 0xffff) != address) {
173 /* we encountered a nonconsecutive location, create a new section,
174 * unless the current section has zero size, in which case this specifies
175 * the current section's base address
176 */
177 if (section[image->num_sections].size != 0) {
178 image->num_sections++;
179 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
180 /* too many sections */
181 LOG_ERROR("Too many sections found in IHEX file");
182 return ERROR_IMAGE_FORMAT_ERROR;
183 }
184 section[image->num_sections].size = 0x0;
185 section[image->num_sections].flags = 0;
186 section[image->num_sections].private =
187 &ihex->buffer[cooked_bytes];
188 }
189 section[image->num_sections].base_address =
190 (full_address & 0xffff0000) | address;
191 full_address = (full_address & 0xffff0000) | address;
192 }
193
194 while (count-- > 0) {
195 unsigned value;
196 sscanf(&lpszLine[bytes_read], "%2x", &value);
197 ihex->buffer[cooked_bytes] = (uint8_t)value;
198 cal_checksum += (uint8_t)ihex->buffer[cooked_bytes];
199 bytes_read += 2;
200 cooked_bytes += 1;
201 section[image->num_sections].size += 1;
202 full_address++;
203 }
204 } else if (record_type == 1) { /* End of File Record */
205 /* finish the current section */
206 image->num_sections++;
207
208 /* copy section information */
209 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
210 for (i = 0; i < image->num_sections; i++) {
211 image->sections[i].private = section[i].private;
212 image->sections[i].base_address = section[i].base_address;
213 image->sections[i].size = section[i].size;
214 image->sections[i].flags = section[i].flags;
215 }
216
217 end_rec = true;
218 break;
219 } else if (record_type == 2) { /* Linear Address Record */
220 uint16_t upper_address;
221
222 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
223 cal_checksum += (uint8_t)(upper_address >> 8);
224 cal_checksum += (uint8_t)upper_address;
225 bytes_read += 4;
226
227 if ((full_address >> 4) != upper_address) {
228 /* we encountered a nonconsecutive location, create a new section,
229 * unless the current section has zero size, in which case this specifies
230 * the current section's base address
231 */
232 if (section[image->num_sections].size != 0) {
233 image->num_sections++;
234 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
235 /* too many sections */
236 LOG_ERROR("Too many sections found in IHEX file");
237 return ERROR_IMAGE_FORMAT_ERROR;
238 }
239 section[image->num_sections].size = 0x0;
240 section[image->num_sections].flags = 0;
241 section[image->num_sections].private =
242 &ihex->buffer[cooked_bytes];
243 }
244 section[image->num_sections].base_address =
245 (full_address & 0xffff) | (upper_address << 4);
246 full_address = (full_address & 0xffff) | (upper_address << 4);
247 }
248 } else if (record_type == 3) { /* Start Segment Address Record */
249 uint32_t dummy;
250
251 /* "Start Segment Address Record" will not be supported
252 * but we must consume it, and do not create an error. */
253 while (count-- > 0) {
254 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
255 cal_checksum += (uint8_t)dummy;
256 bytes_read += 2;
257 }
258 } else if (record_type == 4) { /* Extended Linear Address Record */
259 uint16_t upper_address;
260
261 sscanf(&lpszLine[bytes_read], "%4hx", &upper_address);
262 cal_checksum += (uint8_t)(upper_address >> 8);
263 cal_checksum += (uint8_t)upper_address;
264 bytes_read += 4;
265
266 if ((full_address >> 16) != upper_address) {
267 /* we encountered a nonconsecutive location, create a new section,
268 * unless the current section has zero size, in which case this specifies
269 * the current section's base address
270 */
271 if (section[image->num_sections].size != 0) {
272 image->num_sections++;
273 if (image->num_sections >= IMAGE_MAX_SECTIONS) {
274 /* too many sections */
275 LOG_ERROR("Too many sections found in IHEX file");
276 return ERROR_IMAGE_FORMAT_ERROR;
277 }
278 section[image->num_sections].size = 0x0;
279 section[image->num_sections].flags = 0;
280 section[image->num_sections].private =
281 &ihex->buffer[cooked_bytes];
282 }
283 section[image->num_sections].base_address =
284 (full_address & 0xffff) | (upper_address << 16);
285 full_address = (full_address & 0xffff) | (upper_address << 16);
286 }
287 } else if (record_type == 5) { /* Start Linear Address Record */
288 uint32_t start_address;
289
290 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &start_address);
291 cal_checksum += (uint8_t)(start_address >> 24);
292 cal_checksum += (uint8_t)(start_address >> 16);
293 cal_checksum += (uint8_t)(start_address >> 8);
294 cal_checksum += (uint8_t)start_address;
295 bytes_read += 8;
296
297 image->start_address_set = 1;
298 image->start_address = be_to_h_u32((uint8_t *)&start_address);
299 } else {
300 LOG_ERROR("unhandled IHEX record type: %i", (int)record_type);
301 return ERROR_IMAGE_FORMAT_ERROR;
302 }
303
304 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
305
306 if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) {
307 /* checksum failed */
308 LOG_ERROR("incorrect record checksum found in IHEX file");
309 return ERROR_IMAGE_CHECKSUM;
310 }
311
312 if (end_rec) {
313 end_rec = false;
314 LOG_WARNING("continuing after end-of-file record: %.40s", lpszLine);
315 }
316 }
317 }
318
319 if (end_rec)
320 return ERROR_OK;
321 else {
322 LOG_ERROR("premature end of IHEX file, no matching end-of-file record found");
323 return ERROR_IMAGE_FORMAT_ERROR;
324 }
325 }
326
327 /**
328 * Allocate memory dynamically instead of on the stack. This
329 * is important w/embedded hosts.
330 */
331 static int image_ihex_buffer_complete(struct image *image)
332 {
333 char *lpszLine = malloc(1023);
334 if (lpszLine == NULL) {
335 LOG_ERROR("Out of memory");
336 return ERROR_FAIL;
337 }
338 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
339 if (section == NULL) {
340 free(lpszLine);
341 LOG_ERROR("Out of memory");
342 return ERROR_FAIL;
343 }
344 int retval;
345
346 retval = image_ihex_buffer_complete_inner(image, lpszLine, section);
347
348 free(section);
349 free(lpszLine);
350
351 return retval;
352 }
353
354 static int image_elf_read_headers(struct image *image)
355 {
356 struct image_elf *elf = image->type_private;
357 size_t read_bytes;
358 uint32_t i, j;
359 int retval;
360 uint32_t nload, load_to_vaddr = 0;
361
362 elf->header = malloc(sizeof(Elf32_Ehdr));
363
364 if (elf->header == NULL) {
365 LOG_ERROR("insufficient memory to perform operation ");
366 return ERROR_FILEIO_OPERATION_FAILED;
367 }
368
369 retval = fileio_read(elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header, &read_bytes);
370 if (retval != ERROR_OK) {
371 LOG_ERROR("cannot read ELF file header, read failed");
372 return ERROR_FILEIO_OPERATION_FAILED;
373 }
374 if (read_bytes != sizeof(Elf32_Ehdr)) {
375 LOG_ERROR("cannot read ELF file header, only partially read");
376 return ERROR_FILEIO_OPERATION_FAILED;
377 }
378
379 if (strncmp((char *)elf->header->e_ident, ELFMAG, SELFMAG) != 0) {
380 LOG_ERROR("invalid ELF file, bad magic number");
381 return ERROR_IMAGE_FORMAT_ERROR;
382 }
383 if (elf->header->e_ident[EI_CLASS] != ELFCLASS32) {
384 LOG_ERROR("invalid ELF file, only 32bits files are supported");
385 return ERROR_IMAGE_FORMAT_ERROR;
386 }
387
388 elf->endianness = elf->header->e_ident[EI_DATA];
389 if ((elf->endianness != ELFDATA2LSB)
390 && (elf->endianness != ELFDATA2MSB)) {
391 LOG_ERROR("invalid ELF file, unknown endianness setting");
392 return ERROR_IMAGE_FORMAT_ERROR;
393 }
394
395 elf->segment_count = field16(elf, elf->header->e_phnum);
396 if (elf->segment_count == 0) {
397 LOG_ERROR("invalid ELF file, no program headers");
398 return ERROR_IMAGE_FORMAT_ERROR;
399 }
400
401 retval = fileio_seek(elf->fileio, field32(elf, elf->header->e_phoff));
402 if (retval != ERROR_OK) {
403 LOG_ERROR("cannot seek to ELF program header table, read failed");
404 return retval;
405 }
406
407 elf->segments = malloc(elf->segment_count*sizeof(Elf32_Phdr));
408 if (elf->segments == NULL) {
409 LOG_ERROR("insufficient memory to perform operation ");
410 return ERROR_FILEIO_OPERATION_FAILED;
411 }
412
413 retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf32_Phdr),
414 (uint8_t *)elf->segments, &read_bytes);
415 if (retval != ERROR_OK) {
416 LOG_ERROR("cannot read ELF segment headers, read failed");
417 return retval;
418 }
419 if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) {
420 LOG_ERROR("cannot read ELF segment headers, only partially read");
421 return ERROR_FILEIO_OPERATION_FAILED;
422 }
423
424 /* count useful segments (loadable), ignore BSS section */
425 image->num_sections = 0;
426 for (i = 0; i < elf->segment_count; i++)
427 if ((field32(elf,
428 elf->segments[i].p_type) == PT_LOAD) &&
429 (field32(elf, elf->segments[i].p_filesz) != 0))
430 image->num_sections++;
431
432 assert(image->num_sections > 0);
433
434 /**
435 * some ELF linkers produce binaries with *all* the program header
436 * p_paddr fields zero (there can be however one loadable segment
437 * that has valid physical address 0x0).
438 * If we have such a binary with more than
439 * one PT_LOAD header, then use p_vaddr instead of p_paddr
440 * (ARM ELF standard demands p_paddr = 0 anyway, and BFD
441 * library uses this approach to workaround zero-initialized p_paddrs
442 * when obtaining lma - look at elf.c of BDF)
443 */
444 for (nload = 0, i = 0; i < elf->segment_count; i++)
445 if (elf->segments[i].p_paddr != 0)
446 break;
447 else if ((field32(elf,
448 elf->segments[i].p_type) == PT_LOAD) &&
449 (field32(elf, elf->segments[i].p_memsz) != 0))
450 ++nload;
451
452 if (i >= elf->segment_count && nload > 1)
453 load_to_vaddr = 1;
454
455 /* alloc and fill sections array with loadable segments */
456 image->sections = malloc(image->num_sections * sizeof(struct imagesection));
457 for (i = 0, j = 0; i < elf->segment_count; i++) {
458 if ((field32(elf,
459 elf->segments[i].p_type) == PT_LOAD) &&
460 (field32(elf, elf->segments[i].p_filesz) != 0)) {
461 image->sections[j].size = field32(elf, elf->segments[i].p_filesz);
462 if (load_to_vaddr)
463 image->sections[j].base_address = field32(elf,
464 elf->segments[i].p_vaddr);
465 else
466 image->sections[j].base_address = field32(elf,
467 elf->segments[i].p_paddr);
468 image->sections[j].private = &elf->segments[i];
469 image->sections[j].flags = field32(elf, elf->segments[i].p_flags);
470 j++;
471 }
472 }
473
474 image->start_address_set = 1;
475 image->start_address = field32(elf, elf->header->e_entry);
476
477 return ERROR_OK;
478 }
479
480 static int image_elf_read_section(struct image *image,
481 int section,
482 uint32_t offset,
483 uint32_t size,
484 uint8_t *buffer,
485 size_t *size_read)
486 {
487 struct image_elf *elf = image->type_private;
488 Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private;
489 size_t read_size, really_read;
490 int retval;
491
492 *size_read = 0;
493
494 LOG_DEBUG("load segment %d at 0x%" PRIx32 " (sz = 0x%" PRIx32 ")", section, offset, size);
495
496 /* read initialized data in current segment if any */
497 if (offset < field32(elf, segment->p_filesz)) {
498 /* maximal size present in file for the current segment */
499 read_size = MIN(size, field32(elf, segment->p_filesz) - offset);
500 LOG_DEBUG("read elf: size = 0x%zu at 0x%" PRIx32 "", read_size,
501 field32(elf, segment->p_offset) + offset);
502 /* read initialized area of the segment */
503 retval = fileio_seek(elf->fileio, field32(elf, segment->p_offset) + offset);
504 if (retval != ERROR_OK) {
505 LOG_ERROR("cannot find ELF segment content, seek failed");
506 return retval;
507 }
508 retval = fileio_read(elf->fileio, read_size, buffer, &really_read);
509 if (retval != ERROR_OK) {
510 LOG_ERROR("cannot read ELF segment content, read failed");
511 return retval;
512 }
513 size -= read_size;
514 *size_read += read_size;
515 /* need more data ? */
516 if (!size)
517 return ERROR_OK;
518 }
519
520 return ERROR_OK;
521 }
522
523 static int image_mot_buffer_complete_inner(struct image *image,
524 char *lpszLine,
525 struct imagesection *section)
526 {
527 struct image_mot *mot = image->type_private;
528 struct fileio *fileio = mot->fileio;
529 uint32_t full_address;
530 uint32_t cooked_bytes;
531 bool end_rec = false;
532 int i;
533
534 /* we can't determine the number of sections that we'll have to create ahead of time,
535 * so we locally hold them until parsing is finished */
536
537 int retval;
538 size_t filesize;
539 retval = fileio_size(fileio, &filesize);
540 if (retval != ERROR_OK)
541 return retval;
542
543 mot->buffer = malloc(filesize >> 1);
544 cooked_bytes = 0x0;
545 image->num_sections = 0;
546
547 while (!fileio_feof(fileio)) {
548 full_address = 0x0;
549 section[image->num_sections].private = &mot->buffer[cooked_bytes];
550 section[image->num_sections].base_address = 0x0;
551 section[image->num_sections].size = 0x0;
552 section[image->num_sections].flags = 0;
553
554 while (fileio_fgets(fileio, 1023, lpszLine) == ERROR_OK) {
555 uint32_t count;
556 uint32_t address;
557 uint32_t record_type;
558 uint32_t checksum;
559 uint8_t cal_checksum = 0;
560 uint32_t bytes_read = 0;
561
562 /* skip comments and blank lines */
563 if ((lpszLine[0] == '#') || (strlen(lpszLine + strspn(lpszLine, "\n\t\r ")) == 0))
564 continue;
565
566 /* get record type and record length */
567 if (sscanf(&lpszLine[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type,
568 &count) != 2)
569 return ERROR_IMAGE_FORMAT_ERROR;
570
571 bytes_read += 4;
572 cal_checksum += (uint8_t)count;
573
574 /* skip checksum byte */
575 count -= 1;
576
577 if (record_type == 0) {
578 /* S0 - starting record (optional) */
579 int iValue;
580
581 while (count-- > 0) {
582 sscanf(&lpszLine[bytes_read], "%2x", &iValue);
583 cal_checksum += (uint8_t)iValue;
584 bytes_read += 2;
585 }
586 } else if (record_type >= 1 && record_type <= 3) {
587 switch (record_type) {
588 case 1:
589 /* S1 - 16 bit address data record */
590 sscanf(&lpszLine[bytes_read], "%4" SCNx32, &address);
591 cal_checksum += (uint8_t)(address >> 8);
592 cal_checksum += (uint8_t)address;
593 bytes_read += 4;
594 count -= 2;
595 break;
596
597 case 2:
598 /* S2 - 24 bit address data record */
599 sscanf(&lpszLine[bytes_read], "%6" SCNx32, &address);
600 cal_checksum += (uint8_t)(address >> 16);
601 cal_checksum += (uint8_t)(address >> 8);
602 cal_checksum += (uint8_t)address;
603 bytes_read += 6;
604 count -= 3;
605 break;
606
607 case 3:
608 /* S3 - 32 bit address data record */
609 sscanf(&lpszLine[bytes_read], "%8" SCNx32, &address);
610 cal_checksum += (uint8_t)(address >> 24);
611 cal_checksum += (uint8_t)(address >> 16);
612 cal_checksum += (uint8_t)(address >> 8);
613 cal_checksum += (uint8_t)address;
614 bytes_read += 8;
615 count -= 4;
616 break;
617
618 }
619
620 if (full_address != address) {
621 /* we encountered a nonconsecutive location, create a new section,
622 * unless the current section has zero size, in which case this specifies
623 * the current section's base address
624 */
625 if (section[image->num_sections].size != 0) {
626 image->num_sections++;
627 section[image->num_sections].size = 0x0;
628 section[image->num_sections].flags = 0;
629 section[image->num_sections].private =
630 &mot->buffer[cooked_bytes];
631 }
632 section[image->num_sections].base_address = address;
633 full_address = address;
634 }
635
636 while (count-- > 0) {
637 unsigned value;
638 sscanf(&lpszLine[bytes_read], "%2x", &value);
639 mot->buffer[cooked_bytes] = (uint8_t)value;
640 cal_checksum += (uint8_t)mot->buffer[cooked_bytes];
641 bytes_read += 2;
642 cooked_bytes += 1;
643 section[image->num_sections].size += 1;
644 full_address++;
645 }
646 } else if (record_type == 5) {
647 /* S5 is the data count record, we ignore it */
648 uint32_t dummy;
649
650 while (count-- > 0) {
651 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &dummy);
652 cal_checksum += (uint8_t)dummy;
653 bytes_read += 2;
654 }
655 } else if (record_type >= 7 && record_type <= 9) {
656 /* S7, S8, S9 - ending records for 32, 24 and 16bit */
657 image->num_sections++;
658
659 /* copy section information */
660 image->sections = malloc(sizeof(struct imagesection) * image->num_sections);
661 for (i = 0; i < image->num_sections; i++) {
662 image->sections[i].private = section[i].private;
663 image->sections[i].base_address = section[i].base_address;
664 image->sections[i].size = section[i].size;
665 image->sections[i].flags = section[i].flags;
666 }
667
668 end_rec = true;
669 break;
670 } else {
671 LOG_ERROR("unhandled S19 record type: %i", (int)(record_type));
672 return ERROR_IMAGE_FORMAT_ERROR;
673 }
674
675 /* account for checksum, will always be 0xFF */
676 sscanf(&lpszLine[bytes_read], "%2" SCNx32, &checksum);
677 cal_checksum += (uint8_t)checksum;
678
679 if (cal_checksum != 0xFF) {
680 /* checksum failed */
681 LOG_ERROR("incorrect record checksum found in S19 file");
682 return ERROR_IMAGE_CHECKSUM;
683 }
684
685 if (end_rec) {
686 end_rec = false;
687 LOG_WARNING("continuing after end-of-file record: %.40s", lpszLine);
688 }
689 }
690 }
691
692 if (end_rec)
693 return ERROR_OK;
694 else {
695 LOG_ERROR("premature end of S19 file, no matching end-of-file record found");
696 return ERROR_IMAGE_FORMAT_ERROR;
697 }
698 }
699
700 /**
701 * Allocate memory dynamically instead of on the stack. This
702 * is important w/embedded hosts.
703 */
704 static int image_mot_buffer_complete(struct image *image)
705 {
706 char *lpszLine = malloc(1023);
707 if (lpszLine == NULL) {
708 LOG_ERROR("Out of memory");
709 return ERROR_FAIL;
710 }
711 struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS);
712 if (section == NULL) {
713 free(lpszLine);
714 LOG_ERROR("Out of memory");
715 return ERROR_FAIL;
716 }
717 int retval;
718
719 retval = image_mot_buffer_complete_inner(image, lpszLine, section);
720
721 free(section);
722 free(lpszLine);
723
724 return retval;
725 }
726
727 int image_open(struct image *image, const char *url, const char *type_string)
728 {
729 int retval = ERROR_OK;
730
731 retval = identify_image_type(image, type_string, url);
732 if (retval != ERROR_OK)
733 return retval;
734
735 if (image->type == IMAGE_BINARY) {
736 struct image_binary *image_binary;
737
738 image_binary = image->type_private = malloc(sizeof(struct image_binary));
739
740 retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY);
741 if (retval != ERROR_OK)
742 return retval;
743 size_t filesize;
744 retval = fileio_size(image_binary->fileio, &filesize);
745 if (retval != ERROR_OK) {
746 fileio_close(image_binary->fileio);
747 return retval;
748 }
749
750 image->num_sections = 1;
751 image->sections = malloc(sizeof(struct imagesection));
752 image->sections[0].base_address = 0x0;
753 image->sections[0].size = filesize;
754 image->sections[0].flags = 0;
755 } else if (image->type == IMAGE_IHEX) {
756 struct image_ihex *image_ihex;
757
758 image_ihex = image->type_private = malloc(sizeof(struct image_ihex));
759
760 retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT);
761 if (retval != ERROR_OK)
762 return retval;
763
764 retval = image_ihex_buffer_complete(image);
765 if (retval != ERROR_OK) {
766 LOG_ERROR(
767 "failed buffering IHEX image, check server output for additional information");
768 fileio_close(image_ihex->fileio);
769 return retval;
770 }
771 } else if (image->type == IMAGE_ELF) {
772 struct image_elf *image_elf;
773
774 image_elf = image->type_private = malloc(sizeof(struct image_elf));
775
776 retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY);
777 if (retval != ERROR_OK)
778 return retval;
779
780 retval = image_elf_read_headers(image);
781 if (retval != ERROR_OK) {
782 fileio_close(image_elf->fileio);
783 return retval;
784 }
785 } else if (image->type == IMAGE_MEMORY) {
786 struct target *target = get_target(url);
787
788 if (target == NULL) {
789 LOG_ERROR("target '%s' not defined", url);
790 return ERROR_FAIL;
791 }
792
793 struct image_memory *image_memory;
794
795 image->num_sections = 1;
796 image->sections = malloc(sizeof(struct imagesection));
797 image->sections[0].base_address = 0x0;
798 image->sections[0].size = 0xffffffff;
799 image->sections[0].flags = 0;
800
801 image_memory = image->type_private = malloc(sizeof(struct image_memory));
802
803 image_memory->target = target;
804 image_memory->cache = NULL;
805 image_memory->cache_address = 0x0;
806 } else if (image->type == IMAGE_SRECORD) {
807 struct image_mot *image_mot;
808
809 image_mot = image->type_private = malloc(sizeof(struct image_mot));
810
811 retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT);
812 if (retval != ERROR_OK)
813 return retval;
814
815 retval = image_mot_buffer_complete(image);
816 if (retval != ERROR_OK) {
817 LOG_ERROR(
818 "failed buffering S19 image, check server output for additional information");
819 fileio_close(image_mot->fileio);
820 return retval;
821 }
822 } else if (image->type == IMAGE_BUILDER) {
823 image->num_sections = 0;
824 image->base_address_set = 0;
825 image->sections = NULL;
826 image->type_private = NULL;
827 }
828
829 if (image->base_address_set) {
830 /* relocate */
831 int section;
832 for (section = 0; section < image->num_sections; section++)
833 image->sections[section].base_address += image->base_address;
834 /* we're done relocating. The two statements below are mainly
835 * for documenation purposes: stop anyone from empirically
836 * thinking they should use these values henceforth. */
837 image->base_address = 0;
838 image->base_address_set = 0;
839 }
840
841 return retval;
842 };
843
844 int image_read_section(struct image *image,
845 int section,
846 uint32_t offset,
847 uint32_t size,
848 uint8_t *buffer,
849 size_t *size_read)
850 {
851 int retval;
852
853 /* don't read past the end of a section */
854 if (offset + size > image->sections[section].size) {
855 LOG_DEBUG(
856 "read past end of section: 0x%8.8" PRIx32 " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "",
857 offset,
858 size,
859 image->sections[section].size);
860 return ERROR_COMMAND_SYNTAX_ERROR;
861 }
862
863 if (image->type == IMAGE_BINARY) {
864 struct image_binary *image_binary = image->type_private;
865
866 /* only one section in a plain binary */
867 if (section != 0)
868 return ERROR_COMMAND_SYNTAX_ERROR;
869
870 /* seek to offset */
871 retval = fileio_seek(image_binary->fileio, offset);
872 if (retval != ERROR_OK)
873 return retval;
874
875 /* return requested bytes */
876 retval = fileio_read(image_binary->fileio, size, buffer, size_read);
877 if (retval != ERROR_OK)
878 return retval;
879 } else if (image->type == IMAGE_IHEX) {
880 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
881 *size_read = size;
882
883 return ERROR_OK;
884 } else if (image->type == IMAGE_ELF)
885 return image_elf_read_section(image, section, offset, size, buffer, size_read);
886 else if (image->type == IMAGE_MEMORY) {
887 struct image_memory *image_memory = image->type_private;
888 uint32_t address = image->sections[section].base_address + offset;
889
890 *size_read = 0;
891
892 while ((size - *size_read) > 0) {
893 uint32_t size_in_cache;
894
895 if (!image_memory->cache
896 || (address < image_memory->cache_address)
897 || (address >=
898 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) {
899 if (!image_memory->cache)
900 image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE);
901
902 if (target_read_buffer(image_memory->target, address &
903 ~(IMAGE_MEMORY_CACHE_SIZE - 1),
904 IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) {
905 free(image_memory->cache);
906 image_memory->cache = NULL;
907 return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE;
908 }
909 image_memory->cache_address = address &
910 ~(IMAGE_MEMORY_CACHE_SIZE - 1);
911 }
912
913 size_in_cache =
914 (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address;
915
916 memcpy(buffer + *size_read,
917 image_memory->cache + (address - image_memory->cache_address),
918 (size_in_cache > size) ? size : size_in_cache
919 );
920
921 *size_read += (size_in_cache > size) ? size : size_in_cache;
922 address += (size_in_cache > size) ? size : size_in_cache;
923 }
924 } else if (image->type == IMAGE_SRECORD) {
925 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
926 *size_read = size;
927
928 return ERROR_OK;
929 } else if (image->type == IMAGE_BUILDER) {
930 memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size);
931 *size_read = size;
932
933 return ERROR_OK;
934 }
935
936 return ERROR_OK;
937 }
938
939 int image_add_section(struct image *image, uint32_t base, uint32_t size, int flags, uint8_t const *data)
940 {
941 struct imagesection *section;
942
943 /* only image builder supports adding sections */
944 if (image->type != IMAGE_BUILDER)
945 return ERROR_COMMAND_SYNTAX_ERROR;
946
947 /* see if there's a previous section */
948 if (image->num_sections) {
949 section = &image->sections[image->num_sections - 1];
950
951 /* see if it's enough to extend the last section,
952 * adding data to previous sections or merging is not supported */
953 if (((section->base_address + section->size) == base) &&
954 (section->flags == flags)) {
955 section->private = realloc(section->private, section->size + size);
956 memcpy((uint8_t *)section->private + section->size, data, size);
957 section->size += size;
958 return ERROR_OK;
959 }
960 }
961
962 /* allocate new section */
963 image->num_sections++;
964 image->sections =
965 realloc(image->sections, sizeof(struct imagesection) * image->num_sections);
966 section = &image->sections[image->num_sections - 1];
967 section->base_address = base;
968 section->size = size;
969 section->flags = flags;
970 section->private = malloc(sizeof(uint8_t) * size);
971 memcpy((uint8_t *)section->private, data, size);
972
973 return ERROR_OK;
974 }
975
976 void image_close(struct image *image)
977 {
978 if (image->type == IMAGE_BINARY) {
979 struct image_binary *image_binary = image->type_private;
980
981 fileio_close(image_binary->fileio);
982 } else if (image->type == IMAGE_IHEX) {
983 struct image_ihex *image_ihex = image->type_private;
984
985 fileio_close(image_ihex->fileio);
986
987 if (image_ihex->buffer) {
988 free(image_ihex->buffer);
989 image_ihex->buffer = NULL;
990 }
991 } else if (image->type == IMAGE_ELF) {
992 struct image_elf *image_elf = image->type_private;
993
994 fileio_close(image_elf->fileio);
995
996 if (image_elf->header) {
997 free(image_elf->header);
998 image_elf->header = NULL;
999 }
1000
1001 if (image_elf->segments) {
1002 free(image_elf->segments);
1003 image_elf->segments = NULL;
1004 }
1005 } else if (image->type == IMAGE_MEMORY) {
1006 struct image_memory *image_memory = image->type_private;
1007
1008 if (image_memory->cache) {
1009 free(image_memory->cache);
1010 image_memory->cache = NULL;
1011 }
1012 } else if (image->type == IMAGE_SRECORD) {
1013 struct image_mot *image_mot = image->type_private;
1014
1015 fileio_close(image_mot->fileio);
1016
1017 if (image_mot->buffer) {
1018 free(image_mot->buffer);
1019 image_mot->buffer = NULL;
1020 }
1021 } else if (image->type == IMAGE_BUILDER) {
1022 int i;
1023
1024 for (i = 0; i < image->num_sections; i++) {
1025 free(image->sections[i].private);
1026 image->sections[i].private = NULL;
1027 }
1028 }
1029
1030 if (image->type_private) {
1031 free(image->type_private);
1032 image->type_private = NULL;
1033 }
1034
1035 if (image->sections) {
1036 free(image->sections);
1037 image->sections = NULL;
1038 }
1039 }
1040
1041 int image_calculate_checksum(uint8_t *buffer, uint32_t nbytes, uint32_t *checksum)
1042 {
1043 uint32_t crc = 0xffffffff;
1044 LOG_DEBUG("Calculating checksum");
1045
1046 static uint32_t crc32_table[256];
1047
1048 static bool first_init;
1049 if (!first_init) {
1050 /* Initialize the CRC table and the decoding table. */
1051 unsigned int i, j, c;
1052 for (i = 0; i < 256; i++) {
1053 /* as per gdb */
1054 for (c = i << 24, j = 8; j > 0; --j)
1055 c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1);
1056 crc32_table[i] = c;
1057 }
1058
1059 first_init = true;
1060 }
1061
1062 while (nbytes > 0) {
1063 int run = nbytes;
1064 if (run > 32768)
1065 run = 32768;
1066 nbytes -= run;
1067 while (run--) {
1068 /* as per gdb */
1069 crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255];
1070 }
1071 keep_alive();
1072 }
1073
1074 LOG_DEBUG("Calculating checksum done");
1075
1076 *checksum = crc;
1077 return ERROR_OK;
1078 }