target: fix messages and return values of failed op because not halted
[openocd.git] / src / target / armv4_5.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /***************************************************************************
4 * Copyright (C) 2005 by Dominic Rath *
5 * Dominic.Rath@gmx.de *
6 * *
7 * Copyright (C) 2008 by Spencer Oliver *
8 * spen@spen-soft.co.uk *
9 * *
10 * Copyright (C) 2008 by Oyvind Harboe *
11 * oyvind.harboe@zylin.com *
12 * *
13 * Copyright (C) 2018 by Liviu Ionescu *
14 * <ilg@livius.net> *
15 ***************************************************************************/
16
17 #ifdef HAVE_CONFIG_H
18 #include "config.h"
19 #endif
20
21 #include "arm.h"
22 #include "armv4_5.h"
23 #include "arm_jtag.h"
24 #include "breakpoints.h"
25 #include "arm_disassembler.h"
26 #include <helper/binarybuffer.h>
27 #include "algorithm.h"
28 #include "register.h"
29 #include "semihosting_common.h"
30
31 /* offsets into armv4_5 core register cache */
32 enum {
33 /* ARMV4_5_CPSR = 31, */
34 ARMV4_5_SPSR_FIQ = 32,
35 ARMV4_5_SPSR_IRQ = 33,
36 ARMV4_5_SPSR_SVC = 34,
37 ARMV4_5_SPSR_ABT = 35,
38 ARMV4_5_SPSR_UND = 36,
39 ARM_SPSR_MON = 41,
40 ARM_SPSR_HYP = 43,
41 };
42
43 static const uint8_t arm_usr_indices[17] = {
44 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, ARMV4_5_CPSR,
45 };
46
47 static const uint8_t arm_fiq_indices[8] = {
48 16, 17, 18, 19, 20, 21, 22, ARMV4_5_SPSR_FIQ,
49 };
50
51 static const uint8_t arm_irq_indices[3] = {
52 23, 24, ARMV4_5_SPSR_IRQ,
53 };
54
55 static const uint8_t arm_svc_indices[3] = {
56 25, 26, ARMV4_5_SPSR_SVC,
57 };
58
59 static const uint8_t arm_abt_indices[3] = {
60 27, 28, ARMV4_5_SPSR_ABT,
61 };
62
63 static const uint8_t arm_und_indices[3] = {
64 29, 30, ARMV4_5_SPSR_UND,
65 };
66
67 static const uint8_t arm_mon_indices[3] = {
68 39, 40, ARM_SPSR_MON,
69 };
70
71 static const uint8_t arm_hyp_indices[2] = {
72 42, ARM_SPSR_HYP,
73 };
74
75 static const struct {
76 const char *name;
77 unsigned short psr;
78 /* For user and system modes, these list indices for all registers.
79 * otherwise they're just indices for the shadow registers and SPSR.
80 */
81 unsigned short n_indices;
82 const uint8_t *indices;
83 } arm_mode_data[] = {
84 /* Seven modes are standard from ARM7 on. "System" and "User" share
85 * the same registers; other modes shadow from 3 to 8 registers.
86 */
87 {
88 .name = "User",
89 .psr = ARM_MODE_USR,
90 .n_indices = ARRAY_SIZE(arm_usr_indices),
91 .indices = arm_usr_indices,
92 },
93 {
94 .name = "FIQ",
95 .psr = ARM_MODE_FIQ,
96 .n_indices = ARRAY_SIZE(arm_fiq_indices),
97 .indices = arm_fiq_indices,
98 },
99 {
100 .name = "Supervisor",
101 .psr = ARM_MODE_SVC,
102 .n_indices = ARRAY_SIZE(arm_svc_indices),
103 .indices = arm_svc_indices,
104 },
105 {
106 .name = "Abort",
107 .psr = ARM_MODE_ABT,
108 .n_indices = ARRAY_SIZE(arm_abt_indices),
109 .indices = arm_abt_indices,
110 },
111 {
112 .name = "IRQ",
113 .psr = ARM_MODE_IRQ,
114 .n_indices = ARRAY_SIZE(arm_irq_indices),
115 .indices = arm_irq_indices,
116 },
117 {
118 .name = "Undefined instruction",
119 .psr = ARM_MODE_UND,
120 .n_indices = ARRAY_SIZE(arm_und_indices),
121 .indices = arm_und_indices,
122 },
123 {
124 .name = "System",
125 .psr = ARM_MODE_SYS,
126 .n_indices = ARRAY_SIZE(arm_usr_indices),
127 .indices = arm_usr_indices,
128 },
129 /* TrustZone "Security Extensions" add a secure monitor mode.
130 * This is distinct from a "debug monitor" which can support
131 * non-halting debug, in conjunction with some debuggers.
132 */
133 {
134 .name = "Secure Monitor",
135 .psr = ARM_MODE_MON,
136 .n_indices = ARRAY_SIZE(arm_mon_indices),
137 .indices = arm_mon_indices,
138 },
139 {
140 .name = "Secure Monitor ARM1176JZF-S",
141 .psr = ARM_MODE_1176_MON,
142 .n_indices = ARRAY_SIZE(arm_mon_indices),
143 .indices = arm_mon_indices,
144 },
145
146 /* These special modes are currently only supported
147 * by ARMv6M and ARMv7M profiles */
148 {
149 .name = "Thread",
150 .psr = ARM_MODE_THREAD,
151 },
152 {
153 .name = "Thread (User)",
154 .psr = ARM_MODE_USER_THREAD,
155 },
156 {
157 .name = "Handler",
158 .psr = ARM_MODE_HANDLER,
159 },
160
161 /* armv7-a with virtualization extension */
162 {
163 .name = "Hypervisor",
164 .psr = ARM_MODE_HYP,
165 .n_indices = ARRAY_SIZE(arm_hyp_indices),
166 .indices = arm_hyp_indices,
167 },
168 };
169
170 /** Map PSR mode bits to the name of an ARM processor operating mode. */
171 const char *arm_mode_name(unsigned psr_mode)
172 {
173 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
174 if (arm_mode_data[i].psr == psr_mode)
175 return arm_mode_data[i].name;
176 }
177 LOG_ERROR("unrecognized psr mode: %#02x", psr_mode);
178 return "UNRECOGNIZED";
179 }
180
181 /** Return true iff the parameter denotes a valid ARM processor mode. */
182 bool is_arm_mode(unsigned psr_mode)
183 {
184 for (unsigned i = 0; i < ARRAY_SIZE(arm_mode_data); i++) {
185 if (arm_mode_data[i].psr == psr_mode)
186 return true;
187 }
188 return false;
189 }
190
191 /** Map PSR mode bits to linear number indexing armv4_5_core_reg_map */
192 int arm_mode_to_number(enum arm_mode mode)
193 {
194 switch (mode) {
195 case ARM_MODE_ANY:
196 /* map MODE_ANY to user mode */
197 case ARM_MODE_USR:
198 return 0;
199 case ARM_MODE_FIQ:
200 return 1;
201 case ARM_MODE_IRQ:
202 return 2;
203 case ARM_MODE_SVC:
204 return 3;
205 case ARM_MODE_ABT:
206 return 4;
207 case ARM_MODE_UND:
208 return 5;
209 case ARM_MODE_SYS:
210 return 6;
211 case ARM_MODE_MON:
212 case ARM_MODE_1176_MON:
213 return 7;
214 case ARM_MODE_HYP:
215 return 8;
216 default:
217 LOG_ERROR("invalid mode value encountered %d", mode);
218 return -1;
219 }
220 }
221
222 /** Map linear number indexing armv4_5_core_reg_map to PSR mode bits. */
223 enum arm_mode armv4_5_number_to_mode(int number)
224 {
225 switch (number) {
226 case 0:
227 return ARM_MODE_USR;
228 case 1:
229 return ARM_MODE_FIQ;
230 case 2:
231 return ARM_MODE_IRQ;
232 case 3:
233 return ARM_MODE_SVC;
234 case 4:
235 return ARM_MODE_ABT;
236 case 5:
237 return ARM_MODE_UND;
238 case 6:
239 return ARM_MODE_SYS;
240 case 7:
241 return ARM_MODE_MON;
242 case 8:
243 return ARM_MODE_HYP;
244 default:
245 LOG_ERROR("mode index out of bounds %d", number);
246 return ARM_MODE_ANY;
247 }
248 }
249
250 static const char *arm_state_strings[] = {
251 "ARM", "Thumb", "Jazelle", "ThumbEE",
252 };
253
254 /* Templates for ARM core registers.
255 *
256 * NOTE: offsets in this table are coupled to the arm_mode_data
257 * table above, the armv4_5_core_reg_map array below, and also to
258 * the ARMV4_5_CPSR symbol (which should vanish after ARM11 updates).
259 */
260 static const struct {
261 /* The name is used for e.g. the "regs" command. */
262 const char *name;
263
264 /* The {cookie, mode} tuple uniquely identifies one register.
265 * In a given mode, cookies 0..15 map to registers R0..R15,
266 * with R13..R15 usually called SP, LR, PC.
267 *
268 * MODE_ANY is used as *input* to the mapping, and indicates
269 * various special cases (sigh) and errors.
270 *
271 * Cookie 16 is (currently) confusing, since it indicates
272 * CPSR -or- SPSR depending on whether 'mode' is MODE_ANY.
273 * (Exception modes have both CPSR and SPSR registers ...)
274 */
275 unsigned cookie;
276 unsigned gdb_index;
277 enum arm_mode mode;
278 } arm_core_regs[] = {
279 /* IMPORTANT: we guarantee that the first eight cached registers
280 * correspond to r0..r7, and the fifteenth to PC, so that callers
281 * don't need to map them.
282 */
283 [0] = { .name = "r0", .cookie = 0, .mode = ARM_MODE_ANY, .gdb_index = 0, },
284 [1] = { .name = "r1", .cookie = 1, .mode = ARM_MODE_ANY, .gdb_index = 1, },
285 [2] = { .name = "r2", .cookie = 2, .mode = ARM_MODE_ANY, .gdb_index = 2, },
286 [3] = { .name = "r3", .cookie = 3, .mode = ARM_MODE_ANY, .gdb_index = 3, },
287 [4] = { .name = "r4", .cookie = 4, .mode = ARM_MODE_ANY, .gdb_index = 4, },
288 [5] = { .name = "r5", .cookie = 5, .mode = ARM_MODE_ANY, .gdb_index = 5, },
289 [6] = { .name = "r6", .cookie = 6, .mode = ARM_MODE_ANY, .gdb_index = 6, },
290 [7] = { .name = "r7", .cookie = 7, .mode = ARM_MODE_ANY, .gdb_index = 7, },
291
292 /* NOTE: regs 8..12 might be shadowed by FIQ ... flagging
293 * them as MODE_ANY creates special cases. (ANY means
294 * "not mapped" elsewhere; here it's "everything but FIQ".)
295 */
296 [8] = { .name = "r8", .cookie = 8, .mode = ARM_MODE_ANY, .gdb_index = 8, },
297 [9] = { .name = "r9", .cookie = 9, .mode = ARM_MODE_ANY, .gdb_index = 9, },
298 [10] = { .name = "r10", .cookie = 10, .mode = ARM_MODE_ANY, .gdb_index = 10, },
299 [11] = { .name = "r11", .cookie = 11, .mode = ARM_MODE_ANY, .gdb_index = 11, },
300 [12] = { .name = "r12", .cookie = 12, .mode = ARM_MODE_ANY, .gdb_index = 12, },
301
302 /* Historical GDB mapping of indices:
303 * - 13-14 are sp and lr, but banked counterparts are used
304 * - 16-24 are left for deprecated 8 FPA + 1 FPS
305 * - 25 is the cpsr
306 */
307
308 /* NOTE all MODE_USR registers are equivalent to MODE_SYS ones */
309 [13] = { .name = "sp_usr", .cookie = 13, .mode = ARM_MODE_USR, .gdb_index = 26, },
310 [14] = { .name = "lr_usr", .cookie = 14, .mode = ARM_MODE_USR, .gdb_index = 27, },
311
312 /* guaranteed to be at index 15 */
313 [15] = { .name = "pc", .cookie = 15, .mode = ARM_MODE_ANY, .gdb_index = 15, },
314 [16] = { .name = "r8_fiq", .cookie = 8, .mode = ARM_MODE_FIQ, .gdb_index = 28, },
315 [17] = { .name = "r9_fiq", .cookie = 9, .mode = ARM_MODE_FIQ, .gdb_index = 29, },
316 [18] = { .name = "r10_fiq", .cookie = 10, .mode = ARM_MODE_FIQ, .gdb_index = 30, },
317 [19] = { .name = "r11_fiq", .cookie = 11, .mode = ARM_MODE_FIQ, .gdb_index = 31, },
318 [20] = { .name = "r12_fiq", .cookie = 12, .mode = ARM_MODE_FIQ, .gdb_index = 32, },
319
320 [21] = { .name = "sp_fiq", .cookie = 13, .mode = ARM_MODE_FIQ, .gdb_index = 33, },
321 [22] = { .name = "lr_fiq", .cookie = 14, .mode = ARM_MODE_FIQ, .gdb_index = 34, },
322
323 [23] = { .name = "sp_irq", .cookie = 13, .mode = ARM_MODE_IRQ, .gdb_index = 35, },
324 [24] = { .name = "lr_irq", .cookie = 14, .mode = ARM_MODE_IRQ, .gdb_index = 36, },
325
326 [25] = { .name = "sp_svc", .cookie = 13, .mode = ARM_MODE_SVC, .gdb_index = 37, },
327 [26] = { .name = "lr_svc", .cookie = 14, .mode = ARM_MODE_SVC, .gdb_index = 38, },
328
329 [27] = { .name = "sp_abt", .cookie = 13, .mode = ARM_MODE_ABT, .gdb_index = 39, },
330 [28] = { .name = "lr_abt", .cookie = 14, .mode = ARM_MODE_ABT, .gdb_index = 40, },
331
332 [29] = { .name = "sp_und", .cookie = 13, .mode = ARM_MODE_UND, .gdb_index = 41, },
333 [30] = { .name = "lr_und", .cookie = 14, .mode = ARM_MODE_UND, .gdb_index = 42, },
334
335 [31] = { .name = "cpsr", .cookie = 16, .mode = ARM_MODE_ANY, .gdb_index = 25, },
336 [32] = { .name = "spsr_fiq", .cookie = 16, .mode = ARM_MODE_FIQ, .gdb_index = 43, },
337 [33] = { .name = "spsr_irq", .cookie = 16, .mode = ARM_MODE_IRQ, .gdb_index = 44, },
338 [34] = { .name = "spsr_svc", .cookie = 16, .mode = ARM_MODE_SVC, .gdb_index = 45, },
339 [35] = { .name = "spsr_abt", .cookie = 16, .mode = ARM_MODE_ABT, .gdb_index = 46, },
340 [36] = { .name = "spsr_und", .cookie = 16, .mode = ARM_MODE_UND, .gdb_index = 47, },
341
342 /* These are only used for GDB target description, banked registers are accessed instead */
343 [37] = { .name = "sp", .cookie = 13, .mode = ARM_MODE_ANY, .gdb_index = 13, },
344 [38] = { .name = "lr", .cookie = 14, .mode = ARM_MODE_ANY, .gdb_index = 14, },
345
346 /* These exist only when the Security Extension (TrustZone) is present */
347 [39] = { .name = "sp_mon", .cookie = 13, .mode = ARM_MODE_MON, .gdb_index = 48, },
348 [40] = { .name = "lr_mon", .cookie = 14, .mode = ARM_MODE_MON, .gdb_index = 49, },
349 [41] = { .name = "spsr_mon", .cookie = 16, .mode = ARM_MODE_MON, .gdb_index = 50, },
350
351 /* These exist only when the Virtualization Extensions is present */
352 [42] = { .name = "sp_hyp", .cookie = 13, .mode = ARM_MODE_HYP, .gdb_index = 51, },
353 [43] = { .name = "spsr_hyp", .cookie = 16, .mode = ARM_MODE_HYP, .gdb_index = 52, },
354 };
355
356 static const struct {
357 unsigned int id;
358 const char *name;
359 uint32_t bits;
360 enum arm_mode mode;
361 enum reg_type type;
362 const char *group;
363 const char *feature;
364 } arm_vfp_v3_regs[] = {
365 { ARM_VFP_V3_D0, "d0", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
366 { ARM_VFP_V3_D1, "d1", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
367 { ARM_VFP_V3_D2, "d2", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
368 { ARM_VFP_V3_D3, "d3", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
369 { ARM_VFP_V3_D4, "d4", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
370 { ARM_VFP_V3_D5, "d5", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
371 { ARM_VFP_V3_D6, "d6", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
372 { ARM_VFP_V3_D7, "d7", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
373 { ARM_VFP_V3_D8, "d8", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
374 { ARM_VFP_V3_D9, "d9", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
375 { ARM_VFP_V3_D10, "d10", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
376 { ARM_VFP_V3_D11, "d11", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
377 { ARM_VFP_V3_D12, "d12", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
378 { ARM_VFP_V3_D13, "d13", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
379 { ARM_VFP_V3_D14, "d14", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
380 { ARM_VFP_V3_D15, "d15", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
381 { ARM_VFP_V3_D16, "d16", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
382 { ARM_VFP_V3_D17, "d17", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
383 { ARM_VFP_V3_D18, "d18", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
384 { ARM_VFP_V3_D19, "d19", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
385 { ARM_VFP_V3_D20, "d20", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
386 { ARM_VFP_V3_D21, "d21", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
387 { ARM_VFP_V3_D22, "d22", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
388 { ARM_VFP_V3_D23, "d23", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
389 { ARM_VFP_V3_D24, "d24", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
390 { ARM_VFP_V3_D25, "d25", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
391 { ARM_VFP_V3_D26, "d26", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
392 { ARM_VFP_V3_D27, "d27", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
393 { ARM_VFP_V3_D28, "d28", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
394 { ARM_VFP_V3_D29, "d29", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
395 { ARM_VFP_V3_D30, "d30", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
396 { ARM_VFP_V3_D31, "d31", 64, ARM_MODE_ANY, REG_TYPE_IEEE_DOUBLE, NULL, "org.gnu.gdb.arm.vfp"},
397 { ARM_VFP_V3_FPSCR, "fpscr", 32, ARM_MODE_ANY, REG_TYPE_INT, "float", "org.gnu.gdb.arm.vfp"},
398 };
399
400 /* map core mode (USR, FIQ, ...) and register number to
401 * indices into the register cache
402 */
403 const int armv4_5_core_reg_map[9][17] = {
404 { /* USR */
405 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
406 },
407 { /* FIQ (8 shadows of USR, vs normal 3) */
408 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 15, 32
409 },
410 { /* IRQ */
411 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 23, 24, 15, 33
412 },
413 { /* SVC */
414 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 15, 34
415 },
416 { /* ABT */
417 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 27, 28, 15, 35
418 },
419 { /* UND */
420 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 29, 30, 15, 36
421 },
422 { /* SYS (same registers as USR) */
423 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 31
424 },
425 { /* MON */
426 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 39, 40, 15, 41,
427 },
428 { /* HYP */
429 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 42, 14, 15, 43,
430 }
431 };
432
433 /**
434 * Configures host-side ARM records to reflect the specified CPSR.
435 * Later, code can use arm_reg_current() to map register numbers
436 * according to how they are exposed by this mode.
437 */
438 void arm_set_cpsr(struct arm *arm, uint32_t cpsr)
439 {
440 enum arm_mode mode = cpsr & 0x1f;
441 int num;
442
443 /* NOTE: this may be called very early, before the register
444 * cache is set up. We can't defend against many errors, in
445 * particular against CPSRs that aren't valid *here* ...
446 */
447 if (arm->cpsr) {
448 buf_set_u32(arm->cpsr->value, 0, 32, cpsr);
449 arm->cpsr->valid = true;
450 arm->cpsr->dirty = false;
451 }
452
453 arm->core_mode = mode;
454
455 /* mode_to_number() warned; set up a somewhat-sane mapping */
456 num = arm_mode_to_number(mode);
457 if (num < 0) {
458 mode = ARM_MODE_USR;
459 num = 0;
460 }
461
462 arm->map = &armv4_5_core_reg_map[num][0];
463 arm->spsr = (mode == ARM_MODE_USR || mode == ARM_MODE_SYS)
464 ? NULL
465 : arm->core_cache->reg_list + arm->map[16];
466
467 /* Older ARMs won't have the J bit */
468 enum arm_state state;
469
470 if (cpsr & (1 << 5)) { /* T */
471 if (cpsr & (1 << 24)) { /* J */
472 LOG_WARNING("ThumbEE -- incomplete support");
473 state = ARM_STATE_THUMB_EE;
474 } else
475 state = ARM_STATE_THUMB;
476 } else {
477 if (cpsr & (1 << 24)) { /* J */
478 LOG_ERROR("Jazelle state handling is BROKEN!");
479 state = ARM_STATE_JAZELLE;
480 } else
481 state = ARM_STATE_ARM;
482 }
483 arm->core_state = state;
484
485 LOG_DEBUG("set CPSR %#8.8x: %s mode, %s state", (unsigned) cpsr,
486 arm_mode_name(mode),
487 arm_state_strings[arm->core_state]);
488 }
489
490 /**
491 * Returns handle to the register currently mapped to a given number.
492 * Someone must have called arm_set_cpsr() before.
493 *
494 * \param arm This core's state and registers are used.
495 * \param regnum From 0..15 corresponding to R0..R14 and PC.
496 * Note that R0..R7 don't require mapping; you may access those
497 * as the first eight entries in the register cache. Likewise
498 * R15 (PC) doesn't need mapping; you may also access it directly.
499 * However, R8..R14, and SPSR (arm->spsr) *must* be mapped.
500 * CPSR (arm->cpsr) is also not mapped.
501 */
502 struct reg *arm_reg_current(struct arm *arm, unsigned regnum)
503 {
504 struct reg *r;
505
506 if (regnum > 16)
507 return NULL;
508
509 if (!arm->map) {
510 LOG_ERROR("Register map is not available yet, the target is not fully initialised");
511 r = arm->core_cache->reg_list + regnum;
512 } else
513 r = arm->core_cache->reg_list + arm->map[regnum];
514
515 /* e.g. invalid CPSR said "secure monitor" mode on a core
516 * that doesn't support it...
517 */
518 if (!r) {
519 LOG_ERROR("Invalid CPSR mode");
520 r = arm->core_cache->reg_list + regnum;
521 }
522
523 return r;
524 }
525
526 static const uint8_t arm_gdb_dummy_fp_value[12];
527
528 static struct reg_feature arm_gdb_dummy_fp_features = {
529 .name = "net.sourceforge.openocd.fake_fpa"
530 };
531
532 /**
533 * Dummy FPA registers are required to support GDB on ARM.
534 * Register packets require eight obsolete FPA register values.
535 * Modern ARM cores use Vector Floating Point (VFP), if they
536 * have any floating point support. VFP is not FPA-compatible.
537 */
538 static struct reg arm_gdb_dummy_fp_reg = {
539 .name = "GDB dummy FPA register",
540 .value = (uint8_t *) arm_gdb_dummy_fp_value,
541 .valid = true,
542 .size = 96,
543 .exist = false,
544 .number = 16,
545 .feature = &arm_gdb_dummy_fp_features,
546 .group = "fake_fpa",
547 };
548
549 static const uint8_t arm_gdb_dummy_fps_value[4];
550
551 /**
552 * Dummy FPA status registers are required to support GDB on ARM.
553 * Register packets require an obsolete FPA status register.
554 */
555 static struct reg arm_gdb_dummy_fps_reg = {
556 .name = "GDB dummy FPA status register",
557 .value = (uint8_t *) arm_gdb_dummy_fps_value,
558 .valid = true,
559 .size = 32,
560 .exist = false,
561 .number = 24,
562 .feature = &arm_gdb_dummy_fp_features,
563 .group = "fake_fpa",
564 };
565
566 static void arm_gdb_dummy_init(void) __attribute__ ((constructor));
567
568 static void arm_gdb_dummy_init(void)
569 {
570 register_init_dummy(&arm_gdb_dummy_fp_reg);
571 register_init_dummy(&arm_gdb_dummy_fps_reg);
572 }
573
574 static int armv4_5_get_core_reg(struct reg *reg)
575 {
576 int retval;
577 struct arm_reg *reg_arch_info = reg->arch_info;
578 struct target *target = reg_arch_info->target;
579
580 if (target->state != TARGET_HALTED) {
581 LOG_TARGET_ERROR(target, "not halted");
582 return ERROR_TARGET_NOT_HALTED;
583 }
584
585 retval = reg_arch_info->arm->read_core_reg(target, reg,
586 reg_arch_info->num, reg_arch_info->mode);
587 if (retval == ERROR_OK) {
588 reg->valid = true;
589 reg->dirty = false;
590 }
591
592 return retval;
593 }
594
595 static int armv4_5_set_core_reg(struct reg *reg, uint8_t *buf)
596 {
597 struct arm_reg *reg_arch_info = reg->arch_info;
598 struct target *target = reg_arch_info->target;
599 struct arm *armv4_5_target = target_to_arm(target);
600 uint32_t value = buf_get_u32(buf, 0, 32);
601
602 if (target->state != TARGET_HALTED) {
603 LOG_TARGET_ERROR(target, "not halted");
604 return ERROR_TARGET_NOT_HALTED;
605 }
606
607 /* Except for CPSR, the "reg" command exposes a writeback model
608 * for the register cache.
609 */
610 if (reg == armv4_5_target->cpsr) {
611 arm_set_cpsr(armv4_5_target, value);
612
613 /* Older cores need help to be in ARM mode during halt
614 * mode debug, so we clear the J and T bits if we flush.
615 * For newer cores (v6/v7a/v7r) we don't need that, but
616 * it won't hurt since CPSR is always flushed anyway.
617 */
618 if (armv4_5_target->core_mode !=
619 (enum arm_mode)(value & 0x1f)) {
620 LOG_DEBUG("changing ARM core mode to '%s'",
621 arm_mode_name(value & 0x1f));
622 value &= ~((1 << 24) | (1 << 5));
623 uint8_t t[4];
624 buf_set_u32(t, 0, 32, value);
625 armv4_5_target->write_core_reg(target, reg,
626 16, ARM_MODE_ANY, t);
627 }
628 } else {
629 buf_set_u32(reg->value, 0, 32, value);
630 if (reg->size == 64) {
631 value = buf_get_u32(buf + 4, 0, 32);
632 buf_set_u32(reg->value + 4, 0, 32, value);
633 }
634 reg->valid = true;
635 }
636 reg->dirty = true;
637
638 return ERROR_OK;
639 }
640
641 static const struct reg_arch_type arm_reg_type = {
642 .get = armv4_5_get_core_reg,
643 .set = armv4_5_set_core_reg,
644 };
645
646 struct reg_cache *arm_build_reg_cache(struct target *target, struct arm *arm)
647 {
648 int num_regs = ARRAY_SIZE(arm_core_regs);
649 int num_core_regs = num_regs;
650 if (arm->arm_vfp_version == ARM_VFP_V3)
651 num_regs += ARRAY_SIZE(arm_vfp_v3_regs);
652
653 struct reg_cache *cache = malloc(sizeof(struct reg_cache));
654 struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
655 struct arm_reg *reg_arch_info = calloc(num_regs, sizeof(struct arm_reg));
656 int i;
657
658 if (!cache || !reg_list || !reg_arch_info) {
659 free(cache);
660 free(reg_list);
661 free(reg_arch_info);
662 return NULL;
663 }
664
665 cache->name = "ARM registers";
666 cache->next = NULL;
667 cache->reg_list = reg_list;
668 cache->num_regs = 0;
669
670 for (i = 0; i < num_core_regs; i++) {
671 /* Skip registers this core doesn't expose */
672 if (arm_core_regs[i].mode == ARM_MODE_MON
673 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
674 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
675 continue;
676 if (arm_core_regs[i].mode == ARM_MODE_HYP
677 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
678 continue;
679
680 /* REVISIT handle Cortex-M, which only shadows R13/SP */
681
682 reg_arch_info[i].num = arm_core_regs[i].cookie;
683 reg_arch_info[i].mode = arm_core_regs[i].mode;
684 reg_arch_info[i].target = target;
685 reg_arch_info[i].arm = arm;
686
687 reg_list[i].name = arm_core_regs[i].name;
688 reg_list[i].number = arm_core_regs[i].gdb_index;
689 reg_list[i].size = 32;
690 reg_list[i].value = reg_arch_info[i].value;
691 reg_list[i].type = &arm_reg_type;
692 reg_list[i].arch_info = &reg_arch_info[i];
693 reg_list[i].exist = true;
694
695 /* This really depends on the calling convention in use */
696 reg_list[i].caller_save = false;
697
698 /* Registers data type, as used by GDB target description */
699 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
700 switch (arm_core_regs[i].cookie) {
701 case 13:
702 reg_list[i].reg_data_type->type = REG_TYPE_DATA_PTR;
703 break;
704 case 14:
705 case 15:
706 reg_list[i].reg_data_type->type = REG_TYPE_CODE_PTR;
707 break;
708 default:
709 reg_list[i].reg_data_type->type = REG_TYPE_UINT32;
710 break;
711 }
712
713 /* let GDB shows banked registers only in "info all-reg" */
714 reg_list[i].feature = malloc(sizeof(struct reg_feature));
715 if (reg_list[i].number <= 15 || reg_list[i].number == 25) {
716 reg_list[i].feature->name = "org.gnu.gdb.arm.core";
717 reg_list[i].group = "general";
718 } else {
719 reg_list[i].feature->name = "net.sourceforge.openocd.banked";
720 reg_list[i].group = "banked";
721 }
722
723 cache->num_regs++;
724 }
725
726 int j;
727 for (i = num_core_regs, j = 0; i < num_regs; i++, j++) {
728 reg_arch_info[i].num = arm_vfp_v3_regs[j].id;
729 reg_arch_info[i].mode = arm_vfp_v3_regs[j].mode;
730 reg_arch_info[i].target = target;
731 reg_arch_info[i].arm = arm;
732
733 reg_list[i].name = arm_vfp_v3_regs[j].name;
734 reg_list[i].number = arm_vfp_v3_regs[j].id;
735 reg_list[i].size = arm_vfp_v3_regs[j].bits;
736 reg_list[i].value = reg_arch_info[i].value;
737 reg_list[i].type = &arm_reg_type;
738 reg_list[i].arch_info = &reg_arch_info[i];
739 reg_list[i].exist = true;
740
741 reg_list[i].caller_save = false;
742
743 reg_list[i].reg_data_type = malloc(sizeof(struct reg_data_type));
744 reg_list[i].reg_data_type->type = arm_vfp_v3_regs[j].type;
745
746 reg_list[i].feature = malloc(sizeof(struct reg_feature));
747 reg_list[i].feature->name = arm_vfp_v3_regs[j].feature;
748
749 reg_list[i].group = arm_vfp_v3_regs[j].group;
750
751 cache->num_regs++;
752 }
753
754 arm->pc = reg_list + 15;
755 arm->cpsr = reg_list + ARMV4_5_CPSR;
756 arm->core_cache = cache;
757
758 return cache;
759 }
760
761 void arm_free_reg_cache(struct arm *arm)
762 {
763 if (!arm || !arm->core_cache)
764 return;
765
766 struct reg_cache *cache = arm->core_cache;
767
768 for (unsigned int i = 0; i < cache->num_regs; i++) {
769 struct reg *reg = &cache->reg_list[i];
770
771 free(reg->feature);
772 free(reg->reg_data_type);
773 }
774
775 free(cache->reg_list[0].arch_info);
776 free(cache->reg_list);
777 free(cache);
778
779 arm->core_cache = NULL;
780 }
781
782 int arm_arch_state(struct target *target)
783 {
784 struct arm *arm = target_to_arm(target);
785
786 if (arm->common_magic != ARM_COMMON_MAGIC) {
787 LOG_ERROR("BUG: called for a non-ARM target");
788 return ERROR_FAIL;
789 }
790
791 /* avoid filling log waiting for fileio reply */
792 if (target->semihosting && target->semihosting->hit_fileio)
793 return ERROR_OK;
794
795 LOG_USER("target halted in %s state due to %s, current mode: %s\n"
796 "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "%s%s",
797 arm_state_strings[arm->core_state],
798 debug_reason_name(target),
799 arm_mode_name(arm->core_mode),
800 buf_get_u32(arm->cpsr->value, 0, 32),
801 buf_get_u32(arm->pc->value, 0, 32),
802 (target->semihosting && target->semihosting->is_active) ? ", semihosting" : "",
803 (target->semihosting && target->semihosting->is_fileio) ? " fileio" : "");
804
805 return ERROR_OK;
806 }
807
808 COMMAND_HANDLER(handle_armv4_5_reg_command)
809 {
810 struct target *target = get_current_target(CMD_CTX);
811 struct arm *arm = target_to_arm(target);
812 struct reg *regs;
813
814 if (!is_arm(arm)) {
815 command_print(CMD, "current target isn't an ARM");
816 return ERROR_FAIL;
817 }
818
819 if (target->state != TARGET_HALTED) {
820 command_print(CMD, "Error: target must be halted for register accesses");
821 return ERROR_TARGET_NOT_HALTED;
822 }
823
824 if (arm->core_type != ARM_CORE_TYPE_STD) {
825 command_print(CMD,
826 "Microcontroller Profile not supported - use standard reg cmd");
827 return ERROR_OK;
828 }
829
830 if (!is_arm_mode(arm->core_mode)) {
831 LOG_ERROR("not a valid arm core mode - communication failure?");
832 return ERROR_FAIL;
833 }
834
835 if (!arm->full_context) {
836 command_print(CMD, "Error: target doesn't support %s",
837 CMD_NAME);
838 return ERROR_FAIL;
839 }
840
841 regs = arm->core_cache->reg_list;
842
843 for (unsigned mode = 0; mode < ARRAY_SIZE(arm_mode_data); mode++) {
844 const char *name;
845 char *sep = "\n";
846 char *shadow = "";
847
848 if (!arm_mode_data[mode].n_indices)
849 continue;
850
851 /* label this bank of registers (or shadows) */
852 switch (arm_mode_data[mode].psr) {
853 case ARM_MODE_SYS:
854 continue;
855 case ARM_MODE_USR:
856 name = "System and User";
857 sep = "";
858 break;
859 case ARM_MODE_HYP:
860 if (arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
861 continue;
862 /* FALLTHROUGH */
863 case ARM_MODE_MON:
864 case ARM_MODE_1176_MON:
865 if (arm->core_type != ARM_CORE_TYPE_SEC_EXT
866 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
867 continue;
868 /* FALLTHROUGH */
869 default:
870 name = arm_mode_data[mode].name;
871 shadow = "shadow ";
872 break;
873 }
874 command_print(CMD, "%s%s mode %sregisters",
875 sep, name, shadow);
876
877 /* display N rows of up to 4 registers each */
878 for (unsigned i = 0; i < arm_mode_data[mode].n_indices; ) {
879 char output[80];
880 int output_len = 0;
881
882 for (unsigned j = 0; j < 4; j++, i++) {
883 uint32_t value;
884 struct reg *reg = regs;
885
886 if (i >= arm_mode_data[mode].n_indices)
887 break;
888
889 reg += arm_mode_data[mode].indices[i];
890
891 /* REVISIT be smarter about faults... */
892 if (!reg->valid)
893 arm->full_context(target);
894
895 value = buf_get_u32(reg->value, 0, 32);
896 output_len += snprintf(output + output_len,
897 sizeof(output) - output_len,
898 "%8s: %8.8" PRIx32 " ",
899 reg->name, value);
900 }
901 command_print(CMD, "%s", output);
902 }
903 }
904
905 return ERROR_OK;
906 }
907
908 COMMAND_HANDLER(handle_arm_core_state_command)
909 {
910 struct target *target = get_current_target(CMD_CTX);
911 struct arm *arm = target_to_arm(target);
912 int ret = ERROR_OK;
913
914 if (!is_arm(arm)) {
915 command_print(CMD, "current target isn't an ARM");
916 return ERROR_FAIL;
917 }
918
919 if (CMD_ARGC > 0) {
920 if (strcmp(CMD_ARGV[0], "arm") == 0) {
921 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
922 command_print(CMD, "arm mode not supported on Cortex-M");
923 ret = ERROR_FAIL;
924 } else {
925 arm->core_state = ARM_STATE_ARM;
926 }
927 }
928 if (strcmp(CMD_ARGV[0], "thumb") == 0)
929 arm->core_state = ARM_STATE_THUMB;
930 }
931
932 command_print(CMD, "core state: %s", arm_state_strings[arm->core_state]);
933
934 return ret;
935 }
936
937 COMMAND_HANDLER(handle_arm_disassemble_command)
938 {
939 #if HAVE_CAPSTONE
940 struct target *target = get_current_target(CMD_CTX);
941
942 if (!target) {
943 LOG_ERROR("No target selected");
944 return ERROR_FAIL;
945 }
946
947 struct arm *arm = target_to_arm(target);
948 target_addr_t address;
949 unsigned int count = 1;
950 bool thumb = false;
951
952 if (!is_arm(arm)) {
953 command_print(CMD, "current target isn't an ARM");
954 return ERROR_FAIL;
955 }
956
957 if (arm->core_type == ARM_CORE_TYPE_M_PROFILE) {
958 /* armv7m is always thumb mode */
959 thumb = true;
960 }
961
962 switch (CMD_ARGC) {
963 case 3:
964 if (strcmp(CMD_ARGV[2], "thumb") != 0)
965 return ERROR_COMMAND_SYNTAX_ERROR;
966 thumb = true;
967 /* FALL THROUGH */
968 case 2:
969 COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);
970 /* FALL THROUGH */
971 case 1:
972 COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);
973 if (address & 0x01) {
974 if (!thumb) {
975 command_print(CMD, "Disassemble as Thumb");
976 thumb = true;
977 }
978 address &= ~1;
979 }
980 break;
981 default:
982 return ERROR_COMMAND_SYNTAX_ERROR;
983 }
984
985 return arm_disassemble(CMD, target, address, count, thumb);
986 #else
987 command_print(CMD, "capstone disassembly framework required");
988 return ERROR_FAIL;
989 #endif
990 }
991
992 COMMAND_HANDLER(handle_armv4_5_mcrmrc)
993 {
994 bool is_mcr = false;
995 unsigned int arg_cnt = 5;
996
997 if (!strcmp(CMD_NAME, "mcr")) {
998 is_mcr = true;
999 arg_cnt = 6;
1000 }
1001
1002 if (arg_cnt != CMD_ARGC)
1003 return ERROR_COMMAND_SYNTAX_ERROR;
1004
1005 struct target *target = get_current_target(CMD_CTX);
1006 if (!target) {
1007 command_print(CMD, "no current target");
1008 return ERROR_FAIL;
1009 }
1010 if (!target_was_examined(target)) {
1011 command_print(CMD, "%s: not yet examined", target_name(target));
1012 return ERROR_TARGET_NOT_EXAMINED;
1013 }
1014
1015 struct arm *arm = target_to_arm(target);
1016 if (!is_arm(arm)) {
1017 command_print(CMD, "%s: not an ARM", target_name(target));
1018 return ERROR_FAIL;
1019 }
1020
1021 if (target->state != TARGET_HALTED) {
1022 command_print(CMD, "Error: [%s] not halted", target_name(target));
1023 return ERROR_TARGET_NOT_HALTED;
1024 }
1025
1026 int cpnum;
1027 uint32_t op1;
1028 uint32_t op2;
1029 uint32_t crn;
1030 uint32_t crm;
1031 uint32_t value;
1032
1033 /* NOTE: parameter sequence matches ARM instruction set usage:
1034 * MCR pNUM, op1, rX, CRn, CRm, op2 ; write CP from rX
1035 * MRC pNUM, op1, rX, CRn, CRm, op2 ; read CP into rX
1036 * The "rX" is necessarily omitted; it uses Tcl mechanisms.
1037 */
1038 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], cpnum);
1039 if (cpnum & ~0xf) {
1040 command_print(CMD, "coprocessor %d out of range", cpnum);
1041 return ERROR_COMMAND_ARGUMENT_INVALID;
1042 }
1043
1044 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], op1);
1045 if (op1 & ~0x7) {
1046 command_print(CMD, "op1 %d out of range", op1);
1047 return ERROR_COMMAND_ARGUMENT_INVALID;
1048 }
1049
1050 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], crn);
1051 if (crn & ~0xf) {
1052 command_print(CMD, "CRn %d out of range", crn);
1053 return ERROR_COMMAND_ARGUMENT_INVALID;
1054 }
1055
1056 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], crm);
1057 if (crm & ~0xf) {
1058 command_print(CMD, "CRm %d out of range", crm);
1059 return ERROR_COMMAND_ARGUMENT_INVALID;
1060 }
1061
1062 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], op2);
1063 if (op2 & ~0x7) {
1064 command_print(CMD, "op2 %d out of range", op2);
1065 return ERROR_COMMAND_ARGUMENT_INVALID;
1066 }
1067
1068 /*
1069 * FIXME change the call syntax here ... simplest to just pass
1070 * the MRC() or MCR() instruction to be executed. That will also
1071 * let us support the "mrc2" and "mcr2" opcodes (toggling one bit)
1072 * if that's ever needed.
1073 */
1074 if (is_mcr) {
1075 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[5], value);
1076
1077 /* NOTE: parameters reordered! */
1078 /* ARMV4_5_MCR(cpnum, op1, 0, crn, crm, op2) */
1079 int retval = arm->mcr(target, cpnum, op1, op2, crn, crm, value);
1080 if (retval != ERROR_OK)
1081 return retval;
1082 } else {
1083 value = 0;
1084 /* NOTE: parameters reordered! */
1085 /* ARMV4_5_MRC(cpnum, op1, 0, crn, crm, op2) */
1086 int retval = arm->mrc(target, cpnum, op1, op2, crn, crm, &value);
1087 if (retval != ERROR_OK)
1088 return retval;
1089
1090 command_print(CMD, "0x%" PRIx32, value);
1091 }
1092
1093 return ERROR_OK;
1094 }
1095
1096 static const struct command_registration arm_exec_command_handlers[] = {
1097 {
1098 .name = "reg",
1099 .handler = handle_armv4_5_reg_command,
1100 .mode = COMMAND_EXEC,
1101 .help = "display ARM core registers",
1102 .usage = "",
1103 },
1104 {
1105 .name = "mcr",
1106 .mode = COMMAND_EXEC,
1107 .handler = handle_armv4_5_mcrmrc,
1108 .help = "write coprocessor register",
1109 .usage = "cpnum op1 CRn CRm op2 value",
1110 },
1111 {
1112 .name = "mrc",
1113 .mode = COMMAND_EXEC,
1114 .handler = handle_armv4_5_mcrmrc,
1115 .help = "read coprocessor register",
1116 .usage = "cpnum op1 CRn CRm op2",
1117 },
1118 {
1119 .chain = arm_all_profiles_command_handlers,
1120 },
1121 COMMAND_REGISTRATION_DONE
1122 };
1123
1124 const struct command_registration arm_all_profiles_command_handlers[] = {
1125 {
1126 .name = "core_state",
1127 .handler = handle_arm_core_state_command,
1128 .mode = COMMAND_EXEC,
1129 .usage = "['arm'|'thumb']",
1130 .help = "display/change ARM core state",
1131 },
1132 {
1133 .name = "disassemble",
1134 .handler = handle_arm_disassemble_command,
1135 .mode = COMMAND_EXEC,
1136 .usage = "address [count ['thumb']]",
1137 .help = "disassemble instructions",
1138 },
1139 {
1140 .chain = semihosting_common_handlers,
1141 },
1142 COMMAND_REGISTRATION_DONE
1143 };
1144
1145 const struct command_registration arm_command_handlers[] = {
1146 {
1147 .name = "arm",
1148 .mode = COMMAND_ANY,
1149 .help = "ARM command group",
1150 .usage = "",
1151 .chain = arm_exec_command_handlers,
1152 },
1153 COMMAND_REGISTRATION_DONE
1154 };
1155
1156 /*
1157 * gdb for arm targets (e.g. arm-none-eabi-gdb) supports several variants
1158 * of arm architecture. You can list them using the autocompletion of gdb
1159 * command prompt by typing "set architecture " and then press TAB key.
1160 * The default, selected automatically, is "arm".
1161 * Let's use the default value, here, to make gdb-multiarch behave in the
1162 * same way as a gdb for arm. This can be changed later on. User can still
1163 * set the specific architecture variant with the gdb command.
1164 */
1165 const char *arm_get_gdb_arch(struct target *target)
1166 {
1167 return "arm";
1168 }
1169
1170 int arm_get_gdb_reg_list(struct target *target,
1171 struct reg **reg_list[], int *reg_list_size,
1172 enum target_register_class reg_class)
1173 {
1174 struct arm *arm = target_to_arm(target);
1175 unsigned int i;
1176
1177 if (!is_arm_mode(arm->core_mode)) {
1178 LOG_ERROR("not a valid arm core mode - communication failure?");
1179 return ERROR_FAIL;
1180 }
1181
1182 switch (reg_class) {
1183 case REG_CLASS_GENERAL:
1184 *reg_list_size = 26;
1185 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1186
1187 for (i = 0; i < 16; i++)
1188 (*reg_list)[i] = arm_reg_current(arm, i);
1189
1190 /* For GDB compatibility, take FPA registers size into account and zero-fill it*/
1191 for (i = 16; i < 24; i++)
1192 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1193 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1194
1195 (*reg_list)[25] = arm->cpsr;
1196
1197 return ERROR_OK;
1198
1199 case REG_CLASS_ALL:
1200 switch (arm->core_type) {
1201 case ARM_CORE_TYPE_SEC_EXT:
1202 *reg_list_size = 51;
1203 break;
1204 case ARM_CORE_TYPE_VIRT_EXT:
1205 *reg_list_size = 53;
1206 break;
1207 default:
1208 *reg_list_size = 48;
1209 }
1210 unsigned int list_size_core = *reg_list_size;
1211 if (arm->arm_vfp_version == ARM_VFP_V3)
1212 *reg_list_size += 33;
1213
1214 *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
1215
1216 for (i = 0; i < 16; i++)
1217 (*reg_list)[i] = arm_reg_current(arm, i);
1218
1219 for (i = 13; i < ARRAY_SIZE(arm_core_regs); i++) {
1220 int reg_index = arm->core_cache->reg_list[i].number;
1221
1222 if (arm_core_regs[i].mode == ARM_MODE_MON
1223 && arm->core_type != ARM_CORE_TYPE_SEC_EXT
1224 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1225 continue;
1226 if (arm_core_regs[i].mode == ARM_MODE_HYP
1227 && arm->core_type != ARM_CORE_TYPE_VIRT_EXT)
1228 continue;
1229 (*reg_list)[reg_index] = &(arm->core_cache->reg_list[i]);
1230 }
1231
1232 /* When we supply the target description, there is no need for fake FPA */
1233 for (i = 16; i < 24; i++) {
1234 (*reg_list)[i] = &arm_gdb_dummy_fp_reg;
1235 (*reg_list)[i]->size = 0;
1236 }
1237 (*reg_list)[24] = &arm_gdb_dummy_fps_reg;
1238 (*reg_list)[24]->size = 0;
1239
1240 if (arm->arm_vfp_version == ARM_VFP_V3) {
1241 unsigned int num_core_regs = ARRAY_SIZE(arm_core_regs);
1242 for (i = 0; i < 33; i++)
1243 (*reg_list)[list_size_core + i] = &(arm->core_cache->reg_list[num_core_regs + i]);
1244 }
1245
1246 return ERROR_OK;
1247
1248 default:
1249 LOG_ERROR("not a valid register class type in query.");
1250 return ERROR_FAIL;
1251 }
1252 }
1253
1254 /* wait for execution to complete and check exit point */
1255 static int armv4_5_run_algorithm_completion(struct target *target,
1256 uint32_t exit_point,
1257 unsigned int timeout_ms,
1258 void *arch_info)
1259 {
1260 int retval;
1261 struct arm *arm = target_to_arm(target);
1262
1263 retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
1264 if (retval != ERROR_OK)
1265 return retval;
1266 if (target->state != TARGET_HALTED) {
1267 retval = target_halt(target);
1268 if (retval != ERROR_OK)
1269 return retval;
1270 retval = target_wait_state(target, TARGET_HALTED, 500);
1271 if (retval != ERROR_OK)
1272 return retval;
1273 return ERROR_TARGET_TIMEOUT;
1274 }
1275
1276 /* fast exit: ARMv5+ code can use BKPT */
1277 if (exit_point && buf_get_u32(arm->pc->value, 0, 32) != exit_point) {
1278 LOG_WARNING(
1279 "target reentered debug state, but not at the desired exit point: 0x%4.4" PRIx32 "",
1280 buf_get_u32(arm->pc->value, 0, 32));
1281 return ERROR_TARGET_TIMEOUT;
1282 }
1283
1284 return ERROR_OK;
1285 }
1286
1287 int armv4_5_run_algorithm_inner(struct target *target,
1288 int num_mem_params, struct mem_param *mem_params,
1289 int num_reg_params, struct reg_param *reg_params,
1290 uint32_t entry_point, uint32_t exit_point,
1291 unsigned int timeout_ms, void *arch_info,
1292 int (*run_it)(struct target *target, uint32_t exit_point,
1293 unsigned int timeout_ms, void *arch_info))
1294 {
1295 struct arm *arm = target_to_arm(target);
1296 struct arm_algorithm *arm_algorithm_info = arch_info;
1297 enum arm_state core_state = arm->core_state;
1298 uint32_t context[17];
1299 uint32_t cpsr;
1300 int exit_breakpoint_size = 0;
1301 int i;
1302 int retval = ERROR_OK;
1303
1304 LOG_DEBUG("Running algorithm");
1305
1306 if (arm_algorithm_info->common_magic != ARM_COMMON_MAGIC) {
1307 LOG_ERROR("current target isn't an ARMV4/5 target");
1308 return ERROR_TARGET_INVALID;
1309 }
1310
1311 if (target->state != TARGET_HALTED) {
1312 LOG_TARGET_ERROR(target, "not halted (run target algo)");
1313 return ERROR_TARGET_NOT_HALTED;
1314 }
1315
1316 if (!is_arm_mode(arm->core_mode)) {
1317 LOG_ERROR("not a valid arm core mode - communication failure?");
1318 return ERROR_FAIL;
1319 }
1320
1321 /* armv5 and later can terminate with BKPT instruction; less overhead */
1322 if (!exit_point && arm->arch == ARM_ARCH_V4) {
1323 LOG_ERROR("ARMv4 target needs HW breakpoint location");
1324 return ERROR_FAIL;
1325 }
1326
1327 /* save r0..pc, cpsr-or-spsr, and then cpsr-for-sure;
1328 * they'll be restored later.
1329 */
1330 for (i = 0; i <= 16; i++) {
1331 struct reg *r;
1332
1333 r = &ARMV4_5_CORE_REG_MODE(arm->core_cache,
1334 arm_algorithm_info->core_mode, i);
1335 if (!r->valid)
1336 arm->read_core_reg(target, r, i,
1337 arm_algorithm_info->core_mode);
1338 context[i] = buf_get_u32(r->value, 0, 32);
1339 }
1340 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
1341
1342 for (i = 0; i < num_mem_params; i++) {
1343 if (mem_params[i].direction == PARAM_IN)
1344 continue;
1345 retval = target_write_buffer(target, mem_params[i].address, mem_params[i].size,
1346 mem_params[i].value);
1347 if (retval != ERROR_OK)
1348 return retval;
1349 }
1350
1351 for (i = 0; i < num_reg_params; i++) {
1352 if (reg_params[i].direction == PARAM_IN)
1353 continue;
1354
1355 struct reg *reg = register_get_by_name(arm->core_cache, reg_params[i].reg_name, false);
1356 if (!reg) {
1357 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1358 return ERROR_COMMAND_SYNTAX_ERROR;
1359 }
1360
1361 if (reg->size != reg_params[i].size) {
1362 LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
1363 reg_params[i].reg_name);
1364 return ERROR_COMMAND_SYNTAX_ERROR;
1365 }
1366
1367 retval = armv4_5_set_core_reg(reg, reg_params[i].value);
1368 if (retval != ERROR_OK)
1369 return retval;
1370 }
1371
1372 arm->core_state = arm_algorithm_info->core_state;
1373 if (arm->core_state == ARM_STATE_ARM)
1374 exit_breakpoint_size = 4;
1375 else if (arm->core_state == ARM_STATE_THUMB)
1376 exit_breakpoint_size = 2;
1377 else {
1378 LOG_ERROR("BUG: can't execute algorithms when not in ARM or Thumb state");
1379 return ERROR_COMMAND_SYNTAX_ERROR;
1380 }
1381
1382 if (arm_algorithm_info->core_mode != ARM_MODE_ANY) {
1383 LOG_DEBUG("setting core_mode: 0x%2.2x",
1384 arm_algorithm_info->core_mode);
1385 buf_set_u32(arm->cpsr->value, 0, 5,
1386 arm_algorithm_info->core_mode);
1387 arm->cpsr->dirty = true;
1388 arm->cpsr->valid = true;
1389 }
1390
1391 /* terminate using a hardware or (ARMv5+) software breakpoint */
1392 if (exit_point) {
1393 retval = breakpoint_add(target, exit_point,
1394 exit_breakpoint_size, BKPT_HARD);
1395 if (retval != ERROR_OK) {
1396 LOG_ERROR("can't add HW breakpoint to terminate algorithm");
1397 return ERROR_TARGET_FAILURE;
1398 }
1399 }
1400
1401 retval = target_resume(target, 0, entry_point, 1, 1);
1402 if (retval != ERROR_OK)
1403 return retval;
1404 retval = run_it(target, exit_point, timeout_ms, arch_info);
1405
1406 if (exit_point)
1407 breakpoint_remove(target, exit_point);
1408
1409 if (retval != ERROR_OK)
1410 return retval;
1411
1412 for (i = 0; i < num_mem_params; i++) {
1413 if (mem_params[i].direction != PARAM_OUT) {
1414 int retvaltemp = target_read_buffer(target, mem_params[i].address,
1415 mem_params[i].size,
1416 mem_params[i].value);
1417 if (retvaltemp != ERROR_OK)
1418 retval = retvaltemp;
1419 }
1420 }
1421
1422 for (i = 0; i < num_reg_params; i++) {
1423 if (reg_params[i].direction != PARAM_OUT) {
1424
1425 struct reg *reg = register_get_by_name(arm->core_cache,
1426 reg_params[i].reg_name,
1427 false);
1428 if (!reg) {
1429 LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
1430 retval = ERROR_COMMAND_SYNTAX_ERROR;
1431 continue;
1432 }
1433
1434 if (reg->size != reg_params[i].size) {
1435 LOG_ERROR(
1436 "BUG: register '%s' size doesn't match reg_params[i].size",
1437 reg_params[i].reg_name);
1438 retval = ERROR_COMMAND_SYNTAX_ERROR;
1439 continue;
1440 }
1441
1442 buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
1443 }
1444 }
1445
1446 /* restore everything we saved before (17 or 18 registers) */
1447 for (i = 0; i <= 16; i++) {
1448 uint32_t regvalue;
1449 regvalue = buf_get_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1450 arm_algorithm_info->core_mode, i).value, 0, 32);
1451 if (regvalue != context[i]) {
1452 LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32 "",
1453 ARMV4_5_CORE_REG_MODE(arm->core_cache,
1454 arm_algorithm_info->core_mode, i).name, context[i]);
1455 buf_set_u32(ARMV4_5_CORE_REG_MODE(arm->core_cache,
1456 arm_algorithm_info->core_mode, i).value, 0, 32, context[i]);
1457 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1458 i).valid = true;
1459 ARMV4_5_CORE_REG_MODE(arm->core_cache, arm_algorithm_info->core_mode,
1460 i).dirty = true;
1461 }
1462 }
1463
1464 arm_set_cpsr(arm, cpsr);
1465 arm->cpsr->dirty = true;
1466
1467 arm->core_state = core_state;
1468
1469 return retval;
1470 }
1471
1472 int armv4_5_run_algorithm(struct target *target,
1473 int num_mem_params,
1474 struct mem_param *mem_params,
1475 int num_reg_params,
1476 struct reg_param *reg_params,
1477 target_addr_t entry_point,
1478 target_addr_t exit_point,
1479 unsigned int timeout_ms,
1480 void *arch_info)
1481 {
1482 return armv4_5_run_algorithm_inner(target,
1483 num_mem_params,
1484 mem_params,
1485 num_reg_params,
1486 reg_params,
1487 (uint32_t)entry_point,
1488 (uint32_t)exit_point,
1489 timeout_ms,
1490 arch_info,
1491 armv4_5_run_algorithm_completion);
1492 }
1493
1494 /**
1495 * Runs ARM code in the target to calculate a CRC32 checksum.
1496 *
1497 */
1498 int arm_checksum_memory(struct target *target,
1499 target_addr_t address, uint32_t count, uint32_t *checksum)
1500 {
1501 struct working_area *crc_algorithm;
1502 struct arm_algorithm arm_algo;
1503 struct arm *arm = target_to_arm(target);
1504 struct reg_param reg_params[2];
1505 int retval;
1506 uint32_t i;
1507 uint32_t exit_var = 0;
1508
1509 static const uint8_t arm_crc_code_le[] = {
1510 #include "../../contrib/loaders/checksum/armv4_5_crc.inc"
1511 };
1512
1513 assert(sizeof(arm_crc_code_le) % 4 == 0);
1514
1515 retval = target_alloc_working_area(target,
1516 sizeof(arm_crc_code_le), &crc_algorithm);
1517 if (retval != ERROR_OK)
1518 return retval;
1519
1520 /* convert code into a buffer in target endianness */
1521 for (i = 0; i < ARRAY_SIZE(arm_crc_code_le) / 4; i++) {
1522 retval = target_write_u32(target,
1523 crc_algorithm->address + i * sizeof(uint32_t),
1524 le_to_h_u32(&arm_crc_code_le[i * 4]));
1525 if (retval != ERROR_OK)
1526 goto cleanup;
1527 }
1528
1529 arm_algo.common_magic = ARM_COMMON_MAGIC;
1530 arm_algo.core_mode = ARM_MODE_SVC;
1531 arm_algo.core_state = ARM_STATE_ARM;
1532
1533 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);
1534 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1535
1536 buf_set_u32(reg_params[0].value, 0, 32, address);
1537 buf_set_u32(reg_params[1].value, 0, 32, count);
1538
1539 /* 20 second timeout/megabyte */
1540 unsigned int timeout = 20000 * (1 + (count / (1024 * 1024)));
1541
1542 /* armv4 must exit using a hardware breakpoint */
1543 if (arm->arch == ARM_ARCH_V4)
1544 exit_var = crc_algorithm->address + sizeof(arm_crc_code_le) - 8;
1545
1546 retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
1547 crc_algorithm->address,
1548 exit_var,
1549 timeout, &arm_algo);
1550
1551 if (retval == ERROR_OK)
1552 *checksum = buf_get_u32(reg_params[0].value, 0, 32);
1553 else
1554 LOG_ERROR("error executing ARM crc algorithm");
1555
1556 destroy_reg_param(&reg_params[0]);
1557 destroy_reg_param(&reg_params[1]);
1558
1559 cleanup:
1560 target_free_working_area(target, crc_algorithm);
1561
1562 return retval;
1563 }
1564
1565 /**
1566 * Runs ARM code in the target to check whether a memory block holds
1567 * all ones. NOR flash which has been erased, and thus may be written,
1568 * holds all ones.
1569 *
1570 */
1571 int arm_blank_check_memory(struct target *target,
1572 struct target_memory_check_block *blocks, int num_blocks, uint8_t erased_value)
1573 {
1574 struct working_area *check_algorithm;
1575 struct reg_param reg_params[3];
1576 struct arm_algorithm arm_algo;
1577 struct arm *arm = target_to_arm(target);
1578 int retval;
1579 uint32_t i;
1580 uint32_t exit_var = 0;
1581
1582 static const uint8_t check_code_le[] = {
1583 #include "../../contrib/loaders/erase_check/armv4_5_erase_check.inc"
1584 };
1585
1586 assert(sizeof(check_code_le) % 4 == 0);
1587
1588 if (erased_value != 0xff) {
1589 LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for ARMv4/v5 targets",
1590 erased_value);
1591 return ERROR_FAIL;
1592 }
1593
1594 /* make sure we have a working area */
1595 retval = target_alloc_working_area(target,
1596 sizeof(check_code_le), &check_algorithm);
1597 if (retval != ERROR_OK)
1598 return retval;
1599
1600 /* convert code into a buffer in target endianness */
1601 for (i = 0; i < ARRAY_SIZE(check_code_le) / 4; i++) {
1602 retval = target_write_u32(target,
1603 check_algorithm->address
1604 + i * sizeof(uint32_t),
1605 le_to_h_u32(&check_code_le[i * 4]));
1606 if (retval != ERROR_OK)
1607 goto cleanup;
1608 }
1609
1610 arm_algo.common_magic = ARM_COMMON_MAGIC;
1611 arm_algo.core_mode = ARM_MODE_SVC;
1612 arm_algo.core_state = ARM_STATE_ARM;
1613
1614 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1615 buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
1616
1617 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
1618 buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
1619
1620 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
1621 buf_set_u32(reg_params[2].value, 0, 32, erased_value);
1622
1623 /* armv4 must exit using a hardware breakpoint */
1624 if (arm->arch == ARM_ARCH_V4)
1625 exit_var = check_algorithm->address + sizeof(check_code_le) - 4;
1626
1627 retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
1628 check_algorithm->address,
1629 exit_var,
1630 10000, &arm_algo);
1631
1632 if (retval == ERROR_OK)
1633 blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
1634
1635 destroy_reg_param(&reg_params[0]);
1636 destroy_reg_param(&reg_params[1]);
1637 destroy_reg_param(&reg_params[2]);
1638
1639 cleanup:
1640 target_free_working_area(target, check_algorithm);
1641
1642 if (retval != ERROR_OK)
1643 return retval;
1644
1645 return 1; /* only one block has been checked */
1646 }
1647
1648 static int arm_full_context(struct target *target)
1649 {
1650 struct arm *arm = target_to_arm(target);
1651 unsigned num_regs = arm->core_cache->num_regs;
1652 struct reg *reg = arm->core_cache->reg_list;
1653 int retval = ERROR_OK;
1654
1655 for (; num_regs && retval == ERROR_OK; num_regs--, reg++) {
1656 if (!reg->exist || reg->valid)
1657 continue;
1658 retval = armv4_5_get_core_reg(reg);
1659 }
1660 return retval;
1661 }
1662
1663 static int arm_default_mrc(struct target *target, int cpnum,
1664 uint32_t op1, uint32_t op2,
1665 uint32_t crn, uint32_t crm,
1666 uint32_t *value)
1667 {
1668 LOG_ERROR("%s doesn't implement MRC", target_type_name(target));
1669 return ERROR_FAIL;
1670 }
1671
1672 static int arm_default_mcr(struct target *target, int cpnum,
1673 uint32_t op1, uint32_t op2,
1674 uint32_t crn, uint32_t crm,
1675 uint32_t value)
1676 {
1677 LOG_ERROR("%s doesn't implement MCR", target_type_name(target));
1678 return ERROR_FAIL;
1679 }
1680
1681 int arm_init_arch_info(struct target *target, struct arm *arm)
1682 {
1683 target->arch_info = arm;
1684 arm->target = target;
1685
1686 arm->common_magic = ARM_COMMON_MAGIC;
1687
1688 /* core_type may be overridden by subtype logic */
1689 if (arm->core_type != ARM_CORE_TYPE_M_PROFILE) {
1690 arm->core_type = ARM_CORE_TYPE_STD;
1691 arm_set_cpsr(arm, ARM_MODE_USR);
1692 }
1693
1694 /* default full_context() has no core-specific optimizations */
1695 if (!arm->full_context && arm->read_core_reg)
1696 arm->full_context = arm_full_context;
1697
1698 if (!arm->mrc)
1699 arm->mrc = arm_default_mrc;
1700 if (!arm->mcr)
1701 arm->mcr = arm_default_mcr;
1702
1703 return ERROR_OK;
1704 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)