ARM11: minor cleanup, mostly ITR comments
[openocd.git] / src / target / arm11_dbgtap.c
1 /***************************************************************************
2 * Copyright (C) 2008 digenius technology GmbH. *
3 * Michael Bruck *
4 * *
5 * Copyright (C) 2008,2009 Oyvind Harboe oyvind.harboe@zylin.com *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program; if not, write to the *
19 * Free Software Foundation, Inc., *
20 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
21 ***************************************************************************/
22
23 #ifdef HAVE_CONFIG_H
24 #include "config.h"
25 #endif
26
27 #include "arm_jtag.h"
28 #include "arm11_dbgtap.h"
29
30 #include <helper/time_support.h>
31
32 #if 0
33 #define JTAG_DEBUG(expr ...) do { if (1) LOG_DEBUG(expr); } while (0)
34 #else
35 #define JTAG_DEBUG(expr ...) do { if (0) LOG_DEBUG(expr); } while (0)
36 #endif
37
38 /*
39 This pathmove goes from Pause-IR to Shift-IR while avoiding RTI. The
40 behavior of the FTDI driver IIRC was to go via RTI.
41
42 Conversely there may be other places in this code where the ARM11 code relies
43 on the driver to hit through RTI when coming from Update-?R.
44 */
45 static const tap_state_t arm11_move_pi_to_si_via_ci[] =
46 {
47 TAP_IREXIT2, TAP_IRUPDATE, TAP_DRSELECT, TAP_IRSELECT, TAP_IRCAPTURE, TAP_IRSHIFT
48 };
49
50
51 static int arm11_add_ir_scan_vc(int num_fields, struct scan_field *fields,
52 tap_state_t state)
53 {
54 if (cmd_queue_cur_state == TAP_IRPAUSE)
55 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pi_to_si_via_ci), arm11_move_pi_to_si_via_ci);
56
57 jtag_add_ir_scan(num_fields, fields, state);
58 return ERROR_OK;
59 }
60
61 static const tap_state_t arm11_move_pd_to_sd_via_cd[] =
62 {
63 TAP_DREXIT2, TAP_DRUPDATE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
64 };
65
66 int arm11_add_dr_scan_vc(int num_fields, struct scan_field *fields, tap_state_t state)
67 {
68 if (cmd_queue_cur_state == TAP_DRPAUSE)
69 jtag_add_pathmove(ARRAY_SIZE(arm11_move_pd_to_sd_via_cd), arm11_move_pd_to_sd_via_cd);
70
71 jtag_add_dr_scan(num_fields, fields, state);
72 return ERROR_OK;
73 }
74
75
76 /** Code de-clutter: Construct struct scan_field to write out a value
77 *
78 * \param arm11 Target state variable.
79 * \param num_bits Length of the data field
80 * \param out_data pointer to the data that will be sent out
81 * <em > (data is read when it is added to the JTAG queue)</em>
82 * \param in_data pointer to the memory that will receive data that was clocked in
83 * <em > (data is written when the JTAG queue is executed)</em>
84 * \param field target data structure that will be initialized
85 */
86 void arm11_setup_field(struct arm11_common * arm11, int num_bits, void * out_data, void * in_data, struct scan_field * field)
87 {
88 field->tap = arm11->arm.target->tap;
89 field->num_bits = num_bits;
90 field->out_value = out_data;
91 field->in_value = in_data;
92 }
93
94 static const char *arm11_ir_to_string(uint8_t ir)
95 {
96 const char *s = "unknown";
97
98 switch (ir) {
99 case ARM11_EXTEST:
100 s = "EXTEST";
101 break;
102 case ARM11_SCAN_N:
103 s = "SCAN_N";
104 break;
105 case ARM11_RESTART:
106 s = "RESTART";
107 break;
108 case ARM11_HALT:
109 s = "HALT";
110 break;
111 case ARM11_INTEST:
112 s = "INTEST";
113 break;
114 case ARM11_ITRSEL:
115 s = "ITRSEL";
116 break;
117 case ARM11_IDCODE:
118 s = "IDCODE";
119 break;
120 case ARM11_BYPASS:
121 s = "BYPASS";
122 break;
123 }
124 return s;
125 }
126
127 /** Write JTAG instruction register
128 *
129 * \param arm11 Target state variable.
130 * \param instr An ARM11 DBGTAP instruction. Use enum #arm11_instructions.
131 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default value (Pause-IR).
132 *
133 * \remarks This adds to the JTAG command queue but does \em not execute it.
134 */
135 void arm11_add_IR(struct arm11_common * arm11, uint8_t instr, tap_state_t state)
136 {
137 struct jtag_tap *tap = arm11->arm.target->tap;
138
139 if (buf_get_u32(tap->cur_instr, 0, 5) == instr)
140 {
141 JTAG_DEBUG("IR <= 0x%02x SKIPPED", instr);
142 return;
143 }
144
145 JTAG_DEBUG("IR <= %s (0x%02x)", arm11_ir_to_string(instr), instr);
146
147 struct scan_field field;
148
149 arm11_setup_field(arm11, 5, &instr, NULL, &field);
150
151 arm11_add_ir_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_IRPAUSE : state);
152 }
153
154 /** Verify shifted out data from Scan Chain Register (SCREG)
155 * Used as parameter to struct scan_field::in_handler in
156 * arm11_add_debug_SCAN_N().
157 *
158 */
159 static void arm11_in_handler_SCAN_N(uint8_t *in_value)
160 {
161 /** \todo TODO: clarify why this isnt properly masked in core.c jtag_read_buffer() */
162 uint8_t v = *in_value & 0x1F;
163
164 if (v != 0x10)
165 {
166 LOG_ERROR("'arm11 target' JTAG communication error SCREG SCAN OUT 0x%02x (expected 0x10)", v);
167 jtag_set_error(ERROR_FAIL);
168 }
169
170 if (v != 0x10)
171 JTAG_DEBUG("SCREG SCAN OUT 0x%02x", v);
172 }
173
174 /** Select and write to Scan Chain Register (SCREG)
175 *
176 * This function sets the instruction register to SCAN_N and writes
177 * the data register with the selected chain number.
178 *
179 * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301f/Cacbjhfg.html
180 *
181 * \param arm11 Target state variable.
182 * \param chain Scan chain that will be selected.
183 * \param state Pass the final TAP state or ARM11_TAP_DEFAULT for the default
184 * value (Pause-DR).
185 *
186 * Changes the current scan chain if needed, transitions to the specified
187 * TAP state, and leaves the IR undefined.
188 *
189 * The chain takes effect when Update-DR is passed (usually when subsequently
190 * the INTEXT/EXTEST instructions are written).
191 *
192 * \warning (Obsolete) Using this twice in a row will \em fail. The first
193 * call will end in Pause-DR. The second call, due to the IR
194 * caching, will not go through Capture-DR when shifting in the
195 * new scan chain number. As a result the verification in
196 * arm11_in_handler_SCAN_N() must fail.
197 *
198 * \remarks This adds to the JTAG command queue but does \em not execute it.
199 */
200
201 int arm11_add_debug_SCAN_N(struct arm11_common *arm11,
202 uint8_t chain, tap_state_t state)
203 {
204 /* Don't needlessly switch the scan chain.
205 * NOTE: the ITRSEL instruction fakes SCREG changing;
206 * but leaves its actual value unchanged.
207 */
208 if (arm11->jtag_info.cur_scan_chain == chain) {
209 JTAG_DEBUG("SCREG <= %d SKIPPED", chain);
210 return jtag_add_statemove((state == ARM11_TAP_DEFAULT)
211 ? TAP_DRPAUSE : state);
212 }
213 JTAG_DEBUG("SCREG <= %d", chain);
214
215 arm11_add_IR(arm11, ARM11_SCAN_N, ARM11_TAP_DEFAULT);
216
217 struct scan_field field;
218
219 uint8_t tmp[1];
220 arm11_setup_field(arm11, 5, &chain, &tmp, &field);
221
222 arm11_add_dr_scan_vc(1, &field, state == ARM11_TAP_DEFAULT ? TAP_DRPAUSE : state);
223
224 jtag_execute_queue_noclear();
225
226 arm11_in_handler_SCAN_N(tmp);
227
228 arm11->jtag_info.cur_scan_chain = chain;
229
230 return jtag_execute_queue();
231 }
232
233 /**
234 * Queue a DR scan of the ITR register. Caller must have selected
235 * scan chain 4 (ITR), possibly using ITRSEL.
236 *
237 * \param arm11 Target state variable.
238 * \param inst An ARM11 processor instruction/opcode.
239 * \param flag Optional parameter to retrieve the Ready flag;
240 * this address will be written when the JTAG chain is scanned.
241 * \param state The TAP state to enter after the DR scan.
242 *
243 * Going through the TAP_DRUPDATE state writes ITR only if Ready was
244 * previously set. Only the Ready flag is readable by the scan.
245 *
246 * An instruction loaded into ITR is executed when going through the
247 * TAP_IDLE state only if Ready was previously set and the debug state
248 * is properly set up. Depending on the instruction, you may also need
249 * to ensure that the rDTR is ready before that Run-Test/Idle state.
250 */
251 static void arm11_add_debug_INST(struct arm11_common * arm11,
252 uint32_t inst, uint8_t * flag, tap_state_t state)
253 {
254 JTAG_DEBUG("INST <= 0x%08x", (unsigned) inst);
255
256 struct scan_field itr[2];
257
258 arm11_setup_field(arm11, 32, &inst, NULL, itr + 0);
259 arm11_setup_field(arm11, 1, NULL, flag, itr + 1);
260
261 arm11_add_dr_scan_vc(ARRAY_SIZE(itr), itr, state);
262 }
263
264 /**
265 * Read and save the Debug Status and Control Register (DSCR).
266 *
267 * \param arm11 Target state variable.
268 * \return Error status; arm11->dscr is updated on success.
269 *
270 * \remarks This is a stand-alone function that executes the JTAG
271 * command queue. It does not require the ARM11 debug TAP to be
272 * in any particular state.
273 */
274 int arm11_read_DSCR(struct arm11_common *arm11)
275 {
276 int retval;
277
278 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
279 if (retval != ERROR_OK)
280 return retval;
281
282 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
283
284 uint32_t dscr;
285 struct scan_field chain1_field;
286
287 arm11_setup_field(arm11, 32, NULL, &dscr, &chain1_field);
288
289 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
290
291 CHECK_RETVAL(jtag_execute_queue());
292
293 if (arm11->dscr != dscr)
294 JTAG_DEBUG("DSCR = %08x (OLD %08x)",
295 (unsigned) dscr,
296 (unsigned) arm11->dscr);
297
298 arm11->dscr = dscr;
299
300 return ERROR_OK;
301 }
302
303 /** Write the Debug Status and Control Register (DSCR)
304 *
305 * same as CP14 c1
306 *
307 * \param arm11 Target state variable.
308 * \param dscr DSCR content
309 *
310 * \remarks This is a stand-alone function that executes the JTAG command queue.
311 */
312 int arm11_write_DSCR(struct arm11_common * arm11, uint32_t dscr)
313 {
314 int retval;
315 retval = arm11_add_debug_SCAN_N(arm11, 0x01, ARM11_TAP_DEFAULT);
316 if (retval != ERROR_OK)
317 return retval;
318
319 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
320
321 struct scan_field chain1_field;
322
323 arm11_setup_field(arm11, 32, &dscr, NULL, &chain1_field);
324
325 arm11_add_dr_scan_vc(1, &chain1_field, TAP_DRPAUSE);
326
327 CHECK_RETVAL(jtag_execute_queue());
328
329 JTAG_DEBUG("DSCR <= %08x (OLD %08x)",
330 (unsigned) dscr,
331 (unsigned) arm11->dscr);
332
333 arm11->dscr = dscr;
334
335 return ERROR_OK;
336 }
337
338 /** Prepare the stage for ITR/DTR operations
339 * from the arm11_run_instr... group of functions.
340 *
341 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
342 * around a block of arm11_run_instr_... calls.
343 *
344 * Select scan chain 5 to allow quick access to DTR. When scan
345 * chain 4 is needed to put in a register the ITRSel instruction
346 * shortcut is used instead of actually changing the Scan_N
347 * register.
348 *
349 * \param arm11 Target state variable.
350 *
351 */
352 int arm11_run_instr_data_prepare(struct arm11_common * arm11)
353 {
354 return arm11_add_debug_SCAN_N(arm11, 0x05, ARM11_TAP_DEFAULT);
355 }
356
357 /** Cleanup after ITR/DTR operations
358 * from the arm11_run_instr... group of functions
359 *
360 * Put arm11_run_instr_data_prepare() and arm11_run_instr_data_finish()
361 * around a block of arm11_run_instr_... calls.
362 *
363 * Any IDLE can lead to an instruction execution when
364 * scan chains 4 or 5 are selected and the IR holds
365 * INTEST or EXTEST. So we must disable that before
366 * any following activities lead to an IDLE.
367 *
368 * \param arm11 Target state variable.
369 *
370 */
371 int arm11_run_instr_data_finish(struct arm11_common * arm11)
372 {
373 return arm11_add_debug_SCAN_N(arm11, 0x00, ARM11_TAP_DEFAULT);
374 }
375
376
377
378 /**
379 * Execute one or more instructions via ITR.
380 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
381 * is set, the ITR Ready flag is set (as seen on the previous entry to
382 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
383 *
384 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
385 *
386 * \param arm11 Target state variable.
387 * \param opcode Pointer to sequence of ARM opcodes
388 * \param count Number of opcodes to execute
389 *
390 */
391 static
392 int arm11_run_instr_no_data(struct arm11_common * arm11,
393 uint32_t * opcode, size_t count)
394 {
395 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
396
397 while (count--)
398 {
399 arm11_add_debug_INST(arm11, *opcode++, NULL, TAP_IDLE);
400
401 int i = 0;
402 while (1)
403 {
404 uint8_t flag;
405
406 arm11_add_debug_INST(arm11, 0, &flag, count ? TAP_IDLE : TAP_DRPAUSE);
407
408 CHECK_RETVAL(jtag_execute_queue());
409
410 if (flag)
411 break;
412
413 long long then = 0;
414
415 if (i == 1000)
416 {
417 then = timeval_ms();
418 }
419 if (i >= 1000)
420 {
421 if ((timeval_ms()-then) > 1000)
422 {
423 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
424 return ERROR_FAIL;
425 }
426 }
427
428 i++;
429 }
430 }
431
432 return ERROR_OK;
433 }
434
435 /** Execute one instruction via ITR
436 *
437 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
438 *
439 * \param arm11 Target state variable.
440 * \param opcode ARM opcode
441 *
442 */
443 int arm11_run_instr_no_data1(struct arm11_common * arm11, uint32_t opcode)
444 {
445 return arm11_run_instr_no_data(arm11, &opcode, 1);
446 }
447
448
449 /** Execute one instruction via ITR repeatedly while
450 * passing data to the core via DTR on each execution.
451 *
452 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
453 * is set, the ITR Ready flag is set (as seen on the previous entry to
454 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
455 *
456 * The executed instruction \em must read data from DTR.
457 *
458 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
459 *
460 * \param arm11 Target state variable.
461 * \param opcode ARM opcode
462 * \param data Pointer to the data words to be passed to the core
463 * \param count Number of data words and instruction repetitions
464 *
465 */
466 int arm11_run_instr_data_to_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
467 {
468 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
469
470 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
471
472 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
473
474 struct scan_field chain5_fields[3];
475
476 uint32_t Data;
477 uint8_t Ready;
478 uint8_t nRetry;
479
480 arm11_setup_field(arm11, 32, &Data, NULL, chain5_fields + 0);
481 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
482 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
483
484 while (count--)
485 {
486 int i = 0;
487 do
488 {
489 Data = *data;
490
491 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_IDLE));
492
493 CHECK_RETVAL(jtag_execute_queue());
494
495 JTAG_DEBUG("DTR Ready %d nRetry %d", Ready, nRetry);
496
497 long long then = 0;
498
499 if (i == 1000)
500 {
501 then = timeval_ms();
502 }
503 if (i >= 1000)
504 {
505 if ((timeval_ms()-then) > 1000)
506 {
507 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
508 return ERROR_FAIL;
509 }
510 }
511
512 i++;
513 }
514 while (!Ready);
515
516 data++;
517 }
518
519 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
520
521 int i = 0;
522 do
523 {
524 Data = 0;
525
526 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
527
528 CHECK_RETVAL(jtag_execute_queue());
529
530 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
531 (unsigned) Data, Ready, nRetry);
532
533 long long then = 0;
534
535 if (i == 1000)
536 {
537 then = timeval_ms();
538 }
539 if (i >= 1000)
540 {
541 if ((timeval_ms()-then) > 1000)
542 {
543 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
544 return ERROR_FAIL;
545 }
546 }
547
548 i++;
549 }
550 while (!Ready);
551
552 return ERROR_OK;
553 }
554
555 /** JTAG path for arm11_run_instr_data_to_core_noack
556 *
557 * The repeated TAP_IDLE's do not cause a repeated execution
558 * if passed without leaving the state.
559 *
560 * Since this is more than 7 bits (adjustable via adding more
561 * TAP_IDLE's) it produces an artificial delay in the lower
562 * layer (FT2232) that is long enough to finish execution on
563 * the core but still shorter than any manually inducible delays.
564 *
565 * To disable this code, try "memwrite burst false"
566 *
567 * FIX!!! should we use multiple TAP_IDLE here or not???
568 *
569 * https://lists.berlios.de/pipermail/openocd-development/2009-July/009698.html
570 * https://lists.berlios.de/pipermail/openocd-development/2009-August/009865.html
571 */
572 static const tap_state_t arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay[] =
573 {
574 TAP_DREXIT2, TAP_DRUPDATE, TAP_IDLE, TAP_IDLE, TAP_IDLE, TAP_DRSELECT, TAP_DRCAPTURE, TAP_DRSHIFT
575 };
576
577
578
579 /** Execute one instruction via ITR repeatedly while
580 * passing data to the core via DTR on each execution.
581 *
582 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
583 * is set, the ITR Ready flag is set (as seen on the previous entry to
584 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
585 *
586 * No Ready check during transmission.
587 *
588 * The executed instruction \em must read data from DTR.
589 *
590 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
591 *
592 * \param arm11 Target state variable.
593 * \param opcode ARM opcode
594 * \param data Pointer to the data words to be passed to the core
595 * \param count Number of data words and instruction repetitions
596 *
597 */
598 int arm11_run_instr_data_to_core_noack(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
599 {
600 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
601
602 arm11_add_debug_INST(arm11, opcode, NULL, TAP_DRPAUSE);
603
604 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
605
606 struct scan_field chain5_fields[3];
607
608 arm11_setup_field(arm11, 32, NULL/*&Data*/, NULL, chain5_fields + 0);
609 arm11_setup_field(arm11, 1, NULL, NULL /*&Ready*/, chain5_fields + 1);
610 arm11_setup_field(arm11, 1, NULL, NULL, chain5_fields + 2);
611
612 uint8_t *Readies;
613 unsigned readiesNum = count + 1;
614 unsigned bytes = sizeof(*Readies)*readiesNum;
615
616 Readies = (uint8_t *) malloc(bytes);
617 if (Readies == NULL)
618 {
619 LOG_ERROR("Out of memory allocating %u bytes", bytes);
620 return ERROR_FAIL;
621 }
622
623 uint8_t * ReadyPos = Readies;
624
625 while (count--)
626 {
627 chain5_fields[0].out_value = (void *)(data++);
628 chain5_fields[1].in_value = ReadyPos++;
629
630 if (count)
631 {
632 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_DRPAUSE));
633 jtag_add_pathmove(ARRAY_SIZE(arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay),
634 arm11_MOVE_DRPAUSE_IDLE_DRPAUSE_with_delay);
635 }
636 else
637 {
638 jtag_add_dr_scan(ARRAY_SIZE(chain5_fields), chain5_fields, jtag_set_end_state(TAP_IDLE));
639 }
640 }
641
642 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
643
644 chain5_fields[0].out_value = 0;
645 chain5_fields[1].in_value = ReadyPos++;
646
647 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, TAP_DRPAUSE);
648
649 int retval = jtag_execute_queue();
650 if (retval == ERROR_OK)
651 {
652 unsigned error_count = 0;
653
654 for (size_t i = 0; i < readiesNum; i++)
655 {
656 if (Readies[i] != 1)
657 {
658 error_count++;
659 }
660 }
661
662 if (error_count > 0 )
663 LOG_ERROR("%u words out of %u not transferred",
664 error_count, readiesNum);
665
666 }
667
668 free(Readies);
669
670 return retval;
671 }
672
673
674 /** Execute an instruction via ITR while handing data into the core via DTR.
675 *
676 * The executed instruction \em must read data from DTR.
677 *
678 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
679 *
680 * \param arm11 Target state variable.
681 * \param opcode ARM opcode
682 * \param data Data word to be passed to the core via DTR
683 *
684 */
685 int arm11_run_instr_data_to_core1(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
686 {
687 return arm11_run_instr_data_to_core(arm11, opcode, &data, 1);
688 }
689
690
691 /** Execute one instruction via ITR repeatedly while
692 * reading data from the core via DTR on each execution.
693 *
694 * Caller guarantees that processor is in debug state, that DSCR_ITR_EN
695 * is set, the ITR Ready flag is set (as seen on the previous entry to
696 * TAP_DRCAPTURE), and the DSCR sticky abort flag is clear.
697 *
698 * The executed instruction \em must write data to DTR.
699 *
700 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
701 *
702 * \param arm11 Target state variable.
703 * \param opcode ARM opcode
704 * \param data Pointer to an array that receives the data words from the core
705 * \param count Number of data words and instruction repetitions
706 *
707 */
708 int arm11_run_instr_data_from_core(struct arm11_common * arm11, uint32_t opcode, uint32_t * data, size_t count)
709 {
710 arm11_add_IR(arm11, ARM11_ITRSEL, ARM11_TAP_DEFAULT);
711
712 arm11_add_debug_INST(arm11, opcode, NULL, TAP_IDLE);
713
714 arm11_add_IR(arm11, ARM11_INTEST, ARM11_TAP_DEFAULT);
715
716 struct scan_field chain5_fields[3];
717
718 uint32_t Data;
719 uint8_t Ready;
720 uint8_t nRetry;
721
722 arm11_setup_field(arm11, 32, NULL, &Data, chain5_fields + 0);
723 arm11_setup_field(arm11, 1, NULL, &Ready, chain5_fields + 1);
724 arm11_setup_field(arm11, 1, NULL, &nRetry, chain5_fields + 2);
725
726 while (count--)
727 {
728 int i = 0;
729 do
730 {
731 arm11_add_dr_scan_vc(ARRAY_SIZE(chain5_fields), chain5_fields, count ? TAP_IDLE : TAP_DRPAUSE);
732
733 CHECK_RETVAL(jtag_execute_queue());
734
735 JTAG_DEBUG("DTR Data %08x Ready %d nRetry %d",
736 (unsigned) Data, Ready, nRetry);
737
738 long long then = 0;
739
740 if (i == 1000)
741 {
742 then = timeval_ms();
743 }
744 if (i >= 1000)
745 {
746 if ((timeval_ms()-then) > 1000)
747 {
748 LOG_WARNING("Timeout (1000ms) waiting for instructions to complete");
749 return ERROR_FAIL;
750 }
751 }
752
753 i++;
754 }
755 while (!Ready);
756
757 *data++ = Data;
758 }
759
760 return ERROR_OK;
761 }
762
763 /** Execute one instruction via ITR
764 * then load r0 into DTR and read DTR from core.
765 *
766 * The first executed instruction (\p opcode) should write data to r0.
767 *
768 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
769 *
770 * \param arm11 Target state variable.
771 * \param opcode ARM opcode to write r0 with the value of interest
772 * \param data Pointer to a data word that receives the value from r0 after \p opcode was executed.
773 *
774 */
775 int arm11_run_instr_data_from_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t * data)
776 {
777 int retval;
778 retval = arm11_run_instr_no_data1(arm11, opcode);
779 if (retval != ERROR_OK)
780 return retval;
781
782 /* MCR p14,0,R0,c0,c5,0 (move r0 -> wDTR -> local var) */
783 arm11_run_instr_data_from_core(arm11, 0xEE000E15, data, 1);
784
785 return ERROR_OK;
786 }
787
788 /** Load data into core via DTR then move it to r0 then
789 * execute one instruction via ITR
790 *
791 * The final executed instruction (\p opcode) should read data from r0.
792 *
793 * \pre arm11_run_instr_data_prepare() / arm11_run_instr_data_finish() block
794 *
795 * \param arm11 Target state variable.
796 * \param opcode ARM opcode to read r0 act upon it
797 * \param data Data word that will be written to r0 before \p opcode is executed
798 *
799 */
800 int arm11_run_instr_data_to_core_via_r0(struct arm11_common * arm11, uint32_t opcode, uint32_t data)
801 {
802 int retval;
803 /* MRC p14,0,r0,c0,c5,0 */
804 retval = arm11_run_instr_data_to_core1(arm11, 0xEE100E15, data);
805 if (retval != ERROR_OK)
806 return retval;
807
808 retval = arm11_run_instr_no_data1(arm11, opcode);
809 if (retval != ERROR_OK)
810 return retval;
811
812 return ERROR_OK;
813 }
814
815 /** Apply reads and writes to scan chain 7
816 *
817 * \see struct arm11_sc7_action
818 *
819 * \param arm11 Target state variable.
820 * \param actions A list of read and/or write instructions
821 * \param count Number of instructions in the list.
822 *
823 */
824 int arm11_sc7_run(struct arm11_common * arm11, struct arm11_sc7_action * actions, size_t count)
825 {
826 int retval;
827
828 retval = arm11_add_debug_SCAN_N(arm11, 0x07, ARM11_TAP_DEFAULT);
829 if (retval != ERROR_OK)
830 return retval;
831
832 arm11_add_IR(arm11, ARM11_EXTEST, ARM11_TAP_DEFAULT);
833
834 struct scan_field chain7_fields[3];
835
836 uint8_t nRW;
837 uint32_t DataOut;
838 uint8_t AddressOut;
839 uint8_t Ready;
840 uint32_t DataIn;
841 uint8_t AddressIn;
842
843 arm11_setup_field(arm11, 1, &nRW, &Ready, chain7_fields + 0);
844 arm11_setup_field(arm11, 32, &DataOut, &DataIn, chain7_fields + 1);
845 arm11_setup_field(arm11, 7, &AddressOut, &AddressIn, chain7_fields + 2);
846
847 for (size_t i = 0; i < count + 1; i++)
848 {
849 if (i < count)
850 {
851 nRW = actions[i].write ? 1 : 0;
852 DataOut = actions[i].value;
853 AddressOut = actions[i].address;
854 }
855 else
856 {
857 nRW = 1;
858 DataOut = 0;
859 AddressOut = 0;
860 }
861
862 do
863 {
864 JTAG_DEBUG("SC7 <= c%-3d Data %08x %s",
865 (unsigned) AddressOut,
866 (unsigned) DataOut,
867 nRW ? "write" : "read");
868
869 arm11_add_dr_scan_vc(ARRAY_SIZE(chain7_fields),
870 chain7_fields, TAP_DRPAUSE);
871
872 CHECK_RETVAL(jtag_execute_queue());
873
874 if (!Ready)
875 JTAG_DEBUG("SC7 => !ready");
876 }
877 while (!Ready); /* 'nRW' is 'Ready' on read out */
878
879 if (!nRW)
880 JTAG_DEBUG("SC7 => Data %08x", (unsigned) DataIn);
881
882 if (i > 0)
883 {
884 if (actions[i - 1].address != AddressIn)
885 {
886 LOG_WARNING("Scan chain 7 shifted out unexpected address");
887 }
888
889 if (!actions[i - 1].write)
890 {
891 actions[i - 1].value = DataIn;
892 }
893 else
894 {
895 if (actions[i - 1].value != DataIn)
896 {
897 LOG_WARNING("Scan chain 7 shifted out unexpected data");
898 }
899 }
900 }
901 }
902 return ERROR_OK;
903 }
904
905 /** Clear VCR and all breakpoints and watchpoints via scan chain 7
906 *
907 * \param arm11 Target state variable.
908 *
909 */
910 void arm11_sc7_clear_vbw(struct arm11_common * arm11)
911 {
912 size_t clear_bw_size = arm11->brp + 1;
913 struct arm11_sc7_action *clear_bw = malloc(sizeof(struct arm11_sc7_action) * clear_bw_size);
914 struct arm11_sc7_action * pos = clear_bw;
915
916 for (size_t i = 0; i < clear_bw_size; i++)
917 {
918 clear_bw[i].write = true;
919 clear_bw[i].value = 0;
920 }
921
922 for (size_t i = 0; i < arm11->brp; i++)
923 (pos++)->address = ARM11_SC7_BCR0 + i;
924
925 (pos++)->address = ARM11_SC7_VCR;
926
927 arm11_sc7_run(arm11, clear_bw, clear_bw_size);
928
929 free (clear_bw);
930 }
931
932 /** Write VCR register
933 *
934 * \param arm11 Target state variable.
935 * \param value Value to be written
936 */
937 void arm11_sc7_set_vcr(struct arm11_common * arm11, uint32_t value)
938 {
939 struct arm11_sc7_action set_vcr;
940
941 set_vcr.write = true;
942 set_vcr.address = ARM11_SC7_VCR;
943 set_vcr.value = value;
944
945 arm11_sc7_run(arm11, &set_vcr, 1);
946 }
947
948
949
950 /** Read word from address
951 *
952 * \param arm11 Target state variable.
953 * \param address Memory address to be read
954 * \param result Pointer where to store result
955 *
956 */
957 int arm11_read_memory_word(struct arm11_common * arm11, uint32_t address, uint32_t * result)
958 {
959 int retval;
960 retval = arm11_run_instr_data_prepare(arm11);
961 if (retval != ERROR_OK)
962 return retval;
963
964 /* MRC p14,0,r0,c0,c5,0 (r0 = address) */
965 CHECK_RETVAL(arm11_run_instr_data_to_core1(arm11, 0xee100e15, address));
966
967 /* LDC p14,c5,[R0],#4 (DTR = [r0]) */
968 CHECK_RETVAL(arm11_run_instr_data_from_core(arm11, 0xecb05e01, result, 1));
969
970 return arm11_run_instr_data_finish(arm11);
971 }
972
973
974 /************************************************************************/
975
976 /*
977 * ARM11 provider for the OpenOCD implementation of the standard
978 * architectural ARM v6/v7 "Debug Programmer's Model" (DPM).
979 */
980
981 static inline struct arm11_common *dpm_to_arm11(struct arm_dpm *dpm)
982 {
983 return container_of(dpm, struct arm11_common, dpm);
984 }
985
986 static int arm11_dpm_prepare(struct arm_dpm *dpm)
987 {
988 struct arm11_common *arm11 = dpm_to_arm11(dpm);
989
990 arm11 = container_of(dpm->arm, struct arm11_common, arm);
991
992 return arm11_run_instr_data_prepare(dpm_to_arm11(dpm));
993 }
994
995 static int arm11_dpm_finish(struct arm_dpm *dpm)
996 {
997 return arm11_run_instr_data_finish(dpm_to_arm11(dpm));
998 }
999
1000 static int arm11_dpm_instr_write_data_dcc(struct arm_dpm *dpm,
1001 uint32_t opcode, uint32_t data)
1002 {
1003 return arm11_run_instr_data_to_core(dpm_to_arm11(dpm),
1004 opcode, &data, 1);
1005 }
1006
1007 static int arm11_dpm_instr_write_data_r0(struct arm_dpm *dpm,
1008 uint32_t opcode, uint32_t data)
1009 {
1010 return arm11_run_instr_data_to_core_via_r0(dpm_to_arm11(dpm),
1011 opcode, data);
1012 }
1013
1014 static int arm11_dpm_instr_read_data_dcc(struct arm_dpm *dpm,
1015 uint32_t opcode, uint32_t *data)
1016 {
1017 return arm11_run_instr_data_from_core(dpm_to_arm11(dpm),
1018 opcode, data, 1);
1019 }
1020
1021 static int arm11_dpm_instr_read_data_r0(struct arm_dpm *dpm,
1022 uint32_t opcode, uint32_t *data)
1023 {
1024 return arm11_run_instr_data_from_core_via_r0(dpm_to_arm11(dpm),
1025 opcode, data);
1026 }
1027
1028 /* Because arm11_sc7_run() takes a vector of actions, we batch breakpoint
1029 * and watchpoint operations instead of running them right away. Since we
1030 * pre-allocated our vector, we don't need to worry about space.
1031 */
1032 static int arm11_bpwp_enable(struct arm_dpm *dpm, unsigned index,
1033 uint32_t addr, uint32_t control)
1034 {
1035 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1036 struct arm11_sc7_action *action;
1037
1038 action = arm11->bpwp_actions + arm11->bpwp_n;
1039
1040 /* Invariant: this bp/wp is disabled.
1041 * It also happens that the core is halted here, but for
1042 * DPM-based cores we don't actually care about that.
1043 */
1044
1045 action[0].write = action[1].write = true;
1046
1047 action[0].value = addr;
1048 action[1].value = control;
1049
1050 switch (index) {
1051 case 0 ... 15:
1052 action[0].address = ARM11_SC7_BVR0 + index;
1053 action[1].address = ARM11_SC7_BCR0 + index;
1054 break;
1055 case 16 ... 32:
1056 index -= 16;
1057 action[0].address = ARM11_SC7_WVR0 + index;
1058 action[1].address = ARM11_SC7_WCR0 + index;
1059 break;
1060 default:
1061 return ERROR_FAIL;
1062 }
1063
1064 arm11->bpwp_n += 2;
1065
1066 return ERROR_OK;
1067 }
1068
1069 static int arm11_bpwp_disable(struct arm_dpm *dpm, unsigned index)
1070 {
1071 struct arm11_common *arm11 = dpm_to_arm11(dpm);
1072 struct arm11_sc7_action *action;
1073
1074 action = arm11->bpwp_actions + arm11->bpwp_n;
1075
1076 action[0].write = true;
1077 action[0].value = 0;
1078
1079 switch (index) {
1080 case 0 ... 15:
1081 action[0].address = ARM11_SC7_BCR0 + index;
1082 break;
1083 case 16 ... 32:
1084 index -= 16;
1085 action[0].address = ARM11_SC7_WCR0 + index;
1086 break;
1087 default:
1088 return ERROR_FAIL;
1089 }
1090
1091 arm11->bpwp_n += 1;
1092
1093 return ERROR_OK;
1094 }
1095
1096 /** Flush any pending breakpoint and watchpoint updates. */
1097 int arm11_bpwp_flush(struct arm11_common *arm11)
1098 {
1099 int retval;
1100
1101 if (!arm11->bpwp_n)
1102 return ERROR_OK;
1103
1104 retval = arm11_sc7_run(arm11, arm11->bpwp_actions, arm11->bpwp_n);
1105 arm11->bpwp_n = 0;
1106
1107 return retval;
1108 }
1109
1110 /** Set up high-level debug module utilities */
1111 int arm11_dpm_init(struct arm11_common *arm11, uint32_t didr)
1112 {
1113 struct arm_dpm *dpm = &arm11->dpm;
1114 int retval;
1115
1116 dpm->arm = &arm11->arm;
1117
1118 dpm->didr = didr;
1119
1120 dpm->prepare = arm11_dpm_prepare;
1121 dpm->finish = arm11_dpm_finish;
1122
1123 dpm->instr_write_data_dcc = arm11_dpm_instr_write_data_dcc;
1124 dpm->instr_write_data_r0 = arm11_dpm_instr_write_data_r0;
1125
1126 dpm->instr_read_data_dcc = arm11_dpm_instr_read_data_dcc;
1127 dpm->instr_read_data_r0 = arm11_dpm_instr_read_data_r0;
1128
1129 dpm->bpwp_enable = arm11_bpwp_enable;
1130 dpm->bpwp_disable = arm11_bpwp_disable;
1131
1132 retval = arm_dpm_setup(dpm);
1133 if (retval != ERROR_OK)
1134 return retval;
1135
1136 /* alloc enough to enable all breakpoints and watchpoints at once */
1137 arm11->bpwp_actions = calloc(2 * (dpm->nbp + dpm->nwp),
1138 sizeof *arm11->bpwp_actions);
1139 if (!arm11->bpwp_actions)
1140 return ERROR_FAIL;
1141
1142 retval = arm_dpm_initialize(dpm);
1143 if (retval != ERROR_OK)
1144 return retval;
1145
1146 return arm11_bpwp_flush(arm11);
1147 }

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)