62844ea3b74c2ed5d138fabcd9daffe099476dae
[openocd.git] / src / target / dsp5680xx.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Rodrigo L. Rosa *
3 * rodrigorosa.LG@gmail.com *
4 * *
5 * Based on dsp563xx_once.h written by Mathias Kuester *
6 * mkdorg@users.sourceforge.net *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "target.h"
27 #include "target_type.h"
28 #include "dsp5680xx.h"
29
30 struct dsp5680xx_common dsp5680xx_context;
31
32 #define _E "DSP5680XX_ERROR:%d\nAt:%s:%d:%s"
33 #define err_check(r, c, m) if (r != ERROR_OK) {LOG_ERROR(_E, c, __func__, __LINE__, m); return r; }
34 #define err_check_propagate(retval) if (retval != ERROR_OK) return retval;
35 #define DEBUG_MSG "Debug mode be enabled to read mem."
36 #define DEBUG_FAIL { err_check(ERROR_FAIL, DSP5680XX_ERROR_NOT_IN_DEBUG, DEBUG_MSG) }
37 #define CHECK_DBG if (!dsp5680xx_context.debug_mode_enabled) DEBUG_FAIL
38 #define HALT_MSG "Target must be halted."
39 #define HALT_FAIL { err_check(ERROR_FAIL, DSP5680XX_ERROR_TARGET_RUNNING, HALT_MSG) }
40 #define CHECK_HALT(target) if (target->state != TARGET_HALTED) HALT_FAIL
41 #define check_halt_and_debug(target) { CHECK_HALT(target); CHECK_DBG; }
42
43 static int dsp5680xx_execute_queue(void)
44 {
45 int retval;
46
47 retval = jtag_execute_queue();
48 return retval;
49 }
50
51 /**
52 * Reset state machine
53 */
54 static int reset_jtag(void)
55 {
56 int retval;
57
58 tap_state_t states[2];
59
60 const char *cp = "RESET";
61
62 states[0] = tap_state_by_name(cp);
63 retval = jtag_add_statemove(states[0]);
64 err_check_propagate(retval);
65 retval = jtag_execute_queue();
66 err_check_propagate(retval);
67 jtag_add_pathmove(0, states + 1);
68 retval = jtag_execute_queue();
69 return retval;
70 }
71
72 static int dsp5680xx_drscan(struct target *target, uint8_t *d_in,
73 uint8_t *d_out, int len)
74 {
75 /* -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
76 *
77 *Inputs:
78 * - d_in: This is the data that will be shifted into the JTAG DR reg.
79 * - d_out: The data that will be shifted out of the JTAG DR reg will stored here
80 * - len: Length of the data to be shifted to JTAG DR.
81 *
82 *Note: If d_out == NULL, discard incoming bits.
83 *
84 *-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
85 */
86 int retval = ERROR_OK;
87
88 if (NULL == target->tap) {
89 retval = ERROR_FAIL;
90 err_check(retval, DSP5680XX_ERROR_JTAG_INVALID_TAP,
91 "Invalid tap");
92 }
93 if (len > 32) {
94 retval = ERROR_FAIL;
95 err_check(retval, DSP5680XX_ERROR_JTAG_DR_LEN_OVERFLOW,
96 "dr_len overflow, maximum is 32");
97 }
98 /* TODO what values of len are valid for jtag_add_plain_dr_scan? */
99 /* can i send as many bits as i want? */
100 /* is the casting necessary? */
101 jtag_add_plain_dr_scan(len, d_in, d_out, TAP_IDLE);
102 if (dsp5680xx_context.flush) {
103 retval = dsp5680xx_execute_queue();
104 err_check(retval, DSP5680XX_ERROR_JTAG_DRSCAN,
105 "drscan failed!");
106 }
107 if (d_out != NULL)
108 LOG_DEBUG("Data read (%d bits): 0x%04X", len, *d_out);
109 else
110 LOG_DEBUG("Data read was discarded.");
111 return retval;
112 }
113
114 /**
115 * Test func
116 *
117 * @param target
118 * @param d_in This is the data that will be shifted into the JTAG IR reg.
119 * @param d_out The data that will be shifted out of the JTAG IR reg will be stored here.
120 * @param ir_len Length of the data to be shifted to JTAG IR.
121 *
122 */
123 static int dsp5680xx_irscan(struct target *target, uint32_t *d_in,
124 uint32_t *d_out, uint8_t ir_len)
125 {
126 int retval = ERROR_OK;
127
128 uint16_t tap_ir_len = DSP5680XX_JTAG_MASTER_TAP_IRLEN;
129
130 if (NULL == target->tap) {
131 retval = ERROR_FAIL;
132 err_check(retval, DSP5680XX_ERROR_JTAG_INVALID_TAP,
133 "Invalid tap");
134 }
135 if (ir_len != target->tap->ir_length) {
136 if (target->tap->enabled) {
137 retval = ERROR_FAIL;
138 err_check(retval, DSP5680XX_ERROR_INVALID_IR_LEN,
139 "Invalid irlen");
140 } else {
141 struct jtag_tap *t =
142 jtag_tap_by_string("dsp568013.chp");
143 if ((t == NULL)
144 || ((t->enabled) && (ir_len != tap_ir_len))) {
145 retval = ERROR_FAIL;
146 err_check(retval,
147 DSP5680XX_ERROR_INVALID_IR_LEN,
148 "Invalid irlen");
149 }
150 }
151 }
152 jtag_add_plain_ir_scan(ir_len, (uint8_t *) d_in, (uint8_t *) d_out,
153 TAP_IDLE);
154 if (dsp5680xx_context.flush) {
155 retval = dsp5680xx_execute_queue();
156 err_check(retval, DSP5680XX_ERROR_JTAG_IRSCAN,
157 "irscan failed!");
158 }
159 return retval;
160 }
161
162 static int dsp5680xx_jtag_status(struct target *target, uint8_t *status)
163 {
164 uint32_t read_from_ir;
165
166 uint32_t instr;
167
168 int retval;
169
170 instr = JTAG_INSTR_ENABLE_ONCE;
171 retval =
172 dsp5680xx_irscan(target, &instr, &read_from_ir,
173 DSP5680XX_JTAG_CORE_TAP_IRLEN);
174 err_check_propagate(retval);
175 if (status != NULL)
176 *status = (uint8_t) read_from_ir;
177 return ERROR_OK;
178 }
179
180 static int jtag_data_read(struct target *target, uint8_t *data_read,
181 int num_bits)
182 {
183 uint32_t bogus_instr = 0;
184
185 int retval =
186 dsp5680xx_drscan(target, (uint8_t *) &bogus_instr, data_read,
187 num_bits);
188 LOG_DEBUG("Data read (%d bits): 0x%04X", num_bits, *data_read);
189 /** TODO remove this or move to jtagio? */
190 return retval;
191 }
192
193 #define jtag_data_read8(target, data_read) jtag_data_read(target, data_read, 8)
194 #define jtag_data_read16(target, data_read) jtag_data_read(target, data_read, 16)
195 #define jtag_data_read32(target, data_read) jtag_data_read(target, data_read, 32)
196
197 static uint32_t data_read_dummy;
198
199 static int jtag_data_write(struct target *target, uint32_t instr, int num_bits,
200 uint32_t *data_read)
201 {
202 int retval;
203
204 retval =
205 dsp5680xx_drscan(target, (uint8_t *) &instr,
206 (uint8_t *) &data_read_dummy, num_bits);
207 err_check_propagate(retval);
208 if (data_read != NULL)
209 *data_read = data_read_dummy;
210 return retval;
211 }
212
213 #define jtag_data_write8(target, instr, data_read) jtag_data_write(target, instr, 8, data_read)
214 #define jtag_data_write16(target, instr, data_read) jtag_data_write(target, instr, 16, data_read)
215 #define jtag_data_write24(target, instr, data_read) jtag_data_write(target, instr, 24, data_read)
216 #define jtag_data_write32(target, instr, data_read) jtag_data_write(target, instr, 32, data_read)
217
218 /**
219 * Executes EOnCE instruction.
220 *
221 * @param target
222 * @param instr Instruction to execute.
223 * @param rw
224 * @param go
225 * @param ex
226 * @param eonce_status Value read from the EOnCE status register.
227 *
228 * @return
229 */
230 static int eonce_instruction_exec_single(struct target *target, uint8_t instr,
231 uint8_t rw, uint8_t go, uint8_t ex,
232 uint8_t *eonce_status)
233 {
234 int retval;
235
236 uint32_t dr_out_tmp;
237
238 uint8_t instr_with_flags = instr | (rw << 7) | (go << 6) | (ex << 5);
239
240 retval = jtag_data_write(target, instr_with_flags, 8, &dr_out_tmp);
241 err_check_propagate(retval);
242 if (eonce_status != NULL)
243 *eonce_status = (uint8_t) dr_out_tmp;
244 return retval;
245 }
246
247 /* wrappers for multi opcode instructions */
248 #define dsp5680xx_exe_1(target, oc1, oc2, oc3) dsp5680xx_exe1(target, oc1)
249 #define dsp5680xx_exe_2(target, oc1, oc2, oc3) dsp5680xx_exe2(target, oc1, oc2)
250 #define dsp5680xx_exe_3(target, oc1, oc2, oc3) dsp5680xx_exe3(target, oc1, oc2, oc3)
251 #define dsp5680xx_exe_generic(t, words, oc1, oc2, oc3) dsp5680xx_exe_##words(t, oc1, oc2, oc3)
252
253 /* Executes one word DSP instruction */
254 static int dsp5680xx_exe1(struct target *target, uint16_t opcode)
255 {
256 int retval;
257
258 retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
259 err_check_propagate(retval);
260 retval = jtag_data_write16(target, opcode, NULL);
261 err_check_propagate(retval);
262 return retval;
263 }
264
265 /* Executes two word DSP instruction */
266 static int dsp5680xx_exe2(struct target *target, uint16_t opcode1,
267 uint16_t opcode2)
268 {
269 int retval;
270
271 retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
272 err_check_propagate(retval);
273 retval = jtag_data_write16(target, opcode1, NULL);
274 err_check_propagate(retval);
275 retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
276 err_check_propagate(retval);
277 retval = jtag_data_write16(target, opcode2, NULL);
278 err_check_propagate(retval);
279 return retval;
280 }
281
282 /* Executes three word DSP instruction */
283 static int dsp5680xx_exe3(struct target *target, uint16_t opcode1,
284 uint16_t opcode2, uint16_t opcode3)
285 {
286 int retval;
287
288 retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
289 err_check_propagate(retval);
290 retval = jtag_data_write16(target, opcode1, NULL);
291 err_check_propagate(retval);
292 retval = eonce_instruction_exec_single(target, 0x04, 0, 0, 0, NULL);
293 err_check_propagate(retval);
294 retval = jtag_data_write16(target, opcode2, NULL);
295 err_check_propagate(retval);
296 retval = eonce_instruction_exec_single(target, 0x04, 0, 1, 0, NULL);
297 err_check_propagate(retval);
298 retval = jtag_data_write16(target, opcode3, NULL);
299 err_check_propagate(retval);
300 return retval;
301 }
302
303 /*
304 *--------------- Real-time data exchange ---------------
305 * The EOnCE Transmit (OTX) and Receive (ORX) registers are data memory mapped, each with an upper
306 * and lower 16 bit word.
307 * Transmit and receive directions are defined from the core’s perspective.
308 * The core writes to the Transmit register and reads the Receive register, and the host through
309 * JTAG writes to the Receive register and reads the Transmit register.
310 * Both registers have a combined data memory mapped OTXRXSR which provides indication when
311 * each may be accessed.
312 * ref: eonce_rev.1.0_0208081.pdf@36
313 */
314
315 /* writes data into upper ORx register of the target */
316 static int core_tx_upper_data(struct target *target, uint16_t data,
317 uint32_t *eonce_status_low)
318 {
319 int retval;
320
321 retval =
322 eonce_instruction_exec_single(target, DSP5680XX_ONCE_ORX1, 0, 0, 0,
323 NULL);
324 err_check_propagate(retval);
325 retval = jtag_data_write16(target, data, eonce_status_low);
326 err_check_propagate(retval);
327 return retval;
328 }
329
330 /* writes data into lower ORx register of the target */
331 #define CMD1 eonce_instruction_exec_single(target, DSP5680XX_ONCE_ORX, 0, 0, 0, NULL);
332 #define CMD2 jtag_data_write16((t, data)
333 #define core_tx_lower_data(t, data) PT1\ PT2
334
335 /**
336 *
337 * @param target
338 * @param data_read: Returns the data read from the upper OTX register via JTAG.
339 * @return: Returns an error code (see error code documentation)
340 */
341 static int core_rx_upper_data(struct target *target, uint8_t *data_read)
342 {
343 int retval;
344
345 retval =
346 eonce_instruction_exec_single(target, DSP5680XX_ONCE_OTX1, 1, 0, 0,
347 NULL);
348 err_check_propagate(retval);
349 retval = jtag_data_read16(target, data_read);
350 err_check_propagate(retval);
351 return retval;
352 }
353
354 /**
355 *
356 * @param target
357 * @param data_read: Returns the data read from the lower OTX register via JTAG.
358 * @return: Returns an error code (see error code documentation)
359 */
360 static int core_rx_lower_data(struct target *target, uint8_t *data_read)
361 {
362 int retval;
363
364 retval =
365 eonce_instruction_exec_single(target, DSP5680XX_ONCE_OTX, 1, 0, 0,
366 NULL);
367 err_check_propagate(retval);
368 retval = jtag_data_read16(target, data_read);
369 err_check_propagate(retval);
370 return retval;
371 }
372
373 /*
374 *-- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- --
375 *-- -- -- -- --- -- -- -Core Instructions- -- -- -- --- -- -- -- --- --
376 *-- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- --
377 */
378
379 #define exe(a, b, c, d, e) dsp5680xx_exe_generic(a, b, c, d, e)
380
381 /* move.l #value, r0 */
382 #define core_move_long_to_r0(target, value) exe(target, 3, 0xe418, value&0xffff, value>>16)
383
384 /* move.l #value, n */
385 #define core_move_long_to_n(target, value) exe(target, 3, 0xe41e, value&0xffff, value>>16)
386
387 /* move x:(r0), y0 */
388 #define core_move_at_r0_to_y0(target) exe(target, 1, 0xF514, 0, 0)
389
390 /* move x:(r0), y1 */
391 #define core_move_at_r0_to_y1(target) exe(target, 1, 0xF714, 0, 0)
392
393 /* move.l x:(r0), y */
394 #define core_move_long_at_r0_y(target) exe(target, 1, 0xF734, 0, 0)
395
396 /* move y0, x:(r0) */
397 #define core_move_y0_at_r0(target) exe(target, 1, 0xd514, 0, 0)
398
399 /* bfclr #value, x:(r0) */
400 #define eonce_bfclr_at_r0(target, value) exe(target, 2, 0x8040, value, 0)
401
402 /* move #value, y0 */
403 #define core_move_value_to_y0(target, value) exe(target, 2, 0x8745, value, 0)
404
405 /* move.w y0, x:(r0)+ */
406 #define core_move_y0_at_r0_inc(target) exe(target, 1, 0xd500, 0, 0)
407
408 /* move.w y0, p:(r0)+ */
409 #define core_move_y0_at_pr0_inc(target) exe(target, 1, 0x8560, 0, 0)
410
411 /* move.w p:(r0)+, y0 */
412 #define core_move_at_pr0_inc_to_y0(target) exe(target, 1, 0x8568, 0, 0)
413
414 /* move.w p:(r0)+, y1 */
415 #define core_move_at_pr0_inc_to_y1(target) exe(target, 1, 0x8768, 0, 0)
416
417 /* move.l #value, r2 */
418 #define core_move_long_to_r2(target, value) exe(target, 3, 0xe41A, value&0xffff, value>>16)
419
420 /* move y0, x:(r2) */
421 #define core_move_y0_at_r2(target) exe(target, 1, 0xd516, 0, 0)
422
423 /* move.w #<value>, x:(r2) */
424 #define core_move_value_at_r2(target, value) exe(target, 2, 0x8642, value, 0)
425
426 /* move.w #<value>, x:(r0) */
427 #define core_move_value_at_r0(target, value) exe(target, 2, 0x8640, value, 0)
428
429 /* move.w #<value>, x:(R2+<disp>) */
430 #define core_move_value_at_r2_disp(target, value, disp) exe(target, 3, 0x8646, value, disp)
431
432 /* move.w x:(r2), Y0 */
433 #define core_move_at_r2_to_y0(target) exe(target, 1, 0xF516, 0, 0)
434
435 /* move.w p:(r2)+, y0 */
436 #define core_move_at_pr2_inc_to_y0(target) exe(target, 1, 0x856A, 0, 0)
437
438 /* move.l #value, r3 */
439 #define core_move_long_to_r1(target, value) exe(target, 3, 0xE419, value&0xffff, value>>16)
440
441 /* move.l #value, r3 */
442 #define core_move_long_to_r3(target, value) exe(target, 3, 0xE41B, value&0xffff, value>>16)
443
444 /* move.w y0, p:(r3)+ */
445 #define core_move_y0_at_pr3_inc(target) exe(target, 1, 0x8563, 0, 0)
446
447 /* move.w y0, x:(r3) */
448 #define core_move_y0_at_r3(target) exe(target, 1, 0xD503, 0, 0)
449
450 /* move.l #value, r4 */
451 #define core_move_long_to_r4(target, value) exe(target, 3, 0xE41C, value&0xffff, value>>16)
452
453 /* move pc, r4 */
454 #define core_move_pc_to_r4(target) exe(target, 1, 0xE716, 0, 0)
455
456 /* move.l r4, y */
457 #define core_move_r4_to_y(target) exe(target, 1, 0xe764, 0, 0)
458
459 /* move.w p:(r0)+, y0 */
460 #define core_move_at_pr0_inc_to_y0(target) exe(target, 1, 0x8568, 0, 0)
461
462 /* move.w x:(r0)+, y0 */
463 #define core_move_at_r0_inc_to_y0(target) exe(target, 1, 0xf500, 0, 0)
464
465 /* move x:(r0), y0 */
466 #define core_move_at_r0_y0(target) exe(target, 1, 0xF514, 0, 0)
467
468 /* nop */
469 #define eonce_nop(target) exe(target, 1, 0xe700, 0, 0)
470
471 /* move.w x:(R2+<disp>), Y0 */
472 #define core_move_at_r2_disp_to_y0(target, disp) exe(target, 2, 0xF542, disp, 0)
473
474 /* move.w y1, x:(r2) */
475 #define core_move_y1_at_r2(target) exe(target, 1, 0xd716, 0, 0)
476
477 /* move.w y1, x:(r0) */
478 #define core_move_y1_at_r0(target) exe(target, 1, 0xd714, 0, 0)
479
480 /* move.bp y0, x:(r0)+ */
481 #define core_move_byte_y0_at_r0(target) exe(target, 1, 0xd5a0, 0, 0)
482
483 /* move.w y1, p:(r0)+ */
484 #define core_move_y1_at_pr0_inc(target) exe(target, 1, 0x8760, 0, 0)
485
486 /* move.w y1, x:(r0)+ */
487 #define core_move_y1_at_r0_inc(target) exe(target, 1, 0xD700, 0, 0)
488
489 /* move.l #value, y */
490 #define core_move_long_to_y(target, value) exe(target, 3, 0xe417, value&0xffff, value>>16)
491
492 static int core_move_value_to_pc(struct target *target, uint32_t value)
493 {
494 check_halt_and_debug(target);
495 int retval;
496
497 retval =
498 dsp5680xx_exe_generic(target, 3, 0xE71E, value & 0xffff,
499 value >> 16);
500 err_check_propagate(retval);
501 return retval;
502 }
503
504 static int eonce_load_TX_RX_to_r0(struct target *target)
505 {
506 int retval;
507
508 retval =
509 core_move_long_to_r0(target,
510 ((MC568013_EONCE_TX_RX_ADDR) +
511 (MC568013_EONCE_OBASE_ADDR << 16)));
512 return retval;
513 }
514
515 static int core_load_TX_RX_high_addr_to_r0(struct target *target)
516 {
517 int retval = 0;
518
519 retval =
520 core_move_long_to_r0(target,
521 ((MC568013_EONCE_TX1_RX1_HIGH_ADDR) +
522 (MC568013_EONCE_OBASE_ADDR << 16)));
523 return retval;
524 }
525
526 static int dsp5680xx_read_core_reg(struct target *target, uint8_t reg_addr,
527 uint16_t *data_read)
528 {
529 /* TODO implement a general version of this which matches what openocd uses. */
530 int retval;
531
532 uint32_t dummy_data_to_shift_into_dr;
533
534 retval = eonce_instruction_exec_single(target, reg_addr, 1, 0, 0, NULL);
535 err_check_propagate(retval);
536 retval =
537 dsp5680xx_drscan(target, (uint8_t *) &dummy_data_to_shift_into_dr,
538 (uint8_t *) data_read, 8);
539 err_check_propagate(retval);
540 LOG_DEBUG("Reg. data: 0x%02X.", *data_read);
541 return retval;
542 }
543
544 static int eonce_read_status_reg(struct target *target, uint16_t *data)
545 {
546 int retval;
547
548 retval = dsp5680xx_read_core_reg(target, DSP5680XX_ONCE_OSR, data);
549 err_check_propagate(retval);
550 return retval;
551 }
552
553 /**
554 * Takes the core out of debug mode.
555 *
556 * @param target
557 * @param eonce_status Data read from the EOnCE status register.
558 *
559 * @return
560 */
561 static int eonce_exit_debug_mode(struct target *target, uint8_t *eonce_status)
562 {
563 int retval;
564
565 retval =
566 eonce_instruction_exec_single(target, 0x1F, 0, 0, 1, eonce_status);
567 err_check_propagate(retval);
568 return retval;
569 }
570
571 static int switch_tap(struct target *target, struct jtag_tap *master_tap,
572 struct jtag_tap *core_tap)
573 {
574 int retval = ERROR_OK;
575
576 uint32_t instr;
577
578 uint32_t ir_out; /* not used, just to make jtag happy. */
579
580 if (master_tap == NULL) {
581 master_tap = jtag_tap_by_string("dsp568013.chp");
582 if (master_tap == NULL) {
583 retval = ERROR_FAIL;
584 const char *msg = "Failed to get master tap.";
585
586 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_MASTER,
587 msg);
588 }
589 }
590 if (core_tap == NULL) {
591 core_tap = jtag_tap_by_string("dsp568013.cpu");
592 if (core_tap == NULL) {
593 retval = ERROR_FAIL;
594 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_CORE,
595 "Failed to get core tap.");
596 }
597 }
598
599 if (!(((int)master_tap->enabled) ^ ((int)core_tap->enabled))) {
600 LOG_WARNING
601 ("Master:%d\nCore:%d\nOnly 1 should be enabled.\n",
602 (int)master_tap->enabled, (int)core_tap->enabled);
603 }
604
605 if (master_tap->enabled) {
606 instr = 0x5;
607 retval =
608 dsp5680xx_irscan(target, &instr, &ir_out,
609 DSP5680XX_JTAG_MASTER_TAP_IRLEN);
610 err_check_propagate(retval);
611 instr = 0x2;
612 retval =
613 dsp5680xx_drscan(target, (uint8_t *) &instr,
614 (uint8_t *) &ir_out, 4);
615 err_check_propagate(retval);
616 core_tap->enabled = true;
617 master_tap->enabled = false;
618 } else {
619 instr = 0x08;
620 retval =
621 dsp5680xx_irscan(target, &instr, &ir_out,
622 DSP5680XX_JTAG_CORE_TAP_IRLEN);
623 err_check_propagate(retval);
624 instr = 0x1;
625 retval =
626 dsp5680xx_drscan(target, (uint8_t *) &instr,
627 (uint8_t *) &ir_out, 4);
628 err_check_propagate(retval);
629 core_tap->enabled = false;
630 master_tap->enabled = true;
631 }
632 return retval;
633 }
634
635 /**
636 * Puts the core into debug mode, enabling the EOnCE module.
637 * This will not always work, eonce_enter_debug_mode executes much
638 * more complicated routine, which is guaranteed to work, but requires
639 * a reset. This will complicate comm with the flash module, since
640 * after a reset clock divisors must be set again.
641 * This implementation works most of the time, and is not accessible to the
642 * user.
643 *
644 * @param target
645 * @param eonce_status Data read from the EOnCE status register.
646 *
647 * @return
648 */
649 static int eonce_enter_debug_mode_without_reset(struct target *target,
650 uint16_t *eonce_status)
651 {
652 int retval;
653
654 uint32_t instr = JTAG_INSTR_DEBUG_REQUEST;
655
656 uint32_t ir_out; /* not used, just to make jtag happy.*/
657
658 /* Debug request #1 */
659 retval =
660 dsp5680xx_irscan(target, &instr, &ir_out,
661 DSP5680XX_JTAG_CORE_TAP_IRLEN);
662 err_check_propagate(retval);
663
664 /* Enable EOnCE module */
665 instr = JTAG_INSTR_ENABLE_ONCE;
666 /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
667 retval =
668 dsp5680xx_irscan(target, &instr, &ir_out,
669 DSP5680XX_JTAG_CORE_TAP_IRLEN);
670 err_check_propagate(retval);
671 retval =
672 dsp5680xx_irscan(target, &instr, &ir_out,
673 DSP5680XX_JTAG_CORE_TAP_IRLEN);
674 err_check_propagate(retval);
675 if ((ir_out & JTAG_STATUS_MASK) == JTAG_STATUS_DEBUG)
676 target->state = TARGET_HALTED;
677 else {
678 retval = ERROR_FAIL;
679 err_check_propagate(retval);
680 }
681 /* Verify that debug mode is enabled */
682 uint16_t data_read_from_dr;
683
684 retval = eonce_read_status_reg(target, &data_read_from_dr);
685 err_check_propagate(retval);
686 if ((data_read_from_dr & 0x30) == 0x30) {
687 LOG_DEBUG("EOnCE successfully entered debug mode.");
688 dsp5680xx_context.debug_mode_enabled = true;
689 retval = ERROR_OK;
690 } else {
691 dsp5680xx_context.debug_mode_enabled = false;
692 retval = ERROR_TARGET_FAILURE;
693 /**
694 *No error msg here, since there is still hope with full halting sequence
695 */
696 err_check_propagate(retval);
697 }
698 if (eonce_status != NULL)
699 *eonce_status = data_read_from_dr;
700 return retval;
701 }
702
703 /**
704 * Puts the core into debug mode, enabling the EOnCE module.
705 *
706 * @param target
707 * @param eonce_status Data read from the EOnCE status register.
708 *
709 * @return
710 */
711 static int eonce_enter_debug_mode(struct target *target,
712 uint16_t *eonce_status)
713 {
714 int retval = ERROR_OK;
715
716 uint32_t instr = JTAG_INSTR_DEBUG_REQUEST;
717
718 uint32_t ir_out; /* not used, just to make jtag happy. */
719
720 uint16_t instr_16;
721
722 uint16_t read_16;
723
724 /* First try the easy way */
725 retval = eonce_enter_debug_mode_without_reset(target, eonce_status);
726 if (retval == ERROR_OK)
727 return retval;
728
729 struct jtag_tap *tap_chp;
730
731 struct jtag_tap *tap_cpu;
732
733 tap_chp = jtag_tap_by_string("dsp568013.chp");
734 if (tap_chp == NULL) {
735 retval = ERROR_FAIL;
736 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_MASTER,
737 "Failed to get master tap.");
738 }
739 tap_cpu = jtag_tap_by_string("dsp568013.cpu");
740 if (tap_cpu == NULL) {
741 retval = ERROR_FAIL;
742 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_FIND_CORE,
743 "Failed to get master tap.");
744 }
745 /* Enable master tap */
746 tap_chp->enabled = true;
747 tap_cpu->enabled = false;
748
749 instr = MASTER_TAP_CMD_IDCODE;
750 retval =
751 dsp5680xx_irscan(target, &instr, &ir_out,
752 DSP5680XX_JTAG_MASTER_TAP_IRLEN);
753 err_check_propagate(retval);
754 jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
755
756 /* Enable EOnCE module */
757 jtag_add_reset(0, 1);
758 jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
759 instr = 0x0606ffff; /* This was selected experimentally. */
760 retval =
761 dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
762 32);
763 err_check_propagate(retval);
764 /* ir_out now hold tap idcode */
765
766 /* Enable core tap */
767 tap_chp->enabled = true;
768 retval = switch_tap(target, tap_chp, tap_cpu);
769 err_check_propagate(retval);
770
771 instr = JTAG_INSTR_ENABLE_ONCE;
772 /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
773 retval =
774 dsp5680xx_irscan(target, &instr, &ir_out,
775 DSP5680XX_JTAG_CORE_TAP_IRLEN);
776 err_check_propagate(retval);
777 instr = JTAG_INSTR_DEBUG_REQUEST;
778 retval =
779 dsp5680xx_irscan(target, &instr, &ir_out,
780 DSP5680XX_JTAG_CORE_TAP_IRLEN);
781 err_check_propagate(retval);
782 instr_16 = 0x1;
783 retval =
784 dsp5680xx_drscan(target, (uint8_t *) &instr_16,
785 (uint8_t *) &read_16, 8);
786 err_check_propagate(retval);
787 instr_16 = 0x20;
788 retval =
789 dsp5680xx_drscan(target, (uint8_t *) &instr_16,
790 (uint8_t *) &read_16, 8);
791 err_check_propagate(retval);
792 jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
793 jtag_add_reset(0, 0);
794 jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
795
796 instr = JTAG_INSTR_ENABLE_ONCE;
797 /* Two rounds of jtag 0x6 (enable eonce) to enable EOnCE. */
798 for (int i = 0; i < 3; i++) {
799 retval =
800 dsp5680xx_irscan(target, &instr, &ir_out,
801 DSP5680XX_JTAG_CORE_TAP_IRLEN);
802 err_check_propagate(retval);
803 }
804 if ((ir_out & JTAG_STATUS_MASK) == JTAG_STATUS_DEBUG)
805 target->state = TARGET_HALTED;
806 else {
807 retval = ERROR_FAIL;
808 err_check(retval, DSP5680XX_ERROR_HALT,
809 "Failed to halt target.");
810 }
811
812 for (int i = 0; i < 3; i++) {
813 instr_16 = 0x86;
814 dsp5680xx_drscan(target, (uint8_t *) &instr_16,
815 (uint8_t *) &read_16, 16);
816 instr_16 = 0xff;
817 dsp5680xx_drscan(target, (uint8_t *) &instr_16,
818 (uint8_t *) &read_16, 16);
819 }
820
821 /* Verify that debug mode is enabled */
822 uint16_t data_read_from_dr;
823
824 retval = eonce_read_status_reg(target, &data_read_from_dr);
825 err_check_propagate(retval);
826 if ((data_read_from_dr & 0x30) == 0x30) {
827 LOG_DEBUG("EOnCE successfully entered debug mode.");
828 dsp5680xx_context.debug_mode_enabled = true;
829 retval = ERROR_OK;
830 } else {
831 const char *msg = "Failed to set EOnCE module to debug mode";
832
833 retval = ERROR_TARGET_FAILURE;
834 err_check(retval, DSP5680XX_ERROR_ENTER_DEBUG_MODE, msg);
835 }
836 if (eonce_status != NULL)
837 *eonce_status = data_read_from_dr;
838 return retval;
839 }
840
841 /**
842 * Reads the current value of the program counter and stores it.
843 *
844 * @param target
845 *
846 * @return
847 */
848 static int eonce_pc_store(struct target *target)
849 {
850 uint8_t tmp[2];
851
852 int retval;
853
854 retval = core_move_pc_to_r4(target);
855 err_check_propagate(retval);
856 retval = core_move_r4_to_y(target);
857 err_check_propagate(retval);
858 retval = eonce_load_TX_RX_to_r0(target);
859 err_check_propagate(retval);
860 retval = core_move_y0_at_r0(target);
861 err_check_propagate(retval);
862 retval = core_rx_lower_data(target, tmp);
863 err_check_propagate(retval);
864 LOG_USER("PC value: 0x%X%X\n", tmp[1], tmp[0]);
865 dsp5680xx_context.stored_pc = (tmp[0] | (tmp[1] << 8));
866 return ERROR_OK;
867 }
868
869 static int dsp5680xx_target_create(struct target *target, Jim_Interp *interp)
870 {
871 struct dsp5680xx_common *dsp5680xx =
872 calloc(1, sizeof(struct dsp5680xx_common));
873 target->arch_info = dsp5680xx;
874 return ERROR_OK;
875 }
876
877 static int dsp5680xx_init_target(struct command_context *cmd_ctx,
878 struct target *target)
879 {
880 dsp5680xx_context.stored_pc = 0;
881 dsp5680xx_context.flush = 1;
882 dsp5680xx_context.debug_mode_enabled = false;
883 LOG_DEBUG("target initiated!");
884 /* TODO core tap must be enabled before running these commands, currently
885 * this is done in the .cfg tcl script. */
886 return ERROR_OK;
887 }
888
889 static int dsp5680xx_arch_state(struct target *target)
890 {
891 LOG_USER("%s not implemented yet.", __func__);
892 return ERROR_OK;
893 }
894
895 static int dsp5680xx_assert_reset(struct target *target)
896 {
897 target->state = TARGET_RESET;
898 return ERROR_OK;
899 }
900
901 static int dsp5680xx_deassert_reset(struct target *target)
902 {
903 target->state = TARGET_RUNNING;
904 return ERROR_OK;
905 }
906
907 static int dsp5680xx_halt(struct target *target)
908 {
909 int retval;
910
911 uint16_t eonce_status = 0xbeef;
912
913 if ((target->state == TARGET_HALTED)
914 && (dsp5680xx_context.debug_mode_enabled)) {
915 LOG_USER("Target already halted and in debug mode.");
916 return ERROR_OK;
917 } else {
918 if (target->state == TARGET_HALTED)
919 LOG_USER
920 ("Target already halted, re attempting to enter debug mode.");
921 }
922 retval = eonce_enter_debug_mode(target, &eonce_status);
923 err_check_propagate(retval);
924 retval = eonce_pc_store(target);
925 err_check_propagate(retval);
926 if (dsp5680xx_context.debug_mode_enabled) {
927 retval = eonce_pc_store(target);
928 err_check_propagate(retval);
929 }
930 return retval;
931 }
932
933 static int dsp5680xx_poll(struct target *target)
934 {
935 int retval;
936
937 uint8_t jtag_status;
938
939 uint8_t eonce_status;
940
941 uint16_t read_tmp;
942
943 retval = dsp5680xx_jtag_status(target, &jtag_status);
944 err_check_propagate(retval);
945 if (jtag_status == JTAG_STATUS_DEBUG)
946 if (target->state != TARGET_HALTED) {
947 retval = eonce_enter_debug_mode(target, &read_tmp);
948 err_check_propagate(retval);
949 eonce_status = (uint8_t) read_tmp;
950 if ((eonce_status & EONCE_STAT_MASK) !=
951 DSP5680XX_ONCE_OSCR_DEBUG_M) {
952 const char *msg =
953 "%s: Failed to put EOnCE in debug mode.Flash locked?...";
954 LOG_WARNING(msg, __func__);
955 return ERROR_TARGET_FAILURE;
956 } else {
957 target->state = TARGET_HALTED;
958 return ERROR_OK;
959 }
960 }
961 if (jtag_status == JTAG_STATUS_NORMAL) {
962 if (target->state == TARGET_RESET) {
963 retval = dsp5680xx_halt(target);
964 err_check_propagate(retval);
965 retval = eonce_exit_debug_mode(target, &eonce_status);
966 err_check_propagate(retval);
967 if ((eonce_status & EONCE_STAT_MASK) !=
968 DSP5680XX_ONCE_OSCR_NORMAL_M) {
969 const char *msg =
970 "%s: JTAG running, but EOnCE run failed.Try resetting..";
971 LOG_WARNING(msg, __func__);
972 return ERROR_TARGET_FAILURE;
973 } else {
974 target->state = TARGET_RUNNING;
975 return ERROR_OK;
976 }
977 }
978 if (target->state != TARGET_RUNNING) {
979 retval = eonce_read_status_reg(target, &read_tmp);
980 err_check_propagate(retval);
981 eonce_status = (uint8_t) read_tmp;
982 if ((eonce_status & EONCE_STAT_MASK) !=
983 DSP5680XX_ONCE_OSCR_NORMAL_M) {
984 LOG_WARNING
985 ("Inconsistent target status. Restart!");
986 return ERROR_TARGET_FAILURE;
987 }
988 }
989 target->state = TARGET_RUNNING;
990 return ERROR_OK;
991 }
992 if (jtag_status == JTAG_STATUS_DEAD) {
993 LOG_ERROR
994 ("%s: Cannot communicate with JTAG. Check connection...",
995 __func__);
996 target->state = TARGET_UNKNOWN;
997 return ERROR_TARGET_FAILURE;
998 }
999 if (target->state == TARGET_UNKNOWN) {
1000 LOG_ERROR("%s: Target status invalid - communication failure",
1001 __func__);
1002 return ERROR_TARGET_FAILURE;
1003 }
1004 return ERROR_OK;
1005 }
1006
1007 static int dsp5680xx_resume(struct target *target, int current,
1008 target_addr_t address, int hb, int d)
1009 {
1010 if (target->state == TARGET_RUNNING) {
1011 LOG_USER("Target already running.");
1012 return ERROR_OK;
1013 }
1014 int retval;
1015
1016 uint8_t eonce_status;
1017
1018 uint8_t jtag_status;
1019
1020 if (dsp5680xx_context.debug_mode_enabled) {
1021 if (!current) {
1022 retval = core_move_value_to_pc(target, address);
1023 err_check_propagate(retval);
1024 }
1025
1026 int retry = 20;
1027
1028 while (retry-- > 1) {
1029 retval = eonce_exit_debug_mode(target, &eonce_status);
1030 err_check_propagate(retval);
1031 if (eonce_status == DSP5680XX_ONCE_OSCR_NORMAL_M)
1032 break;
1033 }
1034 if (retry == 0) {
1035 retval = ERROR_TARGET_FAILURE;
1036 err_check(retval, DSP5680XX_ERROR_EXIT_DEBUG_MODE,
1037 "Failed to exit debug mode...");
1038 } else {
1039 target->state = TARGET_RUNNING;
1040 dsp5680xx_context.debug_mode_enabled = false;
1041 }
1042 LOG_DEBUG("EOnCE status: 0x%02X.", eonce_status);
1043 } else {
1044 /*
1045 * If debug mode was not enabled but target was halted, then it is most likely that
1046 * access to eonce registers is locked.
1047 * Reset target to make it run again.
1048 */
1049 jtag_add_reset(0, 1);
1050 jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
1051
1052 retval = reset_jtag();
1053 err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
1054 "Failed to reset JTAG state machine");
1055 jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
1056 jtag_add_reset(0, 0);
1057 jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
1058 retval = dsp5680xx_jtag_status(target, &jtag_status);
1059 err_check_propagate(retval);
1060 if ((jtag_status & JTAG_STATUS_MASK) == JTAG_STATUS_NORMAL) {
1061 target->state = TARGET_RUNNING;
1062 dsp5680xx_context.debug_mode_enabled = false;
1063 } else {
1064 retval = ERROR_TARGET_FAILURE;
1065 err_check(retval, DSP5680XX_ERROR_RESUME,
1066 "Failed to resume target");
1067 }
1068 }
1069 return ERROR_OK;
1070 }
1071
1072 /**
1073 * The value of @a address determines if it corresponds to P: (program) or X: (dat) memory.
1074 * If the address is over 0x200000 then it is considered X: memory, and @a pmem = 0.
1075 * The special case of 0xFFXXXX is not modified, since it allows to read out the
1076 * memory mapped EOnCE registers.
1077 *
1078 * @param address
1079 * @param pmem
1080 *
1081 * @return
1082 */
1083 static int dsp5680xx_convert_address(uint32_t *address, int *pmem)
1084 {
1085 /*
1086 * Distinguish data memory (x) from program memory (p) by the address.
1087 * Addresses over S_FILE_DATA_OFFSET are considered (x) memory.
1088 */
1089 if (*address >= S_FILE_DATA_OFFSET) {
1090 *pmem = 0;
1091 if (((*address) & 0xff0000) != 0xff0000)
1092 *address -= S_FILE_DATA_OFFSET;
1093 }
1094 return ERROR_OK;
1095 }
1096
1097 static int dsp5680xx_read_16_single(struct target *t, uint32_t a,
1098 uint8_t *data_read, int r_pmem)
1099 {
1100 struct target *target = t;
1101
1102 uint32_t address = a;
1103
1104 int retval;
1105
1106 retval = core_move_long_to_r0(target, address);
1107 err_check_propagate(retval);
1108 if (r_pmem)
1109 retval = core_move_at_pr0_inc_to_y0(target);
1110 else
1111 retval = core_move_at_r0_to_y0(target);
1112 err_check_propagate(retval);
1113 retval = eonce_load_TX_RX_to_r0(target);
1114 err_check_propagate(retval);
1115 retval = core_move_y0_at_r0(target);
1116 err_check_propagate(retval);
1117 /* at this point the data i want is at the reg eonce can read */
1118 retval = core_rx_lower_data(target, data_read);
1119 err_check_propagate(retval);
1120 LOG_DEBUG("%s:Data read from 0x%06" PRIX32 ": 0x%02X%02X", __func__, address,
1121 data_read[1], data_read[0]);
1122 return retval;
1123 }
1124
1125 static int dsp5680xx_read_32_single(struct target *t, uint32_t a,
1126 uint8_t *data_read, int r_pmem)
1127 {
1128 struct target *target = t;
1129
1130 uint32_t address = a;
1131
1132 int retval;
1133
1134 address = (address & 0xFFFFF);
1135 /* Get data to an intermediate register */
1136 retval = core_move_long_to_r0(target, address);
1137 err_check_propagate(retval);
1138 if (r_pmem) {
1139 retval = core_move_at_pr0_inc_to_y0(target);
1140 err_check_propagate(retval);
1141 retval = core_move_at_pr0_inc_to_y1(target);
1142 err_check_propagate(retval);
1143 } else {
1144 retval = core_move_at_r0_inc_to_y0(target);
1145 err_check_propagate(retval);
1146 retval = core_move_at_r0_to_y1(target);
1147 err_check_propagate(retval);
1148 }
1149 /* Get lower part of data to TX/RX */
1150 retval = eonce_load_TX_RX_to_r0(target);
1151 err_check_propagate(retval);
1152 retval = core_move_y0_at_r0_inc(target); /* This also load TX/RX high to r0 */
1153 err_check_propagate(retval);
1154 /* Get upper part of data to TX/RX */
1155 retval = core_move_y1_at_r0(target);
1156 err_check_propagate(retval);
1157 /* at this point the data i want is at the reg eonce can read */
1158 retval = core_rx_lower_data(target, data_read);
1159 err_check_propagate(retval);
1160 retval = core_rx_upper_data(target, data_read + 2);
1161 err_check_propagate(retval);
1162 return retval;
1163 }
1164
1165 static int dsp5680xx_read(struct target *t, target_addr_t a, uint32_t size,
1166 uint32_t count, uint8_t *buf)
1167 {
1168 struct target *target = t;
1169
1170 uint32_t address = a;
1171
1172 uint8_t *buffer = buf;
1173
1174 check_halt_and_debug(target);
1175
1176 int retval = ERROR_OK;
1177
1178 int pmem = 1;
1179
1180 retval = dsp5680xx_convert_address(&address, &pmem);
1181 err_check_propagate(retval);
1182
1183 dsp5680xx_context.flush = 0;
1184 int counter = FLUSH_COUNT_READ_WRITE;
1185
1186 for (unsigned i = 0; i < count; i++) {
1187 if (--counter == 0) {
1188 dsp5680xx_context.flush = 1;
1189 counter = FLUSH_COUNT_READ_WRITE;
1190 }
1191 switch (size) {
1192 case 1:
1193 if (!(i % 2))
1194 retval =
1195 dsp5680xx_read_16_single(target,
1196 address + i / 2,
1197 buffer + i, pmem);
1198 break;
1199 case 2:
1200 retval =
1201 dsp5680xx_read_16_single(target, address + i,
1202 buffer + 2 * i, pmem);
1203 break;
1204 case 4:
1205 retval =
1206 dsp5680xx_read_32_single(target, address + 2 * i,
1207 buffer + 4 * i, pmem);
1208 break;
1209 default:
1210 LOG_USER("%s: Invalid read size.", __func__);
1211 break;
1212 }
1213 err_check_propagate(retval);
1214 dsp5680xx_context.flush = 0;
1215 }
1216
1217 dsp5680xx_context.flush = 1;
1218 retval = dsp5680xx_execute_queue();
1219 err_check_propagate(retval);
1220
1221 return retval;
1222 }
1223
1224 static int dsp5680xx_write_16_single(struct target *t, uint32_t a,
1225 uint16_t data, uint8_t w_pmem)
1226 {
1227 struct target *target = t;
1228
1229 uint32_t address = a;
1230
1231 int retval = 0;
1232
1233 retval = core_move_long_to_r0(target, address);
1234 err_check_propagate(retval);
1235 if (w_pmem) {
1236 retval = core_move_value_to_y0(target, data);
1237 err_check_propagate(retval);
1238 retval = core_move_y0_at_pr0_inc(target);
1239 err_check_propagate(retval);
1240 } else {
1241 retval = core_move_value_at_r0(target, data);
1242 err_check_propagate(retval);
1243 }
1244 return retval;
1245 }
1246
1247 static int dsp5680xx_write_32_single(struct target *t, uint32_t a,
1248 uint32_t data, int w_pmem)
1249 {
1250 struct target *target = t;
1251
1252 uint32_t address = a;
1253
1254 int retval = ERROR_OK;
1255
1256 retval = core_move_long_to_r0(target, address);
1257 err_check_propagate(retval);
1258 retval = core_move_long_to_y(target, data);
1259 err_check_propagate(retval);
1260 if (w_pmem)
1261 retval = core_move_y0_at_pr0_inc(target);
1262 else
1263 retval = core_move_y0_at_r0_inc(target);
1264 err_check_propagate(retval);
1265 if (w_pmem)
1266 retval = core_move_y1_at_pr0_inc(target);
1267 else
1268 retval = core_move_y1_at_r0_inc(target);
1269 err_check_propagate(retval);
1270 return retval;
1271 }
1272
1273 static int dsp5680xx_write_8(struct target *t, uint32_t a, uint32_t c,
1274 const uint8_t *d, int pmem)
1275 {
1276 struct target *target = t;
1277
1278 uint32_t address = a;
1279
1280 uint32_t count = c;
1281
1282 const uint8_t *data = d;
1283
1284 int retval = 0;
1285
1286 uint16_t data_16;
1287
1288 uint32_t iter;
1289
1290 int counter = FLUSH_COUNT_READ_WRITE;
1291
1292 for (iter = 0; iter < count / 2; iter++) {
1293 if (--counter == 0) {
1294 dsp5680xx_context.flush = 1;
1295 counter = FLUSH_COUNT_READ_WRITE;
1296 }
1297 data_16 = (data[2 * iter] | (data[2 * iter + 1] << 8));
1298 retval =
1299 dsp5680xx_write_16_single(target, address + iter, data_16,
1300 pmem);
1301 if (retval != ERROR_OK) {
1302 LOG_ERROR("%s: Could not write to p:0x%04" PRIX32, __func__,
1303 address);
1304 dsp5680xx_context.flush = 1;
1305 return retval;
1306 }
1307 dsp5680xx_context.flush = 0;
1308 }
1309 dsp5680xx_context.flush = 1;
1310
1311 /* Only one byte left, let's not overwrite the other byte (mem is 16bit) */
1312 /* Need to retrieve the part we do not want to overwrite. */
1313 uint16_t data_old;
1314
1315 if ((count == 1) || (count % 2)) {
1316 retval =
1317 dsp5680xx_read(target, address + iter, 1, 1,
1318 (uint8_t *) &data_old);
1319 err_check_propagate(retval);
1320 if (count == 1)
1321 data_old = (((data_old & 0xff) << 8) | data[0]); /* preserve upper byte */
1322 else
1323 data_old =
1324 (((data_old & 0xff) << 8) | data[2 * iter + 1]);
1325 retval =
1326 dsp5680xx_write_16_single(target, address + iter, data_old,
1327 pmem);
1328 err_check_propagate(retval);
1329 }
1330 return retval;
1331 }
1332
1333 static int dsp5680xx_write_16(struct target *t, uint32_t a, uint32_t c,
1334 const uint8_t *d, int pmem)
1335 {
1336 struct target *target = t;
1337
1338 uint32_t address = a;
1339
1340 uint32_t count = c;
1341
1342 const uint8_t *data = d;
1343
1344 int retval = ERROR_OK;
1345
1346 uint32_t iter;
1347
1348 int counter = FLUSH_COUNT_READ_WRITE;
1349
1350 for (iter = 0; iter < count; iter++) {
1351 if (--counter == 0) {
1352 dsp5680xx_context.flush = 1;
1353 counter = FLUSH_COUNT_READ_WRITE;
1354 }
1355 retval =
1356 dsp5680xx_write_16_single(target, address + iter,
1357 data[iter], pmem);
1358 if (retval != ERROR_OK) {
1359 LOG_ERROR("%s: Could not write to p:0x%04" PRIX32, __func__,
1360 address);
1361 dsp5680xx_context.flush = 1;
1362 return retval;
1363 }
1364 dsp5680xx_context.flush = 0;
1365 }
1366 dsp5680xx_context.flush = 1;
1367 return retval;
1368 }
1369
1370 static int dsp5680xx_write_32(struct target *t, uint32_t a, uint32_t c,
1371 const uint8_t *d, int pmem)
1372 {
1373 struct target *target = t;
1374
1375 uint32_t address = a;
1376
1377 uint32_t count = c;
1378
1379 const uint8_t *data = d;
1380
1381 int retval = ERROR_OK;
1382
1383 uint32_t iter;
1384
1385 int counter = FLUSH_COUNT_READ_WRITE;
1386
1387 for (iter = 0; iter < count; iter++) {
1388 if (--counter == 0) {
1389 dsp5680xx_context.flush = 1;
1390 counter = FLUSH_COUNT_READ_WRITE;
1391 }
1392 retval =
1393 dsp5680xx_write_32_single(target, address + (iter << 1),
1394 data[iter], pmem);
1395 if (retval != ERROR_OK) {
1396 LOG_ERROR("%s: Could not write to p:0x%04" PRIX32, __func__,
1397 address);
1398 dsp5680xx_context.flush = 1;
1399 return retval;
1400 }
1401 dsp5680xx_context.flush = 0;
1402 }
1403 dsp5680xx_context.flush = 1;
1404 return retval;
1405 }
1406
1407 /**
1408 * Writes @a buffer to memory.
1409 * The parameter @a address determines whether @a buffer should be written to
1410 * P: (program) memory or X: (dat) memory.
1411 *
1412 * @param target
1413 * @param a address
1414 * @param size Bytes (1), Half words (2), Words (4).
1415 * @param count In bytes.
1416 * @param b buffer
1417 *
1418 * @return
1419 */
1420 static int dsp5680xx_write(struct target *target, target_addr_t a, uint32_t size, uint32_t count,
1421 const uint8_t *b)
1422 {
1423 /* TODO Cannot write 32bit to odd address, will write 0x12345678 as 0x5678 0x0012 */
1424 uint32_t address = a;
1425
1426 uint8_t const *buffer = b;
1427
1428 check_halt_and_debug(target);
1429
1430 int retval = 0;
1431
1432 int p_mem = 1;
1433
1434 retval = dsp5680xx_convert_address(&address, &p_mem);
1435 err_check_propagate(retval);
1436
1437 switch (size) {
1438 case 1:
1439 retval =
1440 dsp5680xx_write_8(target, address, count, buffer, p_mem);
1441 break;
1442 case 2:
1443 retval =
1444 dsp5680xx_write_16(target, address, count, buffer, p_mem);
1445 break;
1446 case 4:
1447 retval =
1448 dsp5680xx_write_32(target, address, count, buffer, p_mem);
1449 break;
1450 default:
1451 retval = ERROR_TARGET_DATA_ABORT;
1452 err_check(retval, DSP5680XX_ERROR_INVALID_DATA_SIZE_UNIT,
1453 "Invalid data size.");
1454 break;
1455 }
1456 return retval;
1457 }
1458
1459 static int dsp5680xx_write_buffer(struct target *t, target_addr_t a, uint32_t size,
1460 const uint8_t *b)
1461 {
1462 check_halt_and_debug(t);
1463 return dsp5680xx_write(t, a, 1, size, b);
1464 }
1465
1466 /**
1467 * This function is called by verify_image, it is used to read data from memory.
1468 *
1469 * @param target
1470 * @param address Word addressing.
1471 * @param size In bytes.
1472 * @param buffer
1473 *
1474 * @return
1475 */
1476 static int dsp5680xx_read_buffer(struct target *target, target_addr_t address, uint32_t size,
1477 uint8_t *buffer)
1478 {
1479 check_halt_and_debug(target);
1480 /* The "/2" solves the byte/word addressing issue.*/
1481 return dsp5680xx_read(target, address, 2, size / 2, buffer);
1482 }
1483
1484 /**
1485 * This function is not implemented.
1486 * It returns an error in order to get OpenOCD to do read out the data
1487 * and calculate the CRC, or try a binary comparison.
1488 *
1489 * @param target
1490 * @param address Start address of the image.
1491 * @param size In bytes.
1492 * @param checksum
1493 *
1494 * @return
1495 */
1496 static int dsp5680xx_checksum_memory(struct target *target, target_addr_t address, uint32_t size,
1497 uint32_t *checksum)
1498 {
1499 return ERROR_FAIL;
1500 }
1501
1502 /**
1503 * Calculates a signature over @a word_count words in the data from @a buff8.
1504 * The algorithm used is the same the FM uses, so the @a return may be used to compare
1505 * with the one generated by the FM module, and check if flashing was successful.
1506 * This algorithm is based on the perl script available from the Freescale website at FAQ 25630.
1507 *
1508 * @param buff8
1509 * @param word_count
1510 *
1511 * @return
1512 */
1513 static int perl_crc(const uint8_t *buff8, uint32_t word_count)
1514 {
1515 uint16_t checksum = 0xffff;
1516
1517 uint16_t data, fbmisr;
1518
1519 uint32_t i;
1520
1521 for (i = 0; i < word_count; i++) {
1522 data = (buff8[2 * i] | (buff8[2 * i + 1] << 8));
1523 fbmisr =
1524 (checksum & 2) >> 1 ^ (checksum & 4) >> 2 ^ (checksum & 16)
1525 >> 4 ^ (checksum & 0x8000) >> 15;
1526 checksum = (data ^ ((checksum << 1) | fbmisr));
1527 }
1528 i--;
1529 for (; !(i & 0x80000000); i--) {
1530 data = (buff8[2 * i] | (buff8[2 * i + 1] << 8));
1531 fbmisr =
1532 (checksum & 2) >> 1 ^ (checksum & 4) >> 2 ^ (checksum & 16)
1533 >> 4 ^ (checksum & 0x8000) >> 15;
1534 checksum = (data ^ ((checksum << 1) | fbmisr));
1535 }
1536 return checksum;
1537 }
1538
1539 /**
1540 * Resets the SIM. (System Integration Modul).
1541 *
1542 * @param target
1543 *
1544 * @return
1545 */
1546 static int dsp5680xx_f_SIM_reset(struct target *target)
1547 {
1548 int retval = ERROR_OK;
1549
1550 uint16_t sim_cmd = SIM_CMD_RESET;
1551
1552 uint32_t sim_addr;
1553
1554 if (strcmp(target->tap->chip, "dsp568013") == 0) {
1555 sim_addr = MC568013_SIM_BASE_ADDR + S_FILE_DATA_OFFSET;
1556 retval =
1557 dsp5680xx_write(target, sim_addr, 1, 2,
1558 (const uint8_t *)&sim_cmd);
1559 err_check_propagate(retval);
1560 }
1561 return retval;
1562 }
1563
1564 /**
1565 * Halts the core and resets the SIM. (System Integration Modul).
1566 *
1567 * @param target
1568 *
1569 * @return
1570 */
1571 static int dsp5680xx_soft_reset_halt(struct target *target)
1572 {
1573 /* TODO is this what this function is expected to do...? */
1574 int retval;
1575
1576 retval = dsp5680xx_halt(target);
1577 err_check_propagate(retval);
1578 retval = dsp5680xx_f_SIM_reset(target);
1579 err_check_propagate(retval);
1580 return retval;
1581 }
1582
1583 int dsp5680xx_f_protect_check(struct target *target, uint16_t *protected)
1584 {
1585 int retval;
1586
1587 check_halt_and_debug(target);
1588 if (protected == NULL) {
1589 const char *msg = "NULL pointer not valid.";
1590
1591 err_check(ERROR_FAIL,
1592 DSP5680XX_ERROR_PROTECT_CHECK_INVALID_ARGS, msg);
1593 }
1594 retval =
1595 dsp5680xx_read_16_single(target, HFM_BASE_ADDR | HFM_PROT,
1596 (uint8_t *) protected, 0);
1597 err_check_propagate(retval);
1598 return retval;
1599 }
1600
1601 /**
1602 * Executes a command on the FM module.
1603 * Some commands use the parameters @a address and @a data, others ignore them.
1604 *
1605 * @param target
1606 * @param c Command to execute.
1607 * @param address Command parameter.
1608 * @param data Command parameter.
1609 * @param hfm_ustat FM status register.
1610 * @param pmem Address is P: (program) memory (@a pmem == 1) or X: (dat) memory (@a pmem == 0)
1611 *
1612 * @return
1613 */
1614 static int dsp5680xx_f_ex(struct target *target, uint16_t c, uint32_t address, uint32_t data,
1615 uint16_t *hfm_ustat, int pmem)
1616 {
1617 uint32_t command = c;
1618 int retval;
1619
1620 retval = core_load_TX_RX_high_addr_to_r0(target);
1621 err_check_propagate(retval);
1622 retval = core_move_long_to_r2(target, HFM_BASE_ADDR);
1623 err_check_propagate(retval);
1624 uint8_t i[2];
1625
1626 int watchdog = 100;
1627
1628 do {
1629 retval = core_move_at_r2_disp_to_y0(target, HFM_USTAT); /* read HMF_USTAT */
1630 err_check_propagate(retval);
1631 retval = core_move_y0_at_r0(target);
1632 err_check_propagate(retval);
1633 retval = core_rx_upper_data(target, i);
1634 err_check_propagate(retval);
1635 if ((watchdog--) == 1) {
1636 retval = ERROR_TARGET_FAILURE;
1637 const char *msg =
1638 "Timed out waiting for FM to finish old command.";
1639 err_check(retval, DSP5680XX_ERROR_FM_BUSY, msg);
1640 }
1641 } while (!(i[0] & 0x40)); /* wait until current command is complete */
1642
1643 dsp5680xx_context.flush = 0;
1644
1645 /* write to HFM_CNFG (lock=0,select bank) - flash_desc.bank&0x03, 0x01 == 0x00, 0x01 ??? */
1646 retval = core_move_value_at_r2_disp(target, 0x00, HFM_CNFG);
1647 err_check_propagate(retval);
1648 /* write to HMF_USTAT, clear PVIOL, ACCERR &BLANK bits */
1649 retval = core_move_value_at_r2_disp(target, 0x04, HFM_USTAT);
1650 err_check_propagate(retval);
1651 /* clear only one bit at a time */
1652 retval = core_move_value_at_r2_disp(target, 0x10, HFM_USTAT);
1653 err_check_propagate(retval);
1654 retval = core_move_value_at_r2_disp(target, 0x20, HFM_USTAT);
1655 err_check_propagate(retval);
1656 /* write to HMF_PROT, clear protection */
1657 retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROT);
1658 err_check_propagate(retval);
1659 /* write to HMF_PROTB, clear protection */
1660 retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROTB);
1661 err_check_propagate(retval);
1662 retval = core_move_value_to_y0(target, data);
1663 err_check_propagate(retval);
1664 /* write to the flash block */
1665 retval = core_move_long_to_r3(target, address);
1666 err_check_propagate(retval);
1667 if (pmem) {
1668 retval = core_move_y0_at_pr3_inc(target);
1669 err_check_propagate(retval);
1670 } else {
1671 retval = core_move_y0_at_r3(target);
1672 err_check_propagate(retval);
1673 }
1674 /* write command to the HFM_CMD reg */
1675 retval = core_move_value_at_r2_disp(target, command, HFM_CMD);
1676 err_check_propagate(retval);
1677 /* start the command */
1678 retval = core_move_value_at_r2_disp(target, 0x80, HFM_USTAT);
1679 err_check_propagate(retval);
1680
1681 dsp5680xx_context.flush = 1;
1682 retval = dsp5680xx_execute_queue();
1683 err_check_propagate(retval);
1684
1685 watchdog = 100;
1686 do {
1687 /* read HMF_USTAT */
1688 retval = core_move_at_r2_disp_to_y0(target, HFM_USTAT);
1689 err_check_propagate(retval);
1690 retval = core_move_y0_at_r0(target);
1691 err_check_propagate(retval);
1692 retval = core_rx_upper_data(target, i);
1693 err_check_propagate(retval);
1694 if ((watchdog--) == 1) {
1695 retval = ERROR_TARGET_FAILURE;
1696 err_check(retval, DSP5680XX_ERROR_FM_CMD_TIMED_OUT,
1697 "FM execution did not finish.");
1698 }
1699 } while (!(i[0] & 0x40)); /* wait until the command is complete */
1700 *hfm_ustat = ((i[0] << 8) | (i[1]));
1701 if (i[0] & HFM_USTAT_MASK_PVIOL_ACCER) {
1702 retval = ERROR_TARGET_FAILURE;
1703 const char *msg =
1704 "pviol and/or accer bits set. HFM command execution error";
1705 err_check(retval, DSP5680XX_ERROR_FM_EXEC, msg);
1706 }
1707 return ERROR_OK;
1708 }
1709
1710 /**
1711 * Prior to the execution of any Flash module command, the Flash module Clock
1712 * Divider (CLKDIV) register must be initialized. The values of this register
1713 * determine the speed of the internal Flash Clock (FCLK). FCLK must be in the
1714 * range of 150kHz ≤ FCLK ≤ 200kHz for proper operation of the Flash module.
1715 * (Running FCLK too slowly wears out the module, while running it too fast
1716 * under programs Flash leading to bit errors.)
1717 *
1718 * @param target
1719 *
1720 * @return
1721 */
1722 static int set_fm_ck_div(struct target *target)
1723 {
1724 uint8_t i[2];
1725
1726 int retval;
1727
1728 retval = core_move_long_to_r2(target, HFM_BASE_ADDR);
1729 err_check_propagate(retval);
1730 retval = core_load_TX_RX_high_addr_to_r0(target);
1731 err_check_propagate(retval);
1732 /* read HFM_CLKD */
1733 retval = core_move_at_r2_to_y0(target);
1734 err_check_propagate(retval);
1735 retval = core_move_y0_at_r0(target);
1736 err_check_propagate(retval);
1737 retval = core_rx_upper_data(target, i);
1738 err_check_propagate(retval);
1739 unsigned int hfm_at_wrong_value = 0;
1740
1741 if ((i[0] & 0x7f) != HFM_CLK_DEFAULT) {
1742 LOG_DEBUG("HFM CLK divisor contained incorrect value (0x%02X).",
1743 i[0] & 0x7f);
1744 hfm_at_wrong_value = 1;
1745 } else {
1746 LOG_DEBUG
1747 ("HFM CLK divisor was already set to correct value (0x%02X).",
1748 i[0] & 0x7f);
1749 return ERROR_OK;
1750 }
1751 /* write HFM_CLKD */
1752 retval = core_move_value_at_r2(target, HFM_CLK_DEFAULT);
1753 err_check_propagate(retval);
1754 /* verify HFM_CLKD */
1755 retval = core_move_at_r2_to_y0(target);
1756 err_check_propagate(retval);
1757 retval = core_move_y0_at_r0(target);
1758 err_check_propagate(retval);
1759 retval = core_rx_upper_data(target, i);
1760 err_check_propagate(retval);
1761 if (i[0] != (0x80 | (HFM_CLK_DEFAULT & 0x7f))) {
1762 retval = ERROR_TARGET_FAILURE;
1763 err_check(retval, DSP5680XX_ERROR_FM_SET_CLK,
1764 "Unable to set HFM CLK divisor.");
1765 }
1766 if (hfm_at_wrong_value)
1767 LOG_DEBUG("HFM CLK divisor set to 0x%02x.", i[0] & 0x7f);
1768 return ERROR_OK;
1769 }
1770
1771 /**
1772 * Executes the FM calculate signature command. The FM will calculate over the
1773 * data from @a address to @a address + @a words -1. The result is written to a
1774 * register, then read out by this function and returned in @a signature. The
1775 * value @a signature may be compared to the one returned by perl_crc to
1776 * verify the flash was written correctly.
1777 *
1778 * @param target
1779 * @param address Start of flash array where the signature should be calculated.
1780 * @param words Number of words over which the signature should be calculated.
1781 * @param signature Value calculated by the FM.
1782 *
1783 * @return
1784 */
1785 static int dsp5680xx_f_signature(struct target *target, uint32_t address, uint32_t words,
1786 uint16_t *signature)
1787 {
1788 int retval;
1789
1790 uint16_t hfm_ustat;
1791
1792 if (!dsp5680xx_context.debug_mode_enabled) {
1793 retval = eonce_enter_debug_mode_without_reset(target, NULL);
1794 /*
1795 * Generate error here, since it is not done in eonce_enter_debug_mode_without_reset
1796 */
1797 err_check(retval, DSP5680XX_ERROR_HALT,
1798 "Failed to halt target.");
1799 }
1800 retval =
1801 dsp5680xx_f_ex(target, HFM_CALCULATE_DATA_SIGNATURE, address, words,
1802 &hfm_ustat, 1);
1803 err_check_propagate(retval);
1804 retval =
1805 dsp5680xx_read_16_single(target, HFM_BASE_ADDR | HFM_DATA,
1806 (uint8_t *) signature, 0);
1807 return retval;
1808 }
1809
1810 int dsp5680xx_f_erase_check(struct target *target, uint8_t *erased,
1811 uint32_t sector)
1812 {
1813 int retval;
1814
1815 uint16_t hfm_ustat;
1816
1817 uint32_t tmp;
1818
1819 if (!dsp5680xx_context.debug_mode_enabled) {
1820 retval = dsp5680xx_halt(target);
1821 err_check_propagate(retval);
1822 }
1823 retval = set_fm_ck_div(target);
1824 err_check_propagate(retval);
1825 /*
1826 * Check if chip is already erased.
1827 */
1828 tmp = HFM_FLASH_BASE_ADDR + sector * HFM_SECTOR_SIZE / 2;
1829 retval =
1830 dsp5680xx_f_ex(target, HFM_ERASE_VERIFY, tmp, 0, &hfm_ustat, 1);
1831 err_check_propagate(retval);
1832 if (erased != NULL)
1833 *erased = (uint8_t) (hfm_ustat & HFM_USTAT_MASK_BLANK);
1834 return retval;
1835 }
1836
1837 /**
1838 * Executes the FM page erase command.
1839 *
1840 * @param target
1841 * @param sector Page to erase.
1842 * @param hfm_ustat FM module status register.
1843 *
1844 * @return
1845 */
1846 static int erase_sector(struct target *target, int sector, uint16_t *hfm_ustat)
1847 {
1848 int retval;
1849
1850 uint32_t tmp = HFM_FLASH_BASE_ADDR + sector * HFM_SECTOR_SIZE / 2;
1851
1852 retval = dsp5680xx_f_ex(target, HFM_PAGE_ERASE, tmp, 0, hfm_ustat, 1);
1853 err_check_propagate(retval);
1854 return retval;
1855 }
1856
1857 /**
1858 * Executes the FM mass erase command. Erases the flash array completely.
1859 *
1860 * @param target
1861 * @param hfm_ustat FM module status register.
1862 *
1863 * @return
1864 */
1865 static int mass_erase(struct target *target, uint16_t *hfm_ustat)
1866 {
1867 int retval;
1868
1869 retval = dsp5680xx_f_ex(target, HFM_MASS_ERASE, 0, 0, hfm_ustat, 1);
1870 return retval;
1871 }
1872
1873 int dsp5680xx_f_erase(struct target *target, int first, int last)
1874 {
1875 int retval;
1876
1877 if (!dsp5680xx_context.debug_mode_enabled) {
1878 retval = dsp5680xx_halt(target);
1879 err_check_propagate(retval);
1880 }
1881 /*
1882 * Reset SIM
1883 *
1884 */
1885 retval = dsp5680xx_f_SIM_reset(target);
1886 err_check_propagate(retval);
1887 /*
1888 * Set hfmdiv
1889 *
1890 */
1891 retval = set_fm_ck_div(target);
1892 err_check_propagate(retval);
1893
1894 uint16_t hfm_ustat;
1895
1896 int do_mass_erase = ((!(first | last))
1897 || ((first == 0)
1898 && (last == (HFM_SECTOR_COUNT - 1))));
1899 if (do_mass_erase) {
1900 /* Mass erase */
1901 retval = mass_erase(target, &hfm_ustat);
1902 err_check_propagate(retval);
1903 } else {
1904 for (int i = first; i <= last; i++) {
1905 retval = erase_sector(target, i, &hfm_ustat);
1906 err_check_propagate(retval);
1907 }
1908 }
1909 return ERROR_OK;
1910 }
1911
1912 /*
1913 * Algorithm for programming normal p: flash
1914 * Follow state machine from "56F801x Peripheral Reference Manual"@163.
1915 * Registers to set up before calling:
1916 * r0: TX/RX high address.
1917 * r2: FM module base address.
1918 * r3: Destination address in flash.
1919 *
1920 * hfm_wait: // wait for buffer empty
1921 * brclr #0x80, x:(r2+0x13), hfm_wait
1922 * rx_check: // wait for input buffer full
1923 * brclr #0x01, x:(r0-2), rx_check
1924 * move.w x:(r0), y0 // read from Rx buffer
1925 * move.w y0, p:(r3)+
1926 * move.w #0x20, x:(r2+0x14) // write PGM command
1927 * move.w #0x80, x:(r2+0x13) // start the command
1928 * move.w X:(R2+0x13), A // Read USTAT register
1929 * brclr #0x20, A, accerr_check // protection violation check
1930 * bfset #0x20, X:(R2+0x13) // clear pviol
1931 * bra hfm_wait
1932 * accerr_check:
1933 * brclr #0x10, A, hfm_wait // access error check
1934 * bfset #0x10, X:(R2+0x13) // clear accerr
1935 * bra hfm_wait // loop
1936 * 0x00000000 0x8A460013807D brclr #0x80, X:(R2+0x13),*+0
1937 * 0x00000003 0xE700 nop
1938 * 0x00000004 0xE700 nop
1939 * 0x00000005 0x8A44FFFE017B brclr #1, X:(R0-2),*-2
1940 * 0x00000008 0xE700 nop
1941 * 0x00000009 0xF514 move.w X:(R0), Y0
1942 * 0x0000000A 0x8563 move.w Y0, P:(R3)+
1943 * 0x0000000B 0x864600200014 move.w #32, X:(R2+0x14)
1944 * 0x0000000E 0x864600800013 move.w #128, X:(R2+0x13)
1945 * 0x00000011 0xF0420013 move.w X:(R2+0x13), A
1946 * 0x00000013 0x8B402004 brclr #0x20, A,*+6
1947 * 0x00000015 0x824600130020 bfset #0x20, X:(R2+0x13)
1948 * 0x00000018 0xA967 bra *-24
1949 * 0x00000019 0x8B401065 brclr #0x10, A,*-25
1950 * 0x0000001B 0x824600130010 bfset #0x10, X:(R2+0x13)
1951 * 0x0000001E 0xA961 bra *-30
1952 */
1953
1954 static const uint16_t pgm_write_pflash[] = {
1955 0x8A46, 0x0013, 0x807D, 0xE700,
1956 0xE700, 0x8A44, 0xFFFE, 0x017B,
1957 0xE700, 0xF514, 0x8563, 0x8646,
1958 0x0020, 0x0014, 0x8646, 0x0080,
1959 0x0013, 0xF042, 0x0013, 0x8B40,
1960 0x2004, 0x8246, 0x0013, 0x0020,
1961 0xA967, 0x8B40, 0x1065, 0x8246,
1962 0x0013, 0x0010, 0xA961
1963 };
1964
1965 static const uint32_t pgm_write_pflash_length = 31;
1966
1967 int dsp5680xx_f_wr(struct target *t, const uint8_t *b, uint32_t a, uint32_t count,
1968 int is_flash_lock)
1969 {
1970 struct target *target = t;
1971
1972 uint32_t address = a;
1973
1974 const uint8_t *buffer = b;
1975
1976 int retval = ERROR_OK;
1977
1978 if (!dsp5680xx_context.debug_mode_enabled) {
1979 retval = eonce_enter_debug_mode(target, NULL);
1980 err_check_propagate(retval);
1981 }
1982 /*
1983 * Download the pgm that flashes.
1984 *
1985 */
1986 const uint32_t len = pgm_write_pflash_length;
1987
1988 uint32_t ram_addr = 0x8700;
1989
1990 /*
1991 * This seems to be a safe address.
1992 * This one is the one used by codewarrior in 56801x_flash.cfg
1993 */
1994 if (!is_flash_lock) {
1995 retval =
1996 dsp5680xx_write(target, ram_addr, 1, len * 2,
1997 (uint8_t *) pgm_write_pflash);
1998 err_check_propagate(retval);
1999 retval = dsp5680xx_execute_queue();
2000 err_check_propagate(retval);
2001 }
2002 /*
2003 * Set hfmdiv
2004 *
2005 */
2006 retval = set_fm_ck_div(target);
2007 err_check_propagate(retval);
2008 /*
2009 * Setup registers needed by pgm_write_pflash
2010 *
2011 */
2012
2013 dsp5680xx_context.flush = 0;
2014
2015 retval = core_move_long_to_r3(target, address); /* Destination address to r3 */
2016 err_check_propagate(retval);
2017 core_load_TX_RX_high_addr_to_r0(target); /* TX/RX reg address to r0 */
2018 err_check_propagate(retval);
2019 retval = core_move_long_to_r2(target, HFM_BASE_ADDR); /* FM base address to r2 */
2020 err_check_propagate(retval);
2021 /*
2022 * Run flashing program.
2023 *
2024 */
2025 /* write to HFM_CNFG (lock=0, select bank) */
2026 retval = core_move_value_at_r2_disp(target, 0x00, HFM_CNFG);
2027 err_check_propagate(retval);
2028 /* write to HMF_USTAT, clear PVIOL, ACCERR &BLANK bits */
2029 retval = core_move_value_at_r2_disp(target, 0x04, HFM_USTAT);
2030 err_check_propagate(retval);
2031 /* clear only one bit at a time */
2032 retval = core_move_value_at_r2_disp(target, 0x10, HFM_USTAT);
2033 err_check_propagate(retval);
2034 retval = core_move_value_at_r2_disp(target, 0x20, HFM_USTAT);
2035 err_check_propagate(retval);
2036 /* write to HMF_PROT, clear protection */
2037 retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROT);
2038 err_check_propagate(retval);
2039 /* write to HMF_PROTB, clear protection */
2040 retval = core_move_value_at_r2_disp(target, 0x00, HFM_PROTB);
2041 err_check_propagate(retval);
2042 if (count % 2) {
2043 /* TODO implement handling of odd number of words. */
2044 retval = ERROR_FAIL;
2045 const char *msg = "Cannot handle odd number of words.";
2046
2047 err_check(retval, DSP5680XX_ERROR_FLASHING_INVALID_WORD_COUNT,
2048 msg);
2049 }
2050
2051 dsp5680xx_context.flush = 1;
2052 retval = dsp5680xx_execute_queue();
2053 err_check_propagate(retval);
2054
2055 uint32_t drscan_data;
2056
2057 uint16_t tmp = (buffer[0] | (buffer[1] << 8));
2058
2059 retval = core_tx_upper_data(target, tmp, &drscan_data);
2060 err_check_propagate(retval);
2061
2062 retval = dsp5680xx_resume(target, 0, ram_addr, 0, 0);
2063 err_check_propagate(retval);
2064
2065 int counter = FLUSH_COUNT_FLASH;
2066
2067 dsp5680xx_context.flush = 0;
2068 uint32_t i;
2069
2070 for (i = 1; (i < count / 2) && (i < HFM_SIZE_WORDS); i++) {
2071 if (--counter == 0) {
2072 dsp5680xx_context.flush = 1;
2073 counter = FLUSH_COUNT_FLASH;
2074 }
2075 tmp = (buffer[2 * i] | (buffer[2 * i + 1] << 8));
2076 retval = core_tx_upper_data(target, tmp, &drscan_data);
2077 if (retval != ERROR_OK) {
2078 dsp5680xx_context.flush = 1;
2079 err_check_propagate(retval);
2080 }
2081 dsp5680xx_context.flush = 0;
2082 }
2083 dsp5680xx_context.flush = 1;
2084 if (!is_flash_lock) {
2085 /*
2086 *Verify flash (skip when exec lock sequence)
2087 *
2088 */
2089 uint16_t signature;
2090
2091 uint16_t pc_crc;
2092
2093 retval = dsp5680xx_f_signature(target, address, i, &signature);
2094 err_check_propagate(retval);
2095 pc_crc = perl_crc(buffer, i);
2096 if (pc_crc != signature) {
2097 retval = ERROR_FAIL;
2098 const char *msg =
2099 "Flashed data failed CRC check, flash again!";
2100 err_check(retval, DSP5680XX_ERROR_FLASHING_CRC, msg);
2101 }
2102 }
2103 return retval;
2104 }
2105
2106 int dsp5680xx_f_unlock(struct target *target)
2107 {
2108 int retval = ERROR_OK;
2109
2110 uint16_t eonce_status;
2111
2112 uint32_t instr;
2113
2114 uint32_t ir_out;
2115
2116 struct jtag_tap *tap_chp;
2117
2118 struct jtag_tap *tap_cpu;
2119
2120 tap_chp = jtag_tap_by_string("dsp568013.chp");
2121 if (tap_chp == NULL) {
2122 retval = ERROR_FAIL;
2123 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_MASTER,
2124 "Failed to get master tap.");
2125 }
2126 tap_cpu = jtag_tap_by_string("dsp568013.cpu");
2127 if (tap_cpu == NULL) {
2128 retval = ERROR_FAIL;
2129 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_CORE,
2130 "Failed to get master tap.");
2131 }
2132
2133 retval = eonce_enter_debug_mode_without_reset(target, &eonce_status);
2134 if (retval == ERROR_OK)
2135 LOG_WARNING("Memory was not locked.");
2136
2137 jtag_add_reset(0, 1);
2138 jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
2139
2140 retval = reset_jtag();
2141 err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
2142 "Failed to reset JTAG state machine");
2143 jtag_add_sleep(150);
2144
2145 /* Enable core tap */
2146 tap_chp->enabled = true;
2147 retval = switch_tap(target, tap_chp, tap_cpu);
2148 err_check_propagate(retval);
2149
2150 instr = JTAG_INSTR_DEBUG_REQUEST;
2151 retval =
2152 dsp5680xx_irscan(target, &instr, &ir_out,
2153 DSP5680XX_JTAG_CORE_TAP_IRLEN);
2154 err_check_propagate(retval);
2155 jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
2156 jtag_add_reset(0, 0);
2157 jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
2158
2159 /* Enable master tap */
2160 tap_chp->enabled = false;
2161 retval = switch_tap(target, tap_chp, tap_cpu);
2162 err_check_propagate(retval);
2163
2164 /* Execute mass erase to unlock */
2165 instr = MASTER_TAP_CMD_FLASH_ERASE;
2166 retval =
2167 dsp5680xx_irscan(target, &instr, &ir_out,
2168 DSP5680XX_JTAG_MASTER_TAP_IRLEN);
2169 err_check_propagate(retval);
2170
2171 instr = HFM_CLK_DEFAULT;
2172 retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out, 16);
2173 err_check_propagate(retval);
2174
2175 jtag_add_sleep(TIME_DIV_FREESCALE * 150 * 1000);
2176 jtag_add_reset(0, 1);
2177 jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
2178
2179 retval = reset_jtag();
2180 err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
2181 "Failed to reset JTAG state machine");
2182 jtag_add_sleep(150);
2183
2184 instr = 0x0606ffff;
2185 retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
2186 32);
2187 err_check_propagate(retval);
2188
2189 /* enable core tap */
2190 instr = 0x5;
2191 retval =
2192 dsp5680xx_irscan(target, &instr, &ir_out,
2193 DSP5680XX_JTAG_MASTER_TAP_IRLEN);
2194 err_check_propagate(retval);
2195 instr = 0x2;
2196 retval = dsp5680xx_drscan(target, (uint8_t *) &instr, (uint8_t *) &ir_out,
2197 4);
2198 err_check_propagate(retval);
2199
2200 tap_cpu->enabled = true;
2201 tap_chp->enabled = false;
2202 target->state = TARGET_RUNNING;
2203 dsp5680xx_context.debug_mode_enabled = false;
2204 return retval;
2205 }
2206
2207 int dsp5680xx_f_lock(struct target *target)
2208 {
2209 int retval;
2210
2211 struct jtag_tap *tap_chp;
2212
2213 struct jtag_tap *tap_cpu;
2214 uint16_t lock_word[] = { HFM_LOCK_FLASH };
2215 retval = dsp5680xx_f_wr(target, (uint8_t *) (lock_word), HFM_LOCK_ADDR_L, 2, 1);
2216 err_check_propagate(retval);
2217
2218 jtag_add_reset(0, 1);
2219 jtag_add_sleep(TIME_DIV_FREESCALE * 200 * 1000);
2220
2221 retval = reset_jtag();
2222 err_check(retval, DSP5680XX_ERROR_JTAG_RESET,
2223 "Failed to reset JTAG state machine");
2224 jtag_add_sleep(TIME_DIV_FREESCALE * 100 * 1000);
2225 jtag_add_reset(0, 0);
2226 jtag_add_sleep(TIME_DIV_FREESCALE * 300 * 1000);
2227
2228 tap_chp = jtag_tap_by_string("dsp568013.chp");
2229 if (tap_chp == NULL) {
2230 retval = ERROR_FAIL;
2231 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_MASTER,
2232 "Failed to get master tap.");
2233 }
2234 tap_cpu = jtag_tap_by_string("dsp568013.cpu");
2235 if (tap_cpu == NULL) {
2236 retval = ERROR_FAIL;
2237 err_check(retval, DSP5680XX_ERROR_JTAG_TAP_ENABLE_CORE,
2238 "Failed to get master tap.");
2239 }
2240 target->state = TARGET_RUNNING;
2241 dsp5680xx_context.debug_mode_enabled = false;
2242 tap_cpu->enabled = false;
2243 tap_chp->enabled = true;
2244 retval = switch_tap(target, tap_chp, tap_cpu);
2245 return retval;
2246 }
2247
2248 static int dsp5680xx_step(struct target *target, int current, target_addr_t address,
2249 int handle_breakpoints)
2250 {
2251 err_check(ERROR_FAIL, DSP5680XX_ERROR_NOT_IMPLEMENTED_STEP,
2252 "Not implemented yet.");
2253 }
2254
2255 /** Holds methods for dsp5680xx targets. */
2256 struct target_type dsp5680xx_target = {
2257 .name = "dsp5680xx",
2258
2259 .poll = dsp5680xx_poll,
2260 .arch_state = dsp5680xx_arch_state,
2261
2262 .halt = dsp5680xx_halt,
2263 .resume = dsp5680xx_resume,
2264 .step = dsp5680xx_step,
2265
2266 .write_buffer = dsp5680xx_write_buffer,
2267 .read_buffer = dsp5680xx_read_buffer,
2268
2269 .assert_reset = dsp5680xx_assert_reset,
2270 .deassert_reset = dsp5680xx_deassert_reset,
2271 .soft_reset_halt = dsp5680xx_soft_reset_halt,
2272
2273 .read_memory = dsp5680xx_read,
2274 .write_memory = dsp5680xx_write,
2275
2276 .checksum_memory = dsp5680xx_checksum_memory,
2277
2278 .target_create = dsp5680xx_target_create,
2279 .init_target = dsp5680xx_init_target,
2280 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)