arm_adi_v5: separate ROM table parsing from command output [1/3]
[openocd.git] / src / target / arm_adi_v5.c
1 /***************************************************************************
2 * Copyright (C) 2006 by Magnus Lundin *
3 * lundin@mlu.mine.nu *
4 * *
5 * Copyright (C) 2008 by Spencer Oliver *
6 * spen@spen-soft.co.uk *
7 * *
8 * Copyright (C) 2009-2010 by Oyvind Harboe *
9 * oyvind.harboe@zylin.com *
10 * *
11 * Copyright (C) 2009-2010 by David Brownell *
12 * *
13 * Copyright (C) 2013 by Andreas Fritiofson *
14 * andreas.fritiofson@gmail.com *
15 * *
16 * Copyright (C) 2019-2021, Ampere Computing LLC *
17 * *
18 * This program is free software; you can redistribute it and/or modify *
19 * it under the terms of the GNU General Public License as published by *
20 * the Free Software Foundation; either version 2 of the License, or *
21 * (at your option) any later version. *
22 * *
23 * This program is distributed in the hope that it will be useful, *
24 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
25 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
26 * GNU General Public License for more details. *
27 * *
28 * You should have received a copy of the GNU General Public License *
29 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
30 ***************************************************************************/
31
32 /**
33 * @file
34 * This file implements support for the ARM Debug Interface version 5 (ADIv5)
35 * debugging architecture. Compared with previous versions, this includes
36 * a low pin-count Serial Wire Debug (SWD) alternative to JTAG for message
37 * transport, and focuses on memory mapped resources as defined by the
38 * CoreSight architecture.
39 *
40 * A key concept in ADIv5 is the Debug Access Port, or DAP. A DAP has two
41 * basic components: a Debug Port (DP) transporting messages to and from a
42 * debugger, and an Access Port (AP) accessing resources. Three types of DP
43 * are defined. One uses only JTAG for communication, and is called JTAG-DP.
44 * One uses only SWD for communication, and is called SW-DP. The third can
45 * use either SWD or JTAG, and is called SWJ-DP. The most common type of AP
46 * is used to access memory mapped resources and is called a MEM-AP. Also a
47 * JTAG-AP is also defined, bridging to JTAG resources; those are uncommon.
48 *
49 * This programming interface allows DAP pipelined operations through a
50 * transaction queue. This primarily affects AP operations (such as using
51 * a MEM-AP to access memory or registers). If the current transaction has
52 * not finished by the time the next one must begin, and the ORUNDETECT bit
53 * is set in the DP_CTRL_STAT register, the SSTICKYORUN status is set and
54 * further AP operations will fail. There are two basic methods to avoid
55 * such overrun errors. One involves polling for status instead of using
56 * transaction pipelining. The other involves adding delays to ensure the
57 * AP has enough time to complete one operation before starting the next
58 * one. (For JTAG these delays are controlled by memaccess_tck.)
59 */
60
61 /*
62 * Relevant specifications from ARM include:
63 *
64 * ARM(tm) Debug Interface v5 Architecture Specification ARM IHI 0031E
65 * CoreSight(tm) v1.0 Architecture Specification ARM IHI 0029B
66 *
67 * CoreSight(tm) DAP-Lite TRM, ARM DDI 0316D
68 * Cortex-M3(tm) TRM, ARM DDI 0337G
69 */
70
71 #ifdef HAVE_CONFIG_H
72 #include "config.h"
73 #endif
74
75 #include "jtag/interface.h"
76 #include "arm.h"
77 #include "arm_adi_v5.h"
78 #include "arm_coresight.h"
79 #include "jtag/swd.h"
80 #include "transport/transport.h"
81 #include <helper/align.h>
82 #include <helper/jep106.h>
83 #include <helper/time_support.h>
84 #include <helper/list.h>
85 #include <helper/jim-nvp.h>
86
87 /* ARM ADI Specification requires at least 10 bits used for TAR autoincrement */
88
89 /*
90 uint32_t tar_block_size(uint32_t address)
91 Return the largest block starting at address that does not cross a tar block size alignment boundary
92 */
93 static uint32_t max_tar_block_size(uint32_t tar_autoincr_block, target_addr_t address)
94 {
95 return tar_autoincr_block - ((tar_autoincr_block - 1) & address);
96 }
97
98 /***************************************************************************
99 * *
100 * DP and MEM-AP register access through APACC and DPACC *
101 * *
102 ***************************************************************************/
103
104 static int mem_ap_setup_csw(struct adiv5_ap *ap, uint32_t csw)
105 {
106 csw |= ap->csw_default;
107
108 if (csw != ap->csw_value) {
109 /* LOG_DEBUG("DAP: Set CSW %x",csw); */
110 int retval = dap_queue_ap_write(ap, MEM_AP_REG_CSW, csw);
111 if (retval != ERROR_OK) {
112 ap->csw_value = 0;
113 return retval;
114 }
115 ap->csw_value = csw;
116 }
117 return ERROR_OK;
118 }
119
120 static int mem_ap_setup_tar(struct adiv5_ap *ap, target_addr_t tar)
121 {
122 if (!ap->tar_valid || tar != ap->tar_value) {
123 /* LOG_DEBUG("DAP: Set TAR %x",tar); */
124 int retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR, (uint32_t)(tar & 0xffffffffUL));
125 if (retval == ERROR_OK && is_64bit_ap(ap)) {
126 /* See if bits 63:32 of tar is different from last setting */
127 if ((ap->tar_value >> 32) != (tar >> 32))
128 retval = dap_queue_ap_write(ap, MEM_AP_REG_TAR64, (uint32_t)(tar >> 32));
129 }
130 if (retval != ERROR_OK) {
131 ap->tar_valid = false;
132 return retval;
133 }
134 ap->tar_value = tar;
135 ap->tar_valid = true;
136 }
137 return ERROR_OK;
138 }
139
140 static int mem_ap_read_tar(struct adiv5_ap *ap, target_addr_t *tar)
141 {
142 uint32_t lower;
143 uint32_t upper = 0;
144
145 int retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR, &lower);
146 if (retval == ERROR_OK && is_64bit_ap(ap))
147 retval = dap_queue_ap_read(ap, MEM_AP_REG_TAR64, &upper);
148
149 if (retval != ERROR_OK) {
150 ap->tar_valid = false;
151 return retval;
152 }
153
154 retval = dap_run(ap->dap);
155 if (retval != ERROR_OK) {
156 ap->tar_valid = false;
157 return retval;
158 }
159
160 *tar = (((target_addr_t)upper) << 32) | (target_addr_t)lower;
161
162 ap->tar_value = *tar;
163 ap->tar_valid = true;
164 return ERROR_OK;
165 }
166
167 static uint32_t mem_ap_get_tar_increment(struct adiv5_ap *ap)
168 {
169 switch (ap->csw_value & CSW_ADDRINC_MASK) {
170 case CSW_ADDRINC_SINGLE:
171 switch (ap->csw_value & CSW_SIZE_MASK) {
172 case CSW_8BIT:
173 return 1;
174 case CSW_16BIT:
175 return 2;
176 case CSW_32BIT:
177 return 4;
178 default:
179 return 0;
180 }
181 case CSW_ADDRINC_PACKED:
182 return 4;
183 }
184 return 0;
185 }
186
187 /* mem_ap_update_tar_cache is called after an access to MEM_AP_REG_DRW
188 */
189 static void mem_ap_update_tar_cache(struct adiv5_ap *ap)
190 {
191 if (!ap->tar_valid)
192 return;
193
194 uint32_t inc = mem_ap_get_tar_increment(ap);
195 if (inc >= max_tar_block_size(ap->tar_autoincr_block, ap->tar_value))
196 ap->tar_valid = false;
197 else
198 ap->tar_value += inc;
199 }
200
201 /**
202 * Queue transactions setting up transfer parameters for the
203 * currently selected MEM-AP.
204 *
205 * Subsequent transfers using registers like MEM_AP_REG_DRW or MEM_AP_REG_BD2
206 * initiate data reads or writes using memory or peripheral addresses.
207 * If the CSW is configured for it, the TAR may be automatically
208 * incremented after each transfer.
209 *
210 * @param ap The MEM-AP.
211 * @param csw MEM-AP Control/Status Word (CSW) register to assign. If this
212 * matches the cached value, the register is not changed.
213 * @param tar MEM-AP Transfer Address Register (TAR) to assign. If this
214 * matches the cached address, the register is not changed.
215 *
216 * @return ERROR_OK if the transaction was properly queued, else a fault code.
217 */
218 static int mem_ap_setup_transfer(struct adiv5_ap *ap, uint32_t csw, target_addr_t tar)
219 {
220 int retval;
221 retval = mem_ap_setup_csw(ap, csw);
222 if (retval != ERROR_OK)
223 return retval;
224 retval = mem_ap_setup_tar(ap, tar);
225 if (retval != ERROR_OK)
226 return retval;
227 return ERROR_OK;
228 }
229
230 /**
231 * Asynchronous (queued) read of a word from memory or a system register.
232 *
233 * @param ap The MEM-AP to access.
234 * @param address Address of the 32-bit word to read; it must be
235 * readable by the currently selected MEM-AP.
236 * @param value points to where the word will be stored when the
237 * transaction queue is flushed (assuming no errors).
238 *
239 * @return ERROR_OK for success. Otherwise a fault code.
240 */
241 int mem_ap_read_u32(struct adiv5_ap *ap, target_addr_t address,
242 uint32_t *value)
243 {
244 int retval;
245
246 /* Use banked addressing (REG_BDx) to avoid some link traffic
247 * (updating TAR) when reading several consecutive addresses.
248 */
249 retval = mem_ap_setup_transfer(ap,
250 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
251 address & 0xFFFFFFFFFFFFFFF0ull);
252 if (retval != ERROR_OK)
253 return retval;
254
255 return dap_queue_ap_read(ap, MEM_AP_REG_BD0 | (address & 0xC), value);
256 }
257
258 /**
259 * Synchronous read of a word from memory or a system register.
260 * As a side effect, this flushes any queued transactions.
261 *
262 * @param ap The MEM-AP to access.
263 * @param address Address of the 32-bit word to read; it must be
264 * readable by the currently selected MEM-AP.
265 * @param value points to where the result will be stored.
266 *
267 * @return ERROR_OK for success; *value holds the result.
268 * Otherwise a fault code.
269 */
270 int mem_ap_read_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
271 uint32_t *value)
272 {
273 int retval;
274
275 retval = mem_ap_read_u32(ap, address, value);
276 if (retval != ERROR_OK)
277 return retval;
278
279 return dap_run(ap->dap);
280 }
281
282 /**
283 * Asynchronous (queued) write of a word to memory or a system register.
284 *
285 * @param ap The MEM-AP to access.
286 * @param address Address to be written; it must be writable by
287 * the currently selected MEM-AP.
288 * @param value Word that will be written to the address when transaction
289 * queue is flushed (assuming no errors).
290 *
291 * @return ERROR_OK for success. Otherwise a fault code.
292 */
293 int mem_ap_write_u32(struct adiv5_ap *ap, target_addr_t address,
294 uint32_t value)
295 {
296 int retval;
297
298 /* Use banked addressing (REG_BDx) to avoid some link traffic
299 * (updating TAR) when writing several consecutive addresses.
300 */
301 retval = mem_ap_setup_transfer(ap,
302 CSW_32BIT | (ap->csw_value & CSW_ADDRINC_MASK),
303 address & 0xFFFFFFFFFFFFFFF0ull);
304 if (retval != ERROR_OK)
305 return retval;
306
307 return dap_queue_ap_write(ap, MEM_AP_REG_BD0 | (address & 0xC),
308 value);
309 }
310
311 /**
312 * Synchronous write of a word to memory or a system register.
313 * As a side effect, this flushes any queued transactions.
314 *
315 * @param ap The MEM-AP to access.
316 * @param address Address to be written; it must be writable by
317 * the currently selected MEM-AP.
318 * @param value Word that will be written.
319 *
320 * @return ERROR_OK for success; the data was written. Otherwise a fault code.
321 */
322 int mem_ap_write_atomic_u32(struct adiv5_ap *ap, target_addr_t address,
323 uint32_t value)
324 {
325 int retval = mem_ap_write_u32(ap, address, value);
326
327 if (retval != ERROR_OK)
328 return retval;
329
330 return dap_run(ap->dap);
331 }
332
333 /**
334 * Synchronous write of a block of memory, using a specific access size.
335 *
336 * @param ap The MEM-AP to access.
337 * @param buffer The data buffer to write. No particular alignment is assumed.
338 * @param size Which access size to use, in bytes. 1, 2 or 4.
339 * @param count The number of writes to do (in size units, not bytes).
340 * @param address Address to be written; it must be writable by the currently selected MEM-AP.
341 * @param addrinc Whether the target address should be increased for each write or not. This
342 * should normally be true, except when writing to e.g. a FIFO.
343 * @return ERROR_OK on success, otherwise an error code.
344 */
345 static int mem_ap_write(struct adiv5_ap *ap, const uint8_t *buffer, uint32_t size, uint32_t count,
346 target_addr_t address, bool addrinc)
347 {
348 struct adiv5_dap *dap = ap->dap;
349 size_t nbytes = size * count;
350 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
351 uint32_t csw_size;
352 target_addr_t addr_xor;
353 int retval = ERROR_OK;
354
355 /* TI BE-32 Quirks mode:
356 * Writes on big-endian TMS570 behave very strangely. Observed behavior:
357 * size write address bytes written in order
358 * 4 TAR ^ 0 (val >> 24), (val >> 16), (val >> 8), (val)
359 * 2 TAR ^ 2 (val >> 8), (val)
360 * 1 TAR ^ 3 (val)
361 * For example, if you attempt to write a single byte to address 0, the processor
362 * will actually write a byte to address 3.
363 *
364 * To make writes of size < 4 work as expected, we xor a value with the address before
365 * setting the TAP, and we set the TAP after every transfer rather then relying on
366 * address increment. */
367
368 if (size == 4) {
369 csw_size = CSW_32BIT;
370 addr_xor = 0;
371 } else if (size == 2) {
372 csw_size = CSW_16BIT;
373 addr_xor = dap->ti_be_32_quirks ? 2 : 0;
374 } else if (size == 1) {
375 csw_size = CSW_8BIT;
376 addr_xor = dap->ti_be_32_quirks ? 3 : 0;
377 } else {
378 return ERROR_TARGET_UNALIGNED_ACCESS;
379 }
380
381 if (ap->unaligned_access_bad && (address % size != 0))
382 return ERROR_TARGET_UNALIGNED_ACCESS;
383
384 while (nbytes > 0) {
385 uint32_t this_size = size;
386
387 /* Select packed transfer if possible */
388 if (addrinc && ap->packed_transfers && nbytes >= 4
389 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
390 this_size = 4;
391 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
392 } else {
393 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
394 }
395
396 if (retval != ERROR_OK)
397 break;
398
399 retval = mem_ap_setup_tar(ap, address ^ addr_xor);
400 if (retval != ERROR_OK)
401 return retval;
402
403 /* How many source bytes each transfer will consume, and their location in the DRW,
404 * depends on the type of transfer and alignment. See ARM document IHI0031C. */
405 uint32_t outvalue = 0;
406 uint32_t drw_byte_idx = address;
407 if (dap->ti_be_32_quirks) {
408 switch (this_size) {
409 case 4:
410 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
411 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
412 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx++ & 3) ^ addr_xor);
413 outvalue |= (uint32_t)*buffer++ << 8 * (3 ^ (drw_byte_idx & 3) ^ addr_xor);
414 break;
415 case 2:
416 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx++ & 3) ^ addr_xor);
417 outvalue |= (uint32_t)*buffer++ << 8 * (1 ^ (drw_byte_idx & 3) ^ addr_xor);
418 break;
419 case 1:
420 outvalue |= (uint32_t)*buffer++ << 8 * (0 ^ (drw_byte_idx & 3) ^ addr_xor);
421 break;
422 }
423 } else {
424 switch (this_size) {
425 case 4:
426 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
427 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
428 /* fallthrough */
429 case 2:
430 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx++ & 3);
431 /* fallthrough */
432 case 1:
433 outvalue |= (uint32_t)*buffer++ << 8 * (drw_byte_idx & 3);
434 }
435 }
436
437 nbytes -= this_size;
438
439 retval = dap_queue_ap_write(ap, MEM_AP_REG_DRW, outvalue);
440 if (retval != ERROR_OK)
441 break;
442
443 mem_ap_update_tar_cache(ap);
444 if (addrinc)
445 address += this_size;
446 }
447
448 /* REVISIT: Might want to have a queued version of this function that does not run. */
449 if (retval == ERROR_OK)
450 retval = dap_run(dap);
451
452 if (retval != ERROR_OK) {
453 target_addr_t tar;
454 if (mem_ap_read_tar(ap, &tar) == ERROR_OK)
455 LOG_ERROR("Failed to write memory at " TARGET_ADDR_FMT, tar);
456 else
457 LOG_ERROR("Failed to write memory and, additionally, failed to find out where");
458 }
459
460 return retval;
461 }
462
463 /**
464 * Synchronous read of a block of memory, using a specific access size.
465 *
466 * @param ap The MEM-AP to access.
467 * @param buffer The data buffer to receive the data. No particular alignment is assumed.
468 * @param size Which access size to use, in bytes. 1, 2 or 4.
469 * @param count The number of reads to do (in size units, not bytes).
470 * @param adr Address to be read; it must be readable by the currently selected MEM-AP.
471 * @param addrinc Whether the target address should be increased after each read or not. This
472 * should normally be true, except when reading from e.g. a FIFO.
473 * @return ERROR_OK on success, otherwise an error code.
474 */
475 static int mem_ap_read(struct adiv5_ap *ap, uint8_t *buffer, uint32_t size, uint32_t count,
476 target_addr_t adr, bool addrinc)
477 {
478 struct adiv5_dap *dap = ap->dap;
479 size_t nbytes = size * count;
480 const uint32_t csw_addrincr = addrinc ? CSW_ADDRINC_SINGLE : CSW_ADDRINC_OFF;
481 uint32_t csw_size;
482 target_addr_t address = adr;
483 int retval = ERROR_OK;
484
485 /* TI BE-32 Quirks mode:
486 * Reads on big-endian TMS570 behave strangely differently than writes.
487 * They read from the physical address requested, but with DRW byte-reversed.
488 * For example, a byte read from address 0 will place the result in the high bytes of DRW.
489 * Also, packed 8-bit and 16-bit transfers seem to sometimes return garbage in some bytes,
490 * so avoid them. */
491
492 if (size == 4)
493 csw_size = CSW_32BIT;
494 else if (size == 2)
495 csw_size = CSW_16BIT;
496 else if (size == 1)
497 csw_size = CSW_8BIT;
498 else
499 return ERROR_TARGET_UNALIGNED_ACCESS;
500
501 if (ap->unaligned_access_bad && (adr % size != 0))
502 return ERROR_TARGET_UNALIGNED_ACCESS;
503
504 /* Allocate buffer to hold the sequence of DRW reads that will be made. This is a significant
505 * over-allocation if packed transfers are going to be used, but determining the real need at
506 * this point would be messy. */
507 uint32_t *read_buf = calloc(count, sizeof(uint32_t));
508 /* Multiplication count * sizeof(uint32_t) may overflow, calloc() is safe */
509 uint32_t *read_ptr = read_buf;
510 if (!read_buf) {
511 LOG_ERROR("Failed to allocate read buffer");
512 return ERROR_FAIL;
513 }
514
515 /* Queue up all reads. Each read will store the entire DRW word in the read buffer. How many
516 * useful bytes it contains, and their location in the word, depends on the type of transfer
517 * and alignment. */
518 while (nbytes > 0) {
519 uint32_t this_size = size;
520
521 /* Select packed transfer if possible */
522 if (addrinc && ap->packed_transfers && nbytes >= 4
523 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
524 this_size = 4;
525 retval = mem_ap_setup_csw(ap, csw_size | CSW_ADDRINC_PACKED);
526 } else {
527 retval = mem_ap_setup_csw(ap, csw_size | csw_addrincr);
528 }
529 if (retval != ERROR_OK)
530 break;
531
532 retval = mem_ap_setup_tar(ap, address);
533 if (retval != ERROR_OK)
534 break;
535
536 retval = dap_queue_ap_read(ap, MEM_AP_REG_DRW, read_ptr++);
537 if (retval != ERROR_OK)
538 break;
539
540 nbytes -= this_size;
541 if (addrinc)
542 address += this_size;
543
544 mem_ap_update_tar_cache(ap);
545 }
546
547 if (retval == ERROR_OK)
548 retval = dap_run(dap);
549
550 /* Restore state */
551 address = adr;
552 nbytes = size * count;
553 read_ptr = read_buf;
554
555 /* If something failed, read TAR to find out how much data was successfully read, so we can
556 * at least give the caller what we have. */
557 if (retval != ERROR_OK) {
558 target_addr_t tar;
559 if (mem_ap_read_tar(ap, &tar) == ERROR_OK) {
560 /* TAR is incremented after failed transfer on some devices (eg Cortex-M4) */
561 LOG_ERROR("Failed to read memory at " TARGET_ADDR_FMT, tar);
562 if (nbytes > tar - address)
563 nbytes = tar - address;
564 } else {
565 LOG_ERROR("Failed to read memory and, additionally, failed to find out where");
566 nbytes = 0;
567 }
568 }
569
570 /* Replay loop to populate caller's buffer from the correct word and byte lane */
571 while (nbytes > 0) {
572 uint32_t this_size = size;
573
574 if (addrinc && ap->packed_transfers && nbytes >= 4
575 && max_tar_block_size(ap->tar_autoincr_block, address) >= 4) {
576 this_size = 4;
577 }
578
579 if (dap->ti_be_32_quirks) {
580 switch (this_size) {
581 case 4:
582 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
583 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
584 /* fallthrough */
585 case 2:
586 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
587 /* fallthrough */
588 case 1:
589 *buffer++ = *read_ptr >> 8 * (3 - (address++ & 3));
590 }
591 } else {
592 switch (this_size) {
593 case 4:
594 *buffer++ = *read_ptr >> 8 * (address++ & 3);
595 *buffer++ = *read_ptr >> 8 * (address++ & 3);
596 /* fallthrough */
597 case 2:
598 *buffer++ = *read_ptr >> 8 * (address++ & 3);
599 /* fallthrough */
600 case 1:
601 *buffer++ = *read_ptr >> 8 * (address++ & 3);
602 }
603 }
604
605 read_ptr++;
606 nbytes -= this_size;
607 }
608
609 free(read_buf);
610 return retval;
611 }
612
613 int mem_ap_read_buf(struct adiv5_ap *ap,
614 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
615 {
616 return mem_ap_read(ap, buffer, size, count, address, true);
617 }
618
619 int mem_ap_write_buf(struct adiv5_ap *ap,
620 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
621 {
622 return mem_ap_write(ap, buffer, size, count, address, true);
623 }
624
625 int mem_ap_read_buf_noincr(struct adiv5_ap *ap,
626 uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
627 {
628 return mem_ap_read(ap, buffer, size, count, address, false);
629 }
630
631 int mem_ap_write_buf_noincr(struct adiv5_ap *ap,
632 const uint8_t *buffer, uint32_t size, uint32_t count, target_addr_t address)
633 {
634 return mem_ap_write(ap, buffer, size, count, address, false);
635 }
636
637 /*--------------------------------------------------------------------------*/
638
639
640 #define DAP_POWER_DOMAIN_TIMEOUT (10)
641
642 /*--------------------------------------------------------------------------*/
643
644 /**
645 * Invalidate cached DP select and cached TAR and CSW of all APs
646 */
647 void dap_invalidate_cache(struct adiv5_dap *dap)
648 {
649 dap->select = DP_SELECT_INVALID;
650 dap->last_read = NULL;
651
652 int i;
653 for (i = 0; i <= DP_APSEL_MAX; i++) {
654 /* force csw and tar write on the next mem-ap access */
655 dap->ap[i].tar_valid = false;
656 dap->ap[i].csw_value = 0;
657 }
658 }
659
660 /**
661 * Initialize a DAP. This sets up the power domains, prepares the DP
662 * for further use and activates overrun checking.
663 *
664 * @param dap The DAP being initialized.
665 */
666 int dap_dp_init(struct adiv5_dap *dap)
667 {
668 int retval;
669
670 LOG_DEBUG("%s", adiv5_dap_name(dap));
671
672 dap->do_reconnect = false;
673 dap_invalidate_cache(dap);
674
675 /*
676 * Early initialize dap->dp_ctrl_stat.
677 * In jtag mode only, if the following queue run (in dap_dp_poll_register)
678 * fails and sets the sticky error, it will trigger the clearing
679 * of the sticky. Without this initialization system and debug power
680 * would be disabled while clearing the sticky error bit.
681 */
682 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
683
684 /*
685 * This write operation clears the sticky error bit in jtag mode only and
686 * is ignored in swd mode. It also powers-up system and debug domains in
687 * both jtag and swd modes, if not done before.
688 */
689 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat | SSTICKYERR);
690 if (retval != ERROR_OK)
691 return retval;
692
693 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
694 if (retval != ERROR_OK)
695 return retval;
696
697 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
698 if (retval != ERROR_OK)
699 return retval;
700
701 /* Check that we have debug power domains activated */
702 LOG_DEBUG("DAP: wait CDBGPWRUPACK");
703 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
704 CDBGPWRUPACK, CDBGPWRUPACK,
705 DAP_POWER_DOMAIN_TIMEOUT);
706 if (retval != ERROR_OK)
707 return retval;
708
709 if (!dap->ignore_syspwrupack) {
710 LOG_DEBUG("DAP: wait CSYSPWRUPACK");
711 retval = dap_dp_poll_register(dap, DP_CTRL_STAT,
712 CSYSPWRUPACK, CSYSPWRUPACK,
713 DAP_POWER_DOMAIN_TIMEOUT);
714 if (retval != ERROR_OK)
715 return retval;
716 }
717
718 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
719 if (retval != ERROR_OK)
720 return retval;
721
722 /* With debug power on we can activate OVERRUN checking */
723 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ | CORUNDETECT;
724 retval = dap_queue_dp_write(dap, DP_CTRL_STAT, dap->dp_ctrl_stat);
725 if (retval != ERROR_OK)
726 return retval;
727 retval = dap_queue_dp_read(dap, DP_CTRL_STAT, NULL);
728 if (retval != ERROR_OK)
729 return retval;
730
731 retval = dap_run(dap);
732 if (retval != ERROR_OK)
733 return retval;
734
735 return retval;
736 }
737
738 /**
739 * Initialize a DAP or do reconnect if DAP is not accessible.
740 *
741 * @param dap The DAP being initialized.
742 */
743 int dap_dp_init_or_reconnect(struct adiv5_dap *dap)
744 {
745 LOG_DEBUG("%s", adiv5_dap_name(dap));
746
747 /*
748 * Early initialize dap->dp_ctrl_stat.
749 * In jtag mode only, if the following atomic reads fail and set the
750 * sticky error, it will trigger the clearing of the sticky. Without this
751 * initialization system and debug power would be disabled while clearing
752 * the sticky error bit.
753 */
754 dap->dp_ctrl_stat = CDBGPWRUPREQ | CSYSPWRUPREQ;
755
756 dap->do_reconnect = false;
757
758 dap_dp_read_atomic(dap, DP_CTRL_STAT, NULL);
759 if (dap->do_reconnect) {
760 /* dap connect calls dap_dp_init() after transport dependent initialization */
761 return dap->ops->connect(dap);
762 } else {
763 return dap_dp_init(dap);
764 }
765 }
766
767 /**
768 * Initialize a DAP. This sets up the power domains, prepares the DP
769 * for further use, and arranges to use AP #0 for all AP operations
770 * until dap_ap-select() changes that policy.
771 *
772 * @param ap The MEM-AP being initialized.
773 */
774 int mem_ap_init(struct adiv5_ap *ap)
775 {
776 /* check that we support packed transfers */
777 uint32_t csw, cfg;
778 int retval;
779 struct adiv5_dap *dap = ap->dap;
780
781 /* Set ap->cfg_reg before calling mem_ap_setup_transfer(). */
782 /* mem_ap_setup_transfer() needs to know if the MEM_AP supports LPAE. */
783 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &cfg);
784 if (retval != ERROR_OK)
785 return retval;
786
787 retval = dap_run(dap);
788 if (retval != ERROR_OK)
789 return retval;
790
791 ap->cfg_reg = cfg;
792 ap->tar_valid = false;
793 ap->csw_value = 0; /* force csw and tar write */
794 retval = mem_ap_setup_transfer(ap, CSW_8BIT | CSW_ADDRINC_PACKED, 0);
795 if (retval != ERROR_OK)
796 return retval;
797
798 retval = dap_queue_ap_read(ap, MEM_AP_REG_CSW, &csw);
799 if (retval != ERROR_OK)
800 return retval;
801
802 retval = dap_run(dap);
803 if (retval != ERROR_OK)
804 return retval;
805
806 if (csw & CSW_ADDRINC_PACKED)
807 ap->packed_transfers = true;
808 else
809 ap->packed_transfers = false;
810
811 /* Packed transfers on TI BE-32 processors do not work correctly in
812 * many cases. */
813 if (dap->ti_be_32_quirks)
814 ap->packed_transfers = false;
815
816 LOG_DEBUG("MEM_AP Packed Transfers: %s",
817 ap->packed_transfers ? "enabled" : "disabled");
818
819 /* The ARM ADI spec leaves implementation-defined whether unaligned
820 * memory accesses work, only work partially, or cause a sticky error.
821 * On TI BE-32 processors, reads seem to return garbage in some bytes
822 * and unaligned writes seem to cause a sticky error.
823 * TODO: it would be nice to have a way to detect whether unaligned
824 * operations are supported on other processors. */
825 ap->unaligned_access_bad = dap->ti_be_32_quirks;
826
827 LOG_DEBUG("MEM_AP CFG: large data %d, long address %d, big-endian %d",
828 !!(cfg & MEM_AP_REG_CFG_LD), !!(cfg & MEM_AP_REG_CFG_LA), !!(cfg & MEM_AP_REG_CFG_BE));
829
830 return ERROR_OK;
831 }
832
833 /**
834 * Put the debug link into SWD mode, if the target supports it.
835 * The link's initial mode may be either JTAG (for example,
836 * with SWJ-DP after reset) or SWD.
837 *
838 * Note that targets using the JTAG-DP do not support SWD, and that
839 * some targets which could otherwise support it may have been
840 * configured to disable SWD signaling
841 *
842 * @param dap The DAP used
843 * @return ERROR_OK or else a fault code.
844 */
845 int dap_to_swd(struct adiv5_dap *dap)
846 {
847 LOG_DEBUG("Enter SWD mode");
848
849 return dap_send_sequence(dap, JTAG_TO_SWD);
850 }
851
852 /**
853 * Put the debug link into JTAG mode, if the target supports it.
854 * The link's initial mode may be either SWD or JTAG.
855 *
856 * Note that targets implemented with SW-DP do not support JTAG, and
857 * that some targets which could otherwise support it may have been
858 * configured to disable JTAG signaling
859 *
860 * @param dap The DAP used
861 * @return ERROR_OK or else a fault code.
862 */
863 int dap_to_jtag(struct adiv5_dap *dap)
864 {
865 LOG_DEBUG("Enter JTAG mode");
866
867 return dap_send_sequence(dap, SWD_TO_JTAG);
868 }
869
870 /* CID interpretation -- see ARM IHI 0029E table B2-7
871 * and ARM IHI 0031E table D1-2.
872 *
873 * From 2009/11/25 commit 21378f58b604:
874 * "OptimoDE DESS" is ARM's semicustom DSPish stuff.
875 * Let's keep it as is, for the time being
876 */
877 static const char *class_description[16] = {
878 [0x0] = "Generic verification component",
879 [0x1] = "ROM table",
880 [0x2] = "Reserved",
881 [0x3] = "Reserved",
882 [0x4] = "Reserved",
883 [0x5] = "Reserved",
884 [0x6] = "Reserved",
885 [0x7] = "Reserved",
886 [0x8] = "Reserved",
887 [0x9] = "CoreSight component",
888 [0xA] = "Reserved",
889 [0xB] = "Peripheral Test Block",
890 [0xC] = "Reserved",
891 [0xD] = "OptimoDE DESS", /* see above */
892 [0xE] = "Generic IP component",
893 [0xF] = "CoreLink, PrimeCell or System component",
894 };
895
896 #define ARCH_ID(architect, archid) ( \
897 (((architect) << ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT) & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) | \
898 (((archid) << ARM_CS_C9_DEVARCH_ARCHID_SHIFT) & ARM_CS_C9_DEVARCH_ARCHID_MASK) \
899 )
900
901 static const struct {
902 uint32_t arch_id;
903 const char *description;
904 } class0x9_devarch[] = {
905 /* keep same unsorted order as in ARM IHI0029E */
906 { ARCH_ID(ARM_ID, 0x0A00), "RAS architecture" },
907 { ARCH_ID(ARM_ID, 0x1A01), "Instrumentation Trace Macrocell (ITM) architecture" },
908 { ARCH_ID(ARM_ID, 0x1A02), "DWT architecture" },
909 { ARCH_ID(ARM_ID, 0x1A03), "Flash Patch and Breakpoint unit (FPB) architecture" },
910 { ARCH_ID(ARM_ID, 0x2A04), "Processor debug architecture (ARMv8-M)" },
911 { ARCH_ID(ARM_ID, 0x6A05), "Processor debug architecture (ARMv8-R)" },
912 { ARCH_ID(ARM_ID, 0x0A10), "PC sample-based profiling" },
913 { ARCH_ID(ARM_ID, 0x4A13), "Embedded Trace Macrocell (ETM) architecture" },
914 { ARCH_ID(ARM_ID, 0x1A14), "Cross Trigger Interface (CTI) architecture" },
915 { ARCH_ID(ARM_ID, 0x6A15), "Processor debug architecture (v8.0-A)" },
916 { ARCH_ID(ARM_ID, 0x7A15), "Processor debug architecture (v8.1-A)" },
917 { ARCH_ID(ARM_ID, 0x8A15), "Processor debug architecture (v8.2-A)" },
918 { ARCH_ID(ARM_ID, 0x2A16), "Processor Performance Monitor (PMU) architecture" },
919 { ARCH_ID(ARM_ID, 0x0A17), "Memory Access Port v2 architecture" },
920 { ARCH_ID(ARM_ID, 0x0A27), "JTAG Access Port v2 architecture" },
921 { ARCH_ID(ARM_ID, 0x0A31), "Basic trace router" },
922 { ARCH_ID(ARM_ID, 0x0A37), "Power requestor" },
923 { ARCH_ID(ARM_ID, 0x0A47), "Unknown Access Port v2 architecture" },
924 { ARCH_ID(ARM_ID, 0x0A50), "HSSTP architecture" },
925 { ARCH_ID(ARM_ID, 0x0A63), "System Trace Macrocell (STM) architecture" },
926 { ARCH_ID(ARM_ID, 0x0A75), "CoreSight ELA architecture" },
927 { ARCH_ID(ARM_ID, 0x0AF7), "CoreSight ROM architecture" },
928 };
929
930 #define DEVARCH_ID_MASK (ARM_CS_C9_DEVARCH_ARCHITECT_MASK | ARM_CS_C9_DEVARCH_ARCHID_MASK)
931 #define DEVARCH_ROM_C_0X9 ARCH_ID(ARM_ID, 0x0AF7)
932
933 static const char *class0x9_devarch_description(uint32_t devarch)
934 {
935 if (!(devarch & ARM_CS_C9_DEVARCH_PRESENT))
936 return "not present";
937
938 for (unsigned int i = 0; i < ARRAY_SIZE(class0x9_devarch); i++)
939 if ((devarch & DEVARCH_ID_MASK) == class0x9_devarch[i].arch_id)
940 return class0x9_devarch[i].description;
941
942 return "unknown";
943 }
944
945 static const struct {
946 enum ap_type type;
947 const char *description;
948 } ap_types[] = {
949 { AP_TYPE_JTAG_AP, "JTAG-AP" },
950 { AP_TYPE_COM_AP, "COM-AP" },
951 { AP_TYPE_AHB3_AP, "MEM-AP AHB3" },
952 { AP_TYPE_APB_AP, "MEM-AP APB2 or APB3" },
953 { AP_TYPE_AXI_AP, "MEM-AP AXI3 or AXI4" },
954 { AP_TYPE_AHB5_AP, "MEM-AP AHB5" },
955 { AP_TYPE_APB4_AP, "MEM-AP APB4" },
956 { AP_TYPE_AXI5_AP, "MEM-AP AXI5" },
957 { AP_TYPE_AHB5H_AP, "MEM-AP AHB5 with enhanced HPROT" },
958 };
959
960 static const char *ap_type_to_description(enum ap_type type)
961 {
962 for (unsigned int i = 0; i < ARRAY_SIZE(ap_types); i++)
963 if (type == ap_types[i].type)
964 return ap_types[i].description;
965
966 return "Unknown";
967 }
968
969 /*
970 * This function checks the ID for each access port to find the requested Access Port type
971 */
972 int dap_find_ap(struct adiv5_dap *dap, enum ap_type type_to_find, struct adiv5_ap **ap_out)
973 {
974 int ap_num;
975
976 /* Maximum AP number is 255 since the SELECT register is 8 bits */
977 for (ap_num = 0; ap_num <= DP_APSEL_MAX; ap_num++) {
978
979 /* read the IDR register of the Access Port */
980 uint32_t id_val = 0;
981
982 int retval = dap_queue_ap_read(dap_ap(dap, ap_num), AP_REG_IDR, &id_val);
983 if (retval != ERROR_OK)
984 return retval;
985
986 retval = dap_run(dap);
987
988 /* Reading register for a non-existent AP should not cause an error,
989 * but just to be sure, try to continue searching if an error does happen.
990 */
991 if (retval == ERROR_OK && (id_val & AP_TYPE_MASK) == type_to_find) {
992 LOG_DEBUG("Found %s at AP index: %d (IDR=0x%08" PRIX32 ")",
993 ap_type_to_description(type_to_find),
994 ap_num, id_val);
995
996 *ap_out = &dap->ap[ap_num];
997 return ERROR_OK;
998 }
999 }
1000
1001 LOG_DEBUG("No %s found", ap_type_to_description(type_to_find));
1002 return ERROR_FAIL;
1003 }
1004
1005 int dap_get_debugbase(struct adiv5_ap *ap,
1006 target_addr_t *dbgbase, uint32_t *apid)
1007 {
1008 struct adiv5_dap *dap = ap->dap;
1009 int retval;
1010 uint32_t baseptr_upper, baseptr_lower;
1011
1012 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID) {
1013 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1014 if (retval != ERROR_OK)
1015 return retval;
1016 }
1017 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseptr_lower);
1018 if (retval != ERROR_OK)
1019 return retval;
1020 retval = dap_queue_ap_read(ap, AP_REG_IDR, apid);
1021 if (retval != ERROR_OK)
1022 return retval;
1023 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1024 if (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap)) {
1025 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseptr_upper);
1026 if (retval != ERROR_OK)
1027 return retval;
1028 }
1029
1030 retval = dap_run(dap);
1031 if (retval != ERROR_OK)
1032 return retval;
1033
1034 if (!is_64bit_ap(ap))
1035 baseptr_upper = 0;
1036 *dbgbase = (((target_addr_t)baseptr_upper) << 32) | baseptr_lower;
1037
1038 return ERROR_OK;
1039 }
1040
1041 int dap_lookup_cs_component(struct adiv5_ap *ap,
1042 target_addr_t dbgbase, uint8_t type, target_addr_t *addr, int32_t *idx)
1043 {
1044 uint32_t romentry, entry_offset = 0, devtype;
1045 target_addr_t component_base;
1046 int retval;
1047
1048 dbgbase &= 0xFFFFFFFFFFFFF000ull;
1049 *addr = 0;
1050
1051 do {
1052 retval = mem_ap_read_atomic_u32(ap, dbgbase |
1053 entry_offset, &romentry);
1054 if (retval != ERROR_OK)
1055 return retval;
1056
1057 component_base = dbgbase + (target_addr_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1058
1059 if (romentry & ARM_CS_ROMENTRY_PRESENT) {
1060 uint32_t c_cid1;
1061 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_CIDR1, &c_cid1);
1062 if (retval != ERROR_OK) {
1063 LOG_ERROR("Can't read component with base address " TARGET_ADDR_FMT
1064 ", the corresponding core might be turned off", component_base);
1065 return retval;
1066 }
1067 unsigned int class = (c_cid1 & ARM_CS_CIDR1_CLASS_MASK) >> ARM_CS_CIDR1_CLASS_SHIFT;
1068 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1069 retval = dap_lookup_cs_component(ap, component_base,
1070 type, addr, idx);
1071 if (retval == ERROR_OK)
1072 break;
1073 if (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
1074 return retval;
1075 }
1076
1077 retval = mem_ap_read_atomic_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &devtype);
1078 if (retval != ERROR_OK)
1079 return retval;
1080 if ((devtype & ARM_CS_C9_DEVTYPE_MASK) == type) {
1081 if (!*idx) {
1082 *addr = component_base;
1083 break;
1084 } else
1085 (*idx)--;
1086 }
1087 }
1088 entry_offset += 4;
1089 } while ((romentry > 0) && (entry_offset < 0xf00));
1090
1091 if (!*addr)
1092 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1093
1094 return ERROR_OK;
1095 }
1096
1097 /** Holds registers of a CoreSight component */
1098 struct cs_component_vals {
1099 uint64_t pid;
1100 uint32_t cid;
1101 uint32_t devarch;
1102 uint32_t devid;
1103 uint32_t devtype_memtype;
1104 };
1105
1106 /**
1107 * Read the CoreSight registers needed during ROM Table Parsing (RTP).
1108 *
1109 * @param ap Pointer to AP containing the component.
1110 * @param component_base On MEM-AP access method, base address of the component.
1111 * @param v Pointer to the struct holding the value of registers.
1112 *
1113 * @return ERROR_OK on success, else a fault code.
1114 */
1115 static int rtp_read_cs_regs(struct adiv5_ap *ap, target_addr_t component_base,
1116 struct cs_component_vals *v)
1117 {
1118 assert(IS_ALIGNED(component_base, ARM_CS_ALIGN));
1119 assert(ap && v);
1120
1121 uint32_t cid0, cid1, cid2, cid3;
1122 uint32_t pid0, pid1, pid2, pid3, pid4;
1123 int retval = ERROR_OK;
1124
1125 /* sort by offset to gain speed */
1126
1127 /*
1128 * Registers DEVARCH, DEVID and DEVTYPE are valid on Class 0x9 devices
1129 * only, but are at offset above 0xf00, so can be read on any device
1130 * without triggering error. Read them for eventual use on Class 0x9.
1131 */
1132 if (retval == ERROR_OK)
1133 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVARCH, &v->devarch);
1134
1135 if (retval == ERROR_OK)
1136 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVID, &v->devid);
1137
1138 /* Same address as ARM_CS_C1_MEMTYPE */
1139 if (retval == ERROR_OK)
1140 retval = mem_ap_read_u32(ap, component_base + ARM_CS_C9_DEVTYPE, &v->devtype_memtype);
1141
1142 if (retval == ERROR_OK)
1143 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR4, &pid4);
1144
1145 if (retval == ERROR_OK)
1146 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR0, &pid0);
1147 if (retval == ERROR_OK)
1148 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR1, &pid1);
1149 if (retval == ERROR_OK)
1150 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR2, &pid2);
1151 if (retval == ERROR_OK)
1152 retval = mem_ap_read_u32(ap, component_base + ARM_CS_PIDR3, &pid3);
1153
1154 if (retval == ERROR_OK)
1155 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR0, &cid0);
1156 if (retval == ERROR_OK)
1157 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR1, &cid1);
1158 if (retval == ERROR_OK)
1159 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR2, &cid2);
1160 if (retval == ERROR_OK)
1161 retval = mem_ap_read_u32(ap, component_base + ARM_CS_CIDR3, &cid3);
1162
1163 if (retval == ERROR_OK)
1164 retval = dap_run(ap->dap);
1165 if (retval != ERROR_OK) {
1166 LOG_DEBUG("Failed read CoreSight registers");
1167 return retval;
1168 }
1169
1170 v->cid = (cid3 & 0xff) << 24
1171 | (cid2 & 0xff) << 16
1172 | (cid1 & 0xff) << 8
1173 | (cid0 & 0xff);
1174 v->pid = (uint64_t)(pid4 & 0xff) << 32
1175 | (pid3 & 0xff) << 24
1176 | (pid2 & 0xff) << 16
1177 | (pid1 & 0xff) << 8
1178 | (pid0 & 0xff);
1179
1180 return ERROR_OK;
1181 }
1182
1183 /* Part number interpretations are from Cortex
1184 * core specs, the CoreSight components TRM
1185 * (ARM DDI 0314H), CoreSight System Design
1186 * Guide (ARM DGI 0012D) and ETM specs; also
1187 * from chip observation (e.g. TI SDTI).
1188 */
1189
1190 static const struct dap_part_nums {
1191 uint16_t designer_id;
1192 uint16_t part_num;
1193 const char *type;
1194 const char *full;
1195 } dap_part_nums[] = {
1196 { ARM_ID, 0x000, "Cortex-M3 SCS", "(System Control Space)", },
1197 { ARM_ID, 0x001, "Cortex-M3 ITM", "(Instrumentation Trace Module)", },
1198 { ARM_ID, 0x002, "Cortex-M3 DWT", "(Data Watchpoint and Trace)", },
1199 { ARM_ID, 0x003, "Cortex-M3 FPB", "(Flash Patch and Breakpoint)", },
1200 { ARM_ID, 0x008, "Cortex-M0 SCS", "(System Control Space)", },
1201 { ARM_ID, 0x00a, "Cortex-M0 DWT", "(Data Watchpoint and Trace)", },
1202 { ARM_ID, 0x00b, "Cortex-M0 BPU", "(Breakpoint Unit)", },
1203 { ARM_ID, 0x00c, "Cortex-M4 SCS", "(System Control Space)", },
1204 { ARM_ID, 0x00d, "CoreSight ETM11", "(Embedded Trace)", },
1205 { ARM_ID, 0x00e, "Cortex-M7 FPB", "(Flash Patch and Breakpoint)", },
1206 { ARM_ID, 0x193, "SoC-600 TSGEN", "(Timestamp Generator)", },
1207 { ARM_ID, 0x470, "Cortex-M1 ROM", "(ROM Table)", },
1208 { ARM_ID, 0x471, "Cortex-M0 ROM", "(ROM Table)", },
1209 { ARM_ID, 0x490, "Cortex-A15 GIC", "(Generic Interrupt Controller)", },
1210 { ARM_ID, 0x492, "Cortex-R52 GICD", "(Distributor)", },
1211 { ARM_ID, 0x493, "Cortex-R52 GICR", "(Redistributor)", },
1212 { ARM_ID, 0x4a1, "Cortex-A53 ROM", "(v8 Memory Map ROM Table)", },
1213 { ARM_ID, 0x4a2, "Cortex-A57 ROM", "(ROM Table)", },
1214 { ARM_ID, 0x4a3, "Cortex-A53 ROM", "(v7 Memory Map ROM Table)", },
1215 { ARM_ID, 0x4a4, "Cortex-A72 ROM", "(ROM Table)", },
1216 { ARM_ID, 0x4a9, "Cortex-A9 ROM", "(ROM Table)", },
1217 { ARM_ID, 0x4aa, "Cortex-A35 ROM", "(v8 Memory Map ROM Table)", },
1218 { ARM_ID, 0x4af, "Cortex-A15 ROM", "(ROM Table)", },
1219 { ARM_ID, 0x4b5, "Cortex-R5 ROM", "(ROM Table)", },
1220 { ARM_ID, 0x4b8, "Cortex-R52 ROM", "(ROM Table)", },
1221 { ARM_ID, 0x4c0, "Cortex-M0+ ROM", "(ROM Table)", },
1222 { ARM_ID, 0x4c3, "Cortex-M3 ROM", "(ROM Table)", },
1223 { ARM_ID, 0x4c4, "Cortex-M4 ROM", "(ROM Table)", },
1224 { ARM_ID, 0x4c7, "Cortex-M7 PPB ROM", "(Private Peripheral Bus ROM Table)", },
1225 { ARM_ID, 0x4c8, "Cortex-M7 ROM", "(ROM Table)", },
1226 { ARM_ID, 0x4e0, "Cortex-A35 ROM", "(v7 Memory Map ROM Table)", },
1227 { ARM_ID, 0x4e4, "Cortex-A76 ROM", "(ROM Table)", },
1228 { ARM_ID, 0x906, "CoreSight CTI", "(Cross Trigger)", },
1229 { ARM_ID, 0x907, "CoreSight ETB", "(Trace Buffer)", },
1230 { ARM_ID, 0x908, "CoreSight CSTF", "(Trace Funnel)", },
1231 { ARM_ID, 0x909, "CoreSight ATBR", "(Advanced Trace Bus Replicator)", },
1232 { ARM_ID, 0x910, "CoreSight ETM9", "(Embedded Trace)", },
1233 { ARM_ID, 0x912, "CoreSight TPIU", "(Trace Port Interface Unit)", },
1234 { ARM_ID, 0x913, "CoreSight ITM", "(Instrumentation Trace Macrocell)", },
1235 { ARM_ID, 0x914, "CoreSight SWO", "(Single Wire Output)", },
1236 { ARM_ID, 0x917, "CoreSight HTM", "(AHB Trace Macrocell)", },
1237 { ARM_ID, 0x920, "CoreSight ETM11", "(Embedded Trace)", },
1238 { ARM_ID, 0x921, "Cortex-A8 ETM", "(Embedded Trace)", },
1239 { ARM_ID, 0x922, "Cortex-A8 CTI", "(Cross Trigger)", },
1240 { ARM_ID, 0x923, "Cortex-M3 TPIU", "(Trace Port Interface Unit)", },
1241 { ARM_ID, 0x924, "Cortex-M3 ETM", "(Embedded Trace)", },
1242 { ARM_ID, 0x925, "Cortex-M4 ETM", "(Embedded Trace)", },
1243 { ARM_ID, 0x930, "Cortex-R4 ETM", "(Embedded Trace)", },
1244 { ARM_ID, 0x931, "Cortex-R5 ETM", "(Embedded Trace)", },
1245 { ARM_ID, 0x932, "CoreSight MTB-M0+", "(Micro Trace Buffer)", },
1246 { ARM_ID, 0x941, "CoreSight TPIU-Lite", "(Trace Port Interface Unit)", },
1247 { ARM_ID, 0x950, "Cortex-A9 PTM", "(Program Trace Macrocell)", },
1248 { ARM_ID, 0x955, "Cortex-A5 ETM", "(Embedded Trace)", },
1249 { ARM_ID, 0x95a, "Cortex-A72 ETM", "(Embedded Trace)", },
1250 { ARM_ID, 0x95b, "Cortex-A17 PTM", "(Program Trace Macrocell)", },
1251 { ARM_ID, 0x95d, "Cortex-A53 ETM", "(Embedded Trace)", },
1252 { ARM_ID, 0x95e, "Cortex-A57 ETM", "(Embedded Trace)", },
1253 { ARM_ID, 0x95f, "Cortex-A15 PTM", "(Program Trace Macrocell)", },
1254 { ARM_ID, 0x961, "CoreSight TMC", "(Trace Memory Controller)", },
1255 { ARM_ID, 0x962, "CoreSight STM", "(System Trace Macrocell)", },
1256 { ARM_ID, 0x975, "Cortex-M7 ETM", "(Embedded Trace)", },
1257 { ARM_ID, 0x9a0, "CoreSight PMU", "(Performance Monitoring Unit)", },
1258 { ARM_ID, 0x9a1, "Cortex-M4 TPIU", "(Trace Port Interface Unit)", },
1259 { ARM_ID, 0x9a4, "CoreSight GPR", "(Granular Power Requester)", },
1260 { ARM_ID, 0x9a5, "Cortex-A5 PMU", "(Performance Monitor Unit)", },
1261 { ARM_ID, 0x9a7, "Cortex-A7 PMU", "(Performance Monitor Unit)", },
1262 { ARM_ID, 0x9a8, "Cortex-A53 CTI", "(Cross Trigger)", },
1263 { ARM_ID, 0x9a9, "Cortex-M7 TPIU", "(Trace Port Interface Unit)", },
1264 { ARM_ID, 0x9ae, "Cortex-A17 PMU", "(Performance Monitor Unit)", },
1265 { ARM_ID, 0x9af, "Cortex-A15 PMU", "(Performance Monitor Unit)", },
1266 { ARM_ID, 0x9b6, "Cortex-R52 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1267 { ARM_ID, 0x9b7, "Cortex-R7 PMU", "(Performance Monitor Unit)", },
1268 { ARM_ID, 0x9d3, "Cortex-A53 PMU", "(Performance Monitor Unit)", },
1269 { ARM_ID, 0x9d7, "Cortex-A57 PMU", "(Performance Monitor Unit)", },
1270 { ARM_ID, 0x9d8, "Cortex-A72 PMU", "(Performance Monitor Unit)", },
1271 { ARM_ID, 0x9da, "Cortex-A35 PMU/CTI/ETM", "(Performance Monitor Unit/Cross Trigger/ETM)", },
1272 { ARM_ID, 0x9e2, "SoC-600 APB-AP", "(APB4 Memory Access Port)", },
1273 { ARM_ID, 0x9e3, "SoC-600 AHB-AP", "(AHB5 Memory Access Port)", },
1274 { ARM_ID, 0x9e4, "SoC-600 AXI-AP", "(AXI Memory Access Port)", },
1275 { ARM_ID, 0x9e5, "SoC-600 APv1 Adapter", "(Access Port v1 Adapter)", },
1276 { ARM_ID, 0x9e6, "SoC-600 JTAG-AP", "(JTAG Access Port)", },
1277 { ARM_ID, 0x9e7, "SoC-600 TPIU", "(Trace Port Interface Unit)", },
1278 { ARM_ID, 0x9e8, "SoC-600 TMC ETR/ETS", "(Embedded Trace Router/Streamer)", },
1279 { ARM_ID, 0x9e9, "SoC-600 TMC ETB", "(Embedded Trace Buffer)", },
1280 { ARM_ID, 0x9ea, "SoC-600 TMC ETF", "(Embedded Trace FIFO)", },
1281 { ARM_ID, 0x9eb, "SoC-600 ATB Funnel", "(Trace Funnel)", },
1282 { ARM_ID, 0x9ec, "SoC-600 ATB Replicator", "(Trace Replicator)", },
1283 { ARM_ID, 0x9ed, "SoC-600 CTI", "(Cross Trigger)", },
1284 { ARM_ID, 0x9ee, "SoC-600 CATU", "(Address Translation Unit)", },
1285 { ARM_ID, 0xc05, "Cortex-A5 Debug", "(Debug Unit)", },
1286 { ARM_ID, 0xc07, "Cortex-A7 Debug", "(Debug Unit)", },
1287 { ARM_ID, 0xc08, "Cortex-A8 Debug", "(Debug Unit)", },
1288 { ARM_ID, 0xc09, "Cortex-A9 Debug", "(Debug Unit)", },
1289 { ARM_ID, 0xc0e, "Cortex-A17 Debug", "(Debug Unit)", },
1290 { ARM_ID, 0xc0f, "Cortex-A15 Debug", "(Debug Unit)", },
1291 { ARM_ID, 0xc14, "Cortex-R4 Debug", "(Debug Unit)", },
1292 { ARM_ID, 0xc15, "Cortex-R5 Debug", "(Debug Unit)", },
1293 { ARM_ID, 0xc17, "Cortex-R7 Debug", "(Debug Unit)", },
1294 { ARM_ID, 0xd03, "Cortex-A53 Debug", "(Debug Unit)", },
1295 { ARM_ID, 0xd04, "Cortex-A35 Debug", "(Debug Unit)", },
1296 { ARM_ID, 0xd07, "Cortex-A57 Debug", "(Debug Unit)", },
1297 { ARM_ID, 0xd08, "Cortex-A72 Debug", "(Debug Unit)", },
1298 { ARM_ID, 0xd0b, "Cortex-A76 Debug", "(Debug Unit)", },
1299 { ARM_ID, 0xd0c, "Neoverse N1", "(Debug Unit)", },
1300 { ARM_ID, 0xd13, "Cortex-R52 Debug", "(Debug Unit)", },
1301 { ARM_ID, 0xd49, "Neoverse N2", "(Debug Unit)", },
1302 { 0x017, 0x120, "TI SDTI", "(System Debug Trace Interface)", }, /* from OMAP3 memmap */
1303 { 0x017, 0x343, "TI DAPCTL", "", }, /* from OMAP3 memmap */
1304 { 0x017, 0x9af, "MSP432 ROM", "(ROM Table)" },
1305 { 0x01f, 0xcd0, "Atmel CPU with DSU", "(CPU)" },
1306 { 0x041, 0x1db, "XMC4500 ROM", "(ROM Table)" },
1307 { 0x041, 0x1df, "XMC4700/4800 ROM", "(ROM Table)" },
1308 { 0x041, 0x1ed, "XMC1000 ROM", "(ROM Table)" },
1309 { 0x065, 0x000, "SHARC+/Blackfin+", "", },
1310 { 0x070, 0x440, "Qualcomm QDSS Component v1", "(Qualcomm Designed CoreSight Component v1)", },
1311 { 0x0bf, 0x100, "Brahma-B53 Debug", "(Debug Unit)", },
1312 { 0x0bf, 0x9d3, "Brahma-B53 PMU", "(Performance Monitor Unit)", },
1313 { 0x0bf, 0x4a1, "Brahma-B53 ROM", "(ROM Table)", },
1314 { 0x0bf, 0x721, "Brahma-B53 ROM", "(ROM Table)", },
1315 { 0x1eb, 0x181, "Tegra 186 ROM", "(ROM Table)", },
1316 { 0x1eb, 0x202, "Denver ETM", "(Denver Embedded Trace)", },
1317 { 0x1eb, 0x211, "Tegra 210 ROM", "(ROM Table)", },
1318 { 0x1eb, 0x302, "Denver Debug", "(Debug Unit)", },
1319 { 0x1eb, 0x402, "Denver PMU", "(Performance Monitor Unit)", },
1320 };
1321
1322 static const struct dap_part_nums *pidr_to_part_num(unsigned int designer_id, unsigned int part_num)
1323 {
1324 static const struct dap_part_nums unknown = {
1325 .type = "Unrecognized",
1326 .full = "",
1327 };
1328
1329 for (unsigned int i = 0; i < ARRAY_SIZE(dap_part_nums); i++)
1330 if (dap_part_nums[i].designer_id == designer_id && dap_part_nums[i].part_num == part_num)
1331 return &dap_part_nums[i];
1332
1333 return &unknown;
1334 }
1335
1336 static int dap_devtype_display(struct command_invocation *cmd, uint32_t devtype)
1337 {
1338 const char *major = "Reserved", *subtype = "Reserved";
1339 const unsigned int minor = (devtype & ARM_CS_C9_DEVTYPE_SUB_MASK) >> ARM_CS_C9_DEVTYPE_SUB_SHIFT;
1340 const unsigned int devtype_major = (devtype & ARM_CS_C9_DEVTYPE_MAJOR_MASK) >> ARM_CS_C9_DEVTYPE_MAJOR_SHIFT;
1341 switch (devtype_major) {
1342 case 0:
1343 major = "Miscellaneous";
1344 switch (minor) {
1345 case 0:
1346 subtype = "other";
1347 break;
1348 case 4:
1349 subtype = "Validation component";
1350 break;
1351 }
1352 break;
1353 case 1:
1354 major = "Trace Sink";
1355 switch (minor) {
1356 case 0:
1357 subtype = "other";
1358 break;
1359 case 1:
1360 subtype = "Port";
1361 break;
1362 case 2:
1363 subtype = "Buffer";
1364 break;
1365 case 3:
1366 subtype = "Router";
1367 break;
1368 }
1369 break;
1370 case 2:
1371 major = "Trace Link";
1372 switch (minor) {
1373 case 0:
1374 subtype = "other";
1375 break;
1376 case 1:
1377 subtype = "Funnel, router";
1378 break;
1379 case 2:
1380 subtype = "Filter";
1381 break;
1382 case 3:
1383 subtype = "FIFO, buffer";
1384 break;
1385 }
1386 break;
1387 case 3:
1388 major = "Trace Source";
1389 switch (minor) {
1390 case 0:
1391 subtype = "other";
1392 break;
1393 case 1:
1394 subtype = "Processor";
1395 break;
1396 case 2:
1397 subtype = "DSP";
1398 break;
1399 case 3:
1400 subtype = "Engine/Coprocessor";
1401 break;
1402 case 4:
1403 subtype = "Bus";
1404 break;
1405 case 6:
1406 subtype = "Software";
1407 break;
1408 }
1409 break;
1410 case 4:
1411 major = "Debug Control";
1412 switch (minor) {
1413 case 0:
1414 subtype = "other";
1415 break;
1416 case 1:
1417 subtype = "Trigger Matrix";
1418 break;
1419 case 2:
1420 subtype = "Debug Auth";
1421 break;
1422 case 3:
1423 subtype = "Power Requestor";
1424 break;
1425 }
1426 break;
1427 case 5:
1428 major = "Debug Logic";
1429 switch (minor) {
1430 case 0:
1431 subtype = "other";
1432 break;
1433 case 1:
1434 subtype = "Processor";
1435 break;
1436 case 2:
1437 subtype = "DSP";
1438 break;
1439 case 3:
1440 subtype = "Engine/Coprocessor";
1441 break;
1442 case 4:
1443 subtype = "Bus";
1444 break;
1445 case 5:
1446 subtype = "Memory";
1447 break;
1448 }
1449 break;
1450 case 6:
1451 major = "Performance Monitor";
1452 switch (minor) {
1453 case 0:
1454 subtype = "other";
1455 break;
1456 case 1:
1457 subtype = "Processor";
1458 break;
1459 case 2:
1460 subtype = "DSP";
1461 break;
1462 case 3:
1463 subtype = "Engine/Coprocessor";
1464 break;
1465 case 4:
1466 subtype = "Bus";
1467 break;
1468 case 5:
1469 subtype = "Memory";
1470 break;
1471 }
1472 break;
1473 }
1474 command_print(cmd, "\t\tType is 0x%02x, %s, %s",
1475 devtype & ARM_CS_C9_DEVTYPE_MASK,
1476 major, subtype);
1477 return ERROR_OK;
1478 }
1479
1480 /* TODO: these prototypes will be removed in a following patch */
1481 static int dap_info_mem_ap_header(struct command_invocation *cmd,
1482 int retval, struct adiv5_ap *ap,
1483 target_addr_t dbgbase, uint32_t apid);
1484
1485 static int rtp_cs_component(struct command_invocation *cmd,
1486 struct adiv5_ap *ap, target_addr_t dbgbase, int depth);
1487
1488 static int rtp_rom_loop(struct command_invocation *cmd,
1489 struct adiv5_ap *ap, target_addr_t base_address, int depth,
1490 unsigned int max_entries)
1491 {
1492 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1493
1494 char tabs[16] = "";
1495
1496 if (depth)
1497 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1498
1499 unsigned int offset = 0;
1500 while (max_entries--) {
1501 uint32_t romentry;
1502 unsigned int saved_offset = offset;
1503
1504 int retval = mem_ap_read_atomic_u32(ap, base_address + offset, &romentry);
1505 offset += 4;
1506 if (retval != ERROR_OK) {
1507 LOG_DEBUG("Failed read ROM table entry");
1508 command_print(cmd, "\t%sROMTABLE[0x%x] Read error", tabs, saved_offset);
1509 command_print(cmd, "\t\tUnable to continue");
1510 command_print(cmd, "\t%s\tStop parsing of ROM table", tabs);
1511 return retval;
1512 }
1513
1514 command_print(cmd, "\t%sROMTABLE[0x%x] = 0x%08" PRIx32,
1515 tabs, saved_offset, romentry);
1516
1517 if (romentry == 0) {
1518 command_print(cmd, "\t%s\tEnd of ROM table", tabs);
1519 break;
1520 }
1521
1522 if (!(romentry & ARM_CS_ROMENTRY_PRESENT)) {
1523 command_print(cmd, "\t\tComponent not present");
1524 continue;
1525 }
1526
1527 /* Recurse. "romentry" is signed */
1528 target_addr_t component_base = base_address + (int32_t)(romentry & ARM_CS_ROMENTRY_OFFSET_MASK);
1529 retval = rtp_cs_component(cmd, ap, component_base, depth + 1);
1530 if (retval != ERROR_OK) {
1531 /* TODO: do we need to send an ABORT before continuing? */
1532 LOG_DEBUG("Ignore error parsing CoreSight component");
1533 continue;
1534 }
1535 }
1536
1537 return ERROR_OK;
1538 }
1539
1540 static int rtp_cs_component(struct command_invocation *cmd,
1541 struct adiv5_ap *ap, target_addr_t base_address, int depth)
1542 {
1543 struct cs_component_vals v;
1544 int retval;
1545 char tabs[16] = "";
1546
1547 assert(IS_ALIGNED(base_address, ARM_CS_ALIGN));
1548
1549 if (depth > 16) {
1550 command_print(cmd, "\tTables too deep");
1551 return ERROR_FAIL;
1552 }
1553
1554 if (depth)
1555 snprintf(tabs, sizeof(tabs), "[L%02d] ", depth);
1556
1557 command_print(cmd, "\t\tComponent base address " TARGET_ADDR_FMT, base_address);
1558
1559 retval = rtp_read_cs_regs(ap, base_address, &v);
1560 if (retval != ERROR_OK) {
1561 command_print(cmd, "\t\tCan't read component, the corresponding core might be turned off");
1562 return ERROR_OK; /* Don't abort recursion */
1563 }
1564
1565 if (!is_valid_arm_cs_cidr(v.cid)) {
1566 command_print(cmd, "\t\tInvalid CID 0x%08" PRIx32, v.cid);
1567 return ERROR_OK; /* Don't abort recursion */
1568 }
1569
1570 /* component may take multiple 4K pages */
1571 uint32_t size = ARM_CS_PIDR_SIZE(v.pid);
1572 if (size > 0)
1573 command_print(cmd, "\t\tStart address " TARGET_ADDR_FMT, base_address - 0x1000 * size);
1574
1575 command_print(cmd, "\t\tPeripheral ID 0x%010" PRIx64, v.pid);
1576
1577 const unsigned int class = ARM_CS_CIDR_CLASS(v.cid);
1578 const unsigned int part_num = ARM_CS_PIDR_PART(v.pid);
1579 unsigned int designer_id = ARM_CS_PIDR_DESIGNER(v.pid);
1580
1581 if (v.pid & ARM_CS_PIDR_JEDEC) {
1582 /* JEP106 code */
1583 command_print(cmd, "\t\tDesigner is 0x%03x, %s",
1584 designer_id, jep106_manufacturer(designer_id));
1585 } else {
1586 /* Legacy ASCII ID, clear invalid bits */
1587 designer_id &= 0x7f;
1588 command_print(cmd, "\t\tDesigner ASCII code 0x%02x, %s",
1589 designer_id, designer_id == 0x41 ? "ARM" : "<unknown>");
1590 }
1591
1592 const struct dap_part_nums *partnum = pidr_to_part_num(designer_id, part_num);
1593 command_print(cmd, "\t\tPart is 0x%03x, %s %s", part_num, partnum->type, partnum->full);
1594 command_print(cmd, "\t\tComponent class is 0x%x, %s", class, class_description[class]);
1595
1596 if (class == ARM_CS_CLASS_0X1_ROM_TABLE) {
1597 if (v.devtype_memtype & ARM_CS_C1_MEMTYPE_SYSMEM_MASK)
1598 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1599 else
1600 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1601
1602 return rtp_rom_loop(cmd, ap, base_address, depth, 960);
1603 }
1604
1605 if (class == ARM_CS_CLASS_0X9_CS_COMPONENT) {
1606 retval = dap_devtype_display(cmd, v.devtype_memtype);
1607 if (retval != ERROR_OK)
1608 return retval;
1609
1610 /* REVISIT also show ARM_CS_C9_DEVID */
1611
1612 if ((v.devarch & ARM_CS_C9_DEVARCH_PRESENT) == 0)
1613 return ERROR_OK;
1614
1615 unsigned int architect_id = (v.devarch & ARM_CS_C9_DEVARCH_ARCHITECT_MASK) >> ARM_CS_C9_DEVARCH_ARCHITECT_SHIFT;
1616 unsigned int revision = (v.devarch & ARM_CS_C9_DEVARCH_REVISION_MASK) >> ARM_CS_C9_DEVARCH_REVISION_SHIFT;
1617 command_print(cmd, "\t\tDev Arch is 0x%08" PRIx32 ", %s \"%s\" rev.%u", v.devarch,
1618 jep106_manufacturer(architect_id), class0x9_devarch_description(v.devarch),
1619 revision);
1620 /* quit if not ROM table */
1621 if ((v.devarch & DEVARCH_ID_MASK) != DEVARCH_ROM_C_0X9)
1622 return ERROR_OK;
1623
1624 if (v.devid & ARM_CS_C9_DEVID_SYSMEM_MASK)
1625 command_print(cmd, "\t\tMEMTYPE system memory present on bus");
1626 else
1627 command_print(cmd, "\t\tMEMTYPE system memory not present: dedicated debug bus");
1628
1629 return rtp_rom_loop(cmd, ap, base_address, depth, 512);
1630 }
1631
1632 /* Class other than 0x1 and 0x9 */
1633 return ERROR_OK;
1634 }
1635
1636 int dap_info_command(struct command_invocation *cmd,
1637 struct adiv5_ap *ap)
1638 {
1639 int retval;
1640 uint32_t apid;
1641 target_addr_t dbgbase;
1642 target_addr_t invalid_entry;
1643
1644 /* Now we read ROM table ID registers, ref. ARM IHI 0029B sec */
1645 retval = dap_get_debugbase(ap, &dbgbase, &apid);
1646 retval = dap_info_mem_ap_header(cmd, retval, ap, dbgbase, apid);
1647 if (retval != ERROR_OK)
1648 return retval;
1649
1650 if (apid == 0)
1651 return ERROR_FAIL;
1652
1653 /* NOTE: a MEM-AP may have a single CoreSight component that's
1654 * not a ROM table ... or have no such components at all.
1655 */
1656 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1657
1658 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1659 if (is_64bit_ap(ap))
1660 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1661 else
1662 invalid_entry = 0xFFFFFFFFul;
1663
1664 if (dbgbase != invalid_entry && (dbgbase & 0x3) != 0x2)
1665 rtp_cs_component(cmd, ap, dbgbase & 0xFFFFFFFFFFFFF000ull, 0);
1666 }
1667
1668 return ERROR_OK;
1669 }
1670
1671 /* Actions for command "dap info" */
1672
1673 static int dap_info_mem_ap_header(struct command_invocation *cmd,
1674 int retval, struct adiv5_ap *ap,
1675 target_addr_t dbgbase, uint32_t apid)
1676 {
1677 target_addr_t invalid_entry;
1678
1679 if (retval != ERROR_OK) {
1680 command_print(cmd, "\t\tCan't read MEM-AP, the corresponding core might be turned off");
1681 return retval;
1682 }
1683
1684 command_print(cmd, "AP ID register 0x%8.8" PRIx32, apid);
1685 if (apid == 0) {
1686 command_print(cmd, "No AP found at this ap 0x%x", ap->ap_num);
1687 return ERROR_FAIL;
1688 }
1689
1690 command_print(cmd, "\tType is %s", ap_type_to_description(apid & AP_TYPE_MASK));
1691
1692 /* NOTE: a MEM-AP may have a single CoreSight component that's
1693 * not a ROM table ... or have no such components at all.
1694 */
1695 const unsigned int class = (apid & AP_REG_IDR_CLASS_MASK) >> AP_REG_IDR_CLASS_SHIFT;
1696
1697 if (class == AP_REG_IDR_CLASS_MEM_AP) {
1698 if (is_64bit_ap(ap))
1699 invalid_entry = 0xFFFFFFFFFFFFFFFFull;
1700 else
1701 invalid_entry = 0xFFFFFFFFul;
1702
1703 command_print(cmd, "MEM-AP BASE " TARGET_ADDR_FMT, dbgbase);
1704
1705 if (dbgbase == invalid_entry || (dbgbase & 0x3) == 0x2) {
1706 command_print(cmd, "\tNo ROM table present");
1707 } else {
1708 if (dbgbase & 0x01)
1709 command_print(cmd, "\tValid ROM table present");
1710 else
1711 command_print(cmd, "\tROM table in legacy format");
1712 }
1713 }
1714
1715 return ERROR_OK;
1716 }
1717
1718 enum adiv5_cfg_param {
1719 CFG_DAP,
1720 CFG_AP_NUM,
1721 CFG_BASEADDR,
1722 CFG_CTIBASE, /* DEPRECATED */
1723 };
1724
1725 static const struct jim_nvp nvp_config_opts[] = {
1726 { .name = "-dap", .value = CFG_DAP },
1727 { .name = "-ap-num", .value = CFG_AP_NUM },
1728 { .name = "-baseaddr", .value = CFG_BASEADDR },
1729 { .name = "-ctibase", .value = CFG_CTIBASE }, /* DEPRECATED */
1730 { .name = NULL, .value = -1 }
1731 };
1732
1733 static int adiv5_jim_spot_configure(struct jim_getopt_info *goi,
1734 struct adiv5_dap **dap_p, int *ap_num_p, uint32_t *base_p)
1735 {
1736 if (!goi->argc)
1737 return JIM_OK;
1738
1739 Jim_SetEmptyResult(goi->interp);
1740
1741 struct jim_nvp *n;
1742 int e = jim_nvp_name2value_obj(goi->interp, nvp_config_opts,
1743 goi->argv[0], &n);
1744 if (e != JIM_OK)
1745 return JIM_CONTINUE;
1746
1747 /* base_p can be NULL, then '-baseaddr' option is treated as unknown */
1748 if (!base_p && (n->value == CFG_BASEADDR || n->value == CFG_CTIBASE))
1749 return JIM_CONTINUE;
1750
1751 e = jim_getopt_obj(goi, NULL);
1752 if (e != JIM_OK)
1753 return e;
1754
1755 switch (n->value) {
1756 case CFG_DAP:
1757 if (goi->isconfigure) {
1758 Jim_Obj *o_t;
1759 struct adiv5_dap *dap;
1760 e = jim_getopt_obj(goi, &o_t);
1761 if (e != JIM_OK)
1762 return e;
1763 dap = dap_instance_by_jim_obj(goi->interp, o_t);
1764 if (!dap) {
1765 Jim_SetResultString(goi->interp, "DAP name invalid!", -1);
1766 return JIM_ERR;
1767 }
1768 if (*dap_p && *dap_p != dap) {
1769 Jim_SetResultString(goi->interp,
1770 "DAP assignment cannot be changed!", -1);
1771 return JIM_ERR;
1772 }
1773 *dap_p = dap;
1774 } else {
1775 if (goi->argc)
1776 goto err_no_param;
1777 if (!*dap_p) {
1778 Jim_SetResultString(goi->interp, "DAP not configured", -1);
1779 return JIM_ERR;
1780 }
1781 Jim_SetResultString(goi->interp, adiv5_dap_name(*dap_p), -1);
1782 }
1783 break;
1784
1785 case CFG_AP_NUM:
1786 if (goi->isconfigure) {
1787 jim_wide ap_num;
1788 e = jim_getopt_wide(goi, &ap_num);
1789 if (e != JIM_OK)
1790 return e;
1791 if (ap_num < 0 || ap_num > DP_APSEL_MAX) {
1792 Jim_SetResultString(goi->interp, "Invalid AP number!", -1);
1793 return JIM_ERR;
1794 }
1795 *ap_num_p = ap_num;
1796 } else {
1797 if (goi->argc)
1798 goto err_no_param;
1799 if (*ap_num_p == DP_APSEL_INVALID) {
1800 Jim_SetResultString(goi->interp, "AP number not configured", -1);
1801 return JIM_ERR;
1802 }
1803 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *ap_num_p));
1804 }
1805 break;
1806
1807 case CFG_CTIBASE:
1808 LOG_WARNING("DEPRECATED! use \'-baseaddr' not \'-ctibase\'");
1809 /* fall through */
1810 case CFG_BASEADDR:
1811 if (goi->isconfigure) {
1812 jim_wide base;
1813 e = jim_getopt_wide(goi, &base);
1814 if (e != JIM_OK)
1815 return e;
1816 *base_p = (uint32_t)base;
1817 } else {
1818 if (goi->argc)
1819 goto err_no_param;
1820 Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, *base_p));
1821 }
1822 break;
1823 };
1824
1825 return JIM_OK;
1826
1827 err_no_param:
1828 Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
1829 return JIM_ERR;
1830 }
1831
1832 int adiv5_jim_configure(struct target *target, struct jim_getopt_info *goi)
1833 {
1834 struct adiv5_private_config *pc;
1835 int e;
1836
1837 pc = (struct adiv5_private_config *)target->private_config;
1838 if (!pc) {
1839 pc = calloc(1, sizeof(struct adiv5_private_config));
1840 pc->ap_num = DP_APSEL_INVALID;
1841 target->private_config = pc;
1842 }
1843
1844 target->has_dap = true;
1845
1846 e = adiv5_jim_spot_configure(goi, &pc->dap, &pc->ap_num, NULL);
1847 if (e != JIM_OK)
1848 return e;
1849
1850 if (pc->dap && !target->dap_configured) {
1851 if (target->tap_configured) {
1852 pc->dap = NULL;
1853 Jim_SetResultString(goi->interp,
1854 "-chain-position and -dap configparams are mutually exclusive!", -1);
1855 return JIM_ERR;
1856 }
1857 target->tap = pc->dap->tap;
1858 target->dap_configured = true;
1859 }
1860
1861 return JIM_OK;
1862 }
1863
1864 int adiv5_verify_config(struct adiv5_private_config *pc)
1865 {
1866 if (!pc)
1867 return ERROR_FAIL;
1868
1869 if (!pc->dap)
1870 return ERROR_FAIL;
1871
1872 return ERROR_OK;
1873 }
1874
1875 int adiv5_jim_mem_ap_spot_configure(struct adiv5_mem_ap_spot *cfg,
1876 struct jim_getopt_info *goi)
1877 {
1878 return adiv5_jim_spot_configure(goi, &cfg->dap, &cfg->ap_num, &cfg->base);
1879 }
1880
1881 int adiv5_mem_ap_spot_init(struct adiv5_mem_ap_spot *p)
1882 {
1883 p->dap = NULL;
1884 p->ap_num = DP_APSEL_INVALID;
1885 p->base = 0;
1886 return ERROR_OK;
1887 }
1888
1889 COMMAND_HANDLER(handle_dap_info_command)
1890 {
1891 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1892 uint32_t apsel;
1893
1894 switch (CMD_ARGC) {
1895 case 0:
1896 apsel = dap->apsel;
1897 break;
1898 case 1:
1899 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1900 if (apsel > DP_APSEL_MAX) {
1901 command_print(CMD, "Invalid AP number");
1902 return ERROR_COMMAND_ARGUMENT_INVALID;
1903 }
1904 break;
1905 default:
1906 return ERROR_COMMAND_SYNTAX_ERROR;
1907 }
1908
1909 return dap_info_command(CMD, &dap->ap[apsel]);
1910 }
1911
1912 COMMAND_HANDLER(dap_baseaddr_command)
1913 {
1914 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1915 uint32_t apsel, baseaddr_lower, baseaddr_upper;
1916 struct adiv5_ap *ap;
1917 target_addr_t baseaddr;
1918 int retval;
1919
1920 baseaddr_upper = 0;
1921
1922 switch (CMD_ARGC) {
1923 case 0:
1924 apsel = dap->apsel;
1925 break;
1926 case 1:
1927 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
1928 /* AP address is in bits 31:24 of DP_SELECT */
1929 if (apsel > DP_APSEL_MAX) {
1930 command_print(CMD, "Invalid AP number");
1931 return ERROR_COMMAND_ARGUMENT_INVALID;
1932 }
1933 break;
1934 default:
1935 return ERROR_COMMAND_SYNTAX_ERROR;
1936 }
1937
1938 /* NOTE: assumes we're talking to a MEM-AP, which
1939 * has a base address. There are other kinds of AP,
1940 * though they're not common for now. This should
1941 * use the ID register to verify it's a MEM-AP.
1942 */
1943
1944 ap = dap_ap(dap, apsel);
1945 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE, &baseaddr_lower);
1946
1947 if (retval == ERROR_OK && ap->cfg_reg == MEM_AP_REG_CFG_INVALID)
1948 retval = dap_queue_ap_read(ap, MEM_AP_REG_CFG, &ap->cfg_reg);
1949
1950 if (retval == ERROR_OK && (ap->cfg_reg == MEM_AP_REG_CFG_INVALID || is_64bit_ap(ap))) {
1951 /* MEM_AP_REG_BASE64 is defined as 'RES0'; can be read and then ignored on 32 bits AP */
1952 retval = dap_queue_ap_read(ap, MEM_AP_REG_BASE64, &baseaddr_upper);
1953 }
1954
1955 if (retval == ERROR_OK)
1956 retval = dap_run(dap);
1957 if (retval != ERROR_OK)
1958 return retval;
1959
1960 if (is_64bit_ap(ap)) {
1961 baseaddr = (((target_addr_t)baseaddr_upper) << 32) | baseaddr_lower;
1962 command_print(CMD, "0x%016" PRIx64, baseaddr);
1963 } else
1964 command_print(CMD, "0x%08" PRIx32, baseaddr_lower);
1965
1966 return ERROR_OK;
1967 }
1968
1969 COMMAND_HANDLER(dap_memaccess_command)
1970 {
1971 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1972 uint32_t memaccess_tck;
1973
1974 switch (CMD_ARGC) {
1975 case 0:
1976 memaccess_tck = dap->ap[dap->apsel].memaccess_tck;
1977 break;
1978 case 1:
1979 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], memaccess_tck);
1980 break;
1981 default:
1982 return ERROR_COMMAND_SYNTAX_ERROR;
1983 }
1984 dap->ap[dap->apsel].memaccess_tck = memaccess_tck;
1985
1986 command_print(CMD, "memory bus access delay set to %" PRIu32 " tck",
1987 dap->ap[dap->apsel].memaccess_tck);
1988
1989 return ERROR_OK;
1990 }
1991
1992 COMMAND_HANDLER(dap_apsel_command)
1993 {
1994 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
1995 uint32_t apsel;
1996
1997 switch (CMD_ARGC) {
1998 case 0:
1999 command_print(CMD, "%" PRIu32, dap->apsel);
2000 return ERROR_OK;
2001 case 1:
2002 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2003 /* AP address is in bits 31:24 of DP_SELECT */
2004 if (apsel > DP_APSEL_MAX) {
2005 command_print(CMD, "Invalid AP number");
2006 return ERROR_COMMAND_ARGUMENT_INVALID;
2007 }
2008 break;
2009 default:
2010 return ERROR_COMMAND_SYNTAX_ERROR;
2011 }
2012
2013 dap->apsel = apsel;
2014 return ERROR_OK;
2015 }
2016
2017 COMMAND_HANDLER(dap_apcsw_command)
2018 {
2019 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2020 uint32_t apcsw = dap->ap[dap->apsel].csw_default;
2021 uint32_t csw_val, csw_mask;
2022
2023 switch (CMD_ARGC) {
2024 case 0:
2025 command_print(CMD, "ap %" PRIu32 " selected, csw 0x%8.8" PRIx32,
2026 dap->apsel, apcsw);
2027 return ERROR_OK;
2028 case 1:
2029 if (strcmp(CMD_ARGV[0], "default") == 0)
2030 csw_val = CSW_AHB_DEFAULT;
2031 else
2032 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2033
2034 if (csw_val & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2035 LOG_ERROR("CSW value cannot include 'Size' and 'AddrInc' bit-fields");
2036 return ERROR_COMMAND_ARGUMENT_INVALID;
2037 }
2038 apcsw = csw_val;
2039 break;
2040 case 2:
2041 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], csw_val);
2042 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], csw_mask);
2043 if (csw_mask & (CSW_SIZE_MASK | CSW_ADDRINC_MASK)) {
2044 LOG_ERROR("CSW mask cannot include 'Size' and 'AddrInc' bit-fields");
2045 return ERROR_COMMAND_ARGUMENT_INVALID;
2046 }
2047 apcsw = (apcsw & ~csw_mask) | (csw_val & csw_mask);
2048 break;
2049 default:
2050 return ERROR_COMMAND_SYNTAX_ERROR;
2051 }
2052 dap->ap[dap->apsel].csw_default = apcsw;
2053
2054 return 0;
2055 }
2056
2057
2058
2059 COMMAND_HANDLER(dap_apid_command)
2060 {
2061 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2062 uint32_t apsel, apid;
2063 int retval;
2064
2065 switch (CMD_ARGC) {
2066 case 0:
2067 apsel = dap->apsel;
2068 break;
2069 case 1:
2070 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2071 /* AP address is in bits 31:24 of DP_SELECT */
2072 if (apsel > DP_APSEL_MAX) {
2073 command_print(CMD, "Invalid AP number");
2074 return ERROR_COMMAND_ARGUMENT_INVALID;
2075 }
2076 break;
2077 default:
2078 return ERROR_COMMAND_SYNTAX_ERROR;
2079 }
2080
2081 retval = dap_queue_ap_read(dap_ap(dap, apsel), AP_REG_IDR, &apid);
2082 if (retval != ERROR_OK)
2083 return retval;
2084 retval = dap_run(dap);
2085 if (retval != ERROR_OK)
2086 return retval;
2087
2088 command_print(CMD, "0x%8.8" PRIx32, apid);
2089
2090 return retval;
2091 }
2092
2093 COMMAND_HANDLER(dap_apreg_command)
2094 {
2095 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2096 uint32_t apsel, reg, value;
2097 struct adiv5_ap *ap;
2098 int retval;
2099
2100 if (CMD_ARGC < 2 || CMD_ARGC > 3)
2101 return ERROR_COMMAND_SYNTAX_ERROR;
2102
2103 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], apsel);
2104 /* AP address is in bits 31:24 of DP_SELECT */
2105 if (apsel > DP_APSEL_MAX) {
2106 command_print(CMD, "Invalid AP number");
2107 return ERROR_COMMAND_ARGUMENT_INVALID;
2108 }
2109
2110 ap = dap_ap(dap, apsel);
2111
2112 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg);
2113 if (reg >= 256 || (reg & 3)) {
2114 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2115 return ERROR_COMMAND_ARGUMENT_INVALID;
2116 }
2117
2118 if (CMD_ARGC == 3) {
2119 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
2120 switch (reg) {
2121 case MEM_AP_REG_CSW:
2122 ap->csw_value = 0; /* invalid, in case write fails */
2123 retval = dap_queue_ap_write(ap, reg, value);
2124 if (retval == ERROR_OK)
2125 ap->csw_value = value;
2126 break;
2127 case MEM_AP_REG_TAR:
2128 retval = dap_queue_ap_write(ap, reg, value);
2129 if (retval == ERROR_OK)
2130 ap->tar_value = (ap->tar_value & ~0xFFFFFFFFull) | value;
2131 else {
2132 /* To track independent writes to TAR and TAR64, two tar_valid flags */
2133 /* should be used. To keep it simple, tar_valid is only invalidated on a */
2134 /* write fail. This approach causes a later re-write of the TAR and TAR64 */
2135 /* if tar_valid is false. */
2136 ap->tar_valid = false;
2137 }
2138 break;
2139 case MEM_AP_REG_TAR64:
2140 retval = dap_queue_ap_write(ap, reg, value);
2141 if (retval == ERROR_OK)
2142 ap->tar_value = (ap->tar_value & 0xFFFFFFFFull) | (((target_addr_t)value) << 32);
2143 else {
2144 /* See above comment for the MEM_AP_REG_TAR failed write case */
2145 ap->tar_valid = false;
2146 }
2147 break;
2148 default:
2149 retval = dap_queue_ap_write(ap, reg, value);
2150 break;
2151 }
2152 } else {
2153 retval = dap_queue_ap_read(ap, reg, &value);
2154 }
2155 if (retval == ERROR_OK)
2156 retval = dap_run(dap);
2157
2158 if (retval != ERROR_OK)
2159 return retval;
2160
2161 if (CMD_ARGC == 2)
2162 command_print(CMD, "0x%08" PRIx32, value);
2163
2164 return retval;
2165 }
2166
2167 COMMAND_HANDLER(dap_dpreg_command)
2168 {
2169 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2170 uint32_t reg, value;
2171 int retval;
2172
2173 if (CMD_ARGC < 1 || CMD_ARGC > 2)
2174 return ERROR_COMMAND_SYNTAX_ERROR;
2175
2176 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], reg);
2177 if (reg >= 256 || (reg & 3)) {
2178 command_print(CMD, "Invalid reg value (should be less than 256 and 4 bytes aligned)");
2179 return ERROR_COMMAND_ARGUMENT_INVALID;
2180 }
2181
2182 if (CMD_ARGC == 2) {
2183 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
2184 retval = dap_queue_dp_write(dap, reg, value);
2185 } else {
2186 retval = dap_queue_dp_read(dap, reg, &value);
2187 }
2188 if (retval == ERROR_OK)
2189 retval = dap_run(dap);
2190
2191 if (retval != ERROR_OK)
2192 return retval;
2193
2194 if (CMD_ARGC == 1)
2195 command_print(CMD, "0x%08" PRIx32, value);
2196
2197 return retval;
2198 }
2199
2200 COMMAND_HANDLER(dap_ti_be_32_quirks_command)
2201 {
2202 struct adiv5_dap *dap = adiv5_get_dap(CMD_DATA);
2203 return CALL_COMMAND_HANDLER(handle_command_parse_bool, &dap->ti_be_32_quirks,
2204 "TI BE-32 quirks mode");
2205 }
2206
2207 const struct command_registration dap_instance_commands[] = {
2208 {
2209 .name = "info",
2210 .handler = handle_dap_info_command,
2211 .mode = COMMAND_EXEC,
2212 .help = "display ROM table for MEM-AP "
2213 "(default currently selected AP)",
2214 .usage = "[ap_num]",
2215 },
2216 {
2217 .name = "apsel",
2218 .handler = dap_apsel_command,
2219 .mode = COMMAND_ANY,
2220 .help = "Set the currently selected AP (default 0) "
2221 "and display the result",
2222 .usage = "[ap_num]",
2223 },
2224 {
2225 .name = "apcsw",
2226 .handler = dap_apcsw_command,
2227 .mode = COMMAND_ANY,
2228 .help = "Set CSW default bits",
2229 .usage = "[value [mask]]",
2230 },
2231
2232 {
2233 .name = "apid",
2234 .handler = dap_apid_command,
2235 .mode = COMMAND_EXEC,
2236 .help = "return ID register from AP "
2237 "(default currently selected AP)",
2238 .usage = "[ap_num]",
2239 },
2240 {
2241 .name = "apreg",
2242 .handler = dap_apreg_command,
2243 .mode = COMMAND_EXEC,
2244 .help = "read/write a register from AP "
2245 "(reg is byte address of a word register, like 0 4 8...)",
2246 .usage = "ap_num reg [value]",
2247 },
2248 {
2249 .name = "dpreg",
2250 .handler = dap_dpreg_command,
2251 .mode = COMMAND_EXEC,
2252 .help = "read/write a register from DP "
2253 "(reg is byte address (bank << 4 | reg) of a word register, like 0 4 8...)",
2254 .usage = "reg [value]",
2255 },
2256 {
2257 .name = "baseaddr",
2258 .handler = dap_baseaddr_command,
2259 .mode = COMMAND_EXEC,
2260 .help = "return debug base address from MEM-AP "
2261 "(default currently selected AP)",
2262 .usage = "[ap_num]",
2263 },
2264 {
2265 .name = "memaccess",
2266 .handler = dap_memaccess_command,
2267 .mode = COMMAND_EXEC,
2268 .help = "set/get number of extra tck for MEM-AP memory "
2269 "bus access [0-255]",
2270 .usage = "[cycles]",
2271 },
2272 {
2273 .name = "ti_be_32_quirks",
2274 .handler = dap_ti_be_32_quirks_command,
2275 .mode = COMMAND_CONFIG,
2276 .help = "set/get quirks mode for TI TMS450/TMS570 processors",
2277 .usage = "[enable]",
2278 },
2279 COMMAND_REGISTRATION_DONE
2280 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)