Zach Welch <zw@superlucidity.net> add TAP_SCAN_BYTES macro
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43
44 /*
45 * Tap states from ARM7TDMI-S Technical reference manual.
46 * Also, validated against several other ARM core technical manuals.
47 *
48 * N.B. tap_get_tms_path() was changed to reflect this corrected
49 * numbering and ordering of the TAP states.
50 *
51 * DANGER!!!! some interfaces care about the actual numbers used
52 * as they are handed off directly to hardware implementations.
53 */
54
55 typedef enum tap_state
56 {
57 #if BUILD_ECOSBOARD
58 /* These are the old numbers. Leave as-is for now... */
59 TAP_RESET = 0, TAP_IDLE = 8,
60 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
61 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
62 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
63 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
64
65 TAP_NUM_STATES = 16, TAP_INVALID = -1,
66 #else
67 /* Proper ARM recommended numbers */
68 TAP_DREXIT2 = 0x0,
69 TAP_DREXIT1 = 0x1,
70 TAP_DRSHIFT = 0x2,
71 TAP_DRPAUSE = 0x3,
72 TAP_IRSELECT = 0x4,
73 TAP_DRUPDATE = 0x5,
74 TAP_DRCAPTURE = 0x6,
75 TAP_DRSELECT = 0x7,
76 TAP_IREXIT2 = 0x8,
77 TAP_IREXIT1 = 0x9,
78 TAP_IRSHIFT = 0xa,
79 TAP_IRPAUSE = 0xb,
80 TAP_IDLE = 0xc,
81 TAP_IRUPDATE = 0xd,
82 TAP_IRCAPTURE = 0xe,
83 TAP_RESET = 0x0f,
84
85 TAP_NUM_STATES = 0x10,
86
87 TAP_INVALID = -1,
88 #endif
89 } tap_state_t;
90
91 typedef struct tap_transition_s
92 {
93 tap_state_t high;
94 tap_state_t low;
95 } tap_transition_t;
96
97 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
98
99
100 /*-----<Cable Helper API>-------------------------------------------*/
101
102 /* The "Cable Helper API" is what the cable drivers can use to help implement
103 * their "Cable API". So a Cable Helper API is a set of helper functions used by
104 * cable drivers, and this is different from a Cable API. A "Cable API" is what
105 * higher level code used to talk to a cable.
106 */
107
108
109 /** implementation of wrapper function tap_set_state() */
110 void tap_set_state_impl(tap_state_t new_state);
111
112 /**
113 * Function tap_set_state
114 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
115 * cable. The state follower is hopefully always in the same state as the actual
116 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
117 * cable driver. All the cable drivers call this function to indicate the state they think
118 * the TAPs attached to their cables are in. Because this function can also log transitions,
119 * it will be helpful to call this function with every transition that the TAPs being manipulated
120 * are expected to traverse, not just end points of a multi-step state path.
121 * @param new_state is the state we think the TAPs are currently in or are about to enter.
122 */
123 #if defined(_DEBUG_JTAG_IO_)
124 #define tap_set_state(new_state) \
125 do { \
126 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
127 tap_set_state_impl(new_state); \
128 } while (0)
129 #else
130 static inline void tap_set_state(tap_state_t new_state)
131 {
132 tap_set_state_impl(new_state);
133 }
134
135 #endif
136
137 /**
138 * Function tap_get_state
139 * gets the state of the "state follower" which tracks the state of the TAPs connected to
140 * the cable.
141 * @see tap_set_state
142 * @return tap_state_t - The state the TAPs are in now.
143 */
144 tap_state_t tap_get_state(void);
145
146 /**
147 * Function tap_set_end_state
148 * sets the state of an "end state follower" which tracks the state that any cable driver
149 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
150 * of that TAP operation this value is copied into the state follower via tap_set_state().
151 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
152 */
153 void tap_set_end_state(tap_state_t new_end_state);
154
155 /**
156 * Function tap_get_end_state
157 * @see tap_set_end_state
158 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
159 */
160 tap_state_t tap_get_end_state(void);
161
162 /**
163 * Function tap_get_tms_path
164 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
165 * during a sequence of seven TAP clock cycles in order to get from
166 * state \a "from" to state \a "to".
167 * @param from is the starting state
168 * @param to is the resultant or final state
169 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
170 */
171 int tap_get_tms_path(tap_state_t from, tap_state_t to);
172
173 /**
174 * Function tap_move_ndx
175 * when given a stable state, returns an index from 0-5. The index corresponds to a
176 * sequence of stable states which are given in this order: <p>
177 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
178 * <p>
179 * This sequence corresponds to look up tables which are used in some of the
180 * cable drivers.
181 * @param astate is the stable state to find in the sequence. If a non stable
182 * state is passed, this may cause the program to output an error message
183 * and terminate.
184 * @return int - the array (or sequence) index as described above
185 */
186 int tap_move_ndx(tap_state_t astate);
187
188 /**
189 * Function tap_is_state_stable
190 * returns true if the \a astate is stable.
191 */
192 bool tap_is_state_stable(tap_state_t astate);
193
194 /**
195 * Function tap_state_transition
196 * takes a current TAP state and returns the next state according to the tms value.
197 * @param current_state is the state of a TAP currently.
198 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
199 * @return tap_state_t - the next state a TAP would enter.
200 */
201 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
202
203 /**
204 * Function tap_state_name
205 * Returns a string suitable for display representing the JTAG tap_state
206 */
207 const char* tap_state_name(tap_state_t state);
208
209 #ifdef _DEBUG_JTAG_IO_
210 /**
211 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
212 * @param tms_buf must points to a buffer containing the TMS bitstream.
213 * @param tdi_buf must points to a buffer containing the TDI bitstream.
214 * @param tap_len must specify the length of the TMS/TDI bitstreams.
215 * @param start_tap_state must specify the current TAP state.
216 * @returns the final TAP state; pass as @a start_tap_state in following call.
217 */
218 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
219 unsigned tap_len, tap_state_t start_tap_state);
220 #else
221 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
222 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
223 {
224 return start_tap_state;
225 }
226 #endif // _DEBUG_JTAG_IO_
227
228 /*-----</Cable Helper API>------------------------------------------*/
229
230
231 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
232 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
233
234 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
235
236 struct scan_field_s;
237 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
238
239 /// @brief calculates number of bytes required to hold @a n TAP scan bits
240 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
241
242 typedef struct scan_field_s
243 {
244 jtag_tap_t* tap; /* tap pointer this instruction refers to */
245 int num_bits; /* number of bits this field specifies (up to 32) */
246 u8* out_value; /* value to be scanned into the device */
247 u8* out_mask; /* only masked bits care */
248 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
249 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
250 u8* in_check_value; /* used to validate scan results */
251 u8* in_check_mask; /* check specified bits against check_value */
252 in_handler_t in_handler; /* process received buffer using this handler */
253 void* in_handler_priv; /* additional information for the in_handler */
254 } scan_field_t;
255
256 enum scan_type {
257 /* IN: from device to host, OUT: from host to device */
258 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
259 };
260
261 typedef struct scan_command_s
262 {
263 int ir_scan; /* instruction/not data scan */
264 int num_fields; /* number of fields in *fields array */
265 scan_field_t* fields; /* pointer to an array of data scan fields */
266 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
267 } scan_command_t;
268
269 typedef struct statemove_command_s
270 {
271 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
272 } statemove_command_t;
273
274 typedef struct pathmove_command_s
275 {
276 int num_states; /* number of states in *path */
277 tap_state_t* path; /* states that have to be passed */
278 } pathmove_command_t;
279
280 typedef struct runtest_command_s
281 {
282 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
283 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
284 } runtest_command_t;
285
286
287 typedef struct stableclocks_command_s
288 {
289 int num_cycles; /* number of clock cycles that should be sent */
290 } stableclocks_command_t;
291
292
293 typedef struct reset_command_s
294 {
295 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
296 int srst;
297 } reset_command_t;
298
299 typedef struct end_state_command_s
300 {
301 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
302 } end_state_command_t;
303
304 typedef struct sleep_command_s
305 {
306 u32 us; /* number of microseconds to sleep */
307 } sleep_command_t;
308
309 typedef union jtag_command_container_u
310 {
311 scan_command_t* scan;
312 statemove_command_t* statemove;
313 pathmove_command_t* pathmove;
314 runtest_command_t* runtest;
315 stableclocks_command_t* stableclocks;
316 reset_command_t* reset;
317 end_state_command_t* end_state;
318 sleep_command_t* sleep;
319 } jtag_command_container_t;
320
321 enum jtag_command_type {
322 JTAG_SCAN = 1,
323 JTAG_STATEMOVE = 2,
324 JTAG_RUNTEST = 3,
325 JTAG_RESET = 4,
326 JTAG_END_STATE = 5,
327 JTAG_PATHMOVE = 6,
328 JTAG_SLEEP = 7,
329 JTAG_STABLECLOCKS = 8
330 };
331
332 typedef struct jtag_command_s
333 {
334 jtag_command_container_t cmd;
335 enum jtag_command_type type;
336 struct jtag_command_s* next;
337 } jtag_command_t;
338
339 extern jtag_command_t* jtag_command_queue;
340
341 /* forward declaration */
342 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
343
344 /* this is really: typedef jtag_tap_t */
345 /* But - the typedef is done in "types.h" */
346 /* due to "forward decloration reasons" */
347 struct jtag_tap_s
348 {
349 const char* chip;
350 const char* tapname;
351 const char* dotted_name;
352 int abs_chain_position;
353 int enabled;
354 int ir_length; /* size of instruction register */
355 u32 ir_capture_value;
356 u8* expected; /* Capture-IR expected value */
357 u32 ir_capture_mask;
358 u8* expected_mask; /* Capture-IR expected mask */
359 u32 idcode; /* device identification code */
360 u32* expected_ids; /* Array of expected identification codes */
361 u8 expected_ids_cnt; /* Number of expected identification codes */
362 u8* cur_instr; /* current instruction */
363 int bypass; /* bypass register selected */
364
365 jtag_tap_event_action_t* event_action;
366
367 jtag_tap_t* next_tap;
368 };
369 extern jtag_tap_t* jtag_AllTaps(void);
370 extern jtag_tap_t* jtag_TapByPosition(int n);
371 extern jtag_tap_t* jtag_TapByPosition(int n);
372 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
373 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
374 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
375 extern int jtag_NumEnabledTaps(void);
376 extern int jtag_NumTotalTaps(void);
377
378 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
379 {
380 if (p == NULL)
381 {
382 /* start at the head of list */
383 p = jtag_AllTaps();
384 }
385 else
386 {
387 /* start *after* this one */
388 p = p->next_tap;
389 }
390 while (p)
391 {
392 if (p->enabled)
393 {
394 break;
395 }
396 else
397 {
398 p = p->next_tap;
399 }
400 }
401
402 return p;
403 }
404
405
406 enum reset_line_mode {
407 LINE_OPEN_DRAIN = 0x0,
408 LINE_PUSH_PULL = 0x1,
409 };
410
411 typedef struct jtag_interface_s
412 {
413 char* name;
414
415 /* queued command execution
416 */
417 int (*execute_queue)(void);
418
419 /* interface initalization
420 */
421 int (*speed)(int speed);
422 int (*register_commands)(struct command_context_s* cmd_ctx);
423 int (*init)(void);
424 int (*quit)(void);
425
426 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
427 * a failure if it can't support the KHz/RTCK.
428 *
429 * WARNING!!!! if RTCK is *slow* then think carefully about
430 * whether you actually want to support this in the driver.
431 * Many target scripts are written to handle the absence of RTCK
432 * and use a fallback kHz TCK.
433 */
434 int (*khz)(int khz, int* jtag_speed);
435
436 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
437 * a failure if it can't support the KHz/RTCK. */
438 int (*speed_div)(int speed, int* khz);
439
440 /* Read and clear the power dropout flag. Note that a power dropout
441 * can be transitionary, easily much less than a ms.
442 *
443 * So to find out if the power is *currently* on, you must invoke
444 * this method twice. Once to clear the power dropout flag and a
445 * second time to read the current state.
446 *
447 * Currently the default implementation is never to detect power dropout.
448 */
449 int (*power_dropout)(int* power_dropout);
450
451 /* Read and clear the srst asserted detection flag.
452 *
453 * NB!!!! like power_dropout this does *not* read the current
454 * state. srst assertion is transitionary and *can* be much
455 * less than 1ms.
456 */
457 int (*srst_asserted)(int* srst_asserted);
458 } jtag_interface_t;
459
460 enum jtag_event {
461 JTAG_TRST_ASSERTED
462 };
463
464 extern char* jtag_event_strings[];
465
466 enum jtag_tap_event {
467 JTAG_TAP_EVENT_ENABLE,
468 JTAG_TAP_EVENT_DISABLE
469 };
470
471 extern const Jim_Nvp nvp_jtag_tap_event[];
472
473 struct jtag_tap_event_action_s
474 {
475 enum jtag_tap_event event;
476 Jim_Obj* body;
477 jtag_tap_event_action_t* next;
478 };
479
480 extern int jtag_trst;
481 extern int jtag_srst;
482
483 typedef struct jtag_event_callback_s
484 {
485 int (*callback)(enum jtag_event event, void* priv);
486 void* priv;
487 struct jtag_event_callback_s* next;
488 } jtag_event_callback_t;
489
490 extern jtag_event_callback_t* jtag_event_callbacks;
491
492 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
493
494 extern int jtag_speed;
495 extern int jtag_speed_post_reset;
496
497 enum reset_types {
498 RESET_NONE = 0x0,
499 RESET_HAS_TRST = 0x1,
500 RESET_HAS_SRST = 0x2,
501 RESET_TRST_AND_SRST = 0x3,
502 RESET_SRST_PULLS_TRST = 0x4,
503 RESET_TRST_PULLS_SRST = 0x8,
504 RESET_TRST_OPEN_DRAIN = 0x10,
505 RESET_SRST_PUSH_PULL = 0x20,
506 };
507
508 extern enum reset_types jtag_reset_config;
509
510 /* initialize interface upon startup. A successful no-op
511 * upon subsequent invocations
512 */
513 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
514
515 /* initialize JTAG chain using only a RESET reset. If init fails,
516 * try reset + init.
517 */
518 extern int jtag_init(struct command_context_s* cmd_ctx);
519
520 /* reset, then initialize JTAG chain */
521 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
522 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
523
524 /* JTAG interface, can be implemented with a software or hardware fifo
525 *
526 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
527 * can be emulated by using a larger scan.
528 *
529 * Code that is relatively insensitive to the path(as long
530 * as it is JTAG compliant) taken through state machine can use
531 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
532 * specified as end state and a subsequent jtag_add_pathmove() must
533 * be issued.
534 *
535 */
536 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
537 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
538 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
539 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
540 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
541 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
542 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
543 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
544
545 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
546 * of start state.
547 */
548 extern void jtag_add_tlr(void);
549 extern int interface_jtag_add_tlr(void);
550
551 /* Do not use jtag_add_pathmove() unless you need to, but do use it
552 * if you have to.
553 *
554 * DANGER! If the target is dependent upon a particular sequence
555 * of transitions for things to work correctly(e.g. as a workaround
556 * for an errata that contradicts the JTAG standard), then pathmove
557 * must be used, even if some jtag interfaces happen to use the
558 * desired path. Worse, the jtag interface used for testing a
559 * particular implementation, could happen to use the "desired"
560 * path when transitioning to/from end
561 * state.
562 *
563 * A list of unambigious single clock state transitions, not
564 * all drivers can support this, but it is required for e.g.
565 * XScale and Xilinx support
566 *
567 * Note! TAP_RESET must not be used in the path!
568 *
569 * Note that the first on the list must be reachable
570 * via a single transition from the current state.
571 *
572 * All drivers are required to implement jtag_add_pathmove().
573 * However, if the pathmove sequence can not be precisely
574 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
575 * must return an error. It is legal, but not recommended, that
576 * a driver returns an error in all cases for a pathmove if it
577 * can only implement a few transitions and therefore
578 * a partial implementation of pathmove would have little practical
579 * application.
580 */
581 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
582 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
583
584 /* go to TAP_IDLE, if we're not already there and cycle
585 * precisely num_cycles in the TAP_IDLE after which move
586 * to the end state, if it is != TAP_IDLE
587 *
588 * nb! num_cycles can be 0, in which case the fn will navigate
589 * to endstate via TAP_IDLE
590 */
591 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
592 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
593
594 /* A reset of the TAP state machine can be requested.
595 *
596 * Whether tms or trst reset is used depends on the capabilities of
597 * the target and jtag interface(reset_config command configures this).
598 *
599 * srst can driver a reset of the TAP state machine and vice
600 * versa
601 *
602 * Application code may need to examine value of jtag_reset_config
603 * to determine the proper codepath
604 *
605 * DANGER! Even though srst drives trst, trst might not be connected to
606 * the interface, and it might actually be *harmful* to assert trst in this case.
607 *
608 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
609 * are supported.
610 *
611 * only req_tlr_or_trst and srst can have a transition for a
612 * call as the effects of transitioning both at the "same time"
613 * are undefined, but when srst_pulls_trst or vice versa,
614 * then trst & srst *must* be asserted together.
615 */
616 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
617
618 /* this drives the actual srst and trst pins. srst will always be 0
619 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
620 * trst.
621 *
622 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
623 * approperiate
624 */
625 extern int interface_jtag_add_reset(int trst, int srst);
626 extern void jtag_add_end_state(tap_state_t endstate);
627 extern int interface_jtag_add_end_state(tap_state_t endstate);
628 extern void jtag_add_sleep(u32 us);
629 extern int interface_jtag_add_sleep(u32 us);
630
631
632 /**
633 * Function jtag_add_stable_clocks
634 * first checks that the state in which the clocks are to be issued is
635 * stable, then queues up clock_count clocks for transmission.
636 */
637 void jtag_add_clocks(int num_cycles);
638 int interface_jtag_add_clocks(int num_cycles);
639
640
641 /*
642 * For software FIFO implementations, the queued commands can be executed
643 * during this call or earlier. A sw queue might decide to push out
644 * some of the jtag_add_xxx() operations once the queue is "big enough".
645 *
646 * This fn will return an error code if any of the prior jtag_add_xxx()
647 * calls caused a failure, e.g. check failure. Note that it does not
648 * matter if the operation was executed *before* jtag_execute_queue(),
649 * jtag_execute_queue() will still return an error code.
650 *
651 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
652 * executed when this fn returns, but if what has been queued only
653 * clocks data out, without reading anything back, then JTAG could
654 * be running *after* jtag_execute_queue() returns. The API does
655 * not define a way to flush a hw FIFO that runs *after*
656 * jtag_execute_queue() returns.
657 *
658 * jtag_add_xxx() commands can either be executed immediately or
659 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
660 */
661 extern int jtag_execute_queue(void);
662
663 /* can be implemented by hw+sw */
664 extern int interface_jtag_execute_queue(void);
665 extern int jtag_power_dropout(int* dropout);
666 extern int jtag_srst_asserted(int* srst_asserted);
667
668 /* JTAG support functions */
669 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
670 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
671 extern int jtag_scan_size(scan_command_t* cmd);
672 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
673 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
674
675 extern void jtag_sleep(u32 us);
676 extern int jtag_call_event_callbacks(enum jtag_event event);
677 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
678
679 extern int jtag_verify_capture_ir;
680
681 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
682
683 /* error codes
684 * JTAG subsystem uses codes between -100 and -199 */
685
686 #define ERROR_JTAG_INIT_FAILED (-100)
687 #define ERROR_JTAG_INVALID_INTERFACE (-101)
688 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
689 #define ERROR_JTAG_TRST_ASSERTED (-103)
690 #define ERROR_JTAG_QUEUE_FAILED (-104)
691 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
692 #define ERROR_JTAG_DEVICE_ERROR (-107)
693
694
695 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
696 #ifdef HAVE_JTAG_MINIDRIVER_H
697 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
698 #include "jtag_minidriver.h"
699 #define MINIDRIVER(a) notused ## a
700 #else
701 #define MINIDRIVER(a) a
702
703 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
704 *
705 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
706 *
707 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
708 *
709 * If the device is in bypass, then that is an error condition in
710 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
711 * does detect it. Similarly if the device is not in bypass, data must
712 * be passed to it.
713 *
714 * If anything fails, then jtag_error will be set and jtag_execute() will
715 * return an error. There is no way to determine if there was a failure
716 * during this function call.
717 *
718 * Note that this jtag_add_dr_out can be defined as an inline function.
719 */
720 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
721 tap_state_t end_state);
722
723 #endif
724
725 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
726 tap_state_t end_state)
727 {
728 if (end_state != TAP_INVALID)
729 cmd_queue_end_state = end_state;
730 cmd_queue_cur_state = cmd_queue_end_state;
731 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
732 }
733
734
735 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)