ARM: start abstracting ADIv5 transports (JTAG/SWD)
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * This program is free software; you can redistribute it and/or modify *
14 * it under the terms of the GNU General Public License as published by *
15 * the Free Software Foundation; either version 2 of the License, or *
16 * (at your option) any later version. *
17 * *
18 * This program is distributed in the hope that it will be useful, *
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
21 * GNU General Public License for more details. *
22 * *
23 * You should have received a copy of the GNU General Public License *
24 * along with this program; if not, write to the *
25 * Free Software Foundation, Inc., *
26 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
27 ***************************************************************************/
28
29 /**
30 * @file
31 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
32 * debugging architecture. Compared with previous versions, this includes
33 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
34 * transport, and focusses on memory mapped resources as defined by the
35 * CoreSight architecture.
36 *
37 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
38 * basic components: a Debug Port (DP) transporting messages to and from a
39 * debugger, and an Access Port (AP) accessing resources. Three types of DP
40 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
41 * One uses only SWD for communication, and is called SW-DP. The third can
42 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
43 * is used to access memory mapped resources and is called a MEM-AP. Also a
44 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
45 *
46 * This programming interface allows DAP pipelined operations through a
47 * transaction queue. This primarily affects AP operations (such as using
48 * a MEM-AP to access memory or registers). If the current transaction has
49 * not finished by the time the next one must begin, and the ORUNDETECT bit
50 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
51 * further AP operations will fail. There are two basic methods to avoid
52 * such overrun errors. One involves polling for status instead of using
53 * transaction piplining. The other involves adding delays to ensure the
54 * AP has enough time to complete one operation before starting the next
55 * one. (For JTAG these delays are controlled by memaccess_tck.)
56 */
57
58 /*
59 * Relevant specifications from ARM include:
60 *
61 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031A
62 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
63 *
64 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
65 * Cortex-M3(tm) TRM, ARM DDI 0337G
66 */
67
68 #ifdef HAVE_CONFIG_H
69 #include "config.h"
70 #endif
71
72 #include "arm_adi_v5.h"
73 #include <helper/time_support.h>
74
75
76 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
77
78 /*
79 uint32_t tar_block_size(uint32_t address)
80 Return the largest block starting at address that does not cross a tar block size alignment boundary
81 */
82 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, uint32_t address)
83 {
84 return (tar_autoincr_block - ((tar_autoincr_block - 1) & address)) >> 2;
85 }
86
87 /***************************************************************************
88 * *
89 * DPACC and APACC scanchain access through JTAG-DP *
90 * *
91 ***************************************************************************/
92
93 /**
94 * Scan DPACC or APACC using target ordered uint8_t buffers. No endianness
95 * conversions are performed. See section 4.4.3 of the ADIv5 spec, which
96 * discusses operations which access these registers.
97 *
98 * Note that only one scan is performed. If RnW is set, a separate scan
99 * will be needed to collect the data which was read; the "invalue" collects
100 * the posted result of a preceding operation, not the current one.
101 *
102 * @param swjdp the DAP
103 * @param instr JTAG_DP_APACC (AP access) or JTAG_DP_DPACC (DP access)
104 * @param reg_addr two significant bits; A[3:2]; for APACC access, the
105 * SELECT register has more addressing bits.
106 * @param RnW false iff outvalue will be written to the DP or AP
107 * @param outvalue points to a 32-bit (little-endian) integer
108 * @param invalue NULL, or points to a 32-bit (little-endian) integer
109 * @param ack points to where the three bit JTAG_ACK_* code will be stored
110 */
111 static int adi_jtag_dp_scan(struct swjdp_common *swjdp,
112 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
113 uint8_t *outvalue, uint8_t *invalue, uint8_t *ack)
114 {
115 struct arm_jtag *jtag_info = swjdp->jtag_info;
116 struct scan_field fields[2];
117 uint8_t out_addr_buf;
118
119 jtag_set_end_state(TAP_IDLE);
120 arm_jtag_set_instr(jtag_info, instr, NULL);
121
122 /* Scan out a read or write operation using some DP or AP register.
123 * For APACC access with any sticky error flag set, this is discarded.
124 */
125 fields[0].tap = jtag_info->tap;
126 fields[0].num_bits = 3;
127 buf_set_u32(&out_addr_buf, 0, 3, ((reg_addr >> 1) & 0x6) | (RnW & 0x1));
128 fields[0].out_value = &out_addr_buf;
129 fields[0].in_value = ack;
130
131 /* NOTE: if we receive JTAG_ACK_WAIT, the previous operation did not
132 * complete; data we write is discarded, data we read is unpredictable.
133 * When overrun detect is active, STICKYORUN is set.
134 */
135
136 fields[1].tap = jtag_info->tap;
137 fields[1].num_bits = 32;
138 fields[1].out_value = outvalue;
139 fields[1].in_value = invalue;
140
141 jtag_add_dr_scan(2, fields, jtag_get_end_state());
142
143 /* Add specified number of tck clocks after starting memory bus
144 * access, giving the hardware time to complete the access.
145 * They provide more time for the (MEM) AP to complete the read ...
146 * See "Minimum Response Time" for JTAG-DP, in the ADIv5 spec.
147 */
148 if ((instr == JTAG_DP_APACC)
149 && ((reg_addr == AP_REG_DRW)
150 || ((reg_addr & 0xF0) == AP_REG_BD0))
151 && (swjdp->memaccess_tck != 0))
152 jtag_add_runtest(swjdp->memaccess_tck,
153 jtag_set_end_state(TAP_IDLE));
154
155 return jtag_get_error();
156 }
157
158 /**
159 * Scan DPACC or APACC out and in from host ordered uint32_t buffers.
160 * This is exactly like adi_jtag_dp_scan(), except that endianness
161 * conversions are performed (so the types of invalue and outvalue
162 * must be different).
163 */
164 static int adi_jtag_dp_scan_u32(struct swjdp_common *swjdp,
165 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
166 uint32_t outvalue, uint32_t *invalue, uint8_t *ack)
167 {
168 uint8_t out_value_buf[4];
169 int retval;
170
171 buf_set_u32(out_value_buf, 0, 32, outvalue);
172
173 retval = adi_jtag_dp_scan(swjdp, instr, reg_addr, RnW,
174 out_value_buf, (uint8_t *)invalue, ack);
175 if (retval != ERROR_OK)
176 return retval;
177
178 if (invalue)
179 jtag_add_callback(arm_le_to_h_u32,
180 (jtag_callback_data_t) invalue);
181
182 return retval;
183 }
184
185 /**
186 * Utility to write AP registers.
187 */
188 static inline int adi_jtag_ap_write_check(struct swjdp_common *dap,
189 uint8_t reg_addr, uint8_t *outvalue)
190 {
191 return adi_jtag_dp_scan(dap, JTAG_DP_APACC, reg_addr, DPAP_WRITE,
192 outvalue, NULL, NULL);
193 }
194
195 static int adi_jtag_scan_inout_check_u32(struct swjdp_common *swjdp,
196 uint8_t instr, uint8_t reg_addr, uint8_t RnW,
197 uint32_t outvalue, uint32_t *invalue)
198 {
199 int retval;
200
201 /* Issue the read or write */
202 retval = adi_jtag_dp_scan_u32(swjdp, instr, reg_addr,
203 RnW, outvalue, NULL, NULL);
204 if (retval != ERROR_OK)
205 return retval;
206
207 /* For reads, collect posted value; RDBUFF has no other effect.
208 * Assumes read gets acked with OK/FAULT, and CTRL_STAT says "OK".
209 */
210 if ((RnW == DPAP_READ) && (invalue != NULL))
211 retval = adi_jtag_dp_scan_u32(swjdp, JTAG_DP_DPACC,
212 DP_RDBUFF, DPAP_READ, 0, invalue, &swjdp->ack);
213 return retval;
214 }
215
216 int jtagdp_transaction_endcheck(struct swjdp_common *swjdp)
217 {
218 int retval;
219 uint32_t ctrlstat;
220
221 /* too expensive to call keep_alive() here */
222
223 #if 0
224 /* Danger!!!! BROKEN!!!! */
225 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
226 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
227 /* Danger!!!! BROKEN!!!! Why will jtag_execute_queue() fail here????
228 R956 introduced the check on return value here and now Michael Schwingen reports
229 that this code no longer works....
230
231 https://lists.berlios.de/pipermail/openocd-development/2008-September/003107.html
232 */
233 if ((retval = jtag_execute_queue()) != ERROR_OK)
234 {
235 LOG_ERROR("BUG: Why does this fail the first time????");
236 }
237 /* Why??? second time it works??? */
238 #endif
239
240 /* Post CTRL/STAT read; discard any previous posted read value
241 * but collect its ACK status.
242 */
243 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
244 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
245 if ((retval = jtag_execute_queue()) != ERROR_OK)
246 return retval;
247
248 swjdp->ack = swjdp->ack & 0x7;
249
250 /* common code path avoids calling timeval_ms() */
251 if (swjdp->ack != JTAG_ACK_OK_FAULT)
252 {
253 long long then = timeval_ms();
254
255 while (swjdp->ack != JTAG_ACK_OK_FAULT)
256 {
257 if (swjdp->ack == JTAG_ACK_WAIT)
258 {
259 if ((timeval_ms()-then) > 1000)
260 {
261 /* NOTE: this would be a good spot
262 * to use JTAG_DP_ABORT.
263 */
264 LOG_WARNING("Timeout (1000ms) waiting "
265 "for ACK=OK/FAULT "
266 "in JTAG-DP transaction");
267 return ERROR_JTAG_DEVICE_ERROR;
268 }
269 }
270 else
271 {
272 LOG_WARNING("Invalid ACK %#x "
273 "in JTAG-DP transaction",
274 swjdp->ack);
275 return ERROR_JTAG_DEVICE_ERROR;
276 }
277
278 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
279 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
280 if ((retval = jtag_execute_queue()) != ERROR_OK)
281 return retval;
282 swjdp->ack = swjdp->ack & 0x7;
283 }
284 }
285
286 /* REVISIT also STICKYCMP, for pushed comparisons (nyet used) */
287
288 /* Check for STICKYERR and STICKYORUN */
289 if (ctrlstat & (SSTICKYORUN | SSTICKYERR))
290 {
291 LOG_DEBUG("jtag-dp: CTRL/STAT error, 0x%" PRIx32, ctrlstat);
292 /* Check power to debug regions */
293 if ((ctrlstat & 0xf0000000) != 0xf0000000)
294 ahbap_debugport_init(swjdp);
295 else
296 {
297 uint32_t mem_ap_csw, mem_ap_tar;
298
299 /* Maybe print information about last intended
300 * MEM-AP access; but not if autoincrementing.
301 * *Real* CSW and TAR values are always shown.
302 */
303 if (swjdp->ap_tar_value != (uint32_t) -1)
304 LOG_DEBUG("MEM-AP Cached values: "
305 "ap_bank 0x%" PRIx32
306 ", ap_csw 0x%" PRIx32
307 ", ap_tar 0x%" PRIx32,
308 swjdp->ap_bank_value,
309 swjdp->ap_csw_value,
310 swjdp->ap_tar_value);
311
312 if (ctrlstat & SSTICKYORUN)
313 LOG_ERROR("JTAG-DP OVERRUN - check clock, "
314 "memaccess, or reduce jtag speed");
315
316 if (ctrlstat & SSTICKYERR)
317 LOG_ERROR("JTAG-DP STICKY ERROR");
318
319 /* Clear Sticky Error Bits */
320 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
321 DP_CTRL_STAT, DPAP_WRITE,
322 swjdp->dp_ctrl_stat | SSTICKYORUN
323 | SSTICKYERR, NULL);
324 adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
325 DP_CTRL_STAT, DPAP_READ, 0, &ctrlstat);
326 if ((retval = jtag_execute_queue()) != ERROR_OK)
327 return retval;
328
329 LOG_DEBUG("jtag-dp: CTRL/STAT 0x%" PRIx32, ctrlstat);
330
331 dap_ap_read_reg_u32(swjdp, AP_REG_CSW, &mem_ap_csw);
332 dap_ap_read_reg_u32(swjdp, AP_REG_TAR, &mem_ap_tar);
333 if ((retval = jtag_execute_queue()) != ERROR_OK)
334 return retval;
335 LOG_ERROR("MEM_AP_CSW 0x%" PRIx32 ", MEM_AP_TAR 0x%"
336 PRIx32, mem_ap_csw, mem_ap_tar);
337
338 }
339 if ((retval = jtag_execute_queue()) != ERROR_OK)
340 return retval;
341 return ERROR_JTAG_DEVICE_ERROR;
342 }
343
344 return ERROR_OK;
345 }
346
347 /***************************************************************************
348 * *
349 * DP and MEM-AP register access through APACC and DPACC *
350 * *
351 ***************************************************************************/
352
353 /* FIXME remove dap_dp_{read,write}_reg() ... these should become the
354 * bodies of the JTAG implementations of dap_queue_dp_{read,write}() and
355 * callers should switch over to the transport-neutral calls.
356 */
357
358 static int dap_dp_write_reg(struct swjdp_common *swjdp,
359 uint32_t value, uint8_t reg_addr)
360 {
361 return adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
362 reg_addr, DPAP_WRITE, value, NULL);
363 }
364
365 static int dap_dp_read_reg(struct swjdp_common *swjdp,
366 uint32_t *value, uint8_t reg_addr)
367 {
368 return adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_DPACC,
369 reg_addr, DPAP_READ, 0, value);
370 }
371
372 /**
373 * Select one of the APs connected to the specified DAP. The
374 * selection is implicitly used with future AP transactions.
375 * This is a NOP if the specified AP is already selected.
376 *
377 * @param swjdp The DAP
378 * @param apsel Number of the AP to (implicitly) use with further
379 * transactions. This normally identifies a MEM-AP.
380 */
381 void dap_ap_select(struct swjdp_common *swjdp,uint8_t apsel)
382 {
383 uint32_t select = (apsel << 24) & 0xFF000000;
384
385 if (select != swjdp->apsel)
386 {
387 swjdp->apsel = select;
388 /* Switching AP invalidates cached values.
389 * Values MUST BE UPDATED BEFORE AP ACCESS.
390 */
391 swjdp->ap_bank_value = -1;
392 swjdp->ap_csw_value = -1;
393 swjdp->ap_tar_value = -1;
394 }
395 }
396
397 /** Select the AP register bank matching bits 7:4 of ap_reg. */
398 static int dap_ap_bankselect(struct swjdp_common *swjdp, uint32_t ap_reg)
399 {
400 uint32_t select = (ap_reg & 0x000000F0);
401
402 if (select != swjdp->ap_bank_value)
403 {
404 swjdp->ap_bank_value = select;
405 select |= swjdp->apsel;
406 return dap_dp_write_reg(swjdp, select, DP_SELECT);
407 } else
408 return ERROR_OK;
409 }
410
411 /* FIXME remove dap_ap_{read,write}_reg() and dap_ap_write_reg_u32()
412 * ... these should become the bodies of the JTAG implementations of
413 * dap_queue_ap_{read,write}(), then all their current callers should
414 * switch over to the transport-neutral calls.
415 */
416
417 static int dap_ap_write_reg(struct swjdp_common *swjdp,
418 uint32_t reg_addr, uint8_t *out_value_buf)
419 {
420 int retval;
421
422 retval = dap_ap_bankselect(swjdp, reg_addr);
423 if (retval != ERROR_OK)
424 return retval;
425
426 return adi_jtag_ap_write_check(swjdp, reg_addr, out_value_buf);
427 }
428
429 /**
430 * Asynchronous (queued) AP register write.
431 *
432 * @param swjdp The DAP whose currently selected AP will be written.
433 * @param reg_addr Eight bit AP register address.
434 * @param value Word to be written at reg_addr
435 *
436 * @return ERROR_OK if the transaction was properly queued, else a fault code.
437 */
438 int dap_ap_write_reg_u32(struct swjdp_common *swjdp,
439 uint32_t reg_addr, uint32_t value)
440 {
441 uint8_t out_value_buf[4];
442
443 buf_set_u32(out_value_buf, 0, 32, value);
444 return dap_ap_write_reg(swjdp,
445 reg_addr, out_value_buf);
446 }
447
448 /**
449 * Asynchronous (queued) AP register eread.
450 *
451 * @param swjdp The DAP whose currently selected AP will be read.
452 * @param reg_addr Eight bit AP register address.
453 * @param value Points to where the 32-bit (little-endian) word will be stored.
454 *
455 * @return ERROR_OK if the transaction was properly queued, else a fault code.
456 */
457 int dap_ap_read_reg_u32(struct swjdp_common *swjdp,
458 uint32_t reg_addr, uint32_t *value)
459 {
460 int retval;
461
462 retval = dap_ap_bankselect(swjdp, reg_addr);
463 if (retval != ERROR_OK)
464 return retval;
465
466 return adi_jtag_scan_inout_check_u32(swjdp, JTAG_DP_APACC, reg_addr,
467 DPAP_READ, 0, value);
468 }
469
470 /**
471 * Queue transactions setting up transfer parameters for the
472 * currently selected MEM-AP.
473 *
474 * Subsequent transfers using registers like AP_REG_DRW or AP_REG_BD2
475 * initiate data reads or writes using memory or peripheral addresses.
476 * If the CSW is configured for it, the TAR may be automatically
477 * incremented after each transfer.
478 *
479 * @todo Rename to reflect it being specifically a MEM-AP function.
480 *
481 * @param swjdp The DAP connected to the MEM-AP.
482 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
483 * matches the cached value, the register is not changed.
484 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
485 * matches the cached address, the register is not changed.
486 *
487 * @return ERROR_OK if the transaction was properly queued, else a fault code.
488 */
489 int dap_setup_accessport(struct swjdp_common *swjdp, uint32_t csw, uint32_t tar)
490 {
491 int retval;
492
493 csw = csw | CSW_DBGSWENABLE | CSW_MASTER_DEBUG | CSW_HPROT;
494 if (csw != swjdp->ap_csw_value)
495 {
496 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
497 retval = dap_ap_write_reg_u32(swjdp, AP_REG_CSW, csw);
498 if (retval != ERROR_OK)
499 return retval;
500 swjdp->ap_csw_value = csw;
501 }
502 if (tar != swjdp->ap_tar_value)
503 {
504 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
505 retval = dap_ap_write_reg_u32(swjdp, AP_REG_TAR, tar);
506 if (retval != ERROR_OK)
507 return retval;
508 swjdp->ap_tar_value = tar;
509 }
510 /* Disable TAR cache when autoincrementing */
511 if (csw & CSW_ADDRINC_MASK)
512 swjdp->ap_tar_value = -1;
513 return ERROR_OK;
514 }
515
516 /**
517 * Asynchronous (queued) read of a word from memory or a system register.
518 *
519 * @param swjdp The DAP connected to the MEM-AP performing the read.
520 * @param address Address of the 32-bit word to read; it must be
521 * readable by the currently selected MEM-AP.
522 * @param value points to where the word will be stored when the
523 * transaction queue is flushed (assuming no errors).
524 *
525 * @return ERROR_OK for success. Otherwise a fault code.
526 */
527 int mem_ap_read_u32(struct swjdp_common *swjdp, uint32_t address,
528 uint32_t *value)
529 {
530 int retval;
531
532 /* Use banked addressing (REG_BDx) to avoid some link traffic
533 * (updating TAR) when reading several consecutive addresses.
534 */
535 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
536 address & 0xFFFFFFF0);
537 if (retval != ERROR_OK)
538 return retval;
539
540 return dap_ap_read_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC), value);
541 }
542
543 /**
544 * Synchronous read of a word from memory or a system register.
545 * As a side effect, this flushes any queued transactions.
546 *
547 * @param swjdp The DAP connected to the MEM-AP performing the read.
548 * @param address Address of the 32-bit word to read; it must be
549 * readable by the currently selected MEM-AP.
550 * @param value points to where the result will be stored.
551 *
552 * @return ERROR_OK for success; *value holds the result.
553 * Otherwise a fault code.
554 */
555 int mem_ap_read_atomic_u32(struct swjdp_common *swjdp, uint32_t address,
556 uint32_t *value)
557 {
558 int retval;
559
560 retval = mem_ap_read_u32(swjdp, address, value);
561 if (retval != ERROR_OK)
562 return retval;
563
564 return jtagdp_transaction_endcheck(swjdp);
565 }
566
567 /**
568 * Asynchronous (queued) write of a word to memory or a system register.
569 *
570 * @param swjdp The DAP connected to the MEM-AP.
571 * @param address Address to be written; it must be writable by
572 * the currently selected MEM-AP.
573 * @param value Word that will be written to the address when transaction
574 * queue is flushed (assuming no errors).
575 *
576 * @return ERROR_OK for success. Otherwise a fault code.
577 */
578 int mem_ap_write_u32(struct swjdp_common *swjdp, uint32_t address,
579 uint32_t value)
580 {
581 int retval;
582
583 /* Use banked addressing (REG_BDx) to avoid some link traffic
584 * (updating TAR) when writing several consecutive addresses.
585 */
586 retval = dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_OFF,
587 address & 0xFFFFFFF0);
588 if (retval != ERROR_OK)
589 return retval;
590
591 return dap_ap_write_reg_u32(swjdp, AP_REG_BD0 | (address & 0xC),
592 value);
593 }
594
595 /**
596 * Synchronous write of a word to memory or a system register.
597 * As a side effect, this flushes any queued transactions.
598 *
599 * @param swjdp The DAP connected to the MEM-AP.
600 * @param address Address to be written; it must be writable by
601 * the currently selected MEM-AP.
602 * @param value Word that will be written.
603 *
604 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
605 */
606 int mem_ap_write_atomic_u32(struct swjdp_common *swjdp, uint32_t address,
607 uint32_t value)
608 {
609 int retval = mem_ap_write_u32(swjdp, address, value);
610
611 if (retval != ERROR_OK)
612 return retval;
613
614 return jtagdp_transaction_endcheck(swjdp);
615 }
616
617 /*****************************************************************************
618 * *
619 * mem_ap_write_buf(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address) *
620 * *
621 * Write a buffer in target order (little endian) *
622 * *
623 *****************************************************************************/
624 int mem_ap_write_buf_u32(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
625 {
626 int wcount, blocksize, writecount, errorcount = 0, retval = ERROR_OK;
627 uint32_t adr = address;
628 uint8_t* pBuffer = buffer;
629
630 count >>= 2;
631 wcount = count;
632
633 /* if we have an unaligned access - reorder data */
634 if (adr & 0x3u)
635 {
636 for (writecount = 0; writecount < count; writecount++)
637 {
638 int i;
639 uint32_t outvalue;
640 memcpy(&outvalue, pBuffer, sizeof(uint32_t));
641
642 for (i = 0; i < 4; i++)
643 {
644 *((uint8_t*)pBuffer + (adr & 0x3)) = outvalue;
645 outvalue >>= 8;
646 adr++;
647 }
648 pBuffer += sizeof(uint32_t);
649 }
650 }
651
652 while (wcount > 0)
653 {
654 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
655 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
656 if (wcount < blocksize)
657 blocksize = wcount;
658
659 /* handle unaligned data at 4k boundary */
660 if (blocksize == 0)
661 blocksize = 1;
662
663 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE, address);
664
665 for (writecount = 0; writecount < blocksize; writecount++)
666 {
667 dap_ap_write_reg(swjdp, AP_REG_DRW, buffer + 4 * writecount);
668 }
669
670 if (jtagdp_transaction_endcheck(swjdp) == ERROR_OK)
671 {
672 wcount = wcount - blocksize;
673 address = address + 4 * blocksize;
674 buffer = buffer + 4 * blocksize;
675 }
676 else
677 {
678 errorcount++;
679 }
680
681 if (errorcount > 1)
682 {
683 LOG_WARNING("Block write error address 0x%" PRIx32 ", wcount 0x%x", address, wcount);
684 return ERROR_JTAG_DEVICE_ERROR;
685 }
686 }
687
688 return retval;
689 }
690
691 static int mem_ap_write_buf_packed_u16(struct swjdp_common *swjdp,
692 uint8_t *buffer, int count, uint32_t address)
693 {
694 int retval = ERROR_OK;
695 int wcount, blocksize, writecount, i;
696
697 wcount = count >> 1;
698
699 while (wcount > 0)
700 {
701 int nbytes;
702
703 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
704 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
705
706 if (wcount < blocksize)
707 blocksize = wcount;
708
709 /* handle unaligned data at 4k boundary */
710 if (blocksize == 0)
711 blocksize = 1;
712
713 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
714 writecount = blocksize;
715
716 do
717 {
718 nbytes = MIN((writecount << 1), 4);
719
720 if (nbytes < 4)
721 {
722 if (mem_ap_write_buf_u16(swjdp, buffer,
723 nbytes, address) != ERROR_OK)
724 {
725 LOG_WARNING("Block write error address "
726 "0x%" PRIx32 ", count 0x%x",
727 address, count);
728 return ERROR_JTAG_DEVICE_ERROR;
729 }
730
731 address += nbytes >> 1;
732 }
733 else
734 {
735 uint32_t outvalue;
736 memcpy(&outvalue, buffer, sizeof(uint32_t));
737
738 for (i = 0; i < nbytes; i++)
739 {
740 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
741 outvalue >>= 8;
742 address++;
743 }
744
745 memcpy(&outvalue, buffer, sizeof(uint32_t));
746 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
747 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
748 {
749 LOG_WARNING("Block write error address "
750 "0x%" PRIx32 ", count 0x%x",
751 address, count);
752 return ERROR_JTAG_DEVICE_ERROR;
753 }
754 }
755
756 buffer += nbytes >> 1;
757 writecount -= nbytes >> 1;
758
759 } while (writecount);
760 wcount -= blocksize;
761 }
762
763 return retval;
764 }
765
766 int mem_ap_write_buf_u16(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
767 {
768 int retval = ERROR_OK;
769
770 if (count >= 4)
771 return mem_ap_write_buf_packed_u16(swjdp, buffer, count, address);
772
773 while (count > 0)
774 {
775 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
776 uint16_t svalue;
777 memcpy(&svalue, buffer, sizeof(uint16_t));
778 uint32_t outvalue = (uint32_t)svalue << 8 * (address & 0x3);
779 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
780 retval = jtagdp_transaction_endcheck(swjdp);
781 count -= 2;
782 address += 2;
783 buffer += 2;
784 }
785
786 return retval;
787 }
788
789 static int mem_ap_write_buf_packed_u8(struct swjdp_common *swjdp,
790 uint8_t *buffer, int count, uint32_t address)
791 {
792 int retval = ERROR_OK;
793 int wcount, blocksize, writecount, i;
794
795 wcount = count;
796
797 while (wcount > 0)
798 {
799 int nbytes;
800
801 /* Adjust to write blocks within boundaries aligned to the TAR autoincremnent size*/
802 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
803
804 if (wcount < blocksize)
805 blocksize = wcount;
806
807 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
808 writecount = blocksize;
809
810 do
811 {
812 nbytes = MIN(writecount, 4);
813
814 if (nbytes < 4)
815 {
816 if (mem_ap_write_buf_u8(swjdp, buffer, nbytes, address) != ERROR_OK)
817 {
818 LOG_WARNING("Block write error address "
819 "0x%" PRIx32 ", count 0x%x",
820 address, count);
821 return ERROR_JTAG_DEVICE_ERROR;
822 }
823
824 address += nbytes;
825 }
826 else
827 {
828 uint32_t outvalue;
829 memcpy(&outvalue, buffer, sizeof(uint32_t));
830
831 for (i = 0; i < nbytes; i++)
832 {
833 *((uint8_t*)buffer + (address & 0x3)) = outvalue;
834 outvalue >>= 8;
835 address++;
836 }
837
838 memcpy(&outvalue, buffer, sizeof(uint32_t));
839 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
840 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
841 {
842 LOG_WARNING("Block write error address "
843 "0x%" PRIx32 ", count 0x%x",
844 address, count);
845 return ERROR_JTAG_DEVICE_ERROR;
846 }
847 }
848
849 buffer += nbytes;
850 writecount -= nbytes;
851
852 } while (writecount);
853 wcount -= blocksize;
854 }
855
856 return retval;
857 }
858
859 int mem_ap_write_buf_u8(struct swjdp_common *swjdp, uint8_t *buffer, int count, uint32_t address)
860 {
861 int retval = ERROR_OK;
862
863 if (count >= 4)
864 return mem_ap_write_buf_packed_u8(swjdp, buffer, count, address);
865
866 while (count > 0)
867 {
868 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
869 uint32_t outvalue = (uint32_t)*buffer << 8 * (address & 0x3);
870 dap_ap_write_reg_u32(swjdp, AP_REG_DRW, outvalue);
871 retval = jtagdp_transaction_endcheck(swjdp);
872 count--;
873 address++;
874 buffer++;
875 }
876
877 return retval;
878 }
879
880 /**
881 * Synchronously read a block of 32-bit words into a buffer
882 * @param swjdp The DAP connected to the MEM-AP.
883 * @param buffer where the words will be stored (in host byte order).
884 * @param count How many words to read.
885 * @param address Memory address from which to read words; all the
886 * words must be readable by the currently selected MEM-AP.
887 */
888 int mem_ap_read_buf_u32(struct swjdp_common *swjdp, uint8_t *buffer,
889 int count, uint32_t address)
890 {
891 int wcount, blocksize, readcount, errorcount = 0, retval = ERROR_OK;
892 uint32_t adr = address;
893 uint8_t* pBuffer = buffer;
894
895 count >>= 2;
896 wcount = count;
897
898 while (wcount > 0)
899 {
900 /* Adjust to read blocks within boundaries aligned to the
901 * TAR autoincrement size (at least 2^10). Autoincrement
902 * mode avoids an extra per-word roundtrip to update TAR.
903 */
904 blocksize = max_tar_block_size(swjdp->tar_autoincr_block,
905 address);
906 if (wcount < blocksize)
907 blocksize = wcount;
908
909 /* handle unaligned data at 4k boundary */
910 if (blocksize == 0)
911 blocksize = 1;
912
913 dap_setup_accessport(swjdp, CSW_32BIT | CSW_ADDRINC_SINGLE,
914 address);
915
916 /* Scan out first read */
917 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
918 DPAP_READ, 0, NULL, NULL);
919 for (readcount = 0; readcount < blocksize - 1; readcount++)
920 {
921 /* Scan out next read; scan in posted value for the
922 * previous one. Assumes read is acked "OK/FAULT",
923 * and CTRL_STAT says that meant "OK".
924 */
925 adi_jtag_dp_scan(swjdp, JTAG_DP_APACC, AP_REG_DRW,
926 DPAP_READ, 0, buffer + 4 * readcount,
927 &swjdp->ack);
928 }
929
930 /* Scan in last posted value; RDBUFF has no other effect,
931 * assuming ack is OK/FAULT and CTRL_STAT says "OK".
932 */
933 adi_jtag_dp_scan(swjdp, JTAG_DP_DPACC, DP_RDBUFF,
934 DPAP_READ, 0, buffer + 4 * readcount,
935 &swjdp->ack);
936 if (jtagdp_transaction_endcheck(swjdp) == ERROR_OK)
937 {
938 wcount = wcount - blocksize;
939 address += 4 * blocksize;
940 buffer += 4 * blocksize;
941 }
942 else
943 {
944 errorcount++;
945 }
946
947 if (errorcount > 1)
948 {
949 LOG_WARNING("Block read error address 0x%" PRIx32
950 ", count 0x%x", address, count);
951 return ERROR_JTAG_DEVICE_ERROR;
952 }
953 }
954
955 /* if we have an unaligned access - reorder data */
956 if (adr & 0x3u)
957 {
958 for (readcount = 0; readcount < count; readcount++)
959 {
960 int i;
961 uint32_t data;
962 memcpy(&data, pBuffer, sizeof(uint32_t));
963
964 for (i = 0; i < 4; i++)
965 {
966 *((uint8_t*)pBuffer) =
967 (data >> 8 * (adr & 0x3));
968 pBuffer++;
969 adr++;
970 }
971 }
972 }
973
974 return retval;
975 }
976
977 static int mem_ap_read_buf_packed_u16(struct swjdp_common *swjdp,
978 uint8_t *buffer, int count, uint32_t address)
979 {
980 uint32_t invalue;
981 int retval = ERROR_OK;
982 int wcount, blocksize, readcount, i;
983
984 wcount = count >> 1;
985
986 while (wcount > 0)
987 {
988 int nbytes;
989
990 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
991 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
992 if (wcount < blocksize)
993 blocksize = wcount;
994
995 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_PACKED, address);
996
997 /* handle unaligned data at 4k boundary */
998 if (blocksize == 0)
999 blocksize = 1;
1000 readcount = blocksize;
1001
1002 do
1003 {
1004 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1005 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
1006 {
1007 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
1008 return ERROR_JTAG_DEVICE_ERROR;
1009 }
1010
1011 nbytes = MIN((readcount << 1), 4);
1012
1013 for (i = 0; i < nbytes; i++)
1014 {
1015 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1016 buffer++;
1017 address++;
1018 }
1019
1020 readcount -= (nbytes >> 1);
1021 } while (readcount);
1022 wcount -= blocksize;
1023 }
1024
1025 return retval;
1026 }
1027
1028 /**
1029 * Synchronously read a block of 16-bit halfwords into a buffer
1030 * @param swjdp The DAP connected to the MEM-AP.
1031 * @param buffer where the halfwords will be stored (in host byte order).
1032 * @param count How many halfwords to read.
1033 * @param address Memory address from which to read words; all the
1034 * words must be readable by the currently selected MEM-AP.
1035 */
1036 int mem_ap_read_buf_u16(struct swjdp_common *swjdp, uint8_t *buffer,
1037 int count, uint32_t address)
1038 {
1039 uint32_t invalue, i;
1040 int retval = ERROR_OK;
1041
1042 if (count >= 4)
1043 return mem_ap_read_buf_packed_u16(swjdp, buffer, count, address);
1044
1045 while (count > 0)
1046 {
1047 dap_setup_accessport(swjdp, CSW_16BIT | CSW_ADDRINC_SINGLE, address);
1048 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1049 retval = jtagdp_transaction_endcheck(swjdp);
1050 if (address & 0x1)
1051 {
1052 for (i = 0; i < 2; i++)
1053 {
1054 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1055 buffer++;
1056 address++;
1057 }
1058 }
1059 else
1060 {
1061 uint16_t svalue = (invalue >> 8 * (address & 0x3));
1062 memcpy(buffer, &svalue, sizeof(uint16_t));
1063 address += 2;
1064 buffer += 2;
1065 }
1066 count -= 2;
1067 }
1068
1069 return retval;
1070 }
1071
1072 /* FIX!!! is this a potential performance bottleneck w.r.t. requiring too many
1073 * roundtrips when jtag_execute_queue() has a large overhead(e.g. for USB)s?
1074 *
1075 * The solution is to arrange for a large out/in scan in this loop and
1076 * and convert data afterwards.
1077 */
1078 static int mem_ap_read_buf_packed_u8(struct swjdp_common *swjdp,
1079 uint8_t *buffer, int count, uint32_t address)
1080 {
1081 uint32_t invalue;
1082 int retval = ERROR_OK;
1083 int wcount, blocksize, readcount, i;
1084
1085 wcount = count;
1086
1087 while (wcount > 0)
1088 {
1089 int nbytes;
1090
1091 /* Adjust to read blocks within boundaries aligned to the TAR autoincremnent size*/
1092 blocksize = max_tar_block_size(swjdp->tar_autoincr_block, address);
1093
1094 if (wcount < blocksize)
1095 blocksize = wcount;
1096
1097 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_PACKED, address);
1098 readcount = blocksize;
1099
1100 do
1101 {
1102 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1103 if (jtagdp_transaction_endcheck(swjdp) != ERROR_OK)
1104 {
1105 LOG_WARNING("Block read error address 0x%" PRIx32 ", count 0x%x", address, count);
1106 return ERROR_JTAG_DEVICE_ERROR;
1107 }
1108
1109 nbytes = MIN(readcount, 4);
1110
1111 for (i = 0; i < nbytes; i++)
1112 {
1113 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1114 buffer++;
1115 address++;
1116 }
1117
1118 readcount -= nbytes;
1119 } while (readcount);
1120 wcount -= blocksize;
1121 }
1122
1123 return retval;
1124 }
1125
1126 /**
1127 * Synchronously read a block of bytes into a buffer
1128 * @param swjdp The DAP connected to the MEM-AP.
1129 * @param buffer where the bytes will be stored.
1130 * @param count How many bytes to read.
1131 * @param address Memory address from which to read data; all the
1132 * data must be readable by the currently selected MEM-AP.
1133 */
1134 int mem_ap_read_buf_u8(struct swjdp_common *swjdp, uint8_t *buffer,
1135 int count, uint32_t address)
1136 {
1137 uint32_t invalue;
1138 int retval = ERROR_OK;
1139
1140 if (count >= 4)
1141 return mem_ap_read_buf_packed_u8(swjdp, buffer, count, address);
1142
1143 while (count > 0)
1144 {
1145 dap_setup_accessport(swjdp, CSW_8BIT | CSW_ADDRINC_SINGLE, address);
1146 dap_ap_read_reg_u32(swjdp, AP_REG_DRW, &invalue);
1147 retval = jtagdp_transaction_endcheck(swjdp);
1148 *((uint8_t*)buffer) = (invalue >> 8 * (address & 0x3));
1149 count--;
1150 address++;
1151 buffer++;
1152 }
1153
1154 return retval;
1155 }
1156
1157 /*--------------------------------------------------------------------------*/
1158
1159 static int jtag_idcode_q_read(struct swjdp_common *dap,
1160 uint8_t *ack, uint32_t *data)
1161 {
1162 struct arm_jtag *jtag_info = dap->jtag_info;
1163 int retval;
1164 struct scan_field fields[1];
1165
1166 jtag_set_end_state(TAP_IDLE);
1167
1168 /* This is a standard JTAG operation -- no DAP tweakage */
1169 retval = arm_jtag_set_instr(jtag_info, JTAG_DP_IDCODE, NULL);
1170 if (retval != ERROR_OK)
1171 return retval;
1172
1173 fields[0].tap = jtag_info->tap;
1174 fields[0].num_bits = 32;
1175 fields[0].out_value = NULL;
1176 fields[0].in_value = (void *) data;
1177
1178 jtag_add_dr_scan(1, fields, jtag_get_end_state());
1179 retval = jtag_get_error();
1180 if (retval != ERROR_OK)
1181 return retval;
1182
1183 jtag_add_callback(arm_le_to_h_u32,
1184 (jtag_callback_data_t) data);
1185
1186 return retval;
1187 }
1188
1189 static int jtag_dp_q_read(struct swjdp_common *dap, unsigned reg,
1190 uint32_t *data)
1191 {
1192 return dap_dp_read_reg(dap, data, reg);
1193 }
1194
1195 static int jtag_dp_q_write(struct swjdp_common *dap, unsigned reg,
1196 uint32_t data)
1197 {
1198 return dap_dp_write_reg(dap, data, reg);
1199 }
1200
1201 static int jtag_ap_q_bankselect(struct swjdp_common *dap, unsigned reg)
1202 {
1203 uint32_t select = reg & 0x000000F0;
1204
1205 if (select == dap->ap_bank_value)
1206 return ERROR_OK;
1207 dap->ap_bank_value = select;
1208
1209 select |= dap->apsel;
1210
1211 return jtag_dp_q_write(dap, DP_SELECT, select);
1212 }
1213
1214 static int jtag_ap_q_read(struct swjdp_common *dap, unsigned reg,
1215 uint32_t *data)
1216 {
1217 int retval = jtag_ap_q_bankselect(dap, reg);
1218
1219 if (retval != ERROR_OK)
1220 return retval;
1221 return dap_ap_read_reg_u32(dap, reg, data);
1222 }
1223
1224 static int jtag_ap_q_write(struct swjdp_common *dap, unsigned reg,
1225 uint32_t data)
1226 {
1227 int retval = jtag_ap_q_bankselect(dap, reg);
1228
1229 if (retval != ERROR_OK)
1230 return retval;
1231 return dap_ap_write_reg_u32(dap, reg, data);
1232 }
1233
1234 static int jtag_ap_q_abort(struct swjdp_common *dap, uint8_t *ack)
1235 {
1236 /* for JTAG, this is the only valid ABORT register operation */
1237 return adi_jtag_dp_scan_u32(dap, JTAG_DP_ABORT,
1238 0, DPAP_WRITE, 1, NULL, ack);
1239 }
1240
1241 static int jtag_dp_run(struct swjdp_common *dap)
1242 {
1243 return jtagdp_transaction_endcheck(dap);
1244 }
1245
1246 static const struct dap_ops jtag_dp_ops = {
1247 .queue_idcode_read = jtag_idcode_q_read,
1248 .queue_dp_read = jtag_dp_q_read,
1249 .queue_dp_write = jtag_dp_q_write,
1250 .queue_ap_read = jtag_ap_q_read,
1251 .queue_ap_write = jtag_ap_q_write,
1252 .queue_ap_abort = jtag_ap_q_abort,
1253 .run = jtag_dp_run,
1254 };
1255
1256 /*--------------------------------------------------------------------------*/
1257
1258 /**
1259 * Initialize a DAP. This sets up the power domains, prepares the DP
1260 * for further use, and arranges to use AP #0 for all AP operations
1261 * until dap_ap-select() changes that policy.
1262 *
1263 * @param swjdp The DAP being initialized.
1264 *
1265 * @todo Rename this. We also need an initialization scheme which account
1266 * for SWD transports not just JTAG; that will need to address differences
1267 * in layering. (JTAG is useful without any debug target; but not SWD.)
1268 * And this may not even use an AHB-AP ... e.g. DAP-Lite uses an APB-AP.
1269 */
1270 int ahbap_debugport_init(struct swjdp_common *swjdp)
1271 {
1272 uint32_t idreg, romaddr, dummy;
1273 uint32_t ctrlstat;
1274 int cnt = 0;
1275 int retval;
1276
1277 LOG_DEBUG(" ");
1278
1279 /* JTAG-DP or SWJ-DP, in JTAG mode */
1280 swjdp->ops = &jtag_dp_ops;
1281
1282 /* Default MEM-AP setup.
1283 *
1284 * REVISIT AP #0 may be an inappropriate default for this.
1285 * Should we probe, or take a hint from the caller?
1286 * Presumably we can ignore the possibility of multiple APs.
1287 */
1288 swjdp->apsel = !0;
1289 dap_ap_select(swjdp, 0);
1290
1291 /* DP initialization */
1292 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1293 dap_dp_write_reg(swjdp, SSTICKYERR, DP_CTRL_STAT);
1294 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1295
1296 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
1297
1298 dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
1299 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1300 if ((retval = jtag_execute_queue()) != ERROR_OK)
1301 return retval;
1302
1303 /* Check that we have debug power domains activated */
1304 while (!(ctrlstat & CDBGPWRUPACK) && (cnt++ < 10))
1305 {
1306 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
1307 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1308 if ((retval = jtag_execute_queue()) != ERROR_OK)
1309 return retval;
1310 alive_sleep(10);
1311 }
1312
1313 while (!(ctrlstat & CSYSPWRUPACK) && (cnt++ < 10))
1314 {
1315 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
1316 dap_dp_read_reg(swjdp, &ctrlstat, DP_CTRL_STAT);
1317 if ((retval = jtag_execute_queue()) != ERROR_OK)
1318 return retval;
1319 alive_sleep(10);
1320 }
1321
1322 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1323 /* With debug power on we can activate OVERRUN checking */
1324 swjdp->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
1325 dap_dp_write_reg(swjdp, swjdp->dp_ctrl_stat, DP_CTRL_STAT);
1326 dap_dp_read_reg(swjdp, &dummy, DP_CTRL_STAT);
1327
1328 /*
1329 * REVISIT this isn't actually *initializing* anything in an AP,
1330 * and doesn't care if it's a MEM-AP at all (much less AHB-AP).
1331 * Should it? If the ROM address is valid, is this the right
1332 * place to scan the table and do any topology detection?
1333 */
1334 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &idreg);
1335 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &romaddr);
1336
1337 LOG_DEBUG("MEM-AP #%d ID Register 0x%" PRIx32
1338 ", Debug ROM Address 0x%" PRIx32,
1339 swjdp->apsel, idreg, romaddr);
1340
1341 return ERROR_OK;
1342 }
1343
1344 /* CID interpretation -- see ARM IHI 0029B section 3
1345 * and ARM IHI 0031A table 13-3.
1346 */
1347 static const char *class_description[16] ={
1348 "Reserved", "ROM table", "Reserved", "Reserved",
1349 "Reserved", "Reserved", "Reserved", "Reserved",
1350 "Reserved", "CoreSight component", "Reserved", "Peripheral Test Block",
1351 "Reserved", "OptimoDE DESS",
1352 "Generic IP component", "PrimeCell or System component"
1353 };
1354
1355 static bool
1356 is_dap_cid_ok(uint32_t cid3, uint32_t cid2, uint32_t cid1, uint32_t cid0)
1357 {
1358 return cid3 == 0xb1 && cid2 == 0x05
1359 && ((cid1 & 0x0f) == 0) && cid0 == 0x0d;
1360 }
1361
1362 int dap_info_command(struct command_context *cmd_ctx,
1363 struct swjdp_common *swjdp, int apsel)
1364 {
1365
1366 uint32_t dbgbase, apid;
1367 int romtable_present = 0;
1368 uint8_t mem_ap;
1369 uint32_t apselold;
1370
1371 /* AP address is in bits 31:24 of DP_SELECT */
1372 if (apsel >= 256)
1373 return ERROR_INVALID_ARGUMENTS;
1374
1375 apselold = swjdp->apsel;
1376 dap_ap_select(swjdp, apsel);
1377 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &dbgbase);
1378 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1379 jtagdp_transaction_endcheck(swjdp);
1380 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1381 mem_ap = ((apid&0x10000) && ((apid&0x0F) != 0));
1382 command_print(cmd_ctx, "AP ID register 0x%8.8" PRIx32, apid);
1383 if (apid)
1384 {
1385 switch (apid&0x0F)
1386 {
1387 case 0:
1388 command_print(cmd_ctx, "\tType is JTAG-AP");
1389 break;
1390 case 1:
1391 command_print(cmd_ctx, "\tType is MEM-AP AHB");
1392 break;
1393 case 2:
1394 command_print(cmd_ctx, "\tType is MEM-AP APB");
1395 break;
1396 default:
1397 command_print(cmd_ctx, "\tUnknown AP type");
1398 break;
1399 }
1400
1401 /* NOTE: a MEM-AP may have a single CoreSight component that's
1402 * not a ROM table ... or have no such components at all.
1403 */
1404 if (mem_ap)
1405 command_print(cmd_ctx, "AP BASE 0x%8.8" PRIx32,
1406 dbgbase);
1407 }
1408 else
1409 {
1410 command_print(cmd_ctx, "No AP found at this apsel 0x%x", apsel);
1411 }
1412
1413 romtable_present = ((mem_ap) && (dbgbase != 0xFFFFFFFF));
1414 if (romtable_present)
1415 {
1416 uint32_t cid0,cid1,cid2,cid3,memtype,romentry;
1417 uint16_t entry_offset;
1418
1419 /* bit 16 of apid indicates a memory access port */
1420 if (dbgbase & 0x02)
1421 command_print(cmd_ctx, "\tValid ROM table present");
1422 else
1423 command_print(cmd_ctx, "\tROM table in legacy format");
1424
1425 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1426 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF0, &cid0);
1427 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF4, &cid1);
1428 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFF8, &cid2);
1429 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFFC, &cid3);
1430 mem_ap_read_u32(swjdp, (dbgbase&0xFFFFF000) | 0xFCC, &memtype);
1431 jtagdp_transaction_endcheck(swjdp);
1432 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1433 command_print(cmd_ctx, "\tCID3 0x%2.2" PRIx32
1434 ", CID2 0x%2.2" PRIx32
1435 ", CID1 0x%2.2" PRIx32
1436 ", CID0 0x%2.2" PRIx32,
1437 cid3, cid2, cid1, cid0);
1438 if (memtype & 0x01)
1439 command_print(cmd_ctx, "\tMEMTYPE system memory present on bus");
1440 else
1441 command_print(cmd_ctx, "\tMEMTYPE System memory not present. "
1442 "Dedicated debug bus.");
1443
1444 /* Now we read ROM table entries from dbgbase&0xFFFFF000) | 0x000 until we get 0x00000000 */
1445 entry_offset = 0;
1446 do
1447 {
1448 mem_ap_read_atomic_u32(swjdp, (dbgbase&0xFFFFF000) | entry_offset, &romentry);
1449 command_print(cmd_ctx, "\tROMTABLE[0x%x] = 0x%" PRIx32 "",entry_offset,romentry);
1450 if (romentry&0x01)
1451 {
1452 uint32_t c_cid0, c_cid1, c_cid2, c_cid3;
1453 uint32_t c_pid0, c_pid1, c_pid2, c_pid3, c_pid4;
1454 uint32_t component_start, component_base;
1455 unsigned part_num;
1456 char *type, *full;
1457
1458 component_base = (uint32_t)((dbgbase & 0xFFFFF000)
1459 + (int)(romentry & 0xFFFFF000));
1460 mem_ap_read_atomic_u32(swjdp,
1461 (component_base & 0xFFFFF000) | 0xFE0, &c_pid0);
1462 mem_ap_read_atomic_u32(swjdp,
1463 (component_base & 0xFFFFF000) | 0xFE4, &c_pid1);
1464 mem_ap_read_atomic_u32(swjdp,
1465 (component_base & 0xFFFFF000) | 0xFE8, &c_pid2);
1466 mem_ap_read_atomic_u32(swjdp,
1467 (component_base & 0xFFFFF000) | 0xFEC, &c_pid3);
1468 mem_ap_read_atomic_u32(swjdp,
1469 (component_base & 0xFFFFF000) | 0xFD0, &c_pid4);
1470 mem_ap_read_atomic_u32(swjdp,
1471 (component_base & 0xFFFFF000) | 0xFF0, &c_cid0);
1472 mem_ap_read_atomic_u32(swjdp,
1473 (component_base & 0xFFFFF000) | 0xFF4, &c_cid1);
1474 mem_ap_read_atomic_u32(swjdp,
1475 (component_base & 0xFFFFF000) | 0xFF8, &c_cid2);
1476 mem_ap_read_atomic_u32(swjdp,
1477 (component_base & 0xFFFFF000) | 0xFFC, &c_cid3);
1478 component_start = component_base - 0x1000*(c_pid4 >> 4);
1479
1480 command_print(cmd_ctx, "\t\tComponent base address 0x%" PRIx32
1481 ", start address 0x%" PRIx32,
1482 component_base, component_start);
1483 command_print(cmd_ctx, "\t\tComponent class is 0x%x, %s",
1484 (int) (c_cid1 >> 4) & 0xf,
1485 /* See ARM IHI 0029B Table 3-3 */
1486 class_description[(c_cid1 >> 4) & 0xf]);
1487
1488 /* CoreSight component? */
1489 if (((c_cid1 >> 4) & 0x0f) == 9) {
1490 uint32_t devtype;
1491 unsigned minor;
1492 char *major = "Reserved", *subtype = "Reserved";
1493
1494 mem_ap_read_atomic_u32(swjdp,
1495 (component_base & 0xfffff000) | 0xfcc,
1496 &devtype);
1497 minor = (devtype >> 4) & 0x0f;
1498 switch (devtype & 0x0f) {
1499 case 0:
1500 major = "Miscellaneous";
1501 switch (minor) {
1502 case 0:
1503 subtype = "other";
1504 break;
1505 case 4:
1506 subtype = "Validation component";
1507 break;
1508 }
1509 break;
1510 case 1:
1511 major = "Trace Sink";
1512 switch (minor) {
1513 case 0:
1514 subtype = "other";
1515 break;
1516 case 1:
1517 subtype = "Port";
1518 break;
1519 case 2:
1520 subtype = "Buffer";
1521 break;
1522 }
1523 break;
1524 case 2:
1525 major = "Trace Link";
1526 switch (minor) {
1527 case 0:
1528 subtype = "other";
1529 break;
1530 case 1:
1531 subtype = "Funnel, router";
1532 break;
1533 case 2:
1534 subtype = "Filter";
1535 break;
1536 case 3:
1537 subtype = "FIFO, buffer";
1538 break;
1539 }
1540 break;
1541 case 3:
1542 major = "Trace Source";
1543 switch (minor) {
1544 case 0:
1545 subtype = "other";
1546 break;
1547 case 1:
1548 subtype = "Processor";
1549 break;
1550 case 2:
1551 subtype = "DSP";
1552 break;
1553 case 3:
1554 subtype = "Engine/Coprocessor";
1555 break;
1556 case 4:
1557 subtype = "Bus";
1558 break;
1559 }
1560 break;
1561 case 4:
1562 major = "Debug Control";
1563 switch (minor) {
1564 case 0:
1565 subtype = "other";
1566 break;
1567 case 1:
1568 subtype = "Trigger Matrix";
1569 break;
1570 case 2:
1571 subtype = "Debug Auth";
1572 break;
1573 }
1574 break;
1575 case 5:
1576 major = "Debug Logic";
1577 switch (minor) {
1578 case 0:
1579 subtype = "other";
1580 break;
1581 case 1:
1582 subtype = "Processor";
1583 break;
1584 case 2:
1585 subtype = "DSP";
1586 break;
1587 case 3:
1588 subtype = "Engine/Coprocessor";
1589 break;
1590 }
1591 break;
1592 }
1593 command_print(cmd_ctx, "\t\tType is 0x%2.2x, %s, %s",
1594 (unsigned) (devtype & 0xff),
1595 major, subtype);
1596 /* REVISIT also show 0xfc8 DevId */
1597 }
1598
1599 if (!is_dap_cid_ok(cid3, cid2, cid1, cid0))
1600 command_print(cmd_ctx, "\t\tCID3 0x%2.2" PRIx32
1601 ", CID2 0x%2.2" PRIx32
1602 ", CID1 0x%2.2" PRIx32
1603 ", CID0 0x%2.2" PRIx32,
1604 c_cid3, c_cid2, c_cid1, c_cid0);
1605 command_print(cmd_ctx, "\t\tPeripheral ID[4..0] = hex "
1606 "%2.2x %2.2x %2.2x %2.2x %2.2x",
1607 (int) c_pid4,
1608 (int) c_pid3, (int) c_pid2,
1609 (int) c_pid1, (int) c_pid0);
1610
1611 /* Part number interpretations are from Cortex
1612 * core specs, the CoreSight components TRM
1613 * (ARM DDI 0314H), and ETM specs; also from
1614 * chip observation (e.g. TI SDTI).
1615 */
1616 part_num = c_pid0 & 0xff;
1617 part_num |= (c_pid1 & 0x0f) << 8;
1618 switch (part_num) {
1619 case 0x000:
1620 type = "Cortex-M3 NVIC";
1621 full = "(Interrupt Controller)";
1622 break;
1623 case 0x001:
1624 type = "Cortex-M3 ITM";
1625 full = "(Instrumentation Trace Module)";
1626 break;
1627 case 0x002:
1628 type = "Cortex-M3 DWT";
1629 full = "(Data Watchpoint and Trace)";
1630 break;
1631 case 0x003:
1632 type = "Cortex-M3 FBP";
1633 full = "(Flash Patch and Breakpoint)";
1634 break;
1635 case 0x00d:
1636 type = "CoreSight ETM11";
1637 full = "(Embedded Trace)";
1638 break;
1639 // case 0x113: what?
1640 case 0x120: /* from OMAP3 memmap */
1641 type = "TI SDTI";
1642 full = "(System Debug Trace Interface)";
1643 break;
1644 case 0x343: /* from OMAP3 memmap */
1645 type = "TI DAPCTL";
1646 full = "";
1647 break;
1648 case 0x906:
1649 type = "Coresight CTI";
1650 full = "(Cross Trigger)";
1651 break;
1652 case 0x907:
1653 type = "Coresight ETB";
1654 full = "(Trace Buffer)";
1655 break;
1656 case 0x908:
1657 type = "Coresight CSTF";
1658 full = "(Trace Funnel)";
1659 break;
1660 case 0x910:
1661 type = "CoreSight ETM9";
1662 full = "(Embedded Trace)";
1663 break;
1664 case 0x912:
1665 type = "Coresight TPIU";
1666 full = "(Trace Port Interface Unit)";
1667 break;
1668 case 0x921:
1669 type = "Cortex-A8 ETM";
1670 full = "(Embedded Trace)";
1671 break;
1672 case 0x922:
1673 type = "Cortex-A8 CTI";
1674 full = "(Cross Trigger)";
1675 break;
1676 case 0x923:
1677 type = "Cortex-M3 TPIU";
1678 full = "(Trace Port Interface Unit)";
1679 break;
1680 case 0x924:
1681 type = "Cortex-M3 ETM";
1682 full = "(Embedded Trace)";
1683 break;
1684 case 0xc08:
1685 type = "Cortex-A8 Debug";
1686 full = "(Debug Unit)";
1687 break;
1688 default:
1689 type = "-*- unrecognized -*-";
1690 full = "";
1691 break;
1692 }
1693 command_print(cmd_ctx, "\t\tPart is %s %s",
1694 type, full);
1695 }
1696 else
1697 {
1698 if (romentry)
1699 command_print(cmd_ctx, "\t\tComponent not present");
1700 else
1701 command_print(cmd_ctx, "\t\tEnd of ROM table");
1702 }
1703 entry_offset += 4;
1704 } while (romentry > 0);
1705 }
1706 else
1707 {
1708 command_print(cmd_ctx, "\tNo ROM table present");
1709 }
1710 dap_ap_select(swjdp, apselold);
1711
1712 return ERROR_OK;
1713 }
1714
1715 DAP_COMMAND_HANDLER(dap_baseaddr_command)
1716 {
1717 uint32_t apsel, apselsave, baseaddr;
1718 int retval;
1719
1720 apselsave = swjdp->apsel;
1721 switch (CMD_ARGC) {
1722 case 0:
1723 apsel = swjdp->apsel;
1724 break;
1725 case 1:
1726 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1727 /* AP address is in bits 31:24 of DP_SELECT */
1728 if (apsel >= 256)
1729 return ERROR_INVALID_ARGUMENTS;
1730 break;
1731 default:
1732 return ERROR_COMMAND_SYNTAX_ERROR;
1733 }
1734
1735 if (apselsave != apsel)
1736 dap_ap_select(swjdp, apsel);
1737
1738 /* NOTE: assumes we're talking to a MEM-AP, which
1739 * has a base address. There are other kinds of AP,
1740 * though they're not common for now. This should
1741 * use the ID register to verify it's a MEM-AP.
1742 */
1743 dap_ap_read_reg_u32(swjdp, AP_REG_BASE, &baseaddr);
1744 retval = jtagdp_transaction_endcheck(swjdp);
1745 command_print(CMD_CTX, "0x%8.8" PRIx32, baseaddr);
1746
1747 if (apselsave != apsel)
1748 dap_ap_select(swjdp, apselsave);
1749
1750 return retval;
1751 }
1752
1753 DAP_COMMAND_HANDLER(dap_memaccess_command)
1754 {
1755 uint32_t memaccess_tck;
1756
1757 switch (CMD_ARGC) {
1758 case 0:
1759 memaccess_tck = swjdp->memaccess_tck;
1760 break;
1761 case 1:
1762 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1763 break;
1764 default:
1765 return ERROR_COMMAND_SYNTAX_ERROR;
1766 }
1767 swjdp->memaccess_tck = memaccess_tck;
1768
1769 command_print(CMD_CTX, "memory bus access delay set to %" PRIi32 " tck",
1770 swjdp->memaccess_tck);
1771
1772 return ERROR_OK;
1773 }
1774
1775 DAP_COMMAND_HANDLER(dap_apsel_command)
1776 {
1777 uint32_t apsel, apid;
1778 int retval;
1779
1780 switch (CMD_ARGC) {
1781 case 0:
1782 apsel = 0;
1783 break;
1784 case 1:
1785 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1786 /* AP address is in bits 31:24 of DP_SELECT */
1787 if (apsel >= 256)
1788 return ERROR_INVALID_ARGUMENTS;
1789 break;
1790 default:
1791 return ERROR_COMMAND_SYNTAX_ERROR;
1792 }
1793
1794 dap_ap_select(swjdp, apsel);
1795 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1796 retval = jtagdp_transaction_endcheck(swjdp);
1797 command_print(CMD_CTX, "ap %" PRIi32 " selected, identification register 0x%8.8" PRIx32,
1798 apsel, apid);
1799
1800 return retval;
1801 }
1802
1803 DAP_COMMAND_HANDLER(dap_apid_command)
1804 {
1805 uint32_t apsel, apselsave, apid;
1806 int retval;
1807
1808 apselsave = swjdp->apsel;
1809 switch (CMD_ARGC) {
1810 case 0:
1811 apsel = swjdp->apsel;
1812 break;
1813 case 1:
1814 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1815 /* AP address is in bits 31:24 of DP_SELECT */
1816 if (apsel >= 256)
1817 return ERROR_INVALID_ARGUMENTS;
1818 break;
1819 default:
1820 return ERROR_COMMAND_SYNTAX_ERROR;
1821 }
1822
1823 if (apselsave != apsel)
1824 dap_ap_select(swjdp, apsel);
1825
1826 dap_ap_read_reg_u32(swjdp, AP_REG_IDR, &apid);
1827 retval = jtagdp_transaction_endcheck(swjdp);
1828 command_print(CMD_CTX, "0x%8.8" PRIx32, apid);
1829 if (apselsave != apsel)
1830 dap_ap_select(swjdp, apselsave);
1831
1832 return retval;
1833 }
1834
1835 /*
1836 * This represents the bits which must be sent out on TMS/SWDIO to
1837 * switch a DAP implemented using an SWJ-DP module into SWD mode.
1838 * These bits are stored (and transmitted) LSB-first.
1839 *
1840 * See the DAP-Lite specification, section 2.2.5 for information
1841 * about making the debug link select SWD or JTAG. (Similar info
1842 * is in a few other ARM documents.)
1843 */
1844 static const uint8_t jtag2swd_bitseq[] = {
1845 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
1846 * putting both JTAG and SWD logic into reset state.
1847 */
1848 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1849 /* Switching sequence enables SWD and disables JTAG
1850 * NOTE: bits in the DP's IDCODE may expose the need for
1851 * an old/deprecated sequence (0xb6 0xed).
1852 */
1853 0x9e, 0xe7,
1854 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
1855 * putting both JTAG and SWD logic into reset state.
1856 */
1857 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1858 };
1859
1860 /**
1861 * Put the debug link into SWD mode, if the target supports it.
1862 * The link's initial mode may be either JTAG (for example,
1863 * with SWJ-DP after reset) or SWD.
1864 *
1865 * @param target Enters SWD mode (if possible).
1866 *
1867 * Note that targets using the JTAG-DP do not support SWD, and that
1868 * some targets which could otherwise support it may have have been
1869 * configured to disable SWD signaling
1870 *
1871 * @return ERROR_OK or else a fault code.
1872 */
1873 int dap_to_swd(struct target *target)
1874 {
1875 int retval;
1876
1877 LOG_DEBUG("Enter SWD mode");
1878
1879 /* REVISIT it's nasty to need to make calls to a "jtag"
1880 * subsystem if the link isn't in JTAG mode...
1881 */
1882
1883 retval = jtag_add_tms_seq(8 * sizeof(jtag2swd_bitseq),
1884 jtag2swd_bitseq, TAP_INVALID);
1885 if (retval == ERROR_OK)
1886 retval = jtag_execute_queue();
1887
1888 /* REVISIT set up the DAP's ops vector for SWD mode. */
1889
1890 return retval;
1891 }
1892
1893 /**
1894 * This represents the bits which must be sent out on TMS/SWDIO to
1895 * switch a DAP implemented using an SWJ-DP module into JTAG mode.
1896 * These bits are stored (and transmitted) LSB-first.
1897 *
1898 * These bits are stored (and transmitted) LSB-first.
1899 */
1900 static const uint8_t swd2jtag_bitseq[] = {
1901 /* More than 50 TCK/SWCLK cycles with TMS/SWDIO high,
1902 * putting both JTAG and SWD logic into reset state.
1903 */
1904 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1905 /* Switching equence disables SWD and enables JTAG
1906 * NOTE: bits in the DP's IDCODE can expose the need for
1907 * the old/deprecated sequence (0xae 0xde).
1908 */
1909 0x3c, 0xe7,
1910 /* At least 50 TCK/SWCLK cycles with TMS/SWDIO high,
1911 * putting both JTAG and SWD logic into reset state.
1912 * NOTE: some docs say "at least 5".
1913 */
1914 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
1915 };
1916
1917 /** Put the debug link into JTAG mode, if the target supports it.
1918 * The link's initial mode may be either SWD or JTAG.
1919 *
1920 * @param target Enters JTAG mode (if possible).
1921 *
1922 * Note that targets implemented with SW-DP do not support JTAG, and
1923 * that some targets which could otherwise support it may have been
1924 * configured to disable JTAG signaling
1925 *
1926 * @return ERROR_OK or else a fault code.
1927 */
1928 int dap_to_jtag(struct target *target)
1929 {
1930 int retval;
1931
1932 LOG_DEBUG("Enter JTAG mode");
1933
1934 /* REVISIT it's nasty to need to make calls to a "jtag"
1935 * subsystem if the link isn't in JTAG mode...
1936 */
1937
1938 retval = jtag_add_tms_seq(8 * sizeof(swd2jtag_bitseq),
1939 swd2jtag_bitseq, TAP_RESET);
1940 if (retval == ERROR_OK)
1941 retval = jtag_execute_queue();
1942
1943 /* REVISIT set up the DAP's ops vector for JTAG mode. */
1944
1945 return retval;
1946 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)