target/arm: make 'arm core_state' command compatible with Cortex-M
[openocd.git] / src / target / armv4_5.c
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2008 by Spencer Oliver *
8 * spen@spen-soft.co.uk *
9 * *
10 * Copyright (C) 2008 by Oyvind Harboe *
11 * oyvind.harboe@zylin.com *
12 * *
13 * Copyright (C) 2018 by Liviu Ionescu *
14 * <ilg@livius.net> *
15 ***************************************************************************/
16
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
20
21 #include "arm.h"
22 #include "armv4_5.h"
23 #include "arm_jtag.h"
24 #include "breakpoints.h"
25 #include "arm_disassembler.h"
26 #include <helper/binarybuffer.h>
27 #include "algorithm.h"
28 #include "register.h"
29 #include "semihosting_common.h"
30
31 /* offsets into armv4_5 core register cache */
32 enum {
33 /* ARMV4_5_CPSR = 31, */
34 ARMV4_5_SPSR_FIQ = 32,
35 ARMV4_5_SPSR_IRQ = 33,
36 ARMV4_5_SPSR_SVC = 34,
37 ARMV4_5_SPSR_ABT = 35,
38 ARMV4_5_SPSR_UND = 36,
39 ARM_SPSR_MON = 41,
40 ARM_SPSR_HYP = 43,
41 };
42
43 static const uint8_t arm_usr_indices[17] = {
44 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
45 };
46
47 static const uint8_t arm_fiq_indices[8] = {
48 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
49 };
50
51 static const uint8_t arm_irq_indices[3] = {
52 23, 24, ARMV4_5_SPSR_IRQ,
53 };
54
55 static const uint8_t arm_svc_indices[3] = {
56 25, 26, ARMV4_5_SPSR_SVC,
57 };
58
59 static const uint8_t arm_abt_indices[3] = {
60 27, 28, ARMV4_5_SPSR_ABT,
61 };
62
63 static const uint8_t arm_und_indices[3] = {
64 29, 30, ARMV4_5_SPSR_UND,
65 };
66
67 static const uint8_t arm_mon_indices[3] = {
68 39, 40, ARM_SPSR_MON,
69 };
70
71 static const uint8_t arm_hyp_indices[2] = {
72 42, ARM_SPSR_HYP,
73 };
74
75 static const struct {
76 const char *name;
77 unsigned short psr;
78 /* For user and system modes, these list indices for all registers.
79 * otherwise they're just indices for the shadow registers and SPSR.
80 */
81 unsigned short n_indices;
82 const uint8_t *indices;
83 } arm_mode_data[] = {
84 /* Seven modes are standard from ARM7 on. "System" and "User" share
85 * the same registers; other modes shadow from 3 to 8 registers.
86 */
87 {
88 .name = "User",
89 .psr = ARM_MODE_USR,
90 .n_indices = ARRAY_SIZE(arm_usr_indices),
91 .indices = arm_usr_indices,
92 },
93 {
94 .name = "FIQ",
95 .psr = ARM_MODE_FIQ,
96 .n_indices = ARRAY_SIZE(arm_fiq_indices),
97 .indices = arm_fiq_indices,
98 },
99 {
100 .name = "Supervisor",
101 .psr = ARM_MODE_SVC,
102 .n_indices = ARRAY_SIZE(arm_svc_indices),
103 .indices = arm_svc_indices,
104 },
105 {
106 .name = "Abort",
107 .psr = ARM_MODE_ABT,
108 .n_indices = ARRAY_SIZE(arm_abt_indices),
109 .indices = arm_abt_indices,
110 },
111 {
112 .name = "IRQ",
113 .psr = ARM_MODE_IRQ,
114 .n_indices = ARRAY_SIZE(arm_irq_indices),
115 .indices = arm_irq_indices,
116 },
117 {
118 .name = "Undefined instruction",
119 .psr = ARM_MODE_UND,
120 .n_indices = ARRAY_SIZE(arm_und_indices),
121 .indices = arm_und_indices,
122 },
123 {
124 .name = "System",
125 .psr = ARM_MODE_SYS,
126 .n_indices = ARRAY_SIZE(arm_usr_indices),
127 .indices = arm_usr_indices,
128 },
129 /* TrustZone "Security Extensions" add a secure monitor mode.
130 * This is distinct from a "debug monitor" which can support
131 * non-halting debug, in conjunction with some debuggers.
132 */
133 {
134 .name = "Secure Monitor",
135 .psr = ARM_MODE_MON,
136 .n_indices = ARRAY_SIZE(arm_mon_indices),
137 .indices = arm_mon_indices,
138 },
139 {
140 .name = "Secure Monitor ARM1176JZF-S",
141 .psr = ARM_MODE_1176_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
144 },
145
146 /* These special modes are currently only supported
147 * by ARMv6M and ARMv7M profiles */
148 {
149 .name = "Thread",
150 .psr = ARM_MODE_THREAD,
151 },
152 {
153 .name = "Thread (User)",
154 .psr = ARM_MODE_USER_THREAD,
155 },
156 {
157 .name = "Handler",
158 .psr = ARM_MODE_HANDLER,
159 },
160
161 /* armv7-a with virtualization extension */
162 {
163 .name = "Hypervisor",
164 .psr = ARM_MODE_HYP,
165 .n_indices = ARRAY_SIZE(arm_hyp_indices),
166 .indices = arm_hyp_indices,
167 },
168 };
169
170 /** Map PSR mode bits to the name of an ARM processor operating mode. */
171 const char *arm_mode_name(unsigned psr_mode)
172 {
173 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
174 if (arm_mode_data[i].psr == psr_mode)
175 return arm_mode_data[i].name;
176 }
177 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
178 return "UNRECOGNIZED";
179 }
180
181 /** Return true iff the parameter denotes a valid ARM processor mode. */
182 bool is_arm_mode(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return true;
187 }
188 return false;
189 }
190
191 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
192 int arm_mode_to_number(enum arm_mode mode)
193 {
194 switch (mode) {
195 case ARM_MODE_ANY:
196 /* map MODE_ANY to user mode */
197 case ARM_MODE_USR:
198 return 0;
199 case ARM_MODE_FIQ:
200 return 1;
201 case ARM_MODE_IRQ:
202 return 2;
203 case ARM_MODE_SVC:
204 return 3;
205 case ARM_MODE_ABT:
206 return 4;
207 case ARM_MODE_UND:
208 return 5;
209 case ARM_MODE_SYS:
210 return 6;
211 case ARM_MODE_MON:
212 case ARM_MODE_1176_MON:
213 return 7;
214 case ARM_MODE_HYP:
215 return 8;
216 default:
217 LOG_ERROR("invalid mode value encountered %d", mode);
218 return -1;
219 }
220 }
221
222 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
223 enum arm_mode armv4_5_number_to_mode(int number)
224 {
225 switch (number) {
226 case 0:
227 return ARM_MODE_USR;
228 case 1:
229 return ARM_MODE_FIQ;
230 case 2:
231 return ARM_MODE_IRQ;
232 case 3:
233 return ARM_MODE_SVC;
234 case 4:
235 return ARM_MODE_ABT;
236 case 5:
237 return ARM_MODE_UND;
238 case 6:
239 return ARM_MODE_SYS;
240 case 7:
241 return ARM_MODE_MON;
242 case 8:
243 return ARM_MODE_HYP;
244 default:
245 LOG_ERROR("mode index out of bounds %d", number);
246 return ARM_MODE_ANY;
247 }
248 }
249
250 static const char *arm_state_strings[] = {
251 "ARM", "Thumb", "Jazelle", "ThumbEE",
252 };
253
254 /* Templates for ARM core registers.
255 *
256 * NOTE: offsets in this table are coupled to the arm_mode_data
257 * table above, the armv4_5_core_reg_map array below, and also to
258 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
259 */
260 static const struct {
261 /* The name is used for e.g. the "regs" command. */
262 const char *name;
263
264 /* The {cookie, mode} tuple uniquely identifies one register.
265 * In a given mode, cookies 0..15 map to registers R0..R15,
266 * with R13..R15 usually called SP, LR, PC.
267 *
268 * MODE_ANY is used as *input* to the mapping, and indicates
269 * various special cases (sigh) and errors.
270 *
271 * Cookie 16 is (currently) confusing, since it indicates
272 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
273 * (Exception modes have both CPSR and SPSR registers ...)
274 */
275 unsigned cookie;
276 unsigned gdb_index;
277 enum arm_mode mode;
278 } arm_core_regs[] = {
279 /* IMPORTANT: we guarantee that the first eight cached registers
280 * correspond to r0..r7, and the fifteenth to PC, so that callers
281 * don't need to map them.
282 */
283 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
284 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
285 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
286 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
287 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
288 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
289 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
290 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
291
292 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
293 * them as MODE_ANY creates special cases. (ANY means
294 * "not mapped" elsewhere; here it's "everything but FIQ".)
295 */
296 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
297 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
298 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
299 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
300 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
301
302 /* Historical GDB mapping of indices:
303 * - 13-14 are sp and lr, but banked counterparts are used
304 * - 16-24 are left for deprecated 8 FPA + 1 FPS
305 * - 25 is the cpsr
306 */
307
308 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
309 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
310 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
311
312 /* guaranteed to be at index 15 */
313 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
314 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
315 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
316 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
317 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
318 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
319
320 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
321 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
322
323 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
324 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
325
326 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
327 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
328
329 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
330 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
331
332 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
333 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
334
335 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
336 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
337 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
338 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
339 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
340 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
341
342 /* These are only used for GDB target description, banked registers are accessed instead */
343 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
344 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
345
346 /* These exist only when the Security Extension (TrustZone) is present */
347 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
348 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
349 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
350
351 /* These exist only when the Virtualization Extensions is present */
352 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
353 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
354 };
355
356 static const struct {
357 unsigned int id;
358 const char *name;
359 uint32_t bits;
360 enum arm_mode mode;
361 enum reg_type type;
362 const char *group;
363 const char *feature;
364 } arm_vfp_v3_regs[] = {
365 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
398 };
399
400 /* map core mode (USR, FIQ, ...) and register number to
401 * indices into the register cache
402 */
403 const int armv4_5_core_reg_map[9][17] = {
404 { /* USR */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
406 },
407 { /* FIQ (8 shadows of USR, vs normal 3) */
408 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
409 },
410 { /* IRQ */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
412 },
413 { /* SVC */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
415 },
416 { /* ABT */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
418 },
419 { /* UND */
420 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
421 },
422 { /* SYS (same registers as USR) */
423 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
424 },
425 { /* MON */
426 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
427 },
428 { /* HYP */
429 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
430 }
431 };
432
433 /**
434 * Configures host-side ARM records to reflect the specified CPSR.
435 * Later, code can use arm_reg_current() to map register numbers
436 * according to how they are exposed by this mode.
437 */
438 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
439 {
440 enum arm_mode mode = cpsr & 0x1f;
441 int num;
442
443 /* NOTE: this may be called very early, before the register
444 * cache is set up. We can't defend against many errors, in
445 * particular against CPSRs that aren't valid *here* ...
446 */
447 if (arm->cpsr) {
448 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
449 arm->cpsr->valid = true;
450 arm->cpsr->dirty = false;
451 }
452
453 arm->core_mode = mode;
454
455 /* mode_to_number() warned; set up a somewhat-sane mapping */
456 num = arm_mode_to_number(mode);
457 if (num < 0) {
458 mode = ARM_MODE_USR;
459 num = 0;
460 }
461
462 arm->map = &armv4_5_core_reg_map[num][0];
463 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
464 ? NULL
465 : arm->core_cache->reg_list + arm->map[16];
466
467 /* Older ARMs won't have the J bit */
468 enum arm_state state;
469
470 if (cpsr & (1 << 5)) { /* T */
471 if (cpsr & (1 << 24)) { /* J */
472 LOG_WARNING("ThumbEE -- incomplete support");
473 state = ARM_STATE_THUMB_EE;
474 } else
475 state = ARM_STATE_THUMB;
476 } else {
477 if (cpsr & (1 << 24)) { /* J */
478 LOG_ERROR("Jazelle state handling is BROKEN!");
479 state = ARM_STATE_JAZELLE;
480 } else
481 state = ARM_STATE_ARM;
482 }
483 arm->core_state = state;
484
485 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
486 arm_mode_name(mode),
487 arm_state_strings[arm->core_state]);
488 }
489
490 /**
491 * Returns handle to the register currently mapped to a given number.
492 * Someone must have called arm_set_cpsr() before.
493 *
494 * \param arm This core's state and registers are used.
495 * \param regnum From 0..15 corresponding to R0..R14 and PC.
496 * Note that R0..R7 don't require mapping; you may access those
497 * as the first eight entries in the register cache. Likewise
498 * R15 (PC) doesn't need mapping; you may also access it directly.
499 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
500 * CPSR (arm->cpsr) is also not mapped.
501 */
502 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
503 {
504 struct reg *r;
505
506 if (regnum > 16)
507 return NULL;
508
509 if (!arm->map) {
510 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
511 r = arm->core_cache->reg_list + regnum;
512 } else
513 r = arm->core_cache->reg_list + arm->map[regnum];
514
515 /* e.g. invalid CPSR said "secure monitor" mode on a core
516 * that doesn't support it...
517 */
518 if (!r) {
519 LOG_ERROR("Invalid CPSR mode");
520 r = arm->core_cache->reg_list + regnum;
521 }
522
523 return r;
524 }
525
526 static const uint8_t arm_gdb_dummy_fp_value[12];
527
528 static struct reg_feature arm_gdb_dummy_fp_features = {
529 .name = "net.sourceforge.openocd.fake_fpa"
530 };
531
532 /**
533 * Dummy FPA registers are required to support GDB on ARM.
534 * Register packets require eight obsolete FPA register values.
535 * Modern ARM cores use Vector Floating Point (VFP), if they
536 * have any floating point support. VFP is not FPA-compatible.
537 */
538 struct reg arm_gdb_dummy_fp_reg = {
539 .name = "GDB dummy FPA register",
540 .value = (uint8_t *) arm_gdb_dummy_fp_value,
541 .valid = true,
542 .size = 96,
543 .exist = false,
544 .number = 16,
545 .feature = &arm_gdb_dummy_fp_features,
546 .group = "fake_fpa",
547 };
548
549 static const uint8_t arm_gdb_dummy_fps_value[4];
550
551 /**
552 * Dummy FPA status registers are required to support GDB on ARM.
553 * Register packets require an obsolete FPA status register.
554 */
555 struct reg arm_gdb_dummy_fps_reg = {
556 .name = "GDB dummy FPA status register",
557 .value = (uint8_t *) arm_gdb_dummy_fps_value,
558 .valid = true,
559 .size = 32,
560 .exist = false,
561 .number = 24,
562 .feature = &arm_gdb_dummy_fp_features,
563 .group = "fake_fpa",
564 };
565
566 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
567
568 static void arm_gdb_dummy_init(void)
569 {
570 register_init_dummy(&arm_gdb_dummy_fp_reg);
571 register_init_dummy(&arm_gdb_dummy_fps_reg);
572 }
573
574 static int armv4_5_get_core_reg(struct reg *reg)
575 {
576 int retval;
577 struct arm_reg *reg_arch_info = reg->arch_info;
578 struct target *target = reg_arch_info->target;
579
580 if (target->state != TARGET_HALTED) {
581 LOG_ERROR("Target not halted");
582 return ERROR_TARGET_NOT_HALTED;
583 }
584
585 retval = reg_arch_info->arm->read_core_reg(target, reg,
586 reg_arch_info->num, reg_arch_info->mode);
587 if (retval == ERROR_OK) {
588 reg->valid = true;
589 reg->dirty = false;
590 }
591
592 return retval;
593 }
594
595 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
596 {
597 struct arm_reg *reg_arch_info = reg->arch_info;
598 struct target *target = reg_arch_info->target;
599 struct arm *armv4_5_target = target_to_arm(target);
600 uint32_t value = buf_get_u32(buf, 0, 32);
601
602 if (target->state != TARGET_HALTED) {
603 LOG_ERROR("Target not halted");
604 return ERROR_TARGET_NOT_HALTED;
605 }
606
607 /* Except for CPSR, the "reg" command exposes a writeback model
608 * for the register cache.
609 */
610 if (reg == armv4_5_target->cpsr) {
611 arm_set_cpsr(armv4_5_target, value);
612
613 /* Older cores need help to be in ARM mode during halt
614 * mode debug, so we clear the J and T bits if we flush.
615 * For newer cores (v6/v7a/v7r) we don't need that, but
616 * it won't hurt since CPSR is always flushed anyway.
617 */
618 if (armv4_5_target->core_mode !=
619 (enum arm_mode)(value & 0x1f)) {
620 LOG_DEBUG("changing ARM core mode to '%s'",
621 arm_mode_name(value & 0x1f));
622 value &= ~((1 << 24) | (1 << 5));
623 uint8_t t[4];
624 buf_set_u32(t, 0, 32, value);
625 armv4_5_target->write_core_reg(target, reg,
626 16, ARM_MODE_ANY, t);
627 }
628 } else {
629 buf_set_u32(reg->value, 0, 32, value);
630 if (reg->size == 64) {
631 value = buf_get_u32(buf + 4, 0, 32);
632 buf_set_u32(reg->value + 4, 0, 32, value);
633 }
634 reg->valid = true;
635 }
636 reg->dirty = true;
637
638 return ERROR_OK;
639 }
640
641 static const struct reg_arch_type arm_reg_type = {
642 .get = armv4_5_get_core_reg,
643 .set = armv4_5_set_core_reg,
644 };
645
646 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
647 {
648 int num_regs = ARRAY_SIZE(arm_core_regs);
649 int num_core_regs = num_regs;
650 if (arm->arm_vfp_version == ARM_VFP_V3)
651 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
652
653 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
654 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
655 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
656 int i;
657
658 if (!cache || !reg_list || !reg_arch_info) {
659 free(cache);
660 free(reg_list);
661 free(reg_arch_info);
662 return NULL;
663 }
664
665 cache->name = "ARM registers";
666 cache->next = NULL;
667 cache->reg_list = reg_list;
668 cache->num_regs = 0;
669
670 for (i = 0; i < num_core_regs; i++) {
671 /* Skip registers this core doesn't expose */
672 if (arm_core_regs[i].mode == ARM_MODE_MON
673 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
674 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
675 continue;
676 if (arm_core_regs[i].mode == ARM_MODE_HYP
677 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
678 continue;
679
680 /* REVISIT handle Cortex-M, which only shadows R13/SP */
681
682 reg_arch_info[i].num = arm_core_regs[i].cookie;
683 reg_arch_info[i].mode = arm_core_regs[i].mode;
684 reg_arch_info[i].target = target;
685 reg_arch_info[i].arm = arm;
686
687 reg_list[i].name = arm_core_regs[i].name;
688 reg_list[i].number = arm_core_regs[i].gdb_index;
689 reg_list[i].size = 32;
690 reg_list[i].value = reg_arch_info[i].value;
691 reg_list[i].type = &arm_reg_type;
692 reg_list[i].arch_info = &reg_arch_info[i];
693 reg_list[i].exist = true;
694
695 /* This really depends on the calling convention in use */
696 reg_list[i].caller_save = false;
697
698 /* Registers data type, as used by GDB target description */
699 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
700 switch (arm_core_regs[i].cookie) {
701 case 13:
702 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
703 break;
704 case 14:
705 case 15:
706 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
707 break;
708 default:
709 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
710 break;
711 }
712
713 /* let GDB shows banked registers only in "info all-reg" */
714 reg_list[i].feature = malloc(sizeof(struct reg_feature));
715 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
716 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
717 reg_list[i].group = "general";
718 } else {
719 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
720 reg_list[i].group = "banked";
721 }
722
723 cache->num_regs++;
724 }
725
726 int j;
727 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
728 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
729 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
730 reg_arch_info[i].target = target;
731 reg_arch_info[i].arm = arm;
732
733 reg_list[i].name = arm_vfp_v3_regs[j].name;
734 reg_list[i].number = arm_vfp_v3_regs[j].id;
735 reg_list[i].size = arm_vfp_v3_regs[j].bits;
736 reg_list[i].value = reg_arch_info[i].value;
737 reg_list[i].type = &arm_reg_type;
738 reg_list[i].arch_info = &reg_arch_info[i];
739 reg_list[i].exist = true;
740
741 reg_list[i].caller_save = false;
742
743 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
744 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
745
746 reg_list[i].feature = malloc(sizeof(struct reg_feature));
747 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
748
749 reg_list[i].group = arm_vfp_v3_regs[j].group;
750
751 cache->num_regs++;
752 }
753
754 arm->pc = reg_list + 15;
755 arm->cpsr = reg_list + ARMV4_5_CPSR;
756 arm->core_cache = cache;
757
758 return cache;
759 }
760
761 void arm_free_reg_cache(struct arm *arm)
762 {
763 if (!arm || !arm->core_cache)
764 return;
765
766 struct reg_cache *cache = arm->core_cache;
767
768 for (unsigned int i = 0; i < cache->num_regs; i++) {
769 struct reg *reg = &cache->reg_list[i];
770
771 free(reg->feature);
772 free(reg->reg_data_type);
773 }
774
775 free(cache->reg_list[0].arch_info);
776 free(cache->reg_list);
777 free(cache);
778
779 arm->core_cache = NULL;
780 }
781
782 int arm_arch_state(struct target *target)
783 {
784 struct arm *arm = target_to_arm(target);
785
786 if (arm->common_magic != ARM_COMMON_MAGIC) {
787 LOG_ERROR("BUG: called for a non-ARM target");
788 return ERROR_FAIL;
789 }
790
791 /* avoid filling log waiting for fileio reply */
792 if (target->semihosting && target->semihosting->hit_fileio)
793 return ERROR_OK;
794
795 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
796 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
797 arm_state_strings[arm->core_state],
798 debug_reason_name(target),
799 arm_mode_name(arm->core_mode),
800 buf_get_u32(arm->cpsr->value, 0, 32),
801 buf_get_u32(arm->pc->value, 0, 32),
802 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
803 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
804
805 return ERROR_OK;
806 }
807
808 COMMAND_HANDLER(handle_armv4_5_reg_command)
809 {
810 struct target *target = get_current_target(CMD_CTX);
811 struct arm *arm = target_to_arm(target);
812 struct reg *regs;
813
814 if (!is_arm(arm)) {
815 command_print(CMD, "current target isn't an ARM");
816 return ERROR_FAIL;
817 }
818
819 if (target->state != TARGET_HALTED) {
820 command_print(CMD, "error: target must be halted for register accesses");
821 return ERROR_FAIL;
822 }
823
824 if (arm->core_type != ARM_CORE_TYPE_STD) {
825 command_print(CMD,
826 "Microcontroller Profile not supported - use standard reg cmd");
827 return ERROR_OK;
828 }
829
830 if (!is_arm_mode(arm->core_mode)) {
831 LOG_ERROR("not a valid arm core mode - communication failure?");
832 return ERROR_FAIL;
833 }
834
835 if (!arm->full_context) {
836 command_print(CMD, "error: target doesn't support %s",
837 CMD_NAME);
838 return ERROR_FAIL;
839 }
840
841 regs = arm->core_cache->reg_list;
842
843 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
844 const char *name;
845 char *sep = "\n";
846 char *shadow = "";
847
848 if (!arm_mode_data[mode].n_indices)
849 continue;
850
851 /* label this bank of registers (or shadows) */
852 switch (arm_mode_data[mode].psr) {
853 case ARM_MODE_SYS:
854 continue;
855 case ARM_MODE_USR:
856 name = "System and User";
857 sep = "";
858 break;
859 case ARM_MODE_HYP:
860 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
861 continue;
862 /* FALLTHROUGH */
863 case ARM_MODE_MON:
864 case ARM_MODE_1176_MON:
865 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
866 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
867 continue;
868 /* FALLTHROUGH */
869 default:
870 name = arm_mode_data[mode].name;
871 shadow = "shadow ";
872 break;
873 }
874 command_print(CMD, "%s%s mode %sregisters",
875 sep, name, shadow);
876
877 /* display N rows of up to 4 registers each */
878 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
879 char output[80];
880 int output_len = 0;
881
882 for (unsigned j = 0; j < 4; j++, i++) {
883 uint32_t value;
884 struct reg *reg = regs;
885
886 if (i >= arm_mode_data[mode].n_indices)
887 break;
888
889 reg += arm_mode_data[mode].indices[i];
890
891 /* REVISIT be smarter about faults... */
892 if (!reg->valid)
893 arm->full_context(target);
894
895 value = buf_get_u32(reg->value, 0, 32);
896 output_len += snprintf(output + output_len,
897 sizeof(output) - output_len,
898 "%8s: %8.8" PRIx32 " ",
899 reg->name, value);
900 }
901 command_print(CMD, "%s", output);
902 }
903 }
904
905 return ERROR_OK;
906 }
907
908 COMMAND_HANDLER(handle_arm_core_state_command)
909 {
910 struct target *target = get_current_target(CMD_CTX);
911 struct arm *arm = target_to_arm(target);
912 int ret = ERROR_OK;
913
914 if (!is_arm(arm)) {
915 command_print(CMD, "current target isn't an ARM");
916 return ERROR_FAIL;
917 }
918
919 if (CMD_ARGC > 0) {
920 if (strcmp(CMD_ARGV[0], "arm") == 0) {
921 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
922 command_print(CMD, "arm mode not supported on Cortex-M");
923 ret = ERROR_FAIL;
924 } else {
925 arm->core_state = ARM_STATE_ARM;
926 }
927 }
928 if (strcmp(CMD_ARGV[0], "thumb") == 0)
929 arm->core_state = ARM_STATE_THUMB;
930 }
931
932 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
933
934 return ret;
935 }
936
937 COMMAND_HANDLER(handle_arm_disassemble_command)
938 {
939 #if HAVE_CAPSTONE
940 struct target *target = get_current_target(CMD_CTX);
941
942 if (!target) {
943 LOG_ERROR("No target selected");
944 return ERROR_FAIL;
945 }
946
947 struct arm *arm = target_to_arm(target);
948 target_addr_t address;
949 unsigned int count = 1;
950 bool thumb = false;
951
952 if (!is_arm(arm)) {
953 command_print(CMD, "current target isn't an ARM");
954 return ERROR_FAIL;
955 }
956
957 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
958 /* armv7m is always thumb mode */
959 thumb = true;
960 }
961
962 switch (CMD_ARGC) {
963 case 3:
964 if (strcmp(CMD_ARGV[2], "thumb") != 0)
965 return ERROR_COMMAND_SYNTAX_ERROR;
966 thumb = true;
967 /* FALL THROUGH */
968 case 2:
969 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
970 /* FALL THROUGH */
971 case 1:
972 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
973 if (address & 0x01) {
974 if (!thumb) {
975 command_print(CMD, "Disassemble as Thumb");
976 thumb = true;
977 }
978 address &= ~1;
979 }
980 break;
981 default:
982 return ERROR_COMMAND_SYNTAX_ERROR;
983 }
984
985 return arm_disassemble(CMD, target, address, count, thumb);
986 #else
987 command_print(CMD, "capstone disassembly framework required");
988 return ERROR_FAIL;
989 #endif
990 }
991
992 static int jim_mcrmrc(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
993 {
994 struct command_context *context;
995 struct target *target;
996 struct arm *arm;
997 int retval;
998
999 context = current_command_context(interp);
1000 assert(context);
1001
1002 target = get_current_target(context);
1003 if (!target) {
1004 LOG_ERROR("%s: no current target", __func__);
1005 return JIM_ERR;
1006 }
1007 if (!target_was_examined(target)) {
1008 LOG_ERROR("%s: not yet examined", target_name(target));
1009 return JIM_ERR;
1010 }
1011 arm = target_to_arm(target);
1012 if (!is_arm(arm)) {
1013 LOG_ERROR("%s: not an ARM", target_name(target));
1014 return JIM_ERR;
1015 }
1016
1017 if ((argc < 6) || (argc > 7)) {
1018 /* FIXME use the command name to verify # params... */
1019 LOG_ERROR("%s: wrong number of arguments", __func__);
1020 return JIM_ERR;
1021 }
1022
1023 int cpnum;
1024 uint32_t op1;
1025 uint32_t op2;
1026 uint32_t crn;
1027 uint32_t crm;
1028 uint32_t value;
1029 long l;
1030
1031 /* NOTE: parameter sequence matches ARM instruction set usage:
1032 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1033 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1034 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1035 */
1036 retval = Jim_GetLong(interp, argv[1], &l);
1037 if (retval != JIM_OK)
1038 return retval;
1039 if (l & ~0xf) {
1040 LOG_ERROR("%s: %s %d out of range", __func__,
1041 "coprocessor", (int) l);
1042 return JIM_ERR;
1043 }
1044 cpnum = l;
1045
1046 retval = Jim_GetLong(interp, argv[2], &l);
1047 if (retval != JIM_OK)
1048 return retval;
1049 if (l & ~0x7) {
1050 LOG_ERROR("%s: %s %d out of range", __func__,
1051 "op1", (int) l);
1052 return JIM_ERR;
1053 }
1054 op1 = l;
1055
1056 retval = Jim_GetLong(interp, argv[3], &l);
1057 if (retval != JIM_OK)
1058 return retval;
1059 if (l & ~0xf) {
1060 LOG_ERROR("%s: %s %d out of range", __func__,
1061 "CRn", (int) l);
1062 return JIM_ERR;
1063 }
1064 crn = l;
1065
1066 retval = Jim_GetLong(interp, argv[4], &l);
1067 if (retval != JIM_OK)
1068 return retval;
1069 if (l & ~0xf) {
1070 LOG_ERROR("%s: %s %d out of range", __func__,
1071 "CRm", (int) l);
1072 return JIM_ERR;
1073 }
1074 crm = l;
1075
1076 retval = Jim_GetLong(interp, argv[5], &l);
1077 if (retval != JIM_OK)
1078 return retval;
1079 if (l & ~0x7) {
1080 LOG_ERROR("%s: %s %d out of range", __func__,
1081 "op2", (int) l);
1082 return JIM_ERR;
1083 }
1084 op2 = l;
1085
1086 value = 0;
1087
1088 /* FIXME don't assume "mrc" vs "mcr" from the number of params;
1089 * that could easily be a typo! Check both...
1090 *
1091 * FIXME change the call syntax here ... simplest to just pass
1092 * the MRC() or MCR() instruction to be executed. That will also
1093 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1094 * if that's ever needed.
1095 */
1096 if (argc == 7) {
1097 retval = Jim_GetLong(interp, argv[6], &l);
1098 if (retval != JIM_OK)
1099 return retval;
1100 value = l;
1101
1102 /* NOTE: parameters reordered! */
1103 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
1104 retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
1105 if (retval != ERROR_OK)
1106 return JIM_ERR;
1107 } else {
1108 /* NOTE: parameters reordered! */
1109 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
1110 retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
1111 if (retval != ERROR_OK)
1112 return JIM_ERR;
1113
1114 Jim_SetResult(interp, Jim_NewIntObj(interp, value));
1115 }
1116
1117 return JIM_OK;
1118 }
1119
1120 static const struct command_registration arm_exec_command_handlers[] = {
1121 {
1122 .name = "reg",
1123 .handler = handle_armv4_5_reg_command,
1124 .mode = COMMAND_EXEC,
1125 .help = "display ARM core registers",
1126 .usage = "",
1127 },
1128 {
1129 .name = "core_state",
1130 .handler = handle_arm_core_state_command,
1131 .mode = COMMAND_EXEC,
1132 .usage = "['arm'|'thumb']",
1133 .help = "display/change ARM core state",
1134 },
1135 {
1136 .name = "disassemble",
1137 .handler = handle_arm_disassemble_command,
1138 .mode = COMMAND_EXEC,
1139 .usage = "address [count ['thumb']]",
1140 .help = "disassemble instructions",
1141 },
1142 {
1143 .name = "mcr",
1144 .mode = COMMAND_EXEC,
1145 .jim_handler = &jim_mcrmrc,
1146 .help = "write coprocessor register",
1147 .usage = "cpnum op1 CRn CRm op2 value",
1148 },
1149 {
1150 .name = "mrc",
1151 .mode = COMMAND_EXEC,
1152 .jim_handler = &jim_mcrmrc,
1153 .help = "read coprocessor register",
1154 .usage = "cpnum op1 CRn CRm op2",
1155 },
1156 {
1157 .chain = semihosting_common_handlers,
1158 },
1159 COMMAND_REGISTRATION_DONE
1160 };
1161 const struct command_registration arm_command_handlers[] = {
1162 {
1163 .name = "arm",
1164 .mode = COMMAND_ANY,
1165 .help = "ARM command group",
1166 .usage = "",
1167 .chain = arm_exec_command_handlers,
1168 },
1169 COMMAND_REGISTRATION_DONE
1170 };
1171
1172 /*
1173 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1174 * of arm architecture. You can list them using the autocompletion of gdb
1175 * command prompt by typing "set architecture " and then press TAB key.
1176 * The default, selected automatically, is "arm".
1177 * Let's use the default value, here, to make gdb-multiarch behave in the
1178 * same way as a gdb for arm. This can be changed later on. User can still
1179 * set the specific architecture variant with the gdb command.
1180 */
1181 const char *arm_get_gdb_arch(struct target *target)
1182 {
1183 return "arm";
1184 }
1185
1186 int arm_get_gdb_reg_list(struct target *target,
1187 struct reg **reg_list[], int *reg_list_size,
1188 enum target_register_class reg_class)
1189 {
1190 struct arm *arm = target_to_arm(target);
1191 unsigned int i;
1192
1193 if (!is_arm_mode(arm->core_mode)) {
1194 LOG_ERROR("not a valid arm core mode - communication failure?");
1195 return ERROR_FAIL;
1196 }
1197
1198 switch (reg_class) {
1199 case REG_CLASS_GENERAL:
1200 *reg_list_size = 26;
1201 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1202
1203 for (i = 0; i < 16; i++)
1204 (*reg_list)[i] = arm_reg_current(arm, i);
1205
1206 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1207 for (i = 16; i < 24; i++)
1208 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1209 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1210
1211 (*reg_list)[25] = arm->cpsr;
1212
1213 return ERROR_OK;
1214
1215 case REG_CLASS_ALL:
1216 switch (arm->core_type) {
1217 case ARM_CORE_TYPE_SEC_EXT:
1218 *reg_list_size = 51;
1219 break;
1220 case ARM_CORE_TYPE_VIRT_EXT:
1221 *reg_list_size = 53;
1222 break;
1223 default:
1224 *reg_list_size = 48;
1225 }
1226 unsigned int list_size_core = *reg_list_size;
1227 if (arm->arm_vfp_version == ARM_VFP_V3)
1228 *reg_list_size += 33;
1229
1230 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1231
1232 for (i = 0; i < 16; i++)
1233 (*reg_list)[i] = arm_reg_current(arm, i);
1234
1235 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1236 int reg_index = arm->core_cache->reg_list[i].number;
1237
1238 if (arm_core_regs[i].mode == ARM_MODE_MON
1239 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1240 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1241 continue;
1242 if (arm_core_regs[i].mode == ARM_MODE_HYP
1243 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1244 continue;
1245 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1246 }
1247
1248 /* When we supply the target description, there is no need for fake FPA */
1249 for (i = 16; i < 24; i++) {
1250 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1251 (*reg_list)[i]->size = 0;
1252 }
1253 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1254 (*reg_list)[24]->size = 0;
1255
1256 if (arm->arm_vfp_version == ARM_VFP_V3) {
1257 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1258 for (i = 0; i < 33; i++)
1259 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1260 }
1261
1262 return ERROR_OK;
1263
1264 default:
1265 LOG_ERROR("not a valid register class type in query.");
1266 return ERROR_FAIL;
1267 }
1268 }
1269
1270 /* wait for execution to complete and check exit point */
1271 static int armv4_5_run_algorithm_completion(struct target *target,
1272 uint32_t exit_point,
1273 int timeout_ms,
1274 void *arch_info)
1275 {
1276 int retval;
1277 struct arm *arm = target_to_arm(target);
1278
1279 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1280 if (retval != ERROR_OK)
1281 return retval;
1282 if (target->state != TARGET_HALTED) {
1283 retval = target_halt(target);
1284 if (retval != ERROR_OK)
1285 return retval;
1286 retval = target_wait_state(target, TARGET_HALTED, 500);
1287 if (retval != ERROR_OK)
1288 return retval;
1289 return ERROR_TARGET_TIMEOUT;
1290 }
1291
1292 /* fast exit: ARMv5+ code can use BKPT */
1293 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1294 LOG_WARNING(
1295 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1296 buf_get_u32(arm->pc->value, 0, 32));
1297 return ERROR_TARGET_TIMEOUT;
1298 }
1299
1300 return ERROR_OK;
1301 }
1302
1303 int armv4_5_run_algorithm_inner(struct target *target,
1304 int num_mem_params, struct mem_param *mem_params,
1305 int num_reg_params, struct reg_param *reg_params,
1306 uint32_t entry_point, uint32_t exit_point,
1307 int timeout_ms, void *arch_info,
1308 int (*run_it)(struct target *target, uint32_t exit_point,
1309 int timeout_ms, void *arch_info))
1310 {
1311 struct arm *arm = target_to_arm(target);
1312 struct arm_algorithm *arm_algorithm_info = arch_info;
1313 enum arm_state core_state = arm->core_state;
1314 uint32_t context[17];
1315 uint32_t cpsr;
1316 int exit_breakpoint_size = 0;
1317 int i;
1318 int retval = ERROR_OK;
1319
1320 LOG_DEBUG("Running algorithm");
1321
1322 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1323 LOG_ERROR("current target isn't an ARMV4/5 target");
1324 return ERROR_TARGET_INVALID;
1325 }
1326
1327 if (target->state != TARGET_HALTED) {
1328 LOG_WARNING("target not halted");
1329 return ERROR_TARGET_NOT_HALTED;
1330 }
1331
1332 if (!is_arm_mode(arm->core_mode)) {
1333 LOG_ERROR("not a valid arm core mode - communication failure?");
1334 return ERROR_FAIL;
1335 }
1336
1337 /* armv5 and later can terminate with BKPT instruction; less overhead */
1338 if (!exit_point && arm->arch == ARM_ARCH_V4) {
1339 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1340 return ERROR_FAIL;
1341 }
1342
1343 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1344 * they'll be restored later.
1345 */
1346 for (i = 0; i <= 16; i++) {
1347 struct reg *r;
1348
1349 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1350 arm_algorithm_info->core_mode, i);
1351 if (!r->valid)
1352 arm->read_core_reg(target, r, i,
1353 arm_algorithm_info->core_mode);
1354 context[i] = buf_get_u32(r->value, 0, 32);
1355 }
1356 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1357
1358 for (i = 0; i < num_mem_params; i++) {
1359 if (mem_params[i].direction == PARAM_IN)
1360 continue;
1361 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1362 mem_params[i].value);
1363 if (retval != ERROR_OK)
1364 return retval;
1365 }
1366
1367 for (i = 0; i < num_reg_params; i++) {
1368 if (reg_params[i].direction == PARAM_IN)
1369 continue;
1370
1371 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false);
1372 if (!reg) {
1373 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1374 return ERROR_COMMAND_SYNTAX_ERROR;
1375 }
1376
1377 if (reg->size != reg_params[i].size) {
1378 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1379 reg_params[i].reg_name);
1380 return ERROR_COMMAND_SYNTAX_ERROR;
1381 }
1382
1383 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1384 if (retval != ERROR_OK)
1385 return retval;
1386 }
1387
1388 arm->core_state = arm_algorithm_info->core_state;
1389 if (arm->core_state == ARM_STATE_ARM)
1390 exit_breakpoint_size = 4;
1391 else if (arm->core_state == ARM_STATE_THUMB)
1392 exit_breakpoint_size = 2;
1393 else {
1394 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1395 return ERROR_COMMAND_SYNTAX_ERROR;
1396 }
1397
1398 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1399 LOG_DEBUG("setting core_mode: 0x%2.2x",
1400 arm_algorithm_info->core_mode);
1401 buf_set_u32(arm->cpsr->value, 0, 5,
1402 arm_algorithm_info->core_mode);
1403 arm->cpsr->dirty = true;
1404 arm->cpsr->valid = true;
1405 }
1406
1407 /* terminate using a hardware or (ARMv5+) software breakpoint */
1408 if (exit_point) {
1409 retval = breakpoint_add(target, exit_point,
1410 exit_breakpoint_size, BKPT_HARD);
1411 if (retval != ERROR_OK) {
1412 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1413 return ERROR_TARGET_FAILURE;
1414 }
1415 }
1416
1417 retval = target_resume(target, 0, entry_point, 1, 1);
1418 if (retval != ERROR_OK)
1419 return retval;
1420 retval = run_it(target, exit_point, timeout_ms, arch_info);
1421
1422 if (exit_point)
1423 breakpoint_remove(target, exit_point);
1424
1425 if (retval != ERROR_OK)
1426 return retval;
1427
1428 for (i = 0; i < num_mem_params; i++) {
1429 if (mem_params[i].direction != PARAM_OUT) {
1430 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1431 mem_params[i].size,
1432 mem_params[i].value);
1433 if (retvaltemp != ERROR_OK)
1434 retval = retvaltemp;
1435 }
1436 }
1437
1438 for (i = 0; i < num_reg_params; i++) {
1439 if (reg_params[i].direction != PARAM_OUT) {
1440
1441 struct reg *reg = register_get_by_name(arm->core_cache,
1442 reg_params[i].reg_name,
1443 false);
1444 if (!reg) {
1445 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1446 retval = ERROR_COMMAND_SYNTAX_ERROR;
1447 continue;
1448 }
1449
1450 if (reg->size != reg_params[i].size) {
1451 LOG_ERROR(
1452 "BUG: register '%s' size doesn't match reg_params[i].size",
1453 reg_params[i].reg_name);
1454 retval = ERROR_COMMAND_SYNTAX_ERROR;
1455 continue;
1456 }
1457
1458 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1459 }
1460 }
1461
1462 /* restore everything we saved before (17 or 18 registers) */
1463 for (i = 0; i <= 16; i++) {
1464 uint32_t regvalue;
1465 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1466 arm_algorithm_info->core_mode, i).value, 0, 32);
1467 if (regvalue != context[i]) {
1468 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1469 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1470 arm_algorithm_info->core_mode, i).name, context[i]);
1471 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1472 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1473 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1474 i).valid = true;
1475 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1476 i).dirty = true;
1477 }
1478 }
1479
1480 arm_set_cpsr(arm, cpsr);
1481 arm->cpsr->dirty = true;
1482
1483 arm->core_state = core_state;
1484
1485 return retval;
1486 }
1487
1488 int armv4_5_run_algorithm(struct target *target,
1489 int num_mem_params,
1490 struct mem_param *mem_params,
1491 int num_reg_params,
1492 struct reg_param *reg_params,
1493 target_addr_t entry_point,
1494 target_addr_t exit_point,
1495 int timeout_ms,
1496 void *arch_info)
1497 {
1498 return armv4_5_run_algorithm_inner(target,
1499 num_mem_params,
1500 mem_params,
1501 num_reg_params,
1502 reg_params,
1503 (uint32_t)entry_point,
1504 (uint32_t)exit_point,
1505 timeout_ms,
1506 arch_info,
1507 armv4_5_run_algorithm_completion);
1508 }
1509
1510 /**
1511 * Runs ARM code in the target to calculate a CRC32 checksum.
1512 *
1513 */
1514 int arm_checksum_memory(struct target *target,
1515 target_addr_t address, uint32_t count, uint32_t *checksum)
1516 {
1517 struct working_area *crc_algorithm;
1518 struct arm_algorithm arm_algo;
1519 struct arm *arm = target_to_arm(target);
1520 struct reg_param reg_params[2];
1521 int retval;
1522 uint32_t i;
1523 uint32_t exit_var = 0;
1524
1525 static const uint8_t arm_crc_code_le[] = {
1526 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1527 };
1528
1529 assert(sizeof(arm_crc_code_le) % 4 == 0);
1530
1531 retval = target_alloc_working_area(target,
1532 sizeof(arm_crc_code_le), &crc_algorithm);
1533 if (retval != ERROR_OK)
1534 return retval;
1535
1536 /* convert code into a buffer in target endianness */
1537 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1538 retval = target_write_u32(target,
1539 crc_algorithm->address + i * sizeof(uint32_t),
1540 le_to_h_u32(&arm_crc_code_le[i * 4]));
1541 if (retval != ERROR_OK)
1542 goto cleanup;
1543 }
1544
1545 arm_algo.common_magic = ARM_COMMON_MAGIC;
1546 arm_algo.core_mode = ARM_MODE_SVC;
1547 arm_algo.core_state = ARM_STATE_ARM;
1548
1549 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1550 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1551
1552 buf_set_u32(reg_params[0].value, 0, 32, address);
1553 buf_set_u32(reg_params[1].value, 0, 32, count);
1554
1555 /* 20 second timeout/megabyte */
1556 int timeout = 20000 * (1 + (count / (1024 * 1024)));
1557
1558 /* armv4 must exit using a hardware breakpoint */
1559 if (arm->arch == ARM_ARCH_V4)
1560 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1561
1562 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1563 crc_algorithm->address,
1564 exit_var,
1565 timeout, &arm_algo);
1566
1567 if (retval == ERROR_OK)
1568 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1569 else
1570 LOG_ERROR("error executing ARM crc algorithm");
1571
1572 destroy_reg_param(&reg_params[0]);
1573 destroy_reg_param(&reg_params[1]);
1574
1575 cleanup:
1576 target_free_working_area(target, crc_algorithm);
1577
1578 return retval;
1579 }
1580
1581 /**
1582 * Runs ARM code in the target to check whether a memory block holds
1583 * all ones. NOR flash which has been erased, and thus may be written,
1584 * holds all ones.
1585 *
1586 */
1587 int arm_blank_check_memory(struct target *target,
1588 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1589 {
1590 struct working_area *check_algorithm;
1591 struct reg_param reg_params[3];
1592 struct arm_algorithm arm_algo;
1593 struct arm *arm = target_to_arm(target);
1594 int retval;
1595 uint32_t i;
1596 uint32_t exit_var = 0;
1597
1598 static const uint8_t check_code_le[] = {
1599 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1600 };
1601
1602 assert(sizeof(check_code_le) % 4 == 0);
1603
1604 if (erased_value != 0xff) {
1605 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1606 erased_value);
1607 return ERROR_FAIL;
1608 }
1609
1610 /* make sure we have a working area */
1611 retval = target_alloc_working_area(target,
1612 sizeof(check_code_le), &check_algorithm);
1613 if (retval != ERROR_OK)
1614 return retval;
1615
1616 /* convert code into a buffer in target endianness */
1617 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1618 retval = target_write_u32(target,
1619 check_algorithm->address
1620 + i * sizeof(uint32_t),
1621 le_to_h_u32(&check_code_le[i * 4]));
1622 if (retval != ERROR_OK)
1623 goto cleanup;
1624 }
1625
1626 arm_algo.common_magic = ARM_COMMON_MAGIC;
1627 arm_algo.core_mode = ARM_MODE_SVC;
1628 arm_algo.core_state = ARM_STATE_ARM;
1629
1630 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1631 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1632
1633 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1634 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1635
1636 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1637 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1638
1639 /* armv4 must exit using a hardware breakpoint */
1640 if (arm->arch == ARM_ARCH_V4)
1641 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1642
1643 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1644 check_algorithm->address,
1645 exit_var,
1646 10000, &arm_algo);
1647
1648 if (retval == ERROR_OK)
1649 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1650
1651 destroy_reg_param(&reg_params[0]);
1652 destroy_reg_param(&reg_params[1]);
1653 destroy_reg_param(&reg_params[2]);
1654
1655 cleanup:
1656 target_free_working_area(target, check_algorithm);
1657
1658 if (retval != ERROR_OK)
1659 return retval;
1660
1661 return 1; /* only one block has been checked */
1662 }
1663
1664 static int arm_full_context(struct target *target)
1665 {
1666 struct arm *arm = target_to_arm(target);
1667 unsigned num_regs = arm->core_cache->num_regs;
1668 struct reg *reg = arm->core_cache->reg_list;
1669 int retval = ERROR_OK;
1670
1671 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1672 if (!reg->exist || reg->valid)
1673 continue;
1674 retval = armv4_5_get_core_reg(reg);
1675 }
1676 return retval;
1677 }
1678
1679 static int arm_default_mrc(struct target *target, int cpnum,
1680 uint32_t op1, uint32_t op2,
1681 uint32_t crn, uint32_t crm,
1682 uint32_t *value)
1683 {
1684 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1685 return ERROR_FAIL;
1686 }
1687
1688 static int arm_default_mcr(struct target *target, int cpnum,
1689 uint32_t op1, uint32_t op2,
1690 uint32_t crn, uint32_t crm,
1691 uint32_t value)
1692 {
1693 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1694 return ERROR_FAIL;
1695 }
1696
1697 int arm_init_arch_info(struct target *target, struct arm *arm)
1698 {
1699 target->arch_info = arm;
1700 arm->target = target;
1701
1702 arm->common_magic = ARM_COMMON_MAGIC;
1703
1704 /* core_type may be overridden by subtype logic */
1705 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1706 arm->core_type = ARM_CORE_TYPE_STD;
1707 arm_set_cpsr(arm, ARM_MODE_USR);
1708 }
1709
1710 /* default full_context() has no core-specific optimizations */
1711 if (!arm->full_context && arm->read_core_reg)
1712 arm->full_context = arm_full_context;
1713
1714 if (!arm->mrc)
1715 arm->mrc = arm_default_mrc;
1716 if (!arm->mcr)
1717 arm->mcr = arm_default_mcr;
1718
1719 return ERROR_OK;
1720 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)