[RFC] target: Move bulk_write_memory to arm7_9
[openocd.git] / src / target / arm920t.c
1
2 /***************************************************************************
3 * Copyright (C) 2005 by Dominic Rath *
4 * Dominic.Rath@gmx.de *
5 * *
6 * This program is free software; you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation; either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program; if not, write to the *
18 * Free Software Foundation, Inc., *
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
20 ***************************************************************************/
21
22 #ifdef HAVE_CONFIG_H
23 #include "config.h"
24 #endif
25
26 #include "arm920t.h"
27 #include <helper/time_support.h>
28 #include "target_type.h"
29 #include "register.h"
30 #include "arm_opcodes.h"
31
32 /*
33 * For information about the ARM920T, see ARM DDI 0151C especially
34 * Chapter 9 about debug support, which shows how to manipulate each
35 * of the different scan chains:
36 *
37 * 0 ... ARM920 signals, e.g. to rest of SOC (unused here)
38 * 1 ... debugging; watchpoint and breakpoint status, etc; also
39 * MMU and cache access in conjunction with scan chain 15
40 * 2 ... EmbeddedICE
41 * 3 ... external boundary scan (SoC-specific, unused here)
42 * 4 ... access to cache tag RAM
43 * 6 ... ETM9
44 * 15 ... access coprocessor 15, "physical" or "interpreted" modes
45 * "interpreted" works with a few actual MRC/MCR instructions
46 * "physical" provides register-like behaviors. Section 9.6.7
47 * covers these details.
48 *
49 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
50 */
51
52 #if 0
53 #define _DEBUG_INSTRUCTION_EXECUTION_
54 #endif
55
56 /* Table 9-8 shows scan chain 15 format during physical access mode, using a
57 * dedicated 6-bit address space (encoded in bits 33:38). Writes use one
58 * JTAG scan, while reads use two.
59 *
60 * Table 9-9 lists the thirteen registers which support physical access.
61 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
62 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
63 *
64 * x == bit[38]
65 * y == bits[37:34]
66 * z == bit[33]
67 */
68 #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))
69
70 /* Registers supporting physical Read access (from table 9-9) */
71 #define CP15PHYS_CACHETYPE ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
72 #define CP15PHYS_ICACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
73 #define CP15PHYS_DCACHE_IDX ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
74 /* NOTE: several more registers support only physical read access */
75
76 /* Registers supporting physical Read/Write access (from table 9-9) */
77 #define CP15PHYS_CTRL ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
78 #define CP15PHYS_PID ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
79 #define CP15PHYS_TESTSTATE ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
80 #define CP15PHYS_ICACHE ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
81 #define CP15PHYS_DCACHE ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)
82
83 static int arm920t_read_cp15_physical(struct target *target,
84 int reg_addr, uint32_t *value)
85 {
86 struct arm920t_common *arm920t = target_to_arm920(target);
87 struct arm_jtag *jtag_info;
88 struct scan_field fields[4];
89 uint8_t access_type_buf = 1;
90 uint8_t reg_addr_buf = reg_addr & 0x3f;
91 uint8_t nr_w_buf = 0;
92 int retval;
93
94 jtag_info = &arm920t->arm7_9_common.jtag_info;
95
96 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
97 if (retval != ERROR_OK)
98 return retval;
99 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
100 if (retval != ERROR_OK)
101 return retval;
102
103 fields[0].num_bits = 1;
104 fields[0].out_value = &access_type_buf;
105 fields[0].in_value = NULL;
106
107 fields[1].num_bits = 32;
108 fields[1].out_value = NULL;
109 fields[1].in_value = NULL;
110
111 fields[2].num_bits = 6;
112 fields[2].out_value = &reg_addr_buf;
113 fields[2].in_value = NULL;
114
115 fields[3].num_bits = 1;
116 fields[3].out_value = &nr_w_buf;
117 fields[3].in_value = NULL;
118
119 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
120
121 fields[1].in_value = (uint8_t *)value;
122
123 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
124
125 jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);
126
127 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
128 jtag_execute_queue();
129 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
130 #endif
131
132 return ERROR_OK;
133 }
134
135 static int arm920t_write_cp15_physical(struct target *target,
136 int reg_addr, uint32_t value)
137 {
138 struct arm920t_common *arm920t = target_to_arm920(target);
139 struct arm_jtag *jtag_info;
140 struct scan_field fields[4];
141 uint8_t access_type_buf = 1;
142 uint8_t reg_addr_buf = reg_addr & 0x3f;
143 uint8_t nr_w_buf = 1;
144 uint8_t value_buf[4];
145 int retval;
146
147 jtag_info = &arm920t->arm7_9_common.jtag_info;
148
149 buf_set_u32(value_buf, 0, 32, value);
150
151 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
152 if (retval != ERROR_OK)
153 return retval;
154 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
155 if (retval != ERROR_OK)
156 return retval;
157
158 fields[0].num_bits = 1;
159 fields[0].out_value = &access_type_buf;
160 fields[0].in_value = NULL;
161
162 fields[1].num_bits = 32;
163 fields[1].out_value = value_buf;
164 fields[1].in_value = NULL;
165
166 fields[2].num_bits = 6;
167 fields[2].out_value = &reg_addr_buf;
168 fields[2].in_value = NULL;
169
170 fields[3].num_bits = 1;
171 fields[3].out_value = &nr_w_buf;
172 fields[3].in_value = NULL;
173
174 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
175
176 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
177 LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
178 #endif
179
180 return ERROR_OK;
181 }
182
183 /* See table 9-10 for scan chain 15 format during interpreted access mode.
184 * If the TESTSTATE register is set for interpreted access, certain CP15
185 * MRC and MCR instructions may be executed through scan chain 15.
186 *
187 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
188 * executed using scan chain 15 interpreted mode.
189 */
190 static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
191 uint32_t arm_opcode)
192 {
193 int retval;
194 struct arm920t_common *arm920t = target_to_arm920(target);
195 struct arm_jtag *jtag_info;
196 struct scan_field fields[4];
197 uint8_t access_type_buf = 0; /* interpreted access */
198 uint8_t reg_addr_buf = 0x0;
199 uint8_t nr_w_buf = 0;
200 uint8_t cp15_opcode_buf[4];
201
202 jtag_info = &arm920t->arm7_9_common.jtag_info;
203
204 retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
205 if (retval != ERROR_OK)
206 return retval;
207 retval = arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL, TAP_IDLE);
208 if (retval != ERROR_OK)
209 return retval;
210
211 buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);
212
213 fields[0].num_bits = 1;
214 fields[0].out_value = &access_type_buf;
215 fields[0].in_value = NULL;
216
217 fields[1].num_bits = 32;
218 fields[1].out_value = cp15_opcode_buf;
219 fields[1].in_value = NULL;
220
221 fields[2].num_bits = 6;
222 fields[2].out_value = &reg_addr_buf;
223 fields[2].in_value = NULL;
224
225 fields[3].num_bits = 1;
226 fields[3].out_value = &nr_w_buf;
227 fields[3].in_value = NULL;
228
229 jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);
230
231 arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
232 arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
233 retval = arm7_9_execute_sys_speed(target);
234 if (retval != ERROR_OK)
235 return retval;
236
237 retval = jtag_execute_queue();
238 if (retval != ERROR_OK) {
239 LOG_ERROR("failed executing JTAG queue");
240 return retval;
241 }
242
243 return ERROR_OK;
244 }
245
246 static int arm920t_read_cp15_interpreted(struct target *target,
247 uint32_t cp15_opcode, uint32_t address, uint32_t *value)
248 {
249 struct arm *arm = target_to_arm(target);
250 uint32_t *regs_p[1];
251 uint32_t regs[2];
252 uint32_t cp15c15 = 0x0;
253 struct reg *r = arm->core_cache->reg_list;
254
255 /* load address into R1 */
256 regs[1] = address;
257 arm9tdmi_write_core_regs(target, 0x2, regs);
258
259 /* read-modify-write CP15 test state register
260 * to enable interpreted access mode */
261 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
262 jtag_execute_queue();
263 cp15c15 |= 1; /* set interpret mode */
264 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
265
266 /* execute CP15 instruction and ARM load (reading from coprocessor) */
267 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));
268
269 /* disable interpreted access mode */
270 cp15c15 &= ~1U; /* clear interpret mode */
271 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
272
273 /* retrieve value from R0 */
274 regs_p[0] = value;
275 arm9tdmi_read_core_regs(target, 0x1, regs_p);
276 jtag_execute_queue();
277
278 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
279 LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
280 cp15_opcode, address, *value);
281 #endif
282
283 if (!is_arm_mode(arm->core_mode)) {
284 LOG_ERROR("not a valid arm core mode - communication failure?");
285 return ERROR_FAIL;
286 }
287
288 r[0].dirty = 1;
289 r[1].dirty = 1;
290
291 return ERROR_OK;
292 }
293
294 static
295 int arm920t_write_cp15_interpreted(struct target *target,
296 uint32_t cp15_opcode, uint32_t value, uint32_t address)
297 {
298 uint32_t cp15c15 = 0x0;
299 struct arm *arm = target_to_arm(target);
300 uint32_t regs[2];
301 struct reg *r = arm->core_cache->reg_list;
302
303 /* load value, address into R0, R1 */
304 regs[0] = value;
305 regs[1] = address;
306 arm9tdmi_write_core_regs(target, 0x3, regs);
307
308 /* read-modify-write CP15 test state register
309 * to enable interpreted access mode */
310 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
311 jtag_execute_queue();
312 cp15c15 |= 1; /* set interpret mode */
313 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
314
315 /* execute CP15 instruction and ARM store (writing to coprocessor) */
316 arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));
317
318 /* disable interpreted access mode */
319 cp15c15 &= ~1U; /* set interpret mode */
320 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
321
322 #ifdef _DEBUG_INSTRUCTION_EXECUTION_
323 LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
324 cp15_opcode, value, address);
325 #endif
326
327 if (!is_arm_mode(arm->core_mode)) {
328 LOG_ERROR("not a valid arm core mode - communication failure?");
329 return ERROR_FAIL;
330 }
331
332 r[0].dirty = 1;
333 r[1].dirty = 1;
334
335 return ERROR_OK;
336 }
337
338 /* EXPORTED to FA256 */
339 int arm920t_get_ttb(struct target *target, uint32_t *result)
340 {
341 int retval;
342 uint32_t ttb = 0x0;
343
344 retval = arm920t_read_cp15_interpreted(target,
345 /* FIXME use opcode macro */
346 0xeebf0f51, 0x0, &ttb);
347 if (retval != ERROR_OK)
348 return retval;
349
350 *result = ttb;
351 return ERROR_OK;
352 }
353
354 /* EXPORTED to FA256 */
355 int arm920t_disable_mmu_caches(struct target *target, int mmu,
356 int d_u_cache, int i_cache)
357 {
358 uint32_t cp15_control;
359 int retval;
360
361 /* read cp15 control register */
362 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
363 if (retval != ERROR_OK)
364 return retval;
365 retval = jtag_execute_queue();
366 if (retval != ERROR_OK)
367 return retval;
368
369 if (mmu)
370 cp15_control &= ~0x1U;
371
372 if (d_u_cache)
373 cp15_control &= ~0x4U;
374
375 if (i_cache)
376 cp15_control &= ~0x1000U;
377
378 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
379 return retval;
380 }
381
382 /* EXPORTED to FA256 */
383 int arm920t_enable_mmu_caches(struct target *target, int mmu,
384 int d_u_cache, int i_cache)
385 {
386 uint32_t cp15_control;
387 int retval;
388
389 /* read cp15 control register */
390 retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
391 if (retval != ERROR_OK)
392 return retval;
393 retval = jtag_execute_queue();
394 if (retval != ERROR_OK)
395 return retval;
396
397 if (mmu)
398 cp15_control |= 0x1U;
399
400 if (d_u_cache)
401 cp15_control |= 0x4U;
402
403 if (i_cache)
404 cp15_control |= 0x1000U;
405
406 retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
407 return retval;
408 }
409
410 /* EXPORTED to FA256 */
411 int arm920t_post_debug_entry(struct target *target)
412 {
413 uint32_t cp15c15;
414 struct arm920t_common *arm920t = target_to_arm920(target);
415 int retval;
416
417 /* examine cp15 control reg */
418 retval = arm920t_read_cp15_physical(target,
419 CP15PHYS_CTRL, &arm920t->cp15_control_reg);
420 if (retval != ERROR_OK)
421 return retval;
422 retval = jtag_execute_queue();
423 if (retval != ERROR_OK)
424 return retval;
425 LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);
426
427 if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
428 uint32_t cache_type_reg;
429 /* identify caches */
430 retval = arm920t_read_cp15_physical(target,
431 CP15PHYS_CACHETYPE, &cache_type_reg);
432 if (retval != ERROR_OK)
433 return retval;
434 retval = jtag_execute_queue();
435 if (retval != ERROR_OK)
436 return retval;
437 armv4_5_identify_cache(cache_type_reg,
438 &arm920t->armv4_5_mmu.armv4_5_cache);
439 }
440
441 arm920t->armv4_5_mmu.mmu_enabled =
442 (arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
443 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
444 (arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
445 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
446 (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;
447
448 /* save i/d fault status and address register
449 * FIXME use opcode macros */
450 retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
451 if (retval != ERROR_OK)
452 return retval;
453 retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
454 if (retval != ERROR_OK)
455 return retval;
456 retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
457 if (retval != ERROR_OK)
458 return retval;
459 retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
460 if (retval != ERROR_OK)
461 return retval;
462
463 LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
464 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
465 arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);
466
467 if (arm920t->preserve_cache) {
468 /* read-modify-write CP15 test state register
469 * to disable I/D-cache linefills */
470 retval = arm920t_read_cp15_physical(target,
471 CP15PHYS_TESTSTATE, &cp15c15);
472 if (retval != ERROR_OK)
473 return retval;
474 retval = jtag_execute_queue();
475 if (retval != ERROR_OK)
476 return retval;
477 cp15c15 |= 0x600;
478 retval = arm920t_write_cp15_physical(target,
479 CP15PHYS_TESTSTATE, cp15c15);
480 if (retval != ERROR_OK)
481 return retval;
482 }
483 return ERROR_OK;
484 }
485
486 /* EXPORTED to FA256 */
487 void arm920t_pre_restore_context(struct target *target)
488 {
489 uint32_t cp15c15;
490 struct arm920t_common *arm920t = target_to_arm920(target);
491
492 /* restore i/d fault status and address register */
493 arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
494 arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
495 arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
496 arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);
497
498 /* read-modify-write CP15 test state register
499 * to reenable I/D-cache linefills */
500 if (arm920t->preserve_cache) {
501 arm920t_read_cp15_physical(target,
502 CP15PHYS_TESTSTATE, &cp15c15);
503 jtag_execute_queue();
504 cp15c15 &= ~0x600U;
505 arm920t_write_cp15_physical(target,
506 CP15PHYS_TESTSTATE, cp15c15);
507 }
508 }
509
510 static const char arm920_not[] = "target is not an ARM920";
511
512 static int arm920t_verify_pointer(struct command_context *cmd_ctx,
513 struct arm920t_common *arm920t)
514 {
515 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
516 command_print(cmd_ctx, arm920_not);
517 return ERROR_TARGET_INVALID;
518 }
519
520 return ERROR_OK;
521 }
522
523 /** Logs summary of ARM920 state for a halted target. */
524 int arm920t_arch_state(struct target *target)
525 {
526 static const char *state[] = {
527 "disabled", "enabled"
528 };
529
530 struct arm920t_common *arm920t = target_to_arm920(target);
531
532 if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
533 LOG_ERROR("BUG: %s", arm920_not);
534 return ERROR_TARGET_INVALID;
535 }
536
537 arm_arch_state(target);
538 LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
539 state[arm920t->armv4_5_mmu.mmu_enabled],
540 state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
541 state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);
542
543 return ERROR_OK;
544 }
545
546 static int arm920_mmu(struct target *target, int *enabled)
547 {
548 if (target->state != TARGET_HALTED) {
549 LOG_ERROR("%s: target not halted", __func__);
550 return ERROR_TARGET_INVALID;
551 }
552
553 *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
554 return ERROR_OK;
555 }
556
557 static int arm920_virt2phys(struct target *target,
558 uint32_t virt, uint32_t *phys)
559 {
560 uint32_t cb;
561 struct arm920t_common *arm920t = target_to_arm920(target);
562
563 uint32_t ret;
564 int retval = armv4_5_mmu_translate_va(target,
565 &arm920t->armv4_5_mmu, virt, &cb, &ret);
566 if (retval != ERROR_OK)
567 return retval;
568 *phys = ret;
569 return ERROR_OK;
570 }
571
572 /** Reads a buffer, in the specified word size, with current MMU settings. */
573 int arm920t_read_memory(struct target *target, uint32_t address,
574 uint32_t size, uint32_t count, uint8_t *buffer)
575 {
576 int retval;
577
578 retval = arm7_9_read_memory(target, address, size, count, buffer);
579
580 return retval;
581 }
582
583
584 static int arm920t_read_phys_memory(struct target *target,
585 uint32_t address, uint32_t size,
586 uint32_t count, uint8_t *buffer)
587 {
588 struct arm920t_common *arm920t = target_to_arm920(target);
589
590 return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
591 address, size, count, buffer);
592 }
593
594 static int arm920t_write_phys_memory(struct target *target,
595 uint32_t address, uint32_t size,
596 uint32_t count, const uint8_t *buffer)
597 {
598 struct arm920t_common *arm920t = target_to_arm920(target);
599
600 return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
601 address, size, count, buffer);
602 }
603
604 /** Writes a buffer, in the specified word size, with current MMU settings. */
605 int arm920t_write_memory(struct target *target, uint32_t address,
606 uint32_t size, uint32_t count, const uint8_t *buffer)
607 {
608 int retval;
609 const uint32_t cache_mask = ~0x1f; /* cache line size : 32 byte */
610 struct arm920t_common *arm920t = target_to_arm920(target);
611
612 /* FIX!!!! this should be cleaned up and made much more general. The
613 * plan is to write up and test on arm920t specifically and
614 * then generalize and clean up afterwards.
615 *
616 * Also it should be moved to the callbacks that handle breakpoints
617 * specifically and not the generic memory write fn's. See XScale code.
618 */
619 if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
620 ((size == 2) || (size == 4))) {
621 /* special case the handling of single word writes to
622 * bypass MMU, to allow implementation of breakpoints
623 * in memory marked read only
624 * by MMU
625 */
626 uint32_t cb;
627 uint32_t pa;
628
629 /*
630 * We need physical address and cb
631 */
632 retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
633 address, &cb, &pa);
634 if (retval != ERROR_OK)
635 return retval;
636
637 if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
638 if (cb & 0x1) {
639 LOG_DEBUG("D-Cache buffered, "
640 "drain write buffer");
641 /*
642 * Buffered ?
643 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
644 */
645
646 retval = arm920t_write_cp15_interpreted(target,
647 ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
648 0x0, 0);
649 if (retval != ERROR_OK)
650 return retval;
651 }
652
653 if (cb == 0x3) {
654 /*
655 * Write back memory ? -> clean cache
656 *
657 * There is no way to clean cache lines using
658 * cp15 scan chain, so copy the full cache
659 * line from cache to physical memory.
660 */
661 uint8_t data[32];
662
663 LOG_DEBUG("D-Cache in 'write back' mode, "
664 "flush cache line");
665
666 retval = target_read_memory(target,
667 address & cache_mask, 1,
668 sizeof(data), &data[0]);
669 if (retval != ERROR_OK)
670 return retval;
671
672 retval = armv4_5_mmu_write_physical(target,
673 &arm920t->armv4_5_mmu,
674 pa & cache_mask, 1,
675 sizeof(data), &data[0]);
676 if (retval != ERROR_OK)
677 return retval;
678 }
679
680 /* Cached ? */
681 if (cb & 0x2) {
682 /*
683 * Cached ? -> Invalidate data cache using MVA
684 *
685 * MCR p15,0,Rd,c7,c6,1
686 */
687 LOG_DEBUG("D-Cache enabled, "
688 "invalidate cache line");
689
690 retval = arm920t_write_cp15_interpreted(target,
691 ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
692 address & cache_mask);
693 if (retval != ERROR_OK)
694 return retval;
695 }
696 }
697
698 /* write directly to physical memory,
699 * bypassing any read only MMU bits, etc.
700 */
701 retval = armv4_5_mmu_write_physical(target,
702 &arm920t->armv4_5_mmu, pa, size,
703 count, buffer);
704 if (retval != ERROR_OK)
705 return retval;
706 } else {
707 retval = arm7_9_write_memory(target, address, size, count, buffer);
708 if (retval != ERROR_OK)
709 return retval;
710 }
711
712 /* If ICache is enabled, we have to invalidate affected ICache lines
713 * the DCache is forced to write-through,
714 * so we don't have to clean it here
715 */
716 if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
717 if (count <= 1) {
718 /* invalidate ICache single entry with MVA
719 * mcr 15, 0, r0, cr7, cr5, {1}
720 */
721 LOG_DEBUG("I-Cache enabled, "
722 "invalidating affected I-Cache line");
723 retval = arm920t_write_cp15_interpreted(target,
724 ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
725 0x0, address & cache_mask);
726 if (retval != ERROR_OK)
727 return retval;
728 } else {
729 /* invalidate ICache
730 * mcr 15, 0, r0, cr7, cr5, {0}
731 */
732 retval = arm920t_write_cp15_interpreted(target,
733 ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
734 0x0, 0x0);
735 if (retval != ERROR_OK)
736 return retval;
737 }
738 }
739
740 return ERROR_OK;
741 }
742
743 int arm920t_write_memory_opt(struct target *target, uint32_t address,
744 uint32_t size, uint32_t count, const uint8_t *buffer)
745 {
746 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
747
748 if (size == 4 && count > 32 && arm7_9->bulk_write_memory)
749 return arm7_9->bulk_write_memory(target, address, count, buffer);
750 else
751 return arm920t_write_memory(target, address, size, count, buffer);
752 }
753
754 /* EXPORTED to FA256 */
755 int arm920t_soft_reset_halt(struct target *target)
756 {
757 int retval = ERROR_OK;
758 struct arm920t_common *arm920t = target_to_arm920(target);
759 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
760 struct arm *arm = &arm7_9->arm;
761 struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];
762
763 retval = target_halt(target);
764 if (retval != ERROR_OK)
765 return retval;
766
767 long long then = timeval_ms();
768 int timeout;
769 while (!(timeout = ((timeval_ms()-then) > 1000))) {
770 if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
771 embeddedice_read_reg(dbg_stat);
772 retval = jtag_execute_queue();
773 if (retval != ERROR_OK)
774 return retval;
775 } else
776 break;
777 if (debug_level >= 3) {
778 /* do not eat all CPU, time out after 1 se*/
779 alive_sleep(100);
780 } else
781 keep_alive();
782 }
783 if (timeout) {
784 LOG_ERROR("Failed to halt CPU after 1 sec");
785 return ERROR_TARGET_TIMEOUT;
786 }
787
788 target->state = TARGET_HALTED;
789
790 /* SVC, ARM state, IRQ and FIQ disabled */
791 uint32_t cpsr;
792
793 cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
794 cpsr &= ~0xff;
795 cpsr |= 0xd3;
796 arm_set_cpsr(arm, cpsr);
797 arm->cpsr->dirty = 1;
798
799 /* start fetching from 0x0 */
800 buf_set_u32(arm->pc->value, 0, 32, 0x0);
801 arm->pc->dirty = 1;
802 arm->pc->valid = 1;
803
804 arm920t_disable_mmu_caches(target, 1, 1, 1);
805 arm920t->armv4_5_mmu.mmu_enabled = 0;
806 arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
807 arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;
808
809 return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
810 }
811
812 /* FIXME remove forward decls */
813 static int arm920t_mrc(struct target *target, int cpnum,
814 uint32_t op1, uint32_t op2,
815 uint32_t CRn, uint32_t CRm,
816 uint32_t *value);
817 static int arm920t_mcr(struct target *target, int cpnum,
818 uint32_t op1, uint32_t op2,
819 uint32_t CRn, uint32_t CRm,
820 uint32_t value);
821
822 static int arm920t_init_arch_info(struct target *target,
823 struct arm920t_common *arm920t, struct jtag_tap *tap)
824 {
825 struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;
826
827 arm7_9->arm.mrc = arm920t_mrc;
828 arm7_9->arm.mcr = arm920t_mcr;
829
830 /* initialize arm7/arm9 specific info (including armv4_5) */
831 arm9tdmi_init_arch_info(target, arm7_9, tap);
832
833 arm920t->common_magic = ARM920T_COMMON_MAGIC;
834
835 arm7_9->post_debug_entry = arm920t_post_debug_entry;
836 arm7_9->pre_restore_context = arm920t_pre_restore_context;
837
838 arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
839 arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
840 arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
841 arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
842 arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
843 arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
844 arm920t->armv4_5_mmu.has_tiny_pages = 1;
845 arm920t->armv4_5_mmu.mmu_enabled = 0;
846
847 /* disabling linefills leads to lockups, so keep them enabled for now
848 * this doesn't affect correctness, but might affect timing issues, if
849 * important data is evicted from the cache during the debug session
850 * */
851 arm920t->preserve_cache = 0;
852
853 /* override hw single-step capability from ARM9TDMI */
854 arm7_9->has_single_step = 1;
855
856 return ERROR_OK;
857 }
858
859 static int arm920t_target_create(struct target *target, Jim_Interp *interp)
860 {
861 struct arm920t_common *arm920t;
862
863 arm920t = calloc(1, sizeof(struct arm920t_common));
864 return arm920t_init_arch_info(target, arm920t, target->tap);
865 }
866
867 COMMAND_HANDLER(arm920t_handle_read_cache_command)
868 {
869 int retval = ERROR_OK;
870 struct target *target = get_current_target(CMD_CTX);
871 struct arm920t_common *arm920t = target_to_arm920(target);
872 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
873 struct arm *arm = &arm7_9->arm;
874 uint32_t cp15c15;
875 uint32_t cp15_ctrl, cp15_ctrl_saved;
876 uint32_t regs[16];
877 uint32_t *regs_p[16];
878 uint32_t C15_C_D_Ind, C15_C_I_Ind;
879 int i;
880 FILE *output;
881 int segment, index_t;
882 struct reg *r;
883
884 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
885 if (retval != ERROR_OK)
886 return retval;
887
888 if (CMD_ARGC != 1)
889 return ERROR_COMMAND_SYNTAX_ERROR;
890
891 output = fopen(CMD_ARGV[0], "w");
892 if (output == NULL) {
893 LOG_DEBUG("error opening cache content file");
894 return ERROR_OK;
895 }
896
897 for (i = 0; i < 16; i++)
898 regs_p[i] = &regs[i];
899
900 /* disable MMU and Caches */
901 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
902 retval = jtag_execute_queue();
903 if (retval != ERROR_OK)
904 return retval;
905 cp15_ctrl_saved = cp15_ctrl;
906 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
907 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
908 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
909
910 /* read CP15 test state register */
911 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
912 jtag_execute_queue();
913
914 /* read DCache content */
915 fprintf(output, "DCache:\n");
916
917 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
918 for (segment = 0;
919 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
920 segment++) {
921 fprintf(output, "\nsegment: %i\n----------", segment);
922
923 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
924 regs[0] = 0x0 | (segment << 5);
925 arm9tdmi_write_core_regs(target, 0x1, regs);
926
927 /* set interpret mode */
928 cp15c15 |= 0x1;
929 arm920t_write_cp15_physical(target,
930 CP15PHYS_TESTSTATE, cp15c15);
931
932 /* D CAM Read, loads current victim into C15.C.D.Ind */
933 arm920t_execute_cp15(target,
934 ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));
935
936 /* read current victim */
937 arm920t_read_cp15_physical(target,
938 CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);
939
940 /* clear interpret mode */
941 cp15c15 &= ~0x1;
942 arm920t_write_cp15_physical(target,
943 CP15PHYS_TESTSTATE, cp15c15);
944
945 for (index_t = 0; index_t < 64; index_t++) {
946 /* Ra:
947 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
948 */
949 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
950 arm9tdmi_write_core_regs(target, 0x1, regs);
951
952 /* set interpret mode */
953 cp15c15 |= 0x1;
954 arm920t_write_cp15_physical(target,
955 CP15PHYS_TESTSTATE, cp15c15);
956
957 /* Write DCache victim */
958 arm920t_execute_cp15(target,
959 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
960
961 /* Read D RAM */
962 arm920t_execute_cp15(target,
963 ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
964 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
965
966 /* Read D CAM */
967 arm920t_execute_cp15(target,
968 ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
969 ARMV4_5_LDR(9, 0));
970
971 /* clear interpret mode */
972 cp15c15 &= ~0x1;
973 arm920t_write_cp15_physical(target,
974 CP15PHYS_TESTSTATE, cp15c15);
975
976 /* read D RAM and CAM content */
977 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
978 retval = jtag_execute_queue();
979 if (retval != ERROR_OK)
980 return retval;
981
982 /* mask LFSR[6] */
983 regs[9] &= 0xfffffffe;
984 fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
985 PRIx32 ", content (%s):\n",
986 segment, index_t, regs[9],
987 (regs[9] & 0x10) ? "valid" : "invalid");
988
989 for (i = 1; i < 9; i++) {
990 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
991 i-1, regs[i]);
992 }
993
994 }
995
996 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
997 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
998 arm9tdmi_write_core_regs(target, 0x1, regs);
999
1000 /* set interpret mode */
1001 cp15c15 |= 0x1;
1002 arm920t_write_cp15_physical(target,
1003 CP15PHYS_TESTSTATE, cp15c15);
1004
1005 /* Write DCache victim */
1006 arm920t_execute_cp15(target,
1007 ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));
1008
1009 /* clear interpret mode */
1010 cp15c15 &= ~0x1;
1011 arm920t_write_cp15_physical(target,
1012 CP15PHYS_TESTSTATE, cp15c15);
1013 }
1014
1015 /* read ICache content */
1016 fprintf(output, "ICache:\n");
1017
1018 /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
1019 for (segment = 0;
1020 segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
1021 segment++) {
1022 fprintf(output, "segment: %i\n----------", segment);
1023
1024 /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
1025 regs[0] = 0x0 | (segment << 5);
1026 arm9tdmi_write_core_regs(target, 0x1, regs);
1027
1028 /* set interpret mode */
1029 cp15c15 |= 0x1;
1030 arm920t_write_cp15_physical(target,
1031 CP15PHYS_TESTSTATE, cp15c15);
1032
1033 /* I CAM Read, loads current victim into C15.C.I.Ind */
1034 arm920t_execute_cp15(target,
1035 ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));
1036
1037 /* read current victim */
1038 arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
1039 &C15_C_I_Ind);
1040
1041 /* clear interpret mode */
1042 cp15c15 &= ~0x1;
1043 arm920t_write_cp15_physical(target,
1044 CP15PHYS_TESTSTATE, cp15c15);
1045
1046 for (index_t = 0; index_t < 64; index_t++) {
1047 /* Ra:
1048 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
1049 */
1050 regs[0] = 0x0 | (segment << 5) | (index_t << 26);
1051 arm9tdmi_write_core_regs(target, 0x1, regs);
1052
1053 /* set interpret mode */
1054 cp15c15 |= 0x1;
1055 arm920t_write_cp15_physical(target,
1056 CP15PHYS_TESTSTATE, cp15c15);
1057
1058 /* Write ICache victim */
1059 arm920t_execute_cp15(target,
1060 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1061
1062 /* Read I RAM */
1063 arm920t_execute_cp15(target,
1064 ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
1065 ARMV4_5_LDMIA(0, 0x1fe, 0, 0));
1066
1067 /* Read I CAM */
1068 arm920t_execute_cp15(target,
1069 ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
1070 ARMV4_5_LDR(9, 0));
1071
1072 /* clear interpret mode */
1073 cp15c15 &= ~0x1;
1074 arm920t_write_cp15_physical(target,
1075 CP15PHYS_TESTSTATE, cp15c15);
1076
1077 /* read I RAM and CAM content */
1078 arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
1079 retval = jtag_execute_queue();
1080 if (retval != ERROR_OK)
1081 return retval;
1082
1083 /* mask LFSR[6] */
1084 regs[9] &= 0xfffffffe;
1085 fprintf(output, "\nsegment: %i, index: %i, "
1086 "CAM: 0x%8.8" PRIx32 ", content (%s):\n",
1087 segment, index_t, regs[9],
1088 (regs[9] & 0x10) ? "valid" : "invalid");
1089
1090 for (i = 1; i < 9; i++) {
1091 fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
1092 i-1, regs[i]);
1093 }
1094 }
1095
1096 /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
1097 regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
1098 arm9tdmi_write_core_regs(target, 0x1, regs);
1099
1100 /* set interpret mode */
1101 cp15c15 |= 0x1;
1102 arm920t_write_cp15_physical(target,
1103 CP15PHYS_TESTSTATE, cp15c15);
1104
1105 /* Write ICache victim */
1106 arm920t_execute_cp15(target,
1107 ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));
1108
1109 /* clear interpret mode */
1110 cp15c15 &= ~0x1;
1111 arm920t_write_cp15_physical(target,
1112 CP15PHYS_TESTSTATE, cp15c15);
1113 }
1114
1115 /* restore CP15 MMU and Cache settings */
1116 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1117
1118 command_print(CMD_CTX, "cache content successfully output to %s",
1119 CMD_ARGV[0]);
1120
1121 fclose(output);
1122
1123 if (!is_arm_mode(arm->core_mode)) {
1124 LOG_ERROR("not a valid arm core mode - communication failure?");
1125 return ERROR_FAIL;
1126 }
1127
1128 /* force writeback of the valid data */
1129 r = arm->core_cache->reg_list;
1130 r[0].dirty = r[0].valid;
1131 r[1].dirty = r[1].valid;
1132 r[2].dirty = r[2].valid;
1133 r[3].dirty = r[3].valid;
1134 r[4].dirty = r[4].valid;
1135 r[5].dirty = r[5].valid;
1136 r[6].dirty = r[6].valid;
1137 r[7].dirty = r[7].valid;
1138
1139 r = arm_reg_current(arm, 8);
1140 r->dirty = r->valid;
1141
1142 r = arm_reg_current(arm, 9);
1143 r->dirty = r->valid;
1144
1145 return ERROR_OK;
1146 }
1147
1148 COMMAND_HANDLER(arm920t_handle_read_mmu_command)
1149 {
1150 int retval = ERROR_OK;
1151 struct target *target = get_current_target(CMD_CTX);
1152 struct arm920t_common *arm920t = target_to_arm920(target);
1153 struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
1154 struct arm *arm = &arm7_9->arm;
1155 uint32_t cp15c15;
1156 uint32_t cp15_ctrl, cp15_ctrl_saved;
1157 uint32_t regs[16];
1158 uint32_t *regs_p[16];
1159 int i;
1160 FILE *output;
1161 uint32_t Dlockdown, Ilockdown;
1162 struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
1163 int victim;
1164 struct reg *r;
1165
1166 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1167 if (retval != ERROR_OK)
1168 return retval;
1169
1170 if (CMD_ARGC != 1)
1171 return ERROR_COMMAND_SYNTAX_ERROR;
1172
1173 output = fopen(CMD_ARGV[0], "w");
1174 if (output == NULL) {
1175 LOG_DEBUG("error opening mmu content file");
1176 return ERROR_OK;
1177 }
1178
1179 for (i = 0; i < 16; i++)
1180 regs_p[i] = &regs[i];
1181
1182 /* disable MMU and Caches */
1183 arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
1184 retval = jtag_execute_queue();
1185 if (retval != ERROR_OK)
1186 return retval;
1187 cp15_ctrl_saved = cp15_ctrl;
1188 cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
1189 | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
1190 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);
1191
1192 /* read CP15 test state register */
1193 arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
1194 retval = jtag_execute_queue();
1195 if (retval != ERROR_OK)
1196 return retval;
1197
1198 /* prepare reading D TLB content
1199 * */
1200
1201 /* set interpret mode */
1202 cp15c15 |= 0x1;
1203 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1204
1205 /* Read D TLB lockdown */
1206 arm920t_execute_cp15(target,
1207 ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));
1208
1209 /* clear interpret mode */
1210 cp15c15 &= ~0x1;
1211 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1212
1213 /* read D TLB lockdown stored to r1 */
1214 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1215 retval = jtag_execute_queue();
1216 if (retval != ERROR_OK)
1217 return retval;
1218 Dlockdown = regs[1];
1219
1220 for (victim = 0; victim < 64; victim += 8) {
1221 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1222 * base remains unchanged, victim goes through entries 0 to 63
1223 */
1224 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1225 arm9tdmi_write_core_regs(target, 0x2, regs);
1226
1227 /* set interpret mode */
1228 cp15c15 |= 0x1;
1229 arm920t_write_cp15_physical(target,
1230 CP15PHYS_TESTSTATE, cp15c15);
1231
1232 /* Write D TLB lockdown */
1233 arm920t_execute_cp15(target,
1234 ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
1235 ARMV4_5_STR(1, 0));
1236
1237 /* Read D TLB CAM */
1238 arm920t_execute_cp15(target,
1239 ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
1240 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1241
1242 /* clear interpret mode */
1243 cp15c15 &= ~0x1;
1244 arm920t_write_cp15_physical(target,
1245 CP15PHYS_TESTSTATE, cp15c15);
1246
1247 /* read D TLB CAM content stored to r2-r9 */
1248 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1249 retval = jtag_execute_queue();
1250 if (retval != ERROR_OK)
1251 return retval;
1252
1253 for (i = 0; i < 8; i++)
1254 d_tlb[victim + i].cam = regs[i + 2];
1255 }
1256
1257 for (victim = 0; victim < 64; victim++) {
1258 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1259 * base remains unchanged, victim goes through entries 0 to 63
1260 */
1261 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1262 arm9tdmi_write_core_regs(target, 0x2, regs);
1263
1264 /* set interpret mode */
1265 cp15c15 |= 0x1;
1266 arm920t_write_cp15_physical(target,
1267 CP15PHYS_TESTSTATE, cp15c15);
1268
1269 /* Write D TLB lockdown */
1270 arm920t_execute_cp15(target,
1271 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1272
1273 /* Read D TLB RAM1 */
1274 arm920t_execute_cp15(target,
1275 ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));
1276
1277 /* Read D TLB RAM2 */
1278 arm920t_execute_cp15(target,
1279 ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));
1280
1281 /* clear interpret mode */
1282 cp15c15 &= ~0x1;
1283 arm920t_write_cp15_physical(target,
1284 CP15PHYS_TESTSTATE, cp15c15);
1285
1286 /* read D TLB RAM content stored to r2 and r3 */
1287 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1288 retval = jtag_execute_queue();
1289 if (retval != ERROR_OK)
1290 return retval;
1291
1292 d_tlb[victim].ram1 = regs[2];
1293 d_tlb[victim].ram2 = regs[3];
1294 }
1295
1296 /* restore D TLB lockdown */
1297 regs[1] = Dlockdown;
1298 arm9tdmi_write_core_regs(target, 0x2, regs);
1299
1300 /* Write D TLB lockdown */
1301 arm920t_execute_cp15(target,
1302 ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));
1303
1304 /* prepare reading I TLB content
1305 * */
1306
1307 /* set interpret mode */
1308 cp15c15 |= 0x1;
1309 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1310
1311 /* Read I TLB lockdown */
1312 arm920t_execute_cp15(target,
1313 ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));
1314
1315 /* clear interpret mode */
1316 cp15c15 &= ~0x1;
1317 arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);
1318
1319 /* read I TLB lockdown stored to r1 */
1320 arm9tdmi_read_core_regs(target, 0x2, regs_p);
1321 retval = jtag_execute_queue();
1322 if (retval != ERROR_OK)
1323 return retval;
1324 Ilockdown = regs[1];
1325
1326 for (victim = 0; victim < 64; victim += 8) {
1327 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1328 * base remains unchanged, victim goes through entries 0 to 63
1329 */
1330 regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
1331 arm9tdmi_write_core_regs(target, 0x2, regs);
1332
1333 /* set interpret mode */
1334 cp15c15 |= 0x1;
1335 arm920t_write_cp15_physical(target,
1336 CP15PHYS_TESTSTATE, cp15c15);
1337
1338 /* Write I TLB lockdown */
1339 arm920t_execute_cp15(target,
1340 ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
1341 ARMV4_5_STR(1, 0));
1342
1343 /* Read I TLB CAM */
1344 arm920t_execute_cp15(target,
1345 ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
1346 ARMV4_5_LDMIA(0, 0x3fc, 0, 0));
1347
1348 /* clear interpret mode */
1349 cp15c15 &= ~0x1;
1350 arm920t_write_cp15_physical(target,
1351 CP15PHYS_TESTSTATE, cp15c15);
1352
1353 /* read I TLB CAM content stored to r2-r9 */
1354 arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
1355 retval = jtag_execute_queue();
1356 if (retval != ERROR_OK)
1357 return retval;
1358
1359 for (i = 0; i < 8; i++)
1360 i_tlb[i + victim].cam = regs[i + 2];
1361 }
1362
1363 for (victim = 0; victim < 64; victim++) {
1364 /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
1365 * base remains unchanged, victim goes through entries 0 to 63
1366 */
1367 regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
1368 arm9tdmi_write_core_regs(target, 0x2, regs);
1369
1370 /* set interpret mode */
1371 cp15c15 |= 0x1;
1372 arm920t_write_cp15_physical(target,
1373 CP15PHYS_TESTSTATE, cp15c15);
1374
1375 /* Write I TLB lockdown */
1376 arm920t_execute_cp15(target,
1377 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1378
1379 /* Read I TLB RAM1 */
1380 arm920t_execute_cp15(target,
1381 ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));
1382
1383 /* Read I TLB RAM2 */
1384 arm920t_execute_cp15(target,
1385 ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));
1386
1387 /* clear interpret mode */
1388 cp15c15 &= ~0x1;
1389 arm920t_write_cp15_physical(target,
1390 CP15PHYS_TESTSTATE, cp15c15);
1391
1392 /* read I TLB RAM content stored to r2 and r3 */
1393 arm9tdmi_read_core_regs(target, 0xc, regs_p);
1394 retval = jtag_execute_queue();
1395 if (retval != ERROR_OK)
1396 return retval;
1397
1398 i_tlb[victim].ram1 = regs[2];
1399 i_tlb[victim].ram2 = regs[3];
1400 }
1401
1402 /* restore I TLB lockdown */
1403 regs[1] = Ilockdown;
1404 arm9tdmi_write_core_regs(target, 0x2, regs);
1405
1406 /* Write I TLB lockdown */
1407 arm920t_execute_cp15(target,
1408 ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));
1409
1410 /* restore CP15 MMU and Cache settings */
1411 arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);
1412
1413 /* output data to file */
1414 fprintf(output, "D TLB content:\n");
1415 for (i = 0; i < 64; i++) {
1416 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1417 " 0x%8.8" PRIx32 " %s\n",
1418 i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
1419 (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1420 }
1421
1422 fprintf(output, "\n\nI TLB content:\n");
1423 for (i = 0; i < 64; i++) {
1424 fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
1425 " 0x%8.8" PRIx32 " %s\n",
1426 i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
1427 (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
1428 }
1429
1430 command_print(CMD_CTX, "mmu content successfully output to %s",
1431 CMD_ARGV[0]);
1432
1433 fclose(output);
1434
1435 if (!is_arm_mode(arm->core_mode)) {
1436 LOG_ERROR("not a valid arm core mode - communication failure?");
1437 return ERROR_FAIL;
1438 }
1439
1440 /* force writeback of the valid data */
1441 r = arm->core_cache->reg_list;
1442 r[0].dirty = r[0].valid;
1443 r[1].dirty = r[1].valid;
1444 r[2].dirty = r[2].valid;
1445 r[3].dirty = r[3].valid;
1446 r[4].dirty = r[4].valid;
1447 r[5].dirty = r[5].valid;
1448 r[6].dirty = r[6].valid;
1449 r[7].dirty = r[7].valid;
1450
1451 r = arm_reg_current(arm, 8);
1452 r->dirty = r->valid;
1453
1454 r = arm_reg_current(arm, 9);
1455 r->dirty = r->valid;
1456
1457 return ERROR_OK;
1458 }
1459
1460 COMMAND_HANDLER(arm920t_handle_cp15_command)
1461 {
1462 int retval;
1463 struct target *target = get_current_target(CMD_CTX);
1464 struct arm920t_common *arm920t = target_to_arm920(target);
1465
1466 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1467 if (retval != ERROR_OK)
1468 return retval;
1469
1470 if (target->state != TARGET_HALTED) {
1471 command_print(CMD_CTX, "target must be stopped for "
1472 "\"%s\" command", CMD_NAME);
1473 return ERROR_OK;
1474 }
1475
1476 /* one argument, read a register.
1477 * two arguments, write it.
1478 */
1479 if (CMD_ARGC >= 1) {
1480 int address;
1481 COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);
1482
1483 if (CMD_ARGC == 1) {
1484 uint32_t value;
1485 retval = arm920t_read_cp15_physical(target, address, &value);
1486 if (retval != ERROR_OK) {
1487 command_print(CMD_CTX,
1488 "couldn't access reg %i", address);
1489 return ERROR_OK;
1490 }
1491 retval = jtag_execute_queue();
1492 if (retval != ERROR_OK)
1493 return retval;
1494
1495 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1496 address, value);
1497 } else if (CMD_ARGC == 2) {
1498 uint32_t value;
1499 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1500 retval = arm920t_write_cp15_physical(target,
1501 address, value);
1502 if (retval != ERROR_OK) {
1503 command_print(CMD_CTX,
1504 "couldn't access reg %i", address);
1505 /* REVISIT why lie? "return retval"? */
1506 return ERROR_OK;
1507 }
1508 command_print(CMD_CTX, "%i: %8.8" PRIx32,
1509 address, value);
1510 }
1511 }
1512
1513 return ERROR_OK;
1514 }
1515
1516 COMMAND_HANDLER(arm920t_handle_cp15i_command)
1517 {
1518 int retval;
1519 struct target *target = get_current_target(CMD_CTX);
1520 struct arm920t_common *arm920t = target_to_arm920(target);
1521
1522 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1523 if (retval != ERROR_OK)
1524 return retval;
1525
1526
1527 if (target->state != TARGET_HALTED) {
1528 command_print(CMD_CTX, "target must be stopped for "
1529 "\"%s\" command", CMD_NAME);
1530 return ERROR_OK;
1531 }
1532
1533 /* one argument, read a register.
1534 * two arguments, write it.
1535 */
1536 if (CMD_ARGC >= 1) {
1537 uint32_t opcode;
1538 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);
1539
1540 if (CMD_ARGC == 1) {
1541 uint32_t value;
1542 retval = arm920t_read_cp15_interpreted(target,
1543 opcode, 0x0, &value);
1544 if (retval != ERROR_OK) {
1545 command_print(CMD_CTX,
1546 "couldn't execute %8.8" PRIx32,
1547 opcode);
1548 /* REVISIT why lie? "return retval"? */
1549 return ERROR_OK;
1550 }
1551
1552 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1553 opcode, value);
1554 } else if (CMD_ARGC == 2) {
1555 uint32_t value;
1556 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1557 retval = arm920t_write_cp15_interpreted(target,
1558 opcode, value, 0);
1559 if (retval != ERROR_OK) {
1560 command_print(CMD_CTX,
1561 "couldn't execute %8.8" PRIx32,
1562 opcode);
1563 /* REVISIT why lie? "return retval"? */
1564 return ERROR_OK;
1565 }
1566 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
1567 opcode, value);
1568 } else if (CMD_ARGC == 3) {
1569 uint32_t value;
1570 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
1571 uint32_t address;
1572 COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
1573 retval = arm920t_write_cp15_interpreted(target,
1574 opcode, value, address);
1575 if (retval != ERROR_OK) {
1576 command_print(CMD_CTX,
1577 "couldn't execute %8.8" PRIx32, opcode);
1578 /* REVISIT why lie? "return retval"? */
1579 return ERROR_OK;
1580 }
1581 command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
1582 " %8.8" PRIx32, opcode, value, address);
1583 }
1584 } else
1585 return ERROR_COMMAND_SYNTAX_ERROR;
1586
1587 return ERROR_OK;
1588 }
1589
1590 COMMAND_HANDLER(arm920t_handle_cache_info_command)
1591 {
1592 int retval;
1593 struct target *target = get_current_target(CMD_CTX);
1594 struct arm920t_common *arm920t = target_to_arm920(target);
1595
1596 retval = arm920t_verify_pointer(CMD_CTX, arm920t);
1597 if (retval != ERROR_OK)
1598 return retval;
1599
1600 return armv4_5_handle_cache_info_command(CMD_CTX,
1601 &arm920t->armv4_5_mmu.armv4_5_cache);
1602 }
1603
1604
1605 static int arm920t_mrc(struct target *target, int cpnum,
1606 uint32_t op1, uint32_t op2,
1607 uint32_t CRn, uint32_t CRm,
1608 uint32_t *value)
1609 {
1610 if (cpnum != 15) {
1611 LOG_ERROR("Only cp15 is supported");
1612 return ERROR_FAIL;
1613 }
1614
1615 /* read "to" r0 */
1616 return arm920t_read_cp15_interpreted(target,
1617 ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
1618 0, value);
1619 }
1620
1621 static int arm920t_mcr(struct target *target, int cpnum,
1622 uint32_t op1, uint32_t op2,
1623 uint32_t CRn, uint32_t CRm,
1624 uint32_t value)
1625 {
1626 if (cpnum != 15) {
1627 LOG_ERROR("Only cp15 is supported");
1628 return ERROR_FAIL;
1629 }
1630
1631 /* write "from" r0 */
1632 return arm920t_write_cp15_interpreted(target,
1633 ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
1634 0, value);
1635 }
1636
1637 static const struct command_registration arm920t_exec_command_handlers[] = {
1638 {
1639 .name = "cp15",
1640 .handler = arm920t_handle_cp15_command,
1641 .mode = COMMAND_EXEC,
1642 .help = "display/modify cp15 register",
1643 .usage = "regnum [value]",
1644 },
1645 {
1646 .name = "cp15i",
1647 .handler = arm920t_handle_cp15i_command,
1648 .mode = COMMAND_EXEC,
1649 /* prefer using less error-prone "arm mcr" or "arm mrc" */
1650 .help = "display/modify cp15 register using ARM opcode"
1651 " (DEPRECATED)",
1652 .usage = "instruction [value [address]]",
1653 },
1654 {
1655 .name = "cache_info",
1656 .handler = arm920t_handle_cache_info_command,
1657 .mode = COMMAND_EXEC,
1658 .usage = "",
1659 .help = "display information about target caches",
1660 },
1661 {
1662 .name = "read_cache",
1663 .handler = arm920t_handle_read_cache_command,
1664 .mode = COMMAND_EXEC,
1665 .help = "dump I/D cache content to file",
1666 .usage = "filename",
1667 },
1668 {
1669 .name = "read_mmu",
1670 .handler = arm920t_handle_read_mmu_command,
1671 .mode = COMMAND_EXEC,
1672 .help = "dump I/D mmu content to file",
1673 .usage = "filename",
1674 },
1675 COMMAND_REGISTRATION_DONE
1676 };
1677 const struct command_registration arm920t_command_handlers[] = {
1678 {
1679 .chain = arm9tdmi_command_handlers,
1680 },
1681 {
1682 .name = "arm920t",
1683 .mode = COMMAND_ANY,
1684 .help = "arm920t command group",
1685 .usage = "",
1686 .chain = arm920t_exec_command_handlers,
1687 },
1688 COMMAND_REGISTRATION_DONE
1689 };
1690
1691 /** Holds methods for ARM920 targets. */
1692 struct target_type arm920t_target = {
1693 .name = "arm920t",
1694
1695 .poll = arm7_9_poll,
1696 .arch_state = arm920t_arch_state,
1697
1698 .target_request_data = arm7_9_target_request_data,
1699
1700 .halt = arm7_9_halt,
1701 .resume = arm7_9_resume,
1702 .step = arm7_9_step,
1703
1704 .assert_reset = arm7_9_assert_reset,
1705 .deassert_reset = arm7_9_deassert_reset,
1706 .soft_reset_halt = arm920t_soft_reset_halt,
1707
1708 .get_gdb_reg_list = arm_get_gdb_reg_list,
1709
1710 .read_memory = arm920t_read_memory,
1711 .write_memory = arm920t_write_memory_opt,
1712 .read_phys_memory = arm920t_read_phys_memory,
1713 .write_phys_memory = arm920t_write_phys_memory,
1714 .mmu = arm920_mmu,
1715 .virt2phys = arm920_virt2phys,
1716
1717 .checksum_memory = arm_checksum_memory,
1718 .blank_check_memory = arm_blank_check_memory,
1719
1720 .run_algorithm = armv4_5_run_algorithm,
1721
1722 .add_breakpoint = arm7_9_add_breakpoint,
1723 .remove_breakpoint = arm7_9_remove_breakpoint,
1724 .add_watchpoint = arm7_9_add_watchpoint,
1725 .remove_watchpoint = arm7_9_remove_watchpoint,
1726
1727 .commands = arm920t_command_handlers,
1728 .target_create = arm920t_target_create,
1729 .init_target = arm9tdmi_init_target,
1730 .examine = arm7_9_examine,
1731 .check_reset = arm7_9_check_reset,
1732 };