74f30cb47899fff31f78bffcb63d86336654e893
[openocd.git] / src / target / cortex_a.c
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2006 by Magnus Lundin *
6 * lundin@mlu.mine.nu *
7 * *
8 * Copyright (C) 2008 by Spencer Oliver *
9 * spen@spen-soft.co.uk *
10 * *
11 * Copyright (C) 2009 by Dirk Behme *
12 * dirk.behme@gmail.com - copy from cortex_m3 *
13 * *
14 * Copyright (C) 2010 √ėyvind Harboe *
15 * oyvind.harboe@zylin.com *
16 * *
17 * Copyright (C) ST-Ericsson SA 2011 *
18 * michel.jaouen@stericsson.com : smp minimum support *
19 * *
20 * Copyright (C) Broadcom 2012 *
21 * ehunter@broadcom.com : Cortex-R4 support *
22 * *
23 * Copyright (C) 2013 Kamal Dasu *
24 * kdasu.kdev@gmail.com *
25 * *
26 * This program is free software; you can redistribute it and/or modify *
27 * it under the terms of the GNU General Public License as published by *
28 * the Free Software Foundation; either version 2 of the License, or *
29 * (at your option) any later version. *
30 * *
31 * This program is distributed in the hope that it will be useful, *
32 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
33 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
34 * GNU General Public License for more details. *
35 * *
36 * You should have received a copy of the GNU General Public License *
37 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
38 * *
39 * Cortex-A8(tm) TRM, ARM DDI 0344H *
40 * Cortex-A9(tm) TRM, ARM DDI 0407F *
41 * Cortex-A4(tm) TRM, ARM DDI 0363E *
42 * Cortex-A15(tm)TRM, ARM DDI 0438C *
43 * *
44 ***************************************************************************/
45
46 #ifdef HAVE_CONFIG_H
47 #include "config.h"
48 #endif
49
50 #include "breakpoints.h"
51 #include "cortex_a.h"
52 #include "register.h"
53 #include "target_request.h"
54 #include "target_type.h"
55 #include "arm_opcodes.h"
56 #include "arm_semihosting.h"
57 #include "transport/transport.h"
58 #include <helper/time_support.h>
59
60 static int cortex_a_poll(struct target *target);
61 static int cortex_a_debug_entry(struct target *target);
62 static int cortex_a_restore_context(struct target *target, bool bpwp);
63 static int cortex_a_set_breakpoint(struct target *target,
64 struct breakpoint *breakpoint, uint8_t matchmode);
65 static int cortex_a_set_context_breakpoint(struct target *target,
66 struct breakpoint *breakpoint, uint8_t matchmode);
67 static int cortex_a_set_hybrid_breakpoint(struct target *target,
68 struct breakpoint *breakpoint);
69 static int cortex_a_unset_breakpoint(struct target *target,
70 struct breakpoint *breakpoint);
71 static int cortex_a_dap_read_coreregister_u32(struct target *target,
72 uint32_t *value, int regnum);
73 static int cortex_a_dap_write_coreregister_u32(struct target *target,
74 uint32_t value, int regnum);
75 static int cortex_a_mmu(struct target *target, int *enabled);
76 static int cortex_a_mmu_modify(struct target *target, int enable);
77 static int cortex_a_virt2phys(struct target *target,
78 target_addr_t virt, target_addr_t *phys);
79 static int cortex_a_read_cpu_memory(struct target *target,
80 uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer);
81
82
83 /* restore cp15_control_reg at resume */
84 static int cortex_a_restore_cp15_control_reg(struct target *target)
85 {
86 int retval = ERROR_OK;
87 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
88 struct armv7a_common *armv7a = target_to_armv7a(target);
89
90 if (cortex_a->cp15_control_reg != cortex_a->cp15_control_reg_curr) {
91 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
92 /* LOG_INFO("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg); */
93 retval = armv7a->arm.mcr(target, 15,
94 0, 0, /* op1, op2 */
95 1, 0, /* CRn, CRm */
96 cortex_a->cp15_control_reg);
97 }
98 return retval;
99 }
100
101 /*
102 * Set up ARM core for memory access.
103 * If !phys_access, switch to SVC mode and make sure MMU is on
104 * If phys_access, switch off mmu
105 */
106 static int cortex_a_prep_memaccess(struct target *target, int phys_access)
107 {
108 struct armv7a_common *armv7a = target_to_armv7a(target);
109 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
110 int mmu_enabled = 0;
111
112 if (phys_access == 0) {
113 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
114 cortex_a_mmu(target, &mmu_enabled);
115 if (mmu_enabled)
116 cortex_a_mmu_modify(target, 1);
117 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
118 /* overwrite DACR to all-manager */
119 armv7a->arm.mcr(target, 15,
120 0, 0, 3, 0,
121 0xFFFFFFFF);
122 }
123 } else {
124 cortex_a_mmu(target, &mmu_enabled);
125 if (mmu_enabled)
126 cortex_a_mmu_modify(target, 0);
127 }
128 return ERROR_OK;
129 }
130
131 /*
132 * Restore ARM core after memory access.
133 * If !phys_access, switch to previous mode
134 * If phys_access, restore MMU setting
135 */
136 static int cortex_a_post_memaccess(struct target *target, int phys_access)
137 {
138 struct armv7a_common *armv7a = target_to_armv7a(target);
139 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
140
141 if (phys_access == 0) {
142 if (cortex_a->dacrfixup_mode == CORTEX_A_DACRFIXUP_ON) {
143 /* restore */
144 armv7a->arm.mcr(target, 15,
145 0, 0, 3, 0,
146 cortex_a->cp15_dacr_reg);
147 }
148 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
149 } else {
150 int mmu_enabled = 0;
151 cortex_a_mmu(target, &mmu_enabled);
152 if (mmu_enabled)
153 cortex_a_mmu_modify(target, 1);
154 }
155 return ERROR_OK;
156 }
157
158
159 /* modify cp15_control_reg in order to enable or disable mmu for :
160 * - virt2phys address conversion
161 * - read or write memory in phys or virt address */
162 static int cortex_a_mmu_modify(struct target *target, int enable)
163 {
164 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
165 struct armv7a_common *armv7a = target_to_armv7a(target);
166 int retval = ERROR_OK;
167 int need_write = 0;
168
169 if (enable) {
170 /* if mmu enabled at target stop and mmu not enable */
171 if (!(cortex_a->cp15_control_reg & 0x1U)) {
172 LOG_ERROR("trying to enable mmu on target stopped with mmu disable");
173 return ERROR_FAIL;
174 }
175 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0) {
176 cortex_a->cp15_control_reg_curr |= 0x1U;
177 need_write = 1;
178 }
179 } else {
180 if ((cortex_a->cp15_control_reg_curr & 0x1U) == 0x1U) {
181 cortex_a->cp15_control_reg_curr &= ~0x1U;
182 need_write = 1;
183 }
184 }
185
186 if (need_write) {
187 LOG_DEBUG("%s, writing cp15 ctrl: %" PRIx32,
188 enable ? "enable mmu" : "disable mmu",
189 cortex_a->cp15_control_reg_curr);
190
191 retval = armv7a->arm.mcr(target, 15,
192 0, 0, /* op1, op2 */
193 1, 0, /* CRn, CRm */
194 cortex_a->cp15_control_reg_curr);
195 }
196 return retval;
197 }
198
199 /*
200 * Cortex-A Basic debug access, very low level assumes state is saved
201 */
202 static int cortex_a_init_debug_access(struct target *target)
203 {
204 struct armv7a_common *armv7a = target_to_armv7a(target);
205 int retval;
206
207 /* lock memory-mapped access to debug registers to prevent
208 * software interference */
209 retval = mem_ap_write_u32(armv7a->debug_ap,
210 armv7a->debug_base + CPUDBG_LOCKACCESS, 0);
211 if (retval != ERROR_OK)
212 return retval;
213
214 /* Disable cacheline fills and force cache write-through in debug state */
215 retval = mem_ap_write_u32(armv7a->debug_ap,
216 armv7a->debug_base + CPUDBG_DSCCR, 0);
217 if (retval != ERROR_OK)
218 return retval;
219
220 /* Disable TLB lookup and refill/eviction in debug state */
221 retval = mem_ap_write_u32(armv7a->debug_ap,
222 armv7a->debug_base + CPUDBG_DSMCR, 0);
223 if (retval != ERROR_OK)
224 return retval;
225
226 retval = dap_run(armv7a->debug_ap->dap);
227 if (retval != ERROR_OK)
228 return retval;
229
230 /* Enabling of instruction execution in debug mode is done in debug_entry code */
231
232 /* Resync breakpoint registers */
233
234 /* Since this is likely called from init or reset, update target state information*/
235 return cortex_a_poll(target);
236 }
237
238 static int cortex_a_wait_instrcmpl(struct target *target, uint32_t *dscr, bool force)
239 {
240 /* Waits until InstrCmpl_l becomes 1, indicating instruction is done.
241 * Writes final value of DSCR into *dscr. Pass force to force always
242 * reading DSCR at least once. */
243 struct armv7a_common *armv7a = target_to_armv7a(target);
244 int64_t then = timeval_ms();
245 while ((*dscr & DSCR_INSTR_COMP) == 0 || force) {
246 force = false;
247 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
248 armv7a->debug_base + CPUDBG_DSCR, dscr);
249 if (retval != ERROR_OK) {
250 LOG_ERROR("Could not read DSCR register");
251 return retval;
252 }
253 if (timeval_ms() > then + 1000) {
254 LOG_ERROR("Timeout waiting for InstrCompl=1");
255 return ERROR_FAIL;
256 }
257 }
258 return ERROR_OK;
259 }
260
261 /* To reduce needless round-trips, pass in a pointer to the current
262 * DSCR value. Initialize it to zero if you just need to know the
263 * value on return from this function; or DSCR_INSTR_COMP if you
264 * happen to know that no instruction is pending.
265 */
266 static int cortex_a_exec_opcode(struct target *target,
267 uint32_t opcode, uint32_t *dscr_p)
268 {
269 uint32_t dscr;
270 int retval;
271 struct armv7a_common *armv7a = target_to_armv7a(target);
272
273 dscr = dscr_p ? *dscr_p : 0;
274
275 LOG_DEBUG("exec opcode 0x%08" PRIx32, opcode);
276
277 /* Wait for InstrCompl bit to be set */
278 retval = cortex_a_wait_instrcmpl(target, dscr_p, false);
279 if (retval != ERROR_OK)
280 return retval;
281
282 retval = mem_ap_write_u32(armv7a->debug_ap,
283 armv7a->debug_base + CPUDBG_ITR, opcode);
284 if (retval != ERROR_OK)
285 return retval;
286
287 int64_t then = timeval_ms();
288 do {
289 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
290 armv7a->debug_base + CPUDBG_DSCR, &dscr);
291 if (retval != ERROR_OK) {
292 LOG_ERROR("Could not read DSCR register");
293 return retval;
294 }
295 if (timeval_ms() > then + 1000) {
296 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
297 return ERROR_FAIL;
298 }
299 } while ((dscr & DSCR_INSTR_COMP) == 0); /* Wait for InstrCompl bit to be set */
300
301 if (dscr_p)
302 *dscr_p = dscr;
303
304 return retval;
305 }
306
307 /**************************************************************************
308 Read core register with very few exec_opcode, fast but needs work_area.
309 This can cause problems with MMU active.
310 **************************************************************************/
311 static int cortex_a_read_regs_through_mem(struct target *target, uint32_t address,
312 uint32_t *regfile)
313 {
314 int retval = ERROR_OK;
315 struct armv7a_common *armv7a = target_to_armv7a(target);
316
317 retval = cortex_a_dap_read_coreregister_u32(target, regfile, 0);
318 if (retval != ERROR_OK)
319 return retval;
320 retval = cortex_a_dap_write_coreregister_u32(target, address, 0);
321 if (retval != ERROR_OK)
322 return retval;
323 retval = cortex_a_exec_opcode(target, ARMV4_5_STMIA(0, 0xFFFE, 0, 0), NULL);
324 if (retval != ERROR_OK)
325 return retval;
326
327 retval = mem_ap_read_buf(armv7a->memory_ap,
328 (uint8_t *)(&regfile[1]), 4, 15, address);
329
330 return retval;
331 }
332
333 static int cortex_a_dap_read_coreregister_u32(struct target *target,
334 uint32_t *value, int regnum)
335 {
336 int retval = ERROR_OK;
337 uint8_t reg = regnum&0xFF;
338 uint32_t dscr = 0;
339 struct armv7a_common *armv7a = target_to_armv7a(target);
340
341 if (reg > 17)
342 return retval;
343
344 if (reg < 15) {
345 /* Rn to DCCTX, "MCR p14, 0, Rn, c0, c5, 0" 0xEE00nE15 */
346 retval = cortex_a_exec_opcode(target,
347 ARMV4_5_MCR(14, 0, reg, 0, 5, 0),
348 &dscr);
349 if (retval != ERROR_OK)
350 return retval;
351 } else if (reg == 15) {
352 /* "MOV r0, r15"; then move r0 to DCCTX */
353 retval = cortex_a_exec_opcode(target, 0xE1A0000F, &dscr);
354 if (retval != ERROR_OK)
355 return retval;
356 retval = cortex_a_exec_opcode(target,
357 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
358 &dscr);
359 if (retval != ERROR_OK)
360 return retval;
361 } else {
362 /* "MRS r0, CPSR" or "MRS r0, SPSR"
363 * then move r0 to DCCTX
364 */
365 retval = cortex_a_exec_opcode(target, ARMV4_5_MRS(0, reg & 1), &dscr);
366 if (retval != ERROR_OK)
367 return retval;
368 retval = cortex_a_exec_opcode(target,
369 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
370 &dscr);
371 if (retval != ERROR_OK)
372 return retval;
373 }
374
375 /* Wait for DTRRXfull then read DTRRTX */
376 int64_t then = timeval_ms();
377 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
378 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
379 armv7a->debug_base + CPUDBG_DSCR, &dscr);
380 if (retval != ERROR_OK)
381 return retval;
382 if (timeval_ms() > then + 1000) {
383 LOG_ERROR("Timeout waiting for cortex_a_exec_opcode");
384 return ERROR_FAIL;
385 }
386 }
387
388 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
389 armv7a->debug_base + CPUDBG_DTRTX, value);
390 LOG_DEBUG("read DCC 0x%08" PRIx32, *value);
391
392 return retval;
393 }
394
395 static int cortex_a_dap_write_coreregister_u32(struct target *target,
396 uint32_t value, int regnum)
397 {
398 int retval = ERROR_OK;
399 uint8_t Rd = regnum&0xFF;
400 uint32_t dscr;
401 struct armv7a_common *armv7a = target_to_armv7a(target);
402
403 LOG_DEBUG("register %i, value 0x%08" PRIx32, regnum, value);
404
405 /* Check that DCCRX is not full */
406 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
407 armv7a->debug_base + CPUDBG_DSCR, &dscr);
408 if (retval != ERROR_OK)
409 return retval;
410 if (dscr & DSCR_DTR_RX_FULL) {
411 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
412 /* Clear DCCRX with MRC(p14, 0, Rd, c0, c5, 0), opcode 0xEE100E15 */
413 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
414 &dscr);
415 if (retval != ERROR_OK)
416 return retval;
417 }
418
419 if (Rd > 17)
420 return retval;
421
422 /* Write DTRRX ... sets DSCR.DTRRXfull but exec_opcode() won't care */
423 LOG_DEBUG("write DCC 0x%08" PRIx32, value);
424 retval = mem_ap_write_u32(armv7a->debug_ap,
425 armv7a->debug_base + CPUDBG_DTRRX, value);
426 if (retval != ERROR_OK)
427 return retval;
428
429 if (Rd < 15) {
430 /* DCCRX to Rn, "MRC p14, 0, Rn, c0, c5, 0", 0xEE10nE15 */
431 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, Rd, 0, 5, 0),
432 &dscr);
433
434 if (retval != ERROR_OK)
435 return retval;
436 } else if (Rd == 15) {
437 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
438 * then "mov r15, r0"
439 */
440 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
441 &dscr);
442 if (retval != ERROR_OK)
443 return retval;
444 retval = cortex_a_exec_opcode(target, 0xE1A0F000, &dscr);
445 if (retval != ERROR_OK)
446 return retval;
447 } else {
448 /* DCCRX to R0, "MRC p14, 0, R0, c0, c5, 0", 0xEE100E15
449 * then "MSR CPSR_cxsf, r0" or "MSR SPSR_cxsf, r0" (all fields)
450 */
451 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
452 &dscr);
453 if (retval != ERROR_OK)
454 return retval;
455 retval = cortex_a_exec_opcode(target, ARMV4_5_MSR_GP(0, 0xF, Rd & 1),
456 &dscr);
457 if (retval != ERROR_OK)
458 return retval;
459
460 /* "Prefetch flush" after modifying execution status in CPSR */
461 if (Rd == 16) {
462 retval = cortex_a_exec_opcode(target,
463 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
464 &dscr);
465 if (retval != ERROR_OK)
466 return retval;
467 }
468 }
469
470 return retval;
471 }
472
473 /* Write to memory mapped registers directly with no cache or mmu handling */
474 static int cortex_a_dap_write_memap_register_u32(struct target *target,
475 uint32_t address,
476 uint32_t value)
477 {
478 int retval;
479 struct armv7a_common *armv7a = target_to_armv7a(target);
480
481 retval = mem_ap_write_atomic_u32(armv7a->debug_ap, address, value);
482
483 return retval;
484 }
485
486 /*
487 * Cortex-A implementation of Debug Programmer's Model
488 *
489 * NOTE the invariant: these routines return with DSCR_INSTR_COMP set,
490 * so there's no need to poll for it before executing an instruction.
491 *
492 * NOTE that in several of these cases the "stall" mode might be useful.
493 * It'd let us queue a few operations together... prepare/finish might
494 * be the places to enable/disable that mode.
495 */
496
497 static inline struct cortex_a_common *dpm_to_a(struct arm_dpm *dpm)
498 {
499 return container_of(dpm, struct cortex_a_common, armv7a_common.dpm);
500 }
501
502 static int cortex_a_write_dcc(struct cortex_a_common *a, uint32_t data)
503 {
504 LOG_DEBUG("write DCC 0x%08" PRIx32, data);
505 return mem_ap_write_u32(a->armv7a_common.debug_ap,
506 a->armv7a_common.debug_base + CPUDBG_DTRRX, data);
507 }
508
509 static int cortex_a_read_dcc(struct cortex_a_common *a, uint32_t *data,
510 uint32_t *dscr_p)
511 {
512 uint32_t dscr = DSCR_INSTR_COMP;
513 int retval;
514
515 if (dscr_p)
516 dscr = *dscr_p;
517
518 /* Wait for DTRRXfull */
519 int64_t then = timeval_ms();
520 while ((dscr & DSCR_DTR_TX_FULL) == 0) {
521 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
522 a->armv7a_common.debug_base + CPUDBG_DSCR,
523 &dscr);
524 if (retval != ERROR_OK)
525 return retval;
526 if (timeval_ms() > then + 1000) {
527 LOG_ERROR("Timeout waiting for read dcc");
528 return ERROR_FAIL;
529 }
530 }
531
532 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
533 a->armv7a_common.debug_base + CPUDBG_DTRTX, data);
534 if (retval != ERROR_OK)
535 return retval;
536 /* LOG_DEBUG("read DCC 0x%08" PRIx32, *data); */
537
538 if (dscr_p)
539 *dscr_p = dscr;
540
541 return retval;
542 }
543
544 static int cortex_a_dpm_prepare(struct arm_dpm *dpm)
545 {
546 struct cortex_a_common *a = dpm_to_a(dpm);
547 uint32_t dscr;
548 int retval;
549
550 /* set up invariant: INSTR_COMP is set after ever DPM operation */
551 int64_t then = timeval_ms();
552 for (;; ) {
553 retval = mem_ap_read_atomic_u32(a->armv7a_common.debug_ap,
554 a->armv7a_common.debug_base + CPUDBG_DSCR,
555 &dscr);
556 if (retval != ERROR_OK)
557 return retval;
558 if ((dscr & DSCR_INSTR_COMP) != 0)
559 break;
560 if (timeval_ms() > then + 1000) {
561 LOG_ERROR("Timeout waiting for dpm prepare");
562 return ERROR_FAIL;
563 }
564 }
565
566 /* this "should never happen" ... */
567 if (dscr & DSCR_DTR_RX_FULL) {
568 LOG_ERROR("DSCR_DTR_RX_FULL, dscr 0x%08" PRIx32, dscr);
569 /* Clear DCCRX */
570 retval = cortex_a_exec_opcode(
571 a->armv7a_common.arm.target,
572 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
573 &dscr);
574 if (retval != ERROR_OK)
575 return retval;
576 }
577
578 return retval;
579 }
580
581 static int cortex_a_dpm_finish(struct arm_dpm *dpm)
582 {
583 /* REVISIT what could be done here? */
584 return ERROR_OK;
585 }
586
587 static int cortex_a_instr_write_data_dcc(struct arm_dpm *dpm,
588 uint32_t opcode, uint32_t data)
589 {
590 struct cortex_a_common *a = dpm_to_a(dpm);
591 int retval;
592 uint32_t dscr = DSCR_INSTR_COMP;
593
594 retval = cortex_a_write_dcc(a, data);
595 if (retval != ERROR_OK)
596 return retval;
597
598 return cortex_a_exec_opcode(
599 a->armv7a_common.arm.target,
600 opcode,
601 &dscr);
602 }
603
604 static int cortex_a_instr_write_data_r0(struct arm_dpm *dpm,
605 uint32_t opcode, uint32_t data)
606 {
607 struct cortex_a_common *a = dpm_to_a(dpm);
608 uint32_t dscr = DSCR_INSTR_COMP;
609 int retval;
610
611 retval = cortex_a_write_dcc(a, data);
612 if (retval != ERROR_OK)
613 return retval;
614
615 /* DCCRX to R0, "MCR p14, 0, R0, c0, c5, 0", 0xEE000E15 */
616 retval = cortex_a_exec_opcode(
617 a->armv7a_common.arm.target,
618 ARMV4_5_MRC(14, 0, 0, 0, 5, 0),
619 &dscr);
620 if (retval != ERROR_OK)
621 return retval;
622
623 /* then the opcode, taking data from R0 */
624 retval = cortex_a_exec_opcode(
625 a->armv7a_common.arm.target,
626 opcode,
627 &dscr);
628
629 return retval;
630 }
631
632 static int cortex_a_instr_cpsr_sync(struct arm_dpm *dpm)
633 {
634 struct target *target = dpm->arm->target;
635 uint32_t dscr = DSCR_INSTR_COMP;
636
637 /* "Prefetch flush" after modifying execution status in CPSR */
638 return cortex_a_exec_opcode(target,
639 ARMV4_5_MCR(15, 0, 0, 7, 5, 4),
640 &dscr);
641 }
642
643 static int cortex_a_instr_read_data_dcc(struct arm_dpm *dpm,
644 uint32_t opcode, uint32_t *data)
645 {
646 struct cortex_a_common *a = dpm_to_a(dpm);
647 int retval;
648 uint32_t dscr = DSCR_INSTR_COMP;
649
650 /* the opcode, writing data to DCC */
651 retval = cortex_a_exec_opcode(
652 a->armv7a_common.arm.target,
653 opcode,
654 &dscr);
655 if (retval != ERROR_OK)
656 return retval;
657
658 return cortex_a_read_dcc(a, data, &dscr);
659 }
660
661
662 static int cortex_a_instr_read_data_r0(struct arm_dpm *dpm,
663 uint32_t opcode, uint32_t *data)
664 {
665 struct cortex_a_common *a = dpm_to_a(dpm);
666 uint32_t dscr = DSCR_INSTR_COMP;
667 int retval;
668
669 /* the opcode, writing data to R0 */
670 retval = cortex_a_exec_opcode(
671 a->armv7a_common.arm.target,
672 opcode,
673 &dscr);
674 if (retval != ERROR_OK)
675 return retval;
676
677 /* write R0 to DCC */
678 retval = cortex_a_exec_opcode(
679 a->armv7a_common.arm.target,
680 ARMV4_5_MCR(14, 0, 0, 0, 5, 0),
681 &dscr);
682 if (retval != ERROR_OK)
683 return retval;
684
685 return cortex_a_read_dcc(a, data, &dscr);
686 }
687
688 static int cortex_a_bpwp_enable(struct arm_dpm *dpm, unsigned index_t,
689 uint32_t addr, uint32_t control)
690 {
691 struct cortex_a_common *a = dpm_to_a(dpm);
692 uint32_t vr = a->armv7a_common.debug_base;
693 uint32_t cr = a->armv7a_common.debug_base;
694 int retval;
695
696 switch (index_t) {
697 case 0 ... 15: /* breakpoints */
698 vr += CPUDBG_BVR_BASE;
699 cr += CPUDBG_BCR_BASE;
700 break;
701 case 16 ... 31: /* watchpoints */
702 vr += CPUDBG_WVR_BASE;
703 cr += CPUDBG_WCR_BASE;
704 index_t -= 16;
705 break;
706 default:
707 return ERROR_FAIL;
708 }
709 vr += 4 * index_t;
710 cr += 4 * index_t;
711
712 LOG_DEBUG("A: bpwp enable, vr %08x cr %08x",
713 (unsigned) vr, (unsigned) cr);
714
715 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
716 vr, addr);
717 if (retval != ERROR_OK)
718 return retval;
719 retval = cortex_a_dap_write_memap_register_u32(dpm->arm->target,
720 cr, control);
721 return retval;
722 }
723
724 static int cortex_a_bpwp_disable(struct arm_dpm *dpm, unsigned index_t)
725 {
726 struct cortex_a_common *a = dpm_to_a(dpm);
727 uint32_t cr;
728
729 switch (index_t) {
730 case 0 ... 15:
731 cr = a->armv7a_common.debug_base + CPUDBG_BCR_BASE;
732 break;
733 case 16 ... 31:
734 cr = a->armv7a_common.debug_base + CPUDBG_WCR_BASE;
735 index_t -= 16;
736 break;
737 default:
738 return ERROR_FAIL;
739 }
740 cr += 4 * index_t;
741
742 LOG_DEBUG("A: bpwp disable, cr %08x", (unsigned) cr);
743
744 /* clear control register */
745 return cortex_a_dap_write_memap_register_u32(dpm->arm->target, cr, 0);
746 }
747
748 static int cortex_a_dpm_setup(struct cortex_a_common *a, uint32_t didr)
749 {
750 struct arm_dpm *dpm = &a->armv7a_common.dpm;
751 int retval;
752
753 dpm->arm = &a->armv7a_common.arm;
754 dpm->didr = didr;
755
756 dpm->prepare = cortex_a_dpm_prepare;
757 dpm->finish = cortex_a_dpm_finish;
758
759 dpm->instr_write_data_dcc = cortex_a_instr_write_data_dcc;
760 dpm->instr_write_data_r0 = cortex_a_instr_write_data_r0;
761 dpm->instr_cpsr_sync = cortex_a_instr_cpsr_sync;
762
763 dpm->instr_read_data_dcc = cortex_a_instr_read_data_dcc;
764 dpm->instr_read_data_r0 = cortex_a_instr_read_data_r0;
765
766 dpm->bpwp_enable = cortex_a_bpwp_enable;
767 dpm->bpwp_disable = cortex_a_bpwp_disable;
768
769 retval = arm_dpm_setup(dpm);
770 if (retval == ERROR_OK)
771 retval = arm_dpm_initialize(dpm);
772
773 return retval;
774 }
775 static struct target *get_cortex_a(struct target *target, int32_t coreid)
776 {
777 struct target_list *head;
778 struct target *curr;
779
780 head = target->head;
781 while (head != (struct target_list *)NULL) {
782 curr = head->target;
783 if ((curr->coreid == coreid) && (curr->state == TARGET_HALTED))
784 return curr;
785 head = head->next;
786 }
787 return target;
788 }
789 static int cortex_a_halt(struct target *target);
790
791 static int cortex_a_halt_smp(struct target *target)
792 {
793 int retval = 0;
794 struct target_list *head;
795 struct target *curr;
796 head = target->head;
797 while (head != (struct target_list *)NULL) {
798 curr = head->target;
799 if ((curr != target) && (curr->state != TARGET_HALTED)
800 && target_was_examined(curr))
801 retval += cortex_a_halt(curr);
802 head = head->next;
803 }
804 return retval;
805 }
806
807 static int update_halt_gdb(struct target *target)
808 {
809 int retval = 0;
810 if (target->gdb_service && target->gdb_service->core[0] == -1) {
811 target->gdb_service->target = target;
812 target->gdb_service->core[0] = target->coreid;
813 retval += cortex_a_halt_smp(target);
814 }
815 return retval;
816 }
817
818 /*
819 * Cortex-A Run control
820 */
821
822 static int cortex_a_poll(struct target *target)
823 {
824 int retval = ERROR_OK;
825 uint32_t dscr;
826 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
827 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
828 enum target_state prev_target_state = target->state;
829 /* toggle to another core is done by gdb as follow */
830 /* maint packet J core_id */
831 /* continue */
832 /* the next polling trigger an halt event sent to gdb */
833 if ((target->state == TARGET_HALTED) && (target->smp) &&
834 (target->gdb_service) &&
835 (target->gdb_service->target == NULL)) {
836 target->gdb_service->target =
837 get_cortex_a(target, target->gdb_service->core[1]);
838 target_call_event_callbacks(target, TARGET_EVENT_HALTED);
839 return retval;
840 }
841 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
842 armv7a->debug_base + CPUDBG_DSCR, &dscr);
843 if (retval != ERROR_OK)
844 return retval;
845 cortex_a->cpudbg_dscr = dscr;
846
847 if (DSCR_RUN_MODE(dscr) == (DSCR_CORE_HALTED | DSCR_CORE_RESTARTED)) {
848 if (prev_target_state != TARGET_HALTED) {
849 /* We have a halting debug event */
850 LOG_DEBUG("Target halted");
851 target->state = TARGET_HALTED;
852 if ((prev_target_state == TARGET_RUNNING)
853 || (prev_target_state == TARGET_UNKNOWN)
854 || (prev_target_state == TARGET_RESET)) {
855 retval = cortex_a_debug_entry(target);
856 if (retval != ERROR_OK)
857 return retval;
858 if (target->smp) {
859 retval = update_halt_gdb(target);
860 if (retval != ERROR_OK)
861 return retval;
862 }
863
864 if (arm_semihosting(target, &retval) != 0)
865 return retval;
866
867 target_call_event_callbacks(target,
868 TARGET_EVENT_HALTED);
869 }
870 if (prev_target_state == TARGET_DEBUG_RUNNING) {
871 LOG_DEBUG(" ");
872
873 retval = cortex_a_debug_entry(target);
874 if (retval != ERROR_OK)
875 return retval;
876 if (target->smp) {
877 retval = update_halt_gdb(target);
878 if (retval != ERROR_OK)
879 return retval;
880 }
881
882 target_call_event_callbacks(target,
883 TARGET_EVENT_DEBUG_HALTED);
884 }
885 }
886 } else
887 target->state = TARGET_RUNNING;
888
889 return retval;
890 }
891
892 static int cortex_a_halt(struct target *target)
893 {
894 int retval = ERROR_OK;
895 uint32_t dscr;
896 struct armv7a_common *armv7a = target_to_armv7a(target);
897
898 /*
899 * Tell the core to be halted by writing DRCR with 0x1
900 * and then wait for the core to be halted.
901 */
902 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
903 armv7a->debug_base + CPUDBG_DRCR, DRCR_HALT);
904 if (retval != ERROR_OK)
905 return retval;
906
907 /*
908 * enter halting debug mode
909 */
910 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
911 armv7a->debug_base + CPUDBG_DSCR, &dscr);
912 if (retval != ERROR_OK)
913 return retval;
914
915 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
916 armv7a->debug_base + CPUDBG_DSCR, dscr | DSCR_HALT_DBG_MODE);
917 if (retval != ERROR_OK)
918 return retval;
919
920 int64_t then = timeval_ms();
921 for (;; ) {
922 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
923 armv7a->debug_base + CPUDBG_DSCR, &dscr);
924 if (retval != ERROR_OK)
925 return retval;
926 if ((dscr & DSCR_CORE_HALTED) != 0)
927 break;
928 if (timeval_ms() > then + 1000) {
929 LOG_ERROR("Timeout waiting for halt");
930 return ERROR_FAIL;
931 }
932 }
933
934 target->debug_reason = DBG_REASON_DBGRQ;
935
936 return ERROR_OK;
937 }
938
939 static int cortex_a_internal_restore(struct target *target, int current,
940 target_addr_t *address, int handle_breakpoints, int debug_execution)
941 {
942 struct armv7a_common *armv7a = target_to_armv7a(target);
943 struct arm *arm = &armv7a->arm;
944 int retval;
945 uint32_t resume_pc;
946
947 if (!debug_execution)
948 target_free_all_working_areas(target);
949
950 #if 0
951 if (debug_execution) {
952 /* Disable interrupts */
953 /* We disable interrupts in the PRIMASK register instead of
954 * masking with C_MASKINTS,
955 * This is probably the same issue as Cortex-M3 Errata 377493:
956 * C_MASKINTS in parallel with disabled interrupts can cause
957 * local faults to not be taken. */
958 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_PRIMASK].value, 0, 32, 1);
959 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].dirty = 1;
960 armv7m->core_cache->reg_list[ARMV7M_PRIMASK].valid = 1;
961
962 /* Make sure we are in Thumb mode */
963 buf_set_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0, 32,
964 buf_get_u32(armv7m->core_cache->reg_list[ARMV7M_xPSR].value, 0,
965 32) | (1 << 24));
966 armv7m->core_cache->reg_list[ARMV7M_xPSR].dirty = 1;
967 armv7m->core_cache->reg_list[ARMV7M_xPSR].valid = 1;
968 }
969 #endif
970
971 /* current = 1: continue on current pc, otherwise continue at <address> */
972 resume_pc = buf_get_u32(arm->pc->value, 0, 32);
973 if (!current)
974 resume_pc = *address;
975 else
976 *address = resume_pc;
977
978 /* Make sure that the Armv7 gdb thumb fixups does not
979 * kill the return address
980 */
981 switch (arm->core_state) {
982 case ARM_STATE_ARM:
983 resume_pc &= 0xFFFFFFFC;
984 break;
985 case ARM_STATE_THUMB:
986 case ARM_STATE_THUMB_EE:
987 /* When the return address is loaded into PC
988 * bit 0 must be 1 to stay in Thumb state
989 */
990 resume_pc |= 0x1;
991 break;
992 case ARM_STATE_JAZELLE:
993 LOG_ERROR("How do I resume into Jazelle state??");
994 return ERROR_FAIL;
995 case ARM_STATE_AARCH64:
996 LOG_ERROR("Shoudn't be in AARCH64 state");
997 return ERROR_FAIL;
998 }
999 LOG_DEBUG("resume pc = 0x%08" PRIx32, resume_pc);
1000 buf_set_u32(arm->pc->value, 0, 32, resume_pc);
1001 arm->pc->dirty = 1;
1002 arm->pc->valid = 1;
1003
1004 /* restore dpm_mode at system halt */
1005 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1006 /* called it now before restoring context because it uses cpu
1007 * register r0 for restoring cp15 control register */
1008 retval = cortex_a_restore_cp15_control_reg(target);
1009 if (retval != ERROR_OK)
1010 return retval;
1011 retval = cortex_a_restore_context(target, handle_breakpoints);
1012 if (retval != ERROR_OK)
1013 return retval;
1014 target->debug_reason = DBG_REASON_NOTHALTED;
1015 target->state = TARGET_RUNNING;
1016
1017 /* registers are now invalid */
1018 register_cache_invalidate(arm->core_cache);
1019
1020 #if 0
1021 /* the front-end may request us not to handle breakpoints */
1022 if (handle_breakpoints) {
1023 /* Single step past breakpoint at current address */
1024 breakpoint = breakpoint_find(target, resume_pc);
1025 if (breakpoint) {
1026 LOG_DEBUG("unset breakpoint at 0x%8.8x", breakpoint->address);
1027 cortex_m3_unset_breakpoint(target, breakpoint);
1028 cortex_m3_single_step_core(target);
1029 cortex_m3_set_breakpoint(target, breakpoint);
1030 }
1031 }
1032
1033 #endif
1034 return retval;
1035 }
1036
1037 static int cortex_a_internal_restart(struct target *target)
1038 {
1039 struct armv7a_common *armv7a = target_to_armv7a(target);
1040 struct arm *arm = &armv7a->arm;
1041 int retval;
1042 uint32_t dscr;
1043 /*
1044 * * Restart core and wait for it to be started. Clear ITRen and sticky
1045 * * exception flags: see ARMv7 ARM, C5.9.
1046 *
1047 * REVISIT: for single stepping, we probably want to
1048 * disable IRQs by default, with optional override...
1049 */
1050
1051 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1052 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1053 if (retval != ERROR_OK)
1054 return retval;
1055
1056 if ((dscr & DSCR_INSTR_COMP) == 0)
1057 LOG_ERROR("DSCR InstrCompl must be set before leaving debug!");
1058
1059 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1060 armv7a->debug_base + CPUDBG_DSCR, dscr & ~DSCR_ITR_EN);
1061 if (retval != ERROR_OK)
1062 return retval;
1063
1064 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1065 armv7a->debug_base + CPUDBG_DRCR, DRCR_RESTART |
1066 DRCR_CLEAR_EXCEPTIONS);
1067 if (retval != ERROR_OK)
1068 return retval;
1069
1070 int64_t then = timeval_ms();
1071 for (;; ) {
1072 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1073 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1074 if (retval != ERROR_OK)
1075 return retval;
1076 if ((dscr & DSCR_CORE_RESTARTED) != 0)
1077 break;
1078 if (timeval_ms() > then + 1000) {
1079 LOG_ERROR("Timeout waiting for resume");
1080 return ERROR_FAIL;
1081 }
1082 }
1083
1084 target->debug_reason = DBG_REASON_NOTHALTED;
1085 target->state = TARGET_RUNNING;
1086
1087 /* registers are now invalid */
1088 register_cache_invalidate(arm->core_cache);
1089
1090 return ERROR_OK;
1091 }
1092
1093 static int cortex_a_restore_smp(struct target *target, int handle_breakpoints)
1094 {
1095 int retval = 0;
1096 struct target_list *head;
1097 struct target *curr;
1098 target_addr_t address;
1099 head = target->head;
1100 while (head != (struct target_list *)NULL) {
1101 curr = head->target;
1102 if ((curr != target) && (curr->state != TARGET_RUNNING)
1103 && target_was_examined(curr)) {
1104 /* resume current address , not in step mode */
1105 retval += cortex_a_internal_restore(curr, 1, &address,
1106 handle_breakpoints, 0);
1107 retval += cortex_a_internal_restart(curr);
1108 }
1109 head = head->next;
1110
1111 }
1112 return retval;
1113 }
1114
1115 static int cortex_a_resume(struct target *target, int current,
1116 target_addr_t address, int handle_breakpoints, int debug_execution)
1117 {
1118 int retval = 0;
1119 /* dummy resume for smp toggle in order to reduce gdb impact */
1120 if ((target->smp) && (target->gdb_service->core[1] != -1)) {
1121 /* simulate a start and halt of target */
1122 target->gdb_service->target = NULL;
1123 target->gdb_service->core[0] = target->gdb_service->core[1];
1124 /* fake resume at next poll we play the target core[1], see poll*/
1125 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1126 return 0;
1127 }
1128 cortex_a_internal_restore(target, current, &address, handle_breakpoints, debug_execution);
1129 if (target->smp) {
1130 target->gdb_service->core[0] = -1;
1131 retval = cortex_a_restore_smp(target, handle_breakpoints);
1132 if (retval != ERROR_OK)
1133 return retval;
1134 }
1135 cortex_a_internal_restart(target);
1136
1137 if (!debug_execution) {
1138 target->state = TARGET_RUNNING;
1139 target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
1140 LOG_DEBUG("target resumed at " TARGET_ADDR_FMT, address);
1141 } else {
1142 target->state = TARGET_DEBUG_RUNNING;
1143 target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED);
1144 LOG_DEBUG("target debug resumed at " TARGET_ADDR_FMT, address);
1145 }
1146
1147 return ERROR_OK;
1148 }
1149
1150 static int cortex_a_debug_entry(struct target *target)
1151 {
1152 int i;
1153 uint32_t regfile[16], cpsr, spsr, dscr;
1154 int retval = ERROR_OK;
1155 struct working_area *regfile_working_area = NULL;
1156 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1157 struct armv7a_common *armv7a = target_to_armv7a(target);
1158 struct arm *arm = &armv7a->arm;
1159 struct reg *reg;
1160
1161 LOG_DEBUG("dscr = 0x%08" PRIx32, cortex_a->cpudbg_dscr);
1162
1163 /* REVISIT surely we should not re-read DSCR !! */
1164 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1165 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1166 if (retval != ERROR_OK)
1167 return retval;
1168
1169 /* REVISIT see A TRM 12.11.4 steps 2..3 -- make sure that any
1170 * imprecise data aborts get discarded by issuing a Data
1171 * Synchronization Barrier: ARMV4_5_MCR(15, 0, 0, 7, 10, 4).
1172 */
1173
1174 /* Enable the ITR execution once we are in debug mode */
1175 dscr |= DSCR_ITR_EN;
1176 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1177 armv7a->debug_base + CPUDBG_DSCR, dscr);
1178 if (retval != ERROR_OK)
1179 return retval;
1180
1181 /* Examine debug reason */
1182 arm_dpm_report_dscr(&armv7a->dpm, cortex_a->cpudbg_dscr);
1183
1184 /* save address of instruction that triggered the watchpoint? */
1185 if (target->debug_reason == DBG_REASON_WATCHPOINT) {
1186 uint32_t wfar;
1187
1188 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1189 armv7a->debug_base + CPUDBG_WFAR,
1190 &wfar);
1191 if (retval != ERROR_OK)
1192 return retval;
1193 arm_dpm_report_wfar(&armv7a->dpm, wfar);
1194 }
1195
1196 /* REVISIT fast_reg_read is never set ... */
1197
1198 /* Examine target state and mode */
1199 if (cortex_a->fast_reg_read)
1200 target_alloc_working_area(target, 64, &regfile_working_area);
1201
1202
1203 /* First load register acessible through core debug port*/
1204 if (!regfile_working_area)
1205 retval = arm_dpm_read_current_registers(&armv7a->dpm);
1206 else {
1207 retval = cortex_a_read_regs_through_mem(target,
1208 regfile_working_area->address, regfile);
1209
1210 target_free_working_area(target, regfile_working_area);
1211 if (retval != ERROR_OK)
1212 return retval;
1213
1214 /* read Current PSR */
1215 retval = cortex_a_dap_read_coreregister_u32(target, &cpsr, 16);
1216 /* store current cpsr */
1217 if (retval != ERROR_OK)
1218 return retval;
1219
1220 LOG_DEBUG("cpsr: %8.8" PRIx32, cpsr);
1221
1222 arm_set_cpsr(arm, cpsr);
1223
1224 /* update cache */
1225 for (i = 0; i <= ARM_PC; i++) {
1226 reg = arm_reg_current(arm, i);
1227
1228 buf_set_u32(reg->value, 0, 32, regfile[i]);
1229 reg->valid = 1;
1230 reg->dirty = 0;
1231 }
1232
1233 /* Fixup PC Resume Address */
1234 if (cpsr & (1 << 5)) {
1235 /* T bit set for Thumb or ThumbEE state */
1236 regfile[ARM_PC] -= 4;
1237 } else {
1238 /* ARM state */
1239 regfile[ARM_PC] -= 8;
1240 }
1241
1242 reg = arm->pc;
1243 buf_set_u32(reg->value, 0, 32, regfile[ARM_PC]);
1244 reg->dirty = reg->valid;
1245 }
1246
1247 if (arm->spsr) {
1248 /* read Saved PSR */
1249 retval = cortex_a_dap_read_coreregister_u32(target, &spsr, 17);
1250 /* store current spsr */
1251 if (retval != ERROR_OK)
1252 return retval;
1253
1254 reg = arm->spsr;
1255 buf_set_u32(reg->value, 0, 32, spsr);
1256 reg->valid = 1;
1257 reg->dirty = 0;
1258 }
1259
1260 #if 0
1261 /* TODO, Move this */
1262 uint32_t cp15_control_register, cp15_cacr, cp15_nacr;
1263 cortex_a_read_cp(target, &cp15_control_register, 15, 0, 1, 0, 0);
1264 LOG_DEBUG("cp15_control_register = 0x%08x", cp15_control_register);
1265
1266 cortex_a_read_cp(target, &cp15_cacr, 15, 0, 1, 0, 2);
1267 LOG_DEBUG("cp15 Coprocessor Access Control Register = 0x%08x", cp15_cacr);
1268
1269 cortex_a_read_cp(target, &cp15_nacr, 15, 0, 1, 1, 2);
1270 LOG_DEBUG("cp15 Nonsecure Access Control Register = 0x%08x", cp15_nacr);
1271 #endif
1272
1273 /* Are we in an exception handler */
1274 /* armv4_5->exception_number = 0; */
1275 if (armv7a->post_debug_entry) {
1276 retval = armv7a->post_debug_entry(target);
1277 if (retval != ERROR_OK)
1278 return retval;
1279 }
1280
1281 return retval;
1282 }
1283
1284 static int cortex_a_post_debug_entry(struct target *target)
1285 {
1286 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1287 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1288 int retval;
1289
1290 /* MRC p15,0,<Rt>,c1,c0,0 ; Read CP15 System Control Register */
1291 retval = armv7a->arm.mrc(target, 15,
1292 0, 0, /* op1, op2 */
1293 1, 0, /* CRn, CRm */
1294 &cortex_a->cp15_control_reg);
1295 if (retval != ERROR_OK)
1296 return retval;
1297 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, cortex_a->cp15_control_reg);
1298 cortex_a->cp15_control_reg_curr = cortex_a->cp15_control_reg;
1299
1300 if (armv7a->armv7a_mmu.armv7a_cache.info == -1)
1301 armv7a_identify_cache(target);
1302
1303 if (armv7a->is_armv7r) {
1304 armv7a->armv7a_mmu.mmu_enabled = 0;
1305 } else {
1306 armv7a->armv7a_mmu.mmu_enabled =
1307 (cortex_a->cp15_control_reg & 0x1U) ? 1 : 0;
1308 }
1309 armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled =
1310 (cortex_a->cp15_control_reg & 0x4U) ? 1 : 0;
1311 armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled =
1312 (cortex_a->cp15_control_reg & 0x1000U) ? 1 : 0;
1313 cortex_a->curr_mode = armv7a->arm.core_mode;
1314
1315 /* switch to SVC mode to read DACR */
1316 dpm_modeswitch(&armv7a->dpm, ARM_MODE_SVC);
1317 armv7a->arm.mrc(target, 15,
1318 0, 0, 3, 0,
1319 &cortex_a->cp15_dacr_reg);
1320
1321 LOG_DEBUG("cp15_dacr_reg: %8.8" PRIx32,
1322 cortex_a->cp15_dacr_reg);
1323
1324 dpm_modeswitch(&armv7a->dpm, ARM_MODE_ANY);
1325 return ERROR_OK;
1326 }
1327
1328 int cortex_a_set_dscr_bits(struct target *target, unsigned long bit_mask, unsigned long value)
1329 {
1330 struct armv7a_common *armv7a = target_to_armv7a(target);
1331 uint32_t dscr;
1332
1333 /* Read DSCR */
1334 int retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1335 armv7a->debug_base + CPUDBG_DSCR, &dscr);
1336 if (ERROR_OK != retval)
1337 return retval;
1338
1339 /* clear bitfield */
1340 dscr &= ~bit_mask;
1341 /* put new value */
1342 dscr |= value & bit_mask;
1343
1344 /* write new DSCR */
1345 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1346 armv7a->debug_base + CPUDBG_DSCR, dscr);
1347 return retval;
1348 }
1349
1350 static int cortex_a_step(struct target *target, int current, target_addr_t address,
1351 int handle_breakpoints)
1352 {
1353 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1354 struct armv7a_common *armv7a = target_to_armv7a(target);
1355 struct arm *arm = &armv7a->arm;
1356 struct breakpoint *breakpoint = NULL;
1357 struct breakpoint stepbreakpoint;
1358 struct reg *r;
1359 int retval;
1360
1361 if (target->state != TARGET_HALTED) {
1362 LOG_WARNING("target not halted");
1363 return ERROR_TARGET_NOT_HALTED;
1364 }
1365
1366 /* current = 1: continue on current pc, otherwise continue at <address> */
1367 r = arm->pc;
1368 if (!current)
1369 buf_set_u32(r->value, 0, 32, address);
1370 else
1371 address = buf_get_u32(r->value, 0, 32);
1372
1373 /* The front-end may request us not to handle breakpoints.
1374 * But since Cortex-A uses breakpoint for single step,
1375 * we MUST handle breakpoints.
1376 */
1377 handle_breakpoints = 1;
1378 if (handle_breakpoints) {
1379 breakpoint = breakpoint_find(target, address);
1380 if (breakpoint)
1381 cortex_a_unset_breakpoint(target, breakpoint);
1382 }
1383
1384 /* Setup single step breakpoint */
1385 stepbreakpoint.address = address;
1386 stepbreakpoint.length = (arm->core_state == ARM_STATE_THUMB)
1387 ? 2 : 4;
1388 stepbreakpoint.type = BKPT_HARD;
1389 stepbreakpoint.set = 0;
1390
1391 /* Disable interrupts during single step if requested */
1392 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1393 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, DSCR_INT_DIS);
1394 if (ERROR_OK != retval)
1395 return retval;
1396 }
1397
1398 /* Break on IVA mismatch */
1399 cortex_a_set_breakpoint(target, &stepbreakpoint, 0x04);
1400
1401 target->debug_reason = DBG_REASON_SINGLESTEP;
1402
1403 retval = cortex_a_resume(target, 1, address, 0, 0);
1404 if (retval != ERROR_OK)
1405 return retval;
1406
1407 int64_t then = timeval_ms();
1408 while (target->state != TARGET_HALTED) {
1409 retval = cortex_a_poll(target);
1410 if (retval != ERROR_OK)
1411 return retval;
1412 if (timeval_ms() > then + 1000) {
1413 LOG_ERROR("timeout waiting for target halt");
1414 return ERROR_FAIL;
1415 }
1416 }
1417
1418 cortex_a_unset_breakpoint(target, &stepbreakpoint);
1419
1420 /* Re-enable interrupts if they were disabled */
1421 if (cortex_a->isrmasking_mode == CORTEX_A_ISRMASK_ON) {
1422 retval = cortex_a_set_dscr_bits(target, DSCR_INT_DIS, 0);
1423 if (ERROR_OK != retval)
1424 return retval;
1425 }
1426
1427
1428 target->debug_reason = DBG_REASON_BREAKPOINT;
1429
1430 if (breakpoint)
1431 cortex_a_set_breakpoint(target, breakpoint, 0);
1432
1433 if (target->state != TARGET_HALTED)
1434 LOG_DEBUG("target stepped");
1435
1436 return ERROR_OK;
1437 }
1438
1439 static int cortex_a_restore_context(struct target *target, bool bpwp)
1440 {
1441 struct armv7a_common *armv7a = target_to_armv7a(target);
1442
1443 LOG_DEBUG(" ");
1444
1445 if (armv7a->pre_restore_context)
1446 armv7a->pre_restore_context(target);
1447
1448 return arm_dpm_write_dirty_registers(&armv7a->dpm, bpwp);
1449 }
1450
1451 /*
1452 * Cortex-A Breakpoint and watchpoint functions
1453 */
1454
1455 /* Setup hardware Breakpoint Register Pair */
1456 static int cortex_a_set_breakpoint(struct target *target,
1457 struct breakpoint *breakpoint, uint8_t matchmode)
1458 {
1459 int retval;
1460 int brp_i = 0;
1461 uint32_t control;
1462 uint8_t byte_addr_select = 0x0F;
1463 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1464 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1465 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1466
1467 if (breakpoint->set) {
1468 LOG_WARNING("breakpoint already set");
1469 return ERROR_OK;
1470 }
1471
1472 if (breakpoint->type == BKPT_HARD) {
1473 while (brp_list[brp_i].used && (brp_i < cortex_a->brp_num))
1474 brp_i++;
1475 if (brp_i >= cortex_a->brp_num) {
1476 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1477 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1478 }
1479 breakpoint->set = brp_i + 1;
1480 if (breakpoint->length == 2)
1481 byte_addr_select = (3 << (breakpoint->address & 0x02));
1482 control = ((matchmode & 0x7) << 20)
1483 | (byte_addr_select << 5)
1484 | (3 << 1) | 1;
1485 brp_list[brp_i].used = 1;
1486 brp_list[brp_i].value = (breakpoint->address & 0xFFFFFFFC);
1487 brp_list[brp_i].control = control;
1488 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1489 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1490 brp_list[brp_i].value);
1491 if (retval != ERROR_OK)
1492 return retval;
1493 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1494 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1495 brp_list[brp_i].control);
1496 if (retval != ERROR_OK)
1497 return retval;
1498 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1499 brp_list[brp_i].control,
1500 brp_list[brp_i].value);
1501 } else if (breakpoint->type == BKPT_SOFT) {
1502 uint8_t code[4];
1503 /* length == 2: Thumb breakpoint */
1504 if (breakpoint->length == 2)
1505 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1506 else
1507 /* length == 3: Thumb-2 breakpoint, actual encoding is
1508 * a regular Thumb BKPT instruction but we replace a
1509 * 32bit Thumb-2 instruction, so fix-up the breakpoint
1510 * length
1511 */
1512 if (breakpoint->length == 3) {
1513 buf_set_u32(code, 0, 32, ARMV5_T_BKPT(0x11));
1514 breakpoint->length = 4;
1515 } else
1516 /* length == 4, normal ARM breakpoint */
1517 buf_set_u32(code, 0, 32, ARMV5_BKPT(0x11));
1518
1519 retval = target_read_memory(target,
1520 breakpoint->address & 0xFFFFFFFE,
1521 breakpoint->length, 1,
1522 breakpoint->orig_instr);
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526 /* make sure data cache is cleaned & invalidated down to PoC */
1527 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1528 armv7a_cache_flush_virt(target, breakpoint->address,
1529 breakpoint->length);
1530 }
1531
1532 retval = target_write_memory(target,
1533 breakpoint->address & 0xFFFFFFFE,
1534 breakpoint->length, 1, code);
1535 if (retval != ERROR_OK)
1536 return retval;
1537
1538 /* update i-cache at breakpoint location */
1539 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1540 breakpoint->length);
1541 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1542 breakpoint->length);
1543
1544 breakpoint->set = 0x11; /* Any nice value but 0 */
1545 }
1546
1547 return ERROR_OK;
1548 }
1549
1550 static int cortex_a_set_context_breakpoint(struct target *target,
1551 struct breakpoint *breakpoint, uint8_t matchmode)
1552 {
1553 int retval = ERROR_FAIL;
1554 int brp_i = 0;
1555 uint32_t control;
1556 uint8_t byte_addr_select = 0x0F;
1557 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1558 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1559 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1560
1561 if (breakpoint->set) {
1562 LOG_WARNING("breakpoint already set");
1563 return retval;
1564 }
1565 /*check available context BRPs*/
1566 while ((brp_list[brp_i].used ||
1567 (brp_list[brp_i].type != BRP_CONTEXT)) && (brp_i < cortex_a->brp_num))
1568 brp_i++;
1569
1570 if (brp_i >= cortex_a->brp_num) {
1571 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1572 return ERROR_FAIL;
1573 }
1574
1575 breakpoint->set = brp_i + 1;
1576 control = ((matchmode & 0x7) << 20)
1577 | (byte_addr_select << 5)
1578 | (3 << 1) | 1;
1579 brp_list[brp_i].used = 1;
1580 brp_list[brp_i].value = (breakpoint->asid);
1581 brp_list[brp_i].control = control;
1582 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1583 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1584 brp_list[brp_i].value);
1585 if (retval != ERROR_OK)
1586 return retval;
1587 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1588 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1589 brp_list[brp_i].control);
1590 if (retval != ERROR_OK)
1591 return retval;
1592 LOG_DEBUG("brp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1593 brp_list[brp_i].control,
1594 brp_list[brp_i].value);
1595 return ERROR_OK;
1596
1597 }
1598
1599 static int cortex_a_set_hybrid_breakpoint(struct target *target, struct breakpoint *breakpoint)
1600 {
1601 int retval = ERROR_FAIL;
1602 int brp_1 = 0; /* holds the contextID pair */
1603 int brp_2 = 0; /* holds the IVA pair */
1604 uint32_t control_CTX, control_IVA;
1605 uint8_t CTX_byte_addr_select = 0x0F;
1606 uint8_t IVA_byte_addr_select = 0x0F;
1607 uint8_t CTX_machmode = 0x03;
1608 uint8_t IVA_machmode = 0x01;
1609 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1610 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1611 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1612
1613 if (breakpoint->set) {
1614 LOG_WARNING("breakpoint already set");
1615 return retval;
1616 }
1617 /*check available context BRPs*/
1618 while ((brp_list[brp_1].used ||
1619 (brp_list[brp_1].type != BRP_CONTEXT)) && (brp_1 < cortex_a->brp_num))
1620 brp_1++;
1621
1622 printf("brp(CTX) found num: %d\n", brp_1);
1623 if (brp_1 >= cortex_a->brp_num) {
1624 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1625 return ERROR_FAIL;
1626 }
1627
1628 while ((brp_list[brp_2].used ||
1629 (brp_list[brp_2].type != BRP_NORMAL)) && (brp_2 < cortex_a->brp_num))
1630 brp_2++;
1631
1632 printf("brp(IVA) found num: %d\n", brp_2);
1633 if (brp_2 >= cortex_a->brp_num) {
1634 LOG_ERROR("ERROR Can not find free Breakpoint Register Pair");
1635 return ERROR_FAIL;
1636 }
1637
1638 breakpoint->set = brp_1 + 1;
1639 breakpoint->linked_BRP = brp_2;
1640 control_CTX = ((CTX_machmode & 0x7) << 20)
1641 | (brp_2 << 16)
1642 | (0 << 14)
1643 | (CTX_byte_addr_select << 5)
1644 | (3 << 1) | 1;
1645 brp_list[brp_1].used = 1;
1646 brp_list[brp_1].value = (breakpoint->asid);
1647 brp_list[brp_1].control = control_CTX;
1648 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1649 + CPUDBG_BVR_BASE + 4 * brp_list[brp_1].BRPn,
1650 brp_list[brp_1].value);
1651 if (retval != ERROR_OK)
1652 return retval;
1653 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1654 + CPUDBG_BCR_BASE + 4 * brp_list[brp_1].BRPn,
1655 brp_list[brp_1].control);
1656 if (retval != ERROR_OK)
1657 return retval;
1658
1659 control_IVA = ((IVA_machmode & 0x7) << 20)
1660 | (brp_1 << 16)
1661 | (IVA_byte_addr_select << 5)
1662 | (3 << 1) | 1;
1663 brp_list[brp_2].used = 1;
1664 brp_list[brp_2].value = (breakpoint->address & 0xFFFFFFFC);
1665 brp_list[brp_2].control = control_IVA;
1666 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1667 + CPUDBG_BVR_BASE + 4 * brp_list[brp_2].BRPn,
1668 brp_list[brp_2].value);
1669 if (retval != ERROR_OK)
1670 return retval;
1671 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1672 + CPUDBG_BCR_BASE + 4 * brp_list[brp_2].BRPn,
1673 brp_list[brp_2].control);
1674 if (retval != ERROR_OK)
1675 return retval;
1676
1677 return ERROR_OK;
1678 }
1679
1680 static int cortex_a_unset_breakpoint(struct target *target, struct breakpoint *breakpoint)
1681 {
1682 int retval;
1683 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1684 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
1685 struct cortex_a_brp *brp_list = cortex_a->brp_list;
1686
1687 if (!breakpoint->set) {
1688 LOG_WARNING("breakpoint not set");
1689 return ERROR_OK;
1690 }
1691
1692 if (breakpoint->type == BKPT_HARD) {
1693 if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
1694 int brp_i = breakpoint->set - 1;
1695 int brp_j = breakpoint->linked_BRP;
1696 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1697 LOG_DEBUG("Invalid BRP number in breakpoint");
1698 return ERROR_OK;
1699 }
1700 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1701 brp_list[brp_i].control, brp_list[brp_i].value);
1702 brp_list[brp_i].used = 0;
1703 brp_list[brp_i].value = 0;
1704 brp_list[brp_i].control = 0;
1705 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1706 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1707 brp_list[brp_i].control);
1708 if (retval != ERROR_OK)
1709 return retval;
1710 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1711 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1712 brp_list[brp_i].value);
1713 if (retval != ERROR_OK)
1714 return retval;
1715 if ((brp_j < 0) || (brp_j >= cortex_a->brp_num)) {
1716 LOG_DEBUG("Invalid BRP number in breakpoint");
1717 return ERROR_OK;
1718 }
1719 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_j,
1720 brp_list[brp_j].control, brp_list[brp_j].value);
1721 brp_list[brp_j].used = 0;
1722 brp_list[brp_j].value = 0;
1723 brp_list[brp_j].control = 0;
1724 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1725 + CPUDBG_BCR_BASE + 4 * brp_list[brp_j].BRPn,
1726 brp_list[brp_j].control);
1727 if (retval != ERROR_OK)
1728 return retval;
1729 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1730 + CPUDBG_BVR_BASE + 4 * brp_list[brp_j].BRPn,
1731 brp_list[brp_j].value);
1732 if (retval != ERROR_OK)
1733 return retval;
1734 breakpoint->linked_BRP = 0;
1735 breakpoint->set = 0;
1736 return ERROR_OK;
1737
1738 } else {
1739 int brp_i = breakpoint->set - 1;
1740 if ((brp_i < 0) || (brp_i >= cortex_a->brp_num)) {
1741 LOG_DEBUG("Invalid BRP number in breakpoint");
1742 return ERROR_OK;
1743 }
1744 LOG_DEBUG("rbp %i control 0x%0" PRIx32 " value 0x%0" PRIx32, brp_i,
1745 brp_list[brp_i].control, brp_list[brp_i].value);
1746 brp_list[brp_i].used = 0;
1747 brp_list[brp_i].value = 0;
1748 brp_list[brp_i].control = 0;
1749 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1750 + CPUDBG_BCR_BASE + 4 * brp_list[brp_i].BRPn,
1751 brp_list[brp_i].control);
1752 if (retval != ERROR_OK)
1753 return retval;
1754 retval = cortex_a_dap_write_memap_register_u32(target, armv7a->debug_base
1755 + CPUDBG_BVR_BASE + 4 * brp_list[brp_i].BRPn,
1756 brp_list[brp_i].value);
1757 if (retval != ERROR_OK)
1758 return retval;
1759 breakpoint->set = 0;
1760 return ERROR_OK;
1761 }
1762 } else {
1763
1764 /* make sure data cache is cleaned & invalidated down to PoC */
1765 if (!armv7a->armv7a_mmu.armv7a_cache.auto_cache_enabled) {
1766 armv7a_cache_flush_virt(target, breakpoint->address,
1767 breakpoint->length);
1768 }
1769
1770 /* restore original instruction (kept in target endianness) */
1771 if (breakpoint->length == 4) {
1772 retval = target_write_memory(target,
1773 breakpoint->address & 0xFFFFFFFE,
1774 4, 1, breakpoint->orig_instr);
1775 if (retval != ERROR_OK)
1776 return retval;
1777 } else {
1778 retval = target_write_memory(target,
1779 breakpoint->address & 0xFFFFFFFE,
1780 2, 1, breakpoint->orig_instr);
1781 if (retval != ERROR_OK)
1782 return retval;
1783 }
1784
1785 /* update i-cache at breakpoint location */
1786 armv7a_l1_d_cache_inval_virt(target, breakpoint->address,
1787 breakpoint->length);
1788 armv7a_l1_i_cache_inval_virt(target, breakpoint->address,
1789 breakpoint->length);
1790 }
1791 breakpoint->set = 0;
1792
1793 return ERROR_OK;
1794 }
1795
1796 static int cortex_a_add_breakpoint(struct target *target,
1797 struct breakpoint *breakpoint)
1798 {
1799 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1800
1801 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1802 LOG_INFO("no hardware breakpoint available");
1803 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1804 }
1805
1806 if (breakpoint->type == BKPT_HARD)
1807 cortex_a->brp_num_available--;
1808
1809 return cortex_a_set_breakpoint(target, breakpoint, 0x00); /* Exact match */
1810 }
1811
1812 static int cortex_a_add_context_breakpoint(struct target *target,
1813 struct breakpoint *breakpoint)
1814 {
1815 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1816
1817 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1818 LOG_INFO("no hardware breakpoint available");
1819 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1820 }
1821
1822 if (breakpoint->type == BKPT_HARD)
1823 cortex_a->brp_num_available--;
1824
1825 return cortex_a_set_context_breakpoint(target, breakpoint, 0x02); /* asid match */
1826 }
1827
1828 static int cortex_a_add_hybrid_breakpoint(struct target *target,
1829 struct breakpoint *breakpoint)
1830 {
1831 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1832
1833 if ((breakpoint->type == BKPT_HARD) && (cortex_a->brp_num_available < 1)) {
1834 LOG_INFO("no hardware breakpoint available");
1835 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1836 }
1837
1838 if (breakpoint->type == BKPT_HARD)
1839 cortex_a->brp_num_available--;
1840
1841 return cortex_a_set_hybrid_breakpoint(target, breakpoint); /* ??? */
1842 }
1843
1844
1845 static int cortex_a_remove_breakpoint(struct target *target, struct breakpoint *breakpoint)
1846 {
1847 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
1848
1849 #if 0
1850 /* It is perfectly possible to remove breakpoints while the target is running */
1851 if (target->state != TARGET_HALTED) {
1852 LOG_WARNING("target not halted");
1853 return ERROR_TARGET_NOT_HALTED;
1854 }
1855 #endif
1856
1857 if (breakpoint->set) {
1858 cortex_a_unset_breakpoint(target, breakpoint);
1859 if (breakpoint->type == BKPT_HARD)
1860 cortex_a->brp_num_available++;
1861 }
1862
1863
1864 return ERROR_OK;
1865 }
1866
1867 /*
1868 * Cortex-A Reset functions
1869 */
1870
1871 static int cortex_a_assert_reset(struct target *target)
1872 {
1873 struct armv7a_common *armv7a = target_to_armv7a(target);
1874
1875 LOG_DEBUG(" ");
1876
1877 /* FIXME when halt is requested, make it work somehow... */
1878
1879 /* This function can be called in "target not examined" state */
1880
1881 /* Issue some kind of warm reset. */
1882 if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT))
1883 target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
1884 else if (jtag_get_reset_config() & RESET_HAS_SRST) {
1885 /* REVISIT handle "pulls" cases, if there's
1886 * hardware that needs them to work.
1887 */
1888
1889 /*
1890 * FIXME: fix reset when transport is SWD. This is a temporary
1891 * work-around for release v0.10 that is not intended to stay!
1892 */
1893 if (transport_is_swd() ||
1894 (target->reset_halt && (jtag_get_reset_config() & RESET_SRST_NO_GATING)))
1895 jtag_add_reset(0, 1);
1896
1897 } else {
1898 LOG_ERROR("%s: how to reset?", target_name(target));
1899 return ERROR_FAIL;
1900 }
1901
1902 /* registers are now invalid */
1903 if (target_was_examined(target))
1904 register_cache_invalidate(armv7a->arm.core_cache);
1905
1906 target->state = TARGET_RESET;
1907
1908 return ERROR_OK;
1909 }
1910
1911 static int cortex_a_deassert_reset(struct target *target)
1912 {
1913 int retval;
1914
1915 LOG_DEBUG(" ");
1916
1917 /* be certain SRST is off */
1918 jtag_add_reset(0, 0);
1919
1920 if (target_was_examined(target)) {
1921 retval = cortex_a_poll(target);
1922 if (retval != ERROR_OK)
1923 return retval;
1924 }
1925
1926 if (target->reset_halt) {
1927 if (target->state != TARGET_HALTED) {
1928 LOG_WARNING("%s: ran after reset and before halt ...",
1929 target_name(target));
1930 if (target_was_examined(target)) {
1931 retval = target_halt(target);
1932 if (retval != ERROR_OK)
1933 return retval;
1934 } else
1935 target->state = TARGET_UNKNOWN;
1936 }
1937 }
1938
1939 return ERROR_OK;
1940 }
1941
1942 static int cortex_a_set_dcc_mode(struct target *target, uint32_t mode, uint32_t *dscr)
1943 {
1944 /* Changes the mode of the DCC between non-blocking, stall, and fast mode.
1945 * New desired mode must be in mode. Current value of DSCR must be in
1946 * *dscr, which is updated with new value.
1947 *
1948 * This function elides actually sending the mode-change over the debug
1949 * interface if the mode is already set as desired.
1950 */
1951 uint32_t new_dscr = (*dscr & ~DSCR_EXT_DCC_MASK) | mode;
1952 if (new_dscr != *dscr) {
1953 struct armv7a_common *armv7a = target_to_armv7a(target);
1954 int retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
1955 armv7a->debug_base + CPUDBG_DSCR, new_dscr);
1956 if (retval == ERROR_OK)
1957 *dscr = new_dscr;
1958 return retval;
1959 } else {
1960 return ERROR_OK;
1961 }
1962 }
1963
1964 static int cortex_a_wait_dscr_bits(struct target *target, uint32_t mask,
1965 uint32_t value, uint32_t *dscr)
1966 {
1967 /* Waits until the specified bit(s) of DSCR take on a specified value. */
1968 struct armv7a_common *armv7a = target_to_armv7a(target);
1969 int64_t then = timeval_ms();
1970 int retval;
1971
1972 while ((*dscr & mask) != value) {
1973 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
1974 armv7a->debug_base + CPUDBG_DSCR, dscr);
1975 if (retval != ERROR_OK)
1976 return retval;
1977 if (timeval_ms() > then + 1000) {
1978 LOG_ERROR("timeout waiting for DSCR bit change");
1979 return ERROR_FAIL;
1980 }
1981 }
1982 return ERROR_OK;
1983 }
1984
1985 static int cortex_a_read_copro(struct target *target, uint32_t opcode,
1986 uint32_t *data, uint32_t *dscr)
1987 {
1988 int retval;
1989 struct armv7a_common *armv7a = target_to_armv7a(target);
1990
1991 /* Move from coprocessor to R0. */
1992 retval = cortex_a_exec_opcode(target, opcode, dscr);
1993 if (retval != ERROR_OK)
1994 return retval;
1995
1996 /* Move from R0 to DTRTX. */
1997 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 0, 0, 5, 0), dscr);
1998 if (retval != ERROR_OK)
1999 return retval;
2000
2001 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2002 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2003 * must also check TXfull_l). Most of the time this will be free
2004 * because TXfull_l will be set immediately and cached in dscr. */
2005 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2006 DSCR_DTRTX_FULL_LATCHED, dscr);
2007 if (retval != ERROR_OK)
2008 return retval;
2009
2010 /* Read the value transferred to DTRTX. */
2011 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2012 armv7a->debug_base + CPUDBG_DTRTX, data);
2013 if (retval != ERROR_OK)
2014 return retval;
2015
2016 return ERROR_OK;
2017 }
2018
2019 static int cortex_a_read_dfar_dfsr(struct target *target, uint32_t *dfar,
2020 uint32_t *dfsr, uint32_t *dscr)
2021 {
2022 int retval;
2023
2024 if (dfar) {
2025 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), dfar, dscr);
2026 if (retval != ERROR_OK)
2027 return retval;
2028 }
2029
2030 if (dfsr) {
2031 retval = cortex_a_read_copro(target, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), dfsr, dscr);
2032 if (retval != ERROR_OK)
2033 return retval;
2034 }
2035
2036 return ERROR_OK;
2037 }
2038
2039 static int cortex_a_write_copro(struct target *target, uint32_t opcode,
2040 uint32_t data, uint32_t *dscr)
2041 {
2042 int retval;
2043 struct armv7a_common *armv7a = target_to_armv7a(target);
2044
2045 /* Write the value into DTRRX. */
2046 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2047 armv7a->debug_base + CPUDBG_DTRRX, data);
2048 if (retval != ERROR_OK)
2049 return retval;
2050
2051 /* Move from DTRRX to R0. */
2052 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), dscr);
2053 if (retval != ERROR_OK)
2054 return retval;
2055
2056 /* Move from R0 to coprocessor. */
2057 retval = cortex_a_exec_opcode(target, opcode, dscr);
2058 if (retval != ERROR_OK)
2059 return retval;
2060
2061 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2062 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2063 * check RXfull_l). Most of the time this will be free because RXfull_l
2064 * will be cleared immediately and cached in dscr. */
2065 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2066 if (retval != ERROR_OK)
2067 return retval;
2068
2069 return ERROR_OK;
2070 }
2071
2072 static int cortex_a_write_dfar_dfsr(struct target *target, uint32_t dfar,
2073 uint32_t dfsr, uint32_t *dscr)
2074 {
2075 int retval;
2076
2077 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 6, 0, 0), dfar, dscr);
2078 if (retval != ERROR_OK)
2079 return retval;
2080
2081 retval = cortex_a_write_copro(target, ARMV4_5_MCR(15, 0, 0, 5, 0, 0), dfsr, dscr);
2082 if (retval != ERROR_OK)
2083 return retval;
2084
2085 return ERROR_OK;
2086 }
2087
2088 static int cortex_a_dfsr_to_error_code(uint32_t dfsr)
2089 {
2090 uint32_t status, upper4;
2091
2092 if (dfsr & (1 << 9)) {
2093 /* LPAE format. */
2094 status = dfsr & 0x3f;
2095 upper4 = status >> 2;
2096 if (upper4 == 1 || upper4 == 2 || upper4 == 3 || upper4 == 15)
2097 return ERROR_TARGET_TRANSLATION_FAULT;
2098 else if (status == 33)
2099 return ERROR_TARGET_UNALIGNED_ACCESS;
2100 else
2101 return ERROR_TARGET_DATA_ABORT;
2102 } else {
2103 /* Normal format. */
2104 status = ((dfsr >> 6) & 0x10) | (dfsr & 0xf);
2105 if (status == 1)
2106 return ERROR_TARGET_UNALIGNED_ACCESS;
2107 else if (status == 5 || status == 7 || status == 3 || status == 6 ||
2108 status == 9 || status == 11 || status == 13 || status == 15)
2109 return ERROR_TARGET_TRANSLATION_FAULT;
2110 else
2111 return ERROR_TARGET_DATA_ABORT;
2112 }
2113 }
2114
2115 static int cortex_a_write_cpu_memory_slow(struct target *target,
2116 uint32_t size, uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2117 {
2118 /* Writes count objects of size size from *buffer. Old value of DSCR must
2119 * be in *dscr; updated to new value. This is slow because it works for
2120 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2121 * the address is aligned, cortex_a_write_cpu_memory_fast should be
2122 * preferred.
2123 * Preconditions:
2124 * - Address is in R0.
2125 * - R0 is marked dirty.
2126 */
2127 struct armv7a_common *armv7a = target_to_armv7a(target);
2128 struct arm *arm = &armv7a->arm;
2129 int retval;
2130
2131 /* Mark register R1 as dirty, to use for transferring data. */
2132 arm_reg_current(arm, 1)->dirty = true;
2133
2134 /* Switch to non-blocking mode if not already in that mode. */
2135 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2136 if (retval != ERROR_OK)
2137 return retval;
2138
2139 /* Go through the objects. */
2140 while (count) {
2141 /* Write the value to store into DTRRX. */
2142 uint32_t data, opcode;
2143 if (size == 1)
2144 data = *buffer;
2145 else if (size == 2)
2146 data = target_buffer_get_u16(target, buffer);
2147 else
2148 data = target_buffer_get_u32(target, buffer);
2149 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2150 armv7a->debug_base + CPUDBG_DTRRX, data);
2151 if (retval != ERROR_OK)
2152 return retval;
2153
2154 /* Transfer the value from DTRRX to R1. */
2155 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), dscr);
2156 if (retval != ERROR_OK)
2157 return retval;
2158
2159 /* Write the value transferred to R1 into memory. */
2160 if (size == 1)
2161 opcode = ARMV4_5_STRB_IP(1, 0);
2162 else if (size == 2)
2163 opcode = ARMV4_5_STRH_IP(1, 0);
2164 else
2165 opcode = ARMV4_5_STRW_IP(1, 0);
2166 retval = cortex_a_exec_opcode(target, opcode, dscr);
2167 if (retval != ERROR_OK)
2168 return retval;
2169
2170 /* Check for faults and return early. */
2171 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2172 return ERROR_OK; /* A data fault is not considered a system failure. */
2173
2174 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture
2175 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2176 * must also check RXfull_l). Most of the time this will be free
2177 * because RXfull_l will be cleared immediately and cached in dscr. */
2178 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, dscr);
2179 if (retval != ERROR_OK)
2180 return retval;
2181
2182 /* Advance. */
2183 buffer += size;
2184 --count;
2185 }
2186
2187 return ERROR_OK;
2188 }
2189
2190 static int cortex_a_write_cpu_memory_fast(struct target *target,
2191 uint32_t count, const uint8_t *buffer, uint32_t *dscr)
2192 {
2193 /* Writes count objects of size 4 from *buffer. Old value of DSCR must be
2194 * in *dscr; updated to new value. This is fast but only works for
2195 * word-sized objects at aligned addresses.
2196 * Preconditions:
2197 * - Address is in R0 and must be a multiple of 4.
2198 * - R0 is marked dirty.
2199 */
2200 struct armv7a_common *armv7a = target_to_armv7a(target);
2201 int retval;
2202
2203 /* Switch to fast mode if not already in that mode. */
2204 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2205 if (retval != ERROR_OK)
2206 return retval;
2207
2208 /* Latch STC instruction. */
2209 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2210 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_STC(0, 1, 0, 1, 14, 5, 0, 4));
2211 if (retval != ERROR_OK)
2212 return retval;
2213
2214 /* Transfer all the data and issue all the instructions. */
2215 return mem_ap_write_buf_noincr(armv7a->debug_ap, buffer,
2216 4, count, armv7a->debug_base + CPUDBG_DTRRX);
2217 }
2218
2219 static int cortex_a_write_cpu_memory(struct target *target,
2220 uint32_t address, uint32_t size,
2221 uint32_t count, const uint8_t *buffer)
2222 {
2223 /* Write memory through the CPU. */
2224 int retval, final_retval;
2225 struct armv7a_common *armv7a = target_to_armv7a(target);
2226 struct arm *arm = &armv7a->arm;
2227 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2228
2229 LOG_DEBUG("Writing CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2230 address, size, count);
2231 if (target->state != TARGET_HALTED) {
2232 LOG_WARNING("target not halted");
2233 return ERROR_TARGET_NOT_HALTED;
2234 }
2235
2236 if (!count)
2237 return ERROR_OK;
2238
2239 /* Clear any abort. */
2240 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2241 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2242 if (retval != ERROR_OK)
2243 return retval;
2244
2245 /* Read DSCR. */
2246 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2247 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2248 if (retval != ERROR_OK)
2249 return retval;
2250
2251 /* Switch to non-blocking mode if not already in that mode. */
2252 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2253 if (retval != ERROR_OK)
2254 goto out;
2255
2256 /* Mark R0 as dirty. */
2257 arm_reg_current(arm, 0)->dirty = true;
2258
2259 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2260 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2261 if (retval != ERROR_OK)
2262 goto out;
2263
2264 /* Get the memory address into R0. */
2265 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2266 armv7a->debug_base + CPUDBG_DTRRX, address);
2267 if (retval != ERROR_OK)
2268 goto out;
2269 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2270 if (retval != ERROR_OK)
2271 goto out;
2272
2273 if (size == 4 && (address % 4) == 0) {
2274 /* We are doing a word-aligned transfer, so use fast mode. */
2275 retval = cortex_a_write_cpu_memory_fast(target, count, buffer, &dscr);
2276 } else {
2277 /* Use slow path. */
2278 retval = cortex_a_write_cpu_memory_slow(target, size, count, buffer, &dscr);
2279 }
2280
2281 out:
2282 final_retval = retval;
2283
2284 /* Switch to non-blocking mode if not already in that mode. */
2285 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2286 if (final_retval == ERROR_OK)
2287 final_retval = retval;
2288
2289 /* Wait for last issued instruction to complete. */
2290 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2291 if (final_retval == ERROR_OK)
2292 final_retval = retval;
2293
2294 /* Wait until DTRRX is empty (according to ARMv7-A/-R architecture manual
2295 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2296 * check RXfull_l). Most of the time this will be free because RXfull_l
2297 * will be cleared immediately and cached in dscr. However, don't do this
2298 * if there is fault, because then the instruction might not have completed
2299 * successfully. */
2300 if (!(dscr & DSCR_STICKY_ABORT_PRECISE)) {
2301 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRRX_FULL_LATCHED, 0, &dscr);
2302 if (retval != ERROR_OK)
2303 return retval;
2304 }
2305
2306 /* If there were any sticky abort flags, clear them. */
2307 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2308 fault_dscr = dscr;
2309 mem_ap_write_atomic_u32(armv7a->debug_ap,
2310 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2311 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2312 } else {
2313 fault_dscr = 0;
2314 }
2315
2316 /* Handle synchronous data faults. */
2317 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2318 if (final_retval == ERROR_OK) {
2319 /* Final return value will reflect cause of fault. */
2320 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2321 if (retval == ERROR_OK) {
2322 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2323 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2324 } else
2325 final_retval = retval;
2326 }
2327 /* Fault destroyed DFAR/DFSR; restore them. */
2328 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2329 if (retval != ERROR_OK)
2330 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2331 }
2332
2333 /* Handle asynchronous data faults. */
2334 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2335 if (final_retval == ERROR_OK)
2336 /* No other error has been recorded so far, so keep this one. */
2337 final_retval = ERROR_TARGET_DATA_ABORT;
2338 }
2339
2340 /* If the DCC is nonempty, clear it. */
2341 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2342 uint32_t dummy;
2343 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2344 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2345 if (final_retval == ERROR_OK)
2346 final_retval = retval;
2347 }
2348 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2349 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2350 if (final_retval == ERROR_OK)
2351 final_retval = retval;
2352 }
2353
2354 /* Done. */
2355 return final_retval;
2356 }
2357
2358 static int cortex_a_read_cpu_memory_slow(struct target *target,
2359 uint32_t size, uint32_t count, uint8_t *buffer, uint32_t *dscr)
2360 {
2361 /* Reads count objects of size size into *buffer. Old value of DSCR must be
2362 * in *dscr; updated to new value. This is slow because it works for
2363 * non-word-sized objects and (maybe) unaligned accesses. If size == 4 and
2364 * the address is aligned, cortex_a_read_cpu_memory_fast should be
2365 * preferred.
2366 * Preconditions:
2367 * - Address is in R0.
2368 * - R0 is marked dirty.
2369 */
2370 struct armv7a_common *armv7a = target_to_armv7a(target);
2371 struct arm *arm = &armv7a->arm;
2372 int retval;
2373
2374 /* Mark register R1 as dirty, to use for transferring data. */
2375 arm_reg_current(arm, 1)->dirty = true;
2376
2377 /* Switch to non-blocking mode if not already in that mode. */
2378 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2379 if (retval != ERROR_OK)
2380 return retval;
2381
2382 /* Go through the objects. */
2383 while (count) {
2384 /* Issue a load of the appropriate size to R1. */
2385 uint32_t opcode, data;
2386 if (size == 1)
2387 opcode = ARMV4_5_LDRB_IP(1, 0);
2388 else if (size == 2)
2389 opcode = ARMV4_5_LDRH_IP(1, 0);
2390 else
2391 opcode = ARMV4_5_LDRW_IP(1, 0);
2392 retval = cortex_a_exec_opcode(target, opcode, dscr);
2393 if (retval != ERROR_OK)
2394 return retval;
2395
2396 /* Issue a write of R1 to DTRTX. */
2397 retval = cortex_a_exec_opcode(target, ARMV4_5_MCR(14, 0, 1, 0, 5, 0), dscr);
2398 if (retval != ERROR_OK)
2399 return retval;
2400
2401 /* Check for faults and return early. */
2402 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2403 return ERROR_OK; /* A data fault is not considered a system failure. */
2404
2405 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture
2406 * manual section C8.4.3, checking InstrCmpl_l is not sufficient; one
2407 * must also check TXfull_l). Most of the time this will be free
2408 * because TXfull_l will be set immediately and cached in dscr. */
2409 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2410 DSCR_DTRTX_FULL_LATCHED, dscr);
2411 if (retval != ERROR_OK)
2412 return retval;
2413
2414 /* Read the value transferred to DTRTX into the buffer. */
2415 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2416 armv7a->debug_base + CPUDBG_DTRTX, &data);
2417 if (retval != ERROR_OK)
2418 return retval;
2419 if (size == 1)
2420 *buffer = (uint8_t) data;
2421 else if (size == 2)
2422 target_buffer_set_u16(target, buffer, (uint16_t) data);
2423 else
2424 target_buffer_set_u32(target, buffer, data);
2425
2426 /* Advance. */
2427 buffer += size;
2428 --count;
2429 }
2430
2431 return ERROR_OK;
2432 }
2433
2434 static int cortex_a_read_cpu_memory_fast(struct target *target,
2435 uint32_t count, uint8_t *buffer, uint32_t *dscr)
2436 {
2437 /* Reads count objects of size 4 into *buffer. Old value of DSCR must be in
2438 * *dscr; updated to new value. This is fast but only works for word-sized
2439 * objects at aligned addresses.
2440 * Preconditions:
2441 * - Address is in R0 and must be a multiple of 4.
2442 * - R0 is marked dirty.
2443 */
2444 struct armv7a_common *armv7a = target_to_armv7a(target);
2445 uint32_t u32;
2446 int retval;
2447
2448 /* Switch to non-blocking mode if not already in that mode. */
2449 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2450 if (retval != ERROR_OK)
2451 return retval;
2452
2453 /* Issue the LDC instruction via a write to ITR. */
2454 retval = cortex_a_exec_opcode(target, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4), dscr);
2455 if (retval != ERROR_OK)
2456 return retval;
2457
2458 count--;
2459
2460 if (count > 0) {
2461 /* Switch to fast mode if not already in that mode. */
2462 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_FAST_MODE, dscr);
2463 if (retval != ERROR_OK)
2464 return retval;
2465
2466 /* Latch LDC instruction. */
2467 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2468 armv7a->debug_base + CPUDBG_ITR, ARMV4_5_LDC(0, 1, 0, 1, 14, 5, 0, 4));
2469 if (retval != ERROR_OK)
2470 return retval;
2471
2472 /* Read the value transferred to DTRTX into the buffer. Due to fast
2473 * mode rules, this blocks until the instruction finishes executing and
2474 * then reissues the read instruction to read the next word from
2475 * memory. The last read of DTRTX in this call reads the second-to-last
2476 * word from memory and issues the read instruction for the last word.
2477 */
2478 retval = mem_ap_read_buf_noincr(armv7a->debug_ap, buffer,
2479 4, count, armv7a->debug_base + CPUDBG_DTRTX);
2480 if (retval != ERROR_OK)
2481 return retval;
2482
2483 /* Advance. */
2484 buffer += count * 4;
2485 }
2486
2487 /* Wait for last issued instruction to complete. */
2488 retval = cortex_a_wait_instrcmpl(target, dscr, false);
2489 if (retval != ERROR_OK)
2490 return retval;
2491
2492 /* Switch to non-blocking mode if not already in that mode. */
2493 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, dscr);
2494 if (retval != ERROR_OK)
2495 return retval;
2496
2497 /* Check for faults and return early. */
2498 if (*dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE))
2499 return ERROR_OK; /* A data fault is not considered a system failure. */
2500
2501 /* Wait until DTRTX is full (according to ARMv7-A/-R architecture manual
2502 * section C8.4.3, checking InstrCmpl_l is not sufficient; one must also
2503 * check TXfull_l). Most of the time this will be free because TXfull_l
2504 * will be set immediately and cached in dscr. */
2505 retval = cortex_a_wait_dscr_bits(target, DSCR_DTRTX_FULL_LATCHED,
2506 DSCR_DTRTX_FULL_LATCHED, dscr);
2507 if (retval != ERROR_OK)
2508 return retval;
2509
2510 /* Read the value transferred to DTRTX into the buffer. This is the last
2511 * word. */
2512 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2513 armv7a->debug_base + CPUDBG_DTRTX, &u32);
2514 if (retval != ERROR_OK)
2515 return retval;
2516 target_buffer_set_u32(target, buffer, u32);
2517
2518 return ERROR_OK;
2519 }
2520
2521 static int cortex_a_read_cpu_memory(struct target *target,
2522 uint32_t address, uint32_t size,
2523 uint32_t count, uint8_t *buffer)
2524 {
2525 /* Read memory through the CPU. */
2526 int retval, final_retval;
2527 struct armv7a_common *armv7a = target_to_armv7a(target);
2528 struct arm *arm = &armv7a->arm;
2529 uint32_t dscr, orig_dfar, orig_dfsr, fault_dscr, fault_dfar, fault_dfsr;
2530
2531 LOG_DEBUG("Reading CPU memory address 0x%" PRIx32 " size %" PRIu32 " count %" PRIu32,
2532 address, size, count);
2533 if (target->state != TARGET_HALTED) {
2534 LOG_WARNING("target not halted");
2535 return ERROR_TARGET_NOT_HALTED;
2536 }
2537
2538 if (!count)
2539 return ERROR_OK;
2540
2541 /* Clear any abort. */
2542 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2543 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2544 if (retval != ERROR_OK)
2545 return retval;
2546
2547 /* Read DSCR */
2548 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2549 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2550 if (retval != ERROR_OK)
2551 return retval;
2552
2553 /* Switch to non-blocking mode if not already in that mode. */
2554 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2555 if (retval != ERROR_OK)
2556 goto out;
2557
2558 /* Mark R0 as dirty. */
2559 arm_reg_current(arm, 0)->dirty = true;
2560
2561 /* Read DFAR and DFSR, as they will be modified in the event of a fault. */
2562 retval = cortex_a_read_dfar_dfsr(target, &orig_dfar, &orig_dfsr, &dscr);
2563 if (retval != ERROR_OK)
2564 goto out;
2565
2566 /* Get the memory address into R0. */
2567 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
2568 armv7a->debug_base + CPUDBG_DTRRX, address);
2569 if (retval != ERROR_OK)
2570 goto out;
2571 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 0, 0, 5, 0), &dscr);
2572 if (retval != ERROR_OK)
2573 goto out;
2574
2575 if (size == 4 && (address % 4) == 0) {
2576 /* We are doing a word-aligned transfer, so use fast mode. */
2577 retval = cortex_a_read_cpu_memory_fast(target, count, buffer, &dscr);
2578 } else {
2579 /* Use slow path. */
2580 retval = cortex_a_read_cpu_memory_slow(target, size, count, buffer, &dscr);
2581 }
2582
2583 out:
2584 final_retval = retval;
2585
2586 /* Switch to non-blocking mode if not already in that mode. */
2587 retval = cortex_a_set_dcc_mode(target, DSCR_EXT_DCC_NON_BLOCKING, &dscr);
2588 if (final_retval == ERROR_OK)
2589 final_retval = retval;
2590
2591 /* Wait for last issued instruction to complete. */
2592 retval = cortex_a_wait_instrcmpl(target, &dscr, true);
2593 if (final_retval == ERROR_OK)
2594 final_retval = retval;
2595
2596 /* If there were any sticky abort flags, clear them. */
2597 if (dscr & (DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE)) {
2598 fault_dscr = dscr;
2599 mem_ap_write_atomic_u32(armv7a->debug_ap,
2600 armv7a->debug_base + CPUDBG_DRCR, DRCR_CLEAR_EXCEPTIONS);
2601 dscr &= ~(DSCR_STICKY_ABORT_PRECISE | DSCR_STICKY_ABORT_IMPRECISE);
2602 } else {
2603 fault_dscr = 0;
2604 }
2605
2606 /* Handle synchronous data faults. */
2607 if (fault_dscr & DSCR_STICKY_ABORT_PRECISE) {
2608 if (final_retval == ERROR_OK) {
2609 /* Final return value will reflect cause of fault. */
2610 retval = cortex_a_read_dfar_dfsr(target, &fault_dfar, &fault_dfsr, &dscr);
2611 if (retval == ERROR_OK) {
2612 LOG_ERROR("data abort at 0x%08" PRIx32 ", dfsr = 0x%08" PRIx32, fault_dfar, fault_dfsr);
2613 final_retval = cortex_a_dfsr_to_error_code(fault_dfsr);
2614 } else
2615 final_retval = retval;
2616 }
2617 /* Fault destroyed DFAR/DFSR; restore them. */
2618 retval = cortex_a_write_dfar_dfsr(target, orig_dfar, orig_dfsr, &dscr);
2619 if (retval != ERROR_OK)
2620 LOG_ERROR("error restoring dfar/dfsr - dscr = 0x%08" PRIx32, dscr);
2621 }
2622
2623 /* Handle asynchronous data faults. */
2624 if (fault_dscr & DSCR_STICKY_ABORT_IMPRECISE) {
2625 if (final_retval == ERROR_OK)
2626 /* No other error has been recorded so far, so keep this one. */
2627 final_retval = ERROR_TARGET_DATA_ABORT;
2628 }
2629
2630 /* If the DCC is nonempty, clear it. */
2631 if (dscr & DSCR_DTRTX_FULL_LATCHED) {
2632 uint32_t dummy;
2633 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2634 armv7a->debug_base + CPUDBG_DTRTX, &dummy);
2635 if (final_retval == ERROR_OK)
2636 final_retval = retval;
2637 }
2638 if (dscr & DSCR_DTRRX_FULL_LATCHED) {
2639 retval = cortex_a_exec_opcode(target, ARMV4_5_MRC(14, 0, 1, 0, 5, 0), &dscr);
2640 if (final_retval == ERROR_OK)
2641 final_retval = retval;
2642 }
2643
2644 /* Done. */
2645 return final_retval;
2646 }
2647
2648
2649 /*
2650 * Cortex-A Memory access
2651 *
2652 * This is same Cortex-M3 but we must also use the correct
2653 * ap number for every access.
2654 */
2655
2656 static int cortex_a_read_phys_memory(struct target *target,
2657 target_addr_t address, uint32_t size,
2658 uint32_t count, uint8_t *buffer)
2659 {
2660 struct armv7a_common *armv7a = target_to_armv7a(target);
2661 struct adiv5_dap *swjdp = armv7a->arm.dap;
2662 uint8_t apsel = swjdp->apsel;
2663 int retval;
2664
2665 if (!count || !buffer)
2666 return ERROR_COMMAND_SYNTAX_ERROR;
2667
2668 LOG_DEBUG("Reading memory at real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2669 address, size, count);
2670
2671 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2672 return mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2673
2674 /* read memory through the CPU */
2675 cortex_a_prep_memaccess(target, 1);
2676 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2677 cortex_a_post_memaccess(target, 1);
2678
2679 return retval;
2680 }
2681
2682 static int cortex_a_read_memory(struct target *target, target_addr_t address,
2683 uint32_t size, uint32_t count, uint8_t *buffer)
2684 {
2685 int retval;
2686
2687 /* cortex_a handles unaligned memory access */
2688 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2689 address, size, count);
2690
2691 cortex_a_prep_memaccess(target, 0);
2692 retval = cortex_a_read_cpu_memory(target, address, size, count, buffer);
2693 cortex_a_post_memaccess(target, 0);
2694
2695 return retval;
2696 }
2697
2698 static int cortex_a_read_memory_ahb(struct target *target, target_addr_t address,
2699 uint32_t size, uint32_t count, uint8_t *buffer)
2700 {
2701 int mmu_enabled = 0;
2702 target_addr_t virt, phys;
2703 int retval;
2704 struct armv7a_common *armv7a = target_to_armv7a(target);
2705 struct adiv5_dap *swjdp = armv7a->arm.dap;
2706 uint8_t apsel = swjdp->apsel;
2707
2708 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2709 return target_read_memory(target, address, size, count, buffer);
2710
2711 /* cortex_a handles unaligned memory access */
2712 LOG_DEBUG("Reading memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2713 address, size, count);
2714
2715 /* determine if MMU was enabled on target stop */
2716 if (!armv7a->is_armv7r) {
2717 retval = cortex_a_mmu(target, &mmu_enabled);
2718 if (retval != ERROR_OK)
2719 return retval;
2720 }
2721
2722 if (mmu_enabled) {
2723 virt = address;
2724 retval = cortex_a_virt2phys(target, virt, &phys);
2725 if (retval != ERROR_OK)
2726 return retval;
2727
2728 LOG_DEBUG("Reading at virtual address. "
2729 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2730 virt, phys);
2731 address = phys;
2732 }
2733
2734 if (!count || !buffer)
2735 return ERROR_COMMAND_SYNTAX_ERROR;
2736
2737 retval = mem_ap_read_buf(armv7a->memory_ap, buffer, size, count, address);
2738
2739 return retval;
2740 }
2741
2742 static int cortex_a_write_phys_memory(struct target *target,
2743 target_addr_t address, uint32_t size,
2744 uint32_t count, const uint8_t *buffer)
2745 {
2746 struct armv7a_common *armv7a = target_to_armv7a(target);
2747 struct adiv5_dap *swjdp = armv7a->arm.dap;
2748 uint8_t apsel = swjdp->apsel;
2749 int retval;
2750
2751 if (!count || !buffer)
2752 return ERROR_COMMAND_SYNTAX_ERROR;
2753
2754 LOG_DEBUG("Writing memory to real address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2755 address, size, count);
2756
2757 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num))
2758 return mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2759
2760 /* write memory through the CPU */
2761 cortex_a_prep_memaccess(target, 1);
2762 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2763 cortex_a_post_memaccess(target, 1);
2764
2765 return retval;
2766 }
2767
2768 static int cortex_a_write_memory(struct target *target, target_addr_t address,
2769 uint32_t size, uint32_t count, const uint8_t *buffer)
2770 {
2771 int retval;
2772
2773 /* cortex_a handles unaligned memory access */
2774 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2775 address, size, count);
2776
2777 /* memory writes bypass the caches, must flush before writing */
2778 armv7a_cache_auto_flush_on_write(target, address, size * count);
2779
2780 cortex_a_prep_memaccess(target, 0);
2781 retval = cortex_a_write_cpu_memory(target, address, size, count, buffer);
2782 cortex_a_post_memaccess(target, 0);
2783 return retval;
2784 }
2785
2786 static int cortex_a_write_memory_ahb(struct target *target, target_addr_t address,
2787 uint32_t size, uint32_t count, const uint8_t *buffer)
2788 {
2789 int mmu_enabled = 0;
2790 target_addr_t virt, phys;
2791 int retval;
2792 struct armv7a_common *armv7a = target_to_armv7a(target);
2793 struct adiv5_dap *swjdp = armv7a->arm.dap;
2794 uint8_t apsel = swjdp->apsel;
2795
2796 if (!armv7a->memory_ap_available || (apsel != armv7a->memory_ap->ap_num))
2797 return target_write_memory(target, address, size, count, buffer);
2798
2799 /* cortex_a handles unaligned memory access */
2800 LOG_DEBUG("Writing memory at address " TARGET_ADDR_FMT "; size %" PRId32 "; count %" PRId32,
2801 address, size, count);
2802
2803 /* determine if MMU was enabled on target stop */
2804 if (!armv7a->is_armv7r) {
2805 retval = cortex_a_mmu(target, &mmu_enabled);
2806 if (retval != ERROR_OK)
2807 return retval;
2808 }
2809
2810 if (mmu_enabled) {
2811 virt = address;
2812 retval = cortex_a_virt2phys(target, virt, &phys);
2813 if (retval != ERROR_OK)
2814 return retval;
2815
2816 LOG_DEBUG("Writing to virtual address. "
2817 "Translating v:" TARGET_ADDR_FMT " to r:" TARGET_ADDR_FMT,
2818 virt,
2819 phys);
2820 address = phys;
2821 }
2822
2823 if (!count || !buffer)
2824 return ERROR_COMMAND_SYNTAX_ERROR;
2825
2826 retval = mem_ap_write_buf(armv7a->memory_ap, buffer, size, count, address);
2827
2828 return retval;
2829 }
2830
2831 static int cortex_a_read_buffer(struct target *target, target_addr_t address,
2832 uint32_t count, uint8_t *buffer)
2833 {
2834 uint32_t size;
2835
2836 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2837 * will have something to do with the size we leave to it. */
2838 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2839 if (address & size) {
2840 int retval = cortex_a_read_memory_ahb(target, address, size, 1, buffer);
2841 if (retval != ERROR_OK)
2842 return retval;
2843 address += size;
2844 count -= size;
2845 buffer += size;
2846 }
2847 }
2848
2849 /* Read the data with as large access size as possible. */
2850 for (; size > 0; size /= 2) {
2851 uint32_t aligned = count - count % size;
2852 if (aligned > 0) {
2853 int retval = cortex_a_read_memory_ahb(target, address, size, aligned / size, buffer);
2854 if (retval != ERROR_OK)
2855 return retval;
2856 address += aligned;
2857 count -= aligned;
2858 buffer += aligned;
2859 }
2860 }
2861
2862 return ERROR_OK;
2863 }
2864
2865 static int cortex_a_write_buffer(struct target *target, target_addr_t address,
2866 uint32_t count, const uint8_t *buffer)
2867 {
2868 uint32_t size;
2869
2870 /* Align up to maximum 4 bytes. The loop condition makes sure the next pass
2871 * will have something to do with the size we leave to it. */
2872 for (size = 1; size < 4 && count >= size * 2 + (address & size); size *= 2) {
2873 if (address & size) {
2874 int retval = cortex_a_write_memory_ahb(target, address, size, 1, buffer);
2875 if (retval != ERROR_OK)
2876 return retval;
2877 address += size;
2878 count -= size;
2879 buffer += size;
2880 }
2881 }
2882
2883 /* Write the data with as large access size as possible. */
2884 for (; size > 0; size /= 2) {
2885 uint32_t aligned = count - count % size;
2886 if (aligned > 0) {
2887 int retval = cortex_a_write_memory_ahb(target, address, size, aligned / size, buffer);
2888 if (retval != ERROR_OK)
2889 return retval;
2890 address += aligned;
2891 count -= aligned;
2892 buffer += aligned;
2893 }
2894 }
2895
2896 return ERROR_OK;
2897 }
2898
2899 static int cortex_a_handle_target_request(void *priv)
2900 {
2901 struct target *target = priv;
2902 struct armv7a_common *armv7a = target_to_armv7a(target);
2903 int retval;
2904
2905 if (!target_was_examined(target))
2906 return ERROR_OK;
2907 if (!target->dbg_msg_enabled)
2908 return ERROR_OK;
2909
2910 if (target->state == TARGET_RUNNING) {
2911 uint32_t request;
2912 uint32_t dscr;
2913 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2914 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2915
2916 /* check if we have data */
2917 int64_t then = timeval_ms();
2918 while ((dscr & DSCR_DTR_TX_FULL) && (retval == ERROR_OK)) {
2919 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2920 armv7a->debug_base + CPUDBG_DTRTX, &request);
2921 if (retval == ERROR_OK) {
2922 target_request(target, request);
2923 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
2924 armv7a->debug_base + CPUDBG_DSCR, &dscr);
2925 }
2926 if (timeval_ms() > then + 1000) {
2927 LOG_ERROR("Timeout waiting for dtr tx full");
2928 return ERROR_FAIL;
2929 }
2930 }
2931 }
2932
2933 return ERROR_OK;
2934 }
2935
2936 /*
2937 * Cortex-A target information and configuration
2938 */
2939
2940 static int cortex_a_examine_first(struct target *target)
2941 {
2942 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
2943 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
2944 struct adiv5_dap *swjdp = armv7a->arm.dap;
2945
2946 int i;
2947 int retval = ERROR_OK;
2948 uint32_t didr, cpuid, dbg_osreg;
2949
2950 retval = dap_dp_init(swjdp);
2951 if (retval != ERROR_OK) {
2952 LOG_ERROR("Could not initialize the debug port");
2953 return retval;
2954 }
2955
2956 /* Search for the APB-AP - it is needed for access to debug registers */
2957 retval = dap_find_ap(swjdp, AP_TYPE_APB_AP, &armv7a->debug_ap);
2958 if (retval != ERROR_OK) {
2959 LOG_ERROR("Could not find APB-AP for debug access");
2960 return retval;
2961 }
2962
2963 retval = mem_ap_init(armv7a->debug_ap);
2964 if (retval != ERROR_OK) {
2965 LOG_ERROR("Could not initialize the APB-AP");
2966 return retval;
2967 }
2968
2969 armv7a->debug_ap->memaccess_tck = 80;
2970
2971 /* Search for the AHB-AB.
2972 * REVISIT: We should search for AXI-AP as well and make sure the AP's MEMTYPE says it
2973 * can access system memory. */
2974 armv7a->memory_ap_available = false;
2975 retval = dap_find_ap(swjdp, AP_TYPE_AHB_AP, &armv7a->memory_ap);
2976 if (retval == ERROR_OK) {
2977 retval = mem_ap_init(armv7a->memory_ap);
2978 if (retval == ERROR_OK)
2979 armv7a->memory_ap_available = true;
2980 }
2981 if (retval != ERROR_OK) {
2982 /* AHB-AP not found or unavailable - use the CPU */
2983 LOG_DEBUG("No AHB-AP available for memory access");
2984 }
2985
2986 if (!target->dbgbase_set) {
2987 uint32_t dbgbase;
2988 /* Get ROM Table base */
2989 uint32_t apid;
2990 int32_t coreidx = target->coreid;
2991 LOG_DEBUG("%s's dbgbase is not set, trying to detect using the ROM table",
2992 target->cmd_name);
2993 retval = dap_get_debugbase(armv7a->debug_ap, &dbgbase, &apid);
2994 if (retval != ERROR_OK)
2995 return retval;
2996 /* Lookup 0x15 -- Processor DAP */
2997 retval = dap_lookup_cs_component(armv7a->debug_ap, dbgbase, 0x15,
2998 &armv7a->debug_base, &coreidx);
2999 if (retval != ERROR_OK) {
3000 LOG_ERROR("Can't detect %s's dbgbase from the ROM table; you need to specify it explicitly.",
3001 target->cmd_name);
3002 return retval;
3003 }
3004 LOG_DEBUG("Detected core %" PRId32 " dbgbase: %08" PRIx32,
3005 target->coreid, armv7a->debug_base);
3006 } else
3007 armv7a->debug_base = target->dbgbase;
3008
3009 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3010 armv7a->debug_base + CPUDBG_DIDR, &didr);
3011 if (retval != ERROR_OK) {
3012 LOG_DEBUG("Examine %s failed", "DIDR");
3013 return retval;
3014 }
3015
3016 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3017 armv7a->debug_base + CPUDBG_CPUID, &cpuid);
3018 if (retval != ERROR_OK) {
3019 LOG_DEBUG("Examine %s failed", "CPUID");
3020 return retval;
3021 }
3022
3023 LOG_DEBUG("didr = 0x%08" PRIx32, didr);
3024 LOG_DEBUG("cpuid = 0x%08" PRIx32, cpuid);
3025
3026 cortex_a->didr = didr;
3027 cortex_a->cpuid = cpuid;
3028
3029 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3030 armv7a->debug_base + CPUDBG_PRSR, &dbg_osreg);
3031 if (retval != ERROR_OK)
3032 return retval;
3033 LOG_DEBUG("target->coreid %" PRId32 " DBGPRSR 0x%" PRIx32, target->coreid, dbg_osreg);
3034
3035 if ((dbg_osreg & PRSR_POWERUP_STATUS) == 0) {
3036 LOG_ERROR("target->coreid %" PRId32 " powered down!", target->coreid);
3037 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3038 return ERROR_TARGET_INIT_FAILED;
3039 }
3040
3041 if (dbg_osreg & PRSR_STICKY_RESET_STATUS)
3042 LOG_DEBUG("target->coreid %" PRId32 " was reset!", target->coreid);
3043
3044 /* Read DBGOSLSR and check if OSLK is implemented */
3045 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3046 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3047 if (retval != ERROR_OK)
3048 return retval;
3049 LOG_DEBUG("target->coreid %" PRId32 " DBGOSLSR 0x%" PRIx32, target->coreid, dbg_osreg);
3050
3051 /* check if OS Lock is implemented */
3052 if ((dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM0 || (dbg_osreg & OSLSR_OSLM) == OSLSR_OSLM1) {
3053 /* check if OS Lock is set */
3054 if (dbg_osreg & OSLSR_OSLK) {
3055 LOG_DEBUG("target->coreid %" PRId32 " OSLock set! Trying to unlock", target->coreid);
3056
3057 retval = mem_ap_write_atomic_u32(armv7a->debug_ap,
3058 armv7a->debug_base + CPUDBG_OSLAR,
3059 0);
3060 if (retval == ERROR_OK)
3061 retval = mem_ap_read_atomic_u32(armv7a->debug_ap,
3062 armv7a->debug_base + CPUDBG_OSLSR, &dbg_osreg);
3063
3064 /* if we fail to access the register or cannot reset the OSLK bit, bail out */
3065 if (retval != ERROR_OK || (dbg_osreg & OSLSR_OSLK) != 0) {
3066 LOG_ERROR("target->coreid %" PRId32 " OSLock sticky, core not powered?",
3067 target->coreid);
3068 target->state = TARGET_UNKNOWN; /* TARGET_NO_POWER? */
3069 return ERROR_TARGET_INIT_FAILED;
3070 }
3071 }
3072 }
3073
3074 armv7a->arm.core_type = ARM_MODE_MON;
3075
3076 /* Avoid recreating the registers cache */
3077 if (!target_was_examined(target)) {
3078 retval = cortex_a_dpm_setup(cortex_a, didr);
3079 if (retval != ERROR_OK)
3080 return retval;
3081 }
3082
3083 /* Setup Breakpoint Register Pairs */
3084 cortex_a->brp_num = ((didr >> 24) & 0x0F) + 1;
3085 cortex_a->brp_num_context = ((didr >> 20) & 0x0F) + 1;
3086 cortex_a->brp_num_available = cortex_a->brp_num;
3087 free(cortex_a->brp_list);
3088 cortex_a->brp_list = calloc(cortex_a->brp_num, sizeof(struct cortex_a_brp));
3089 /* cortex_a->brb_enabled = ????; */
3090 for (i = 0; i < cortex_a->brp_num; i++) {
3091 cortex_a->brp_list[i].used = 0;
3092 if (i < (cortex_a->brp_num-cortex_a->brp_num_context))
3093 cortex_a->brp_list[i].type = BRP_NORMAL;
3094 else
3095 cortex_a->brp_list[i].type = BRP_CONTEXT;
3096 cortex_a->brp_list[i].value = 0;
3097 cortex_a->brp_list[i].control = 0;
3098 cortex_a->brp_list[i].BRPn = i;
3099 }
3100
3101 LOG_DEBUG("Configured %i hw breakpoints", cortex_a->brp_num);
3102
3103 /* select debug_ap as default */
3104 swjdp->apsel = armv7a->debug_ap->ap_num;
3105
3106 target_set_examined(target);
3107 return ERROR_OK;
3108 }
3109
3110 static int cortex_a_examine(struct target *target)
3111 {
3112 int retval = ERROR_OK;
3113
3114 /* Reestablish communication after target reset */
3115 retval = cortex_a_examine_first(target);
3116
3117 /* Configure core debug access */
3118 if (retval == ERROR_OK)
3119 retval = cortex_a_init_debug_access(target);
3120
3121 return retval;
3122 }
3123
3124 /*
3125 * Cortex-A target creation and initialization
3126 */
3127
3128 static int cortex_a_init_target(struct command_context *cmd_ctx,
3129 struct target *target)
3130 {
3131 /* examine_first() does a bunch of this */
3132 arm_semihosting_init(target);
3133 return ERROR_OK;
3134 }
3135
3136 static int cortex_a_init_arch_info(struct target *target,
3137 struct cortex_a_common *cortex_a, struct jtag_tap *tap)
3138 {
3139 struct armv7a_common *armv7a = &cortex_a->armv7a_common;
3140
3141 /* Setup struct cortex_a_common */
3142 cortex_a->common_magic = CORTEX_A_COMMON_MAGIC;
3143
3144 /* tap has no dap initialized */
3145 if (!tap->dap) {
3146 tap->dap = dap_init();
3147
3148 /* Leave (only) generic DAP stuff for debugport_init() */
3149 tap->dap->tap = tap;
3150 }
3151
3152 armv7a->arm.dap = tap->dap;
3153
3154 cortex_a->fast_reg_read = 0;
3155
3156 /* register arch-specific functions */
3157 armv7a->examine_debug_reason = NULL;
3158
3159 armv7a->post_debug_entry = cortex_a_post_debug_entry;
3160
3161 armv7a->pre_restore_context = NULL;
3162
3163 armv7a->armv7a_mmu.read_physical_memory = cortex_a_read_phys_memory;
3164
3165
3166 /* arm7_9->handle_target_request = cortex_a_handle_target_request; */
3167
3168 /* REVISIT v7a setup should be in a v7a-specific routine */
3169 armv7a_init_arch_info(target, armv7a);
3170 target_register_timer_callback(cortex_a_handle_target_request, 1, 1, target);
3171
3172 return ERROR_OK;
3173 }
3174
3175 static int cortex_a_target_create(struct target *target, Jim_Interp *interp)
3176 {
3177 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3178
3179 cortex_a->armv7a_common.is_armv7r = false;
3180
3181 cortex_a->armv7a_common.arm.arm_vfp_version = ARM_VFP_V3;
3182
3183 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3184 }
3185
3186 static int cortex_r4_target_create(struct target *target, Jim_Interp *interp)
3187 {
3188 struct cortex_a_common *cortex_a = calloc(1, sizeof(struct cortex_a_common));
3189
3190 cortex_a->armv7a_common.is_armv7r = true;
3191
3192 return cortex_a_init_arch_info(target, cortex_a, target->tap);
3193 }
3194
3195 static void cortex_a_deinit_target(struct target *target)
3196 {
3197 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3198 struct arm_dpm *dpm = &cortex_a->armv7a_common.dpm;
3199
3200 free(cortex_a->brp_list);
3201 free(dpm->dbp);
3202 free(dpm->dwp);
3203 free(cortex_a);
3204 }
3205
3206 static int cortex_a_mmu(struct target *target, int *enabled)
3207 {
3208 struct armv7a_common *armv7a = target_to_armv7a(target);
3209
3210 if (target->state != TARGET_HALTED) {
3211 LOG_ERROR("%s: target not halted", __func__);
3212 return ERROR_TARGET_INVALID;
3213 }
3214
3215 if (armv7a->is_armv7r)
3216 *enabled = 0;
3217 else
3218 *enabled = target_to_cortex_a(target)->armv7a_common.armv7a_mmu.mmu_enabled;
3219
3220 return ERROR_OK;
3221 }
3222
3223 static int cortex_a_virt2phys(struct target *target,
3224 target_addr_t virt, target_addr_t *phys)
3225 {
3226 int retval = ERROR_FAIL;
3227 struct armv7a_common *armv7a = target_to_armv7a(target);
3228 struct adiv5_dap *swjdp = armv7a->arm.dap;
3229 uint8_t apsel = swjdp->apsel;
3230 if (armv7a->memory_ap_available && (apsel == armv7a->memory_ap->ap_num)) {
3231 uint32_t ret;
3232 retval = armv7a_mmu_translate_va(target,
3233 virt, &ret);
3234 if (retval != ERROR_OK)
3235 goto done;
3236 *phys = ret;
3237 } else {/* use this method if armv7a->memory_ap not selected
3238 * mmu must be enable in order to get a correct translation */
3239 retval = cortex_a_mmu_modify(target, 1);
3240 if (retval != ERROR_OK)
3241 goto done;
3242 retval = armv7a_mmu_translate_va_pa(target, (uint32_t)virt,
3243 (uint32_t *)phys, 1);
3244 }
3245 done:
3246 return retval;
3247 }
3248
3249 COMMAND_HANDLER(cortex_a_handle_cache_info_command)
3250 {
3251 struct target *target = get_current_target(CMD_CTX);
3252 struct armv7a_common *armv7a = target_to_armv7a(target);
3253
3254 return armv7a_handle_cache_info_command(CMD_CTX,
3255 &armv7a->armv7a_mmu.armv7a_cache);
3256 }
3257
3258
3259 COMMAND_HANDLER(cortex_a_handle_dbginit_command)
3260 {
3261 struct target *target = get_current_target(CMD_CTX);
3262 if (!target_was_examined(target)) {
3263 LOG_ERROR("target not examined yet");
3264 return ERROR_FAIL;
3265 }
3266
3267 return cortex_a_init_debug_access(target);
3268 }
3269 COMMAND_HANDLER(cortex_a_handle_smp_off_command)
3270 {
3271 struct target *target = get_current_target(CMD_CTX);
3272 /* check target is an smp target */
3273 struct target_list *head;
3274 struct target *curr;
3275 head = target->head;
3276 target->smp = 0;
3277 if (head != (struct target_list *)NULL) {
3278 while (head != (struct target_list *)NULL) {
3279 curr = head->target;
3280 curr->smp = 0;
3281 head = head->next;
3282 }
3283 /* fixes the target display to the debugger */
3284 target->gdb_service->target = target;
3285 }
3286 return ERROR_OK;
3287 }
3288
3289 COMMAND_HANDLER(cortex_a_handle_smp_on_command)
3290 {
3291 struct target *target = get_current_target(CMD_CTX);
3292 struct target_list *head;
3293 struct target *curr;
3294 head = target->head;
3295 if (head != (struct target_list *)NULL) {
3296 target->smp = 1;
3297 while (head != (struct target_list *)NULL) {
3298 curr = head->target;
3299 curr->smp = 1;
3300 head = head->next;
3301 }
3302 }
3303 return ERROR_OK;
3304 }
3305
3306 COMMAND_HANDLER(cortex_a_handle_smp_gdb_command)
3307 {
3308 struct target *target = get_current_target(CMD_CTX);
3309 int retval = ERROR_OK;
3310 struct target_list *head;
3311 head = target->head;
3312 if (head != (struct target_list *)NULL) {
3313 if (CMD_ARGC == 1) {
3314 int coreid = 0;
3315 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], coreid);
3316 if (ERROR_OK != retval)
3317 return retval;
3318 target->gdb_service->core[1] = coreid;
3319
3320 }
3321 command_print(CMD_CTX, "gdb coreid %" PRId32 " -> %" PRId32, target->gdb_service->core[0]
3322 , target->gdb_service->core[1]);
3323 }
3324 return ERROR_OK;
3325 }
3326
3327 COMMAND_HANDLER(handle_cortex_a_mask_interrupts_command)
3328 {
3329 struct target *target = get_current_target(CMD_CTX);
3330 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3331
3332 static const Jim_Nvp nvp_maskisr_modes[] = {
3333 { .name = "off", .value = CORTEX_A_ISRMASK_OFF },
3334 { .name = "on", .value = CORTEX_A_ISRMASK_ON },
3335 { .name = NULL, .value = -1 },
3336 };
3337 const Jim_Nvp *n;
3338
3339 if (CMD_ARGC > 0) {
3340 n = Jim_Nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
3341 if (n->name == NULL) {
3342 LOG_ERROR("Unknown parameter: %s - should be off or on", CMD_ARGV[0]);
3343 return ERROR_COMMAND_SYNTAX_ERROR;
3344 }
3345
3346 cortex_a->isrmasking_mode = n->value;
3347 }
3348
3349 n = Jim_Nvp_value2name_simple(nvp_maskisr_modes, cortex_a->isrmasking_mode);
3350 command_print(CMD_CTX, "cortex_a interrupt mask %s", n->name);
3351
3352 return ERROR_OK;
3353 }
3354
3355 COMMAND_HANDLER(handle_cortex_a_dacrfixup_command)
3356 {
3357 struct target *target = get_current_target(CMD_CTX);
3358 struct cortex_a_common *cortex_a = target_to_cortex_a(target);
3359
3360 static const Jim_Nvp nvp_dacrfixup_modes[] = {
3361 { .name = "off", .value = CORTEX_A_DACRFIXUP_OFF },
3362 { .name = "on", .value = CORTEX_A_DACRFIXUP_ON },
3363 { .name = NULL, .value = -1 },
3364 };
3365 const Jim_Nvp *n;
3366
3367 if (CMD_ARGC > 0) {
3368 n = Jim_Nvp_name2value_simple(nvp_dacrfixup_modes, CMD_ARGV[0]);
3369 if (n->name == NULL)
3370 return ERROR_COMMAND_SYNTAX_ERROR;
3371 cortex_a->dacrfixup_mode = n->value;
3372
3373 }
3374
3375 n = Jim_Nvp_value2name_simple(nvp_dacrfixup_modes, cortex_a->dacrfixup_mode);
3376 command_print(CMD_CTX, "cortex_a domain access control fixup %s", n->name);
3377
3378 return ERROR_OK;
3379 }
3380
3381 static const struct command_registration cortex_a_exec_command_handlers[] = {
3382 {
3383 .name = "cache_info",
3384 .handler = cortex_a_handle_cache_info_command,
3385 .mode = COMMAND_EXEC,
3386 .help = "display information about target caches",
3387 .usage = "",
3388 },
3389 {
3390 .name = "dbginit",
3391 .handler = cortex_a_handle_dbginit_command,
3392 .mode = COMMAND_EXEC,
3393 .help = "Initialize core debug",
3394 .usage = "",
3395 },
3396 { .name = "smp_off",
3397 .handler = cortex_a_handle_smp_off_command,
3398 .mode = COMMAND_EXEC,
3399 .help = "Stop smp handling",
3400 .usage = "",},
3401 {
3402 .name = "smp_on",
3403 .handler = cortex_a_handle_smp_on_command,
3404 .mode = COMMAND_EXEC,
3405 .help = "Restart smp handling",
3406 .usage = "",
3407 },
3408 {
3409 .name = "smp_gdb",
3410 .handler = cortex_a_handle_smp_gdb_command,
3411 .mode = COMMAND_EXEC,
3412 .help = "display/fix current core played to gdb",
3413 .usage = "",
3414 },
3415 {
3416 .name = "maskisr",
3417 .handler = handle_cortex_a_mask_interrupts_command,
3418 .mode = COMMAND_ANY,
3419 .help = "mask cortex_a interrupts",
3420 .usage = "['on'|'off']",
3421 },
3422 {
3423 .name = "dacrfixup",
3424 .handler = handle_cortex_a_dacrfixup_command,
3425 .mode = COMMAND_EXEC,
3426 .help = "set domain access control (DACR) to all-manager "
3427 "on memory access",
3428 .usage = "['on'|'off']",
3429 },
3430
3431 COMMAND_REGISTRATION_DONE
3432 };
3433 static const struct command_registration cortex_a_command_handlers[] = {
3434 {
3435 .chain = arm_command_handlers,
3436 },
3437 {
3438 .chain = armv7a_command_handlers,
3439 },
3440 {
3441 .name = "cortex_a",
3442 .mode = COMMAND_ANY,
3443 .help = "Cortex-A command group",
3444 .usage = "",
3445 .chain = cortex_a_exec_command_handlers,
3446 },
3447 COMMAND_REGISTRATION_DONE
3448 };
3449
3450 struct target_type cortexa_target = {
3451 .name = "cortex_a",
3452 .deprecated_name = "cortex_a8",
3453
3454 .poll = cortex_a_poll,
3455 .arch_state = armv7a_arch_state,
3456
3457 .halt = cortex_a_halt,
3458 .resume = cortex_a_resume,
3459 .step = cortex_a_step,
3460
3461 .assert_reset = cortex_a_assert_reset,
3462 .deassert_reset = cortex_a_deassert_reset,
3463
3464 /* REVISIT allow exporting VFP3 registers ... */
3465 .get_gdb_reg_list = arm_get_gdb_reg_list,
3466
3467 .read_memory = cortex_a_read_memory,
3468 .write_memory = cortex_a_write_memory,
3469
3470 .read_buffer = cortex_a_read_buffer,
3471 .write_buffer = cortex_a_write_buffer,
3472
3473 .checksum_memory = arm_checksum_memory,
3474 .blank_check_memory = arm_blank_check_memory,
3475
3476 .run_algorithm = armv4_5_run_algorithm,
3477
3478 .add_breakpoint = cortex_a_add_breakpoint,
3479 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3480 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3481 .remove_breakpoint = cortex_a_remove_breakpoint,
3482 .add_watchpoint = NULL,
3483 .remove_watchpoint = NULL,
3484
3485 .commands = cortex_a_command_handlers,
3486 .target_create = cortex_a_target_create,
3487 .init_target = cortex_a_init_target,
3488 .examine = cortex_a_examine,
3489 .deinit_target = cortex_a_deinit_target,
3490
3491 .read_phys_memory = cortex_a_read_phys_memory,
3492 .write_phys_memory = cortex_a_write_phys_memory,
3493 .mmu = cortex_a_mmu,
3494 .virt2phys = cortex_a_virt2phys,
3495 };
3496
3497 static const struct command_registration cortex_r4_exec_command_handlers[] = {
3498 {
3499 .name = "dbginit",
3500 .handler = cortex_a_handle_dbginit_command,
3501 .mode = COMMAND_EXEC,
3502 .help = "Initialize core debug",
3503 .usage = "",
3504 },
3505 {
3506 .name = "maskisr",
3507 .handler = handle_cortex_a_mask_interrupts_command,
3508 .mode = COMMAND_EXEC,
3509 .help = "mask cortex_r4 interrupts",
3510 .usage = "['on'|'off']",
3511 },
3512
3513 COMMAND_REGISTRATION_DONE
3514 };
3515 static const struct command_registration cortex_r4_command_handlers[] = {
3516 {
3517 .chain = arm_command_handlers,
3518 },
3519 {
3520 .chain = dap_command_handlers,
3521 },
3522 {
3523 .name = "cortex_r4",
3524 .mode = COMMAND_ANY,
3525 .help = "Cortex-R4 command group",
3526 .usage = "",
3527 .chain = cortex_r4_exec_command_handlers,
3528 },
3529 COMMAND_REGISTRATION_DONE
3530 };
3531
3532 struct target_type cortexr4_target = {
3533 .name = "cortex_r4",
3534
3535 .poll = cortex_a_poll,
3536 .arch_state = armv7a_arch_state,
3537
3538 .halt = cortex_a_halt,
3539 .resume = cortex_a_resume,
3540 .step = cortex_a_step,
3541
3542 .assert_reset = cortex_a_assert_reset,
3543 .deassert_reset = cortex_a_deassert_reset,
3544
3545 /* REVISIT allow exporting VFP3 registers ... */
3546 .get_gdb_reg_list = arm_get_gdb_reg_list,
3547
3548 .read_memory = cortex_a_read_phys_memory,
3549 .write_memory = cortex_a_write_phys_memory,
3550
3551 .checksum_memory = arm_checksum_memory,
3552 .blank_check_memory = arm_blank_check_memory,
3553
3554 .run_algorithm = armv4_5_run_algorithm,
3555
3556 .add_breakpoint = cortex_a_add_breakpoint,
3557 .add_context_breakpoint = cortex_a_add_context_breakpoint,
3558 .add_hybrid_breakpoint = cortex_a_add_hybrid_breakpoint,
3559 .remove_breakpoint = cortex_a_remove_breakpoint,
3560 .add_watchpoint = NULL,
3561 .remove_watchpoint = NULL,
3562
3563 .commands = cortex_r4_command_handlers,
3564 .target_create = cortex_r4_target_create,
3565 .init_target = cortex_a_init_target,
3566 .examine = cortex_a_examine,
3567 .deinit_target = cortex_a_deinit_target,
3568 };