Zach Welch <zw@superlucidity.net> reorder enum tap_state
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43
44 /*
45 * Tap states from ARM7TDMI-S Technical reference manual.
46 * Also, validated against several other ARM core technical manuals.
47 *
48 * N.B. tap_get_tms_path() was changed to reflect this corrected
49 * numbering and ordering of the TAP states.
50 */
51 typedef enum tap_state
52 {
53 TAP_DREXIT2 = 0x0,
54 TAP_DREXIT1 = 0x1,
55 TAP_DRSHIFT = 0x2,
56 TAP_DRPAUSE = 0x3,
57 TAP_IRSELECT = 0x4,
58 TAP_DRUPDATE = 0x5,
59 TAP_DRCAPTURE = 0x6,
60 TAP_DRSELECT = 0x7,
61 TAP_IREXIT2 = 0x8,
62 TAP_IREXIT1 = 0x9,
63 TAP_IRSHIFT = 0xa,
64 TAP_IRPAUSE = 0xb,
65 TAP_IDLE = 0xc,
66 TAP_IRUPDATE = 0xd,
67 TAP_IRCAPTURE = 0xe,
68 TAP_RESET = 0x0f,
69
70 TAP_NUM_STATES = 0x10,
71
72 TAP_INVALID = -1,
73 } tap_state_t;
74
75 typedef struct tap_transition_s
76 {
77 tap_state_t high;
78 tap_state_t low;
79 } tap_transition_t;
80
81 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
82
83
84 /*-----<Cable Helper API>-------------------------------------------*/
85
86 /* The "Cable Helper API" is what the cable drivers can use to help implement
87 * their "Cable API". So a Cable Helper API is a set of helper functions used by
88 * cable drivers, and this is different from a Cable API. A "Cable API" is what
89 * higher level code used to talk to a cable.
90 */
91
92
93 /** implementation of wrapper function tap_set_state() */
94 void tap_set_state_impl(tap_state_t new_state);
95
96 /**
97 * Function tap_set_state
98 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
99 * cable. The state follower is hopefully always in the same state as the actual
100 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
101 * cable driver. All the cable drivers call this function to indicate the state they think
102 * the TAPs attached to their cables are in. Because this function can also log transitions,
103 * it will be helpful to call this function with every transition that the TAPs being manipulated
104 * are expected to traverse, not just end points of a multi-step state path.
105 * @param new_state is the state we think the TAPs are currently in or are about to enter.
106 */
107 #if defined(_DEBUG_JTAG_IO_)
108 #define tap_set_state(new_state) \
109 do { \
110 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
111 tap_set_state_impl(new_state); \
112 } while (0)
113 #else
114 static inline void tap_set_state(tap_state_t new_state)
115 {
116 tap_set_state_impl(new_state);
117 }
118
119 #endif
120
121 /**
122 * Function tap_get_state
123 * gets the state of the "state follower" which tracks the state of the TAPs connected to
124 * the cable.
125 * @see tap_set_state
126 * @return tap_state_t - The state the TAPs are in now.
127 */
128 tap_state_t tap_get_state(void);
129
130 /**
131 * Function tap_set_end_state
132 * sets the state of an "end state follower" which tracks the state that any cable driver
133 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
134 * of that TAP operation this value is copied into the state follower via tap_set_state().
135 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
136 */
137 void tap_set_end_state(tap_state_t new_end_state);
138
139 /**
140 * Function tap_get_end_state
141 * @see tap_set_end_state
142 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
143 */
144 tap_state_t tap_get_end_state(void);
145
146 /**
147 * Function tap_get_tms_path
148 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
149 * during a sequence of seven TAP clock cycles in order to get from
150 * state \a "from" to state \a "to".
151 * @param from is the starting state
152 * @param to is the resultant or final state
153 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
154 */
155 int tap_get_tms_path(tap_state_t from, tap_state_t to);
156
157 /**
158 * Function tap_move_ndx
159 * when given a stable state, returns an index from 0-5. The index corresponds to a
160 * sequence of stable states which are given in this order: <p>
161 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
162 * <p>
163 * This sequence corresponds to look up tables which are used in some of the
164 * cable drivers.
165 * @param astate is the stable state to find in the sequence. If a non stable
166 * state is passed, this may cause the program to output an error message
167 * and terminate.
168 * @return int - the array (or sequence) index as described above
169 */
170 int tap_move_ndx(tap_state_t astate);
171
172 /**
173 * Function tap_is_state_stable
174 * returns true if the \a astate is stable.
175 */
176 bool tap_is_state_stable(tap_state_t astate);
177
178 /**
179 * Function tap_state_transition
180 * takes a current TAP state and returns the next state according to the tms value.
181 * @param current_state is the state of a TAP currently.
182 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
183 * @return tap_state_t - the next state a TAP would enter.
184 */
185 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
186
187 /**
188 * Function tap_state_name
189 * Returns a string suitable for display representing the JTAG tap_state
190 */
191 const char* tap_state_name(tap_state_t state);
192
193 /*-----</Cable Helper API>------------------------------------------*/
194
195
196 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
197 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
198
199 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
200
201 struct scan_field_s;
202 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
203
204 typedef struct scan_field_s
205 {
206 jtag_tap_t* tap; /* tap pointer this instruction refers to */
207 int num_bits; /* number of bits this field specifies (up to 32) */
208 u8* out_value; /* value to be scanned into the device */
209 u8* out_mask; /* only masked bits care */
210 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
211 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
212 u8* in_check_value; /* used to validate scan results */
213 u8* in_check_mask; /* check specified bits against check_value */
214 in_handler_t in_handler; /* process received buffer using this handler */
215 void* in_handler_priv; /* additional information for the in_handler */
216 } scan_field_t;
217
218 enum scan_type {
219 /* IN: from device to host, OUT: from host to device */
220 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
221 };
222
223 typedef struct scan_command_s
224 {
225 int ir_scan; /* instruction/not data scan */
226 int num_fields; /* number of fields in *fields array */
227 scan_field_t* fields; /* pointer to an array of data scan fields */
228 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
229 } scan_command_t;
230
231 typedef struct statemove_command_s
232 {
233 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
234 } statemove_command_t;
235
236 typedef struct pathmove_command_s
237 {
238 int num_states; /* number of states in *path */
239 tap_state_t* path; /* states that have to be passed */
240 } pathmove_command_t;
241
242 typedef struct runtest_command_s
243 {
244 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
245 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
246 } runtest_command_t;
247
248
249 typedef struct stableclocks_command_s
250 {
251 int num_cycles; /* number of clock cycles that should be sent */
252 } stableclocks_command_t;
253
254
255 typedef struct reset_command_s
256 {
257 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
258 int srst;
259 } reset_command_t;
260
261 typedef struct end_state_command_s
262 {
263 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
264 } end_state_command_t;
265
266 typedef struct sleep_command_s
267 {
268 u32 us; /* number of microseconds to sleep */
269 } sleep_command_t;
270
271 typedef union jtag_command_container_u
272 {
273 scan_command_t* scan;
274 statemove_command_t* statemove;
275 pathmove_command_t* pathmove;
276 runtest_command_t* runtest;
277 stableclocks_command_t* stableclocks;
278 reset_command_t* reset;
279 end_state_command_t* end_state;
280 sleep_command_t* sleep;
281 } jtag_command_container_t;
282
283 enum jtag_command_type {
284 JTAG_SCAN = 1,
285 JTAG_STATEMOVE = 2,
286 JTAG_RUNTEST = 3,
287 JTAG_RESET = 4,
288 JTAG_END_STATE = 5,
289 JTAG_PATHMOVE = 6,
290 JTAG_SLEEP = 7,
291 JTAG_STABLECLOCKS = 8
292 };
293
294 typedef struct jtag_command_s
295 {
296 jtag_command_container_t cmd;
297 enum jtag_command_type type;
298 struct jtag_command_s* next;
299 } jtag_command_t;
300
301 extern jtag_command_t* jtag_command_queue;
302
303 /* forward declaration */
304 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
305
306 /* this is really: typedef jtag_tap_t */
307 /* But - the typedef is done in "types.h" */
308 /* due to "forward decloration reasons" */
309 struct jtag_tap_s
310 {
311 const char* chip;
312 const char* tapname;
313 const char* dotted_name;
314 int abs_chain_position;
315 int enabled;
316 int ir_length; /* size of instruction register */
317 u32 ir_capture_value;
318 u8* expected; /* Capture-IR expected value */
319 u32 ir_capture_mask;
320 u8* expected_mask; /* Capture-IR expected mask */
321 u32 idcode; /* device identification code */
322 u32* expected_ids; /* Array of expected identification codes */
323 u8 expected_ids_cnt; /* Number of expected identification codes */
324 u8* cur_instr; /* current instruction */
325 int bypass; /* bypass register selected */
326
327 jtag_tap_event_action_t* event_action;
328
329 jtag_tap_t* next_tap;
330 };
331 extern jtag_tap_t* jtag_AllTaps(void);
332 extern jtag_tap_t* jtag_TapByPosition(int n);
333 extern jtag_tap_t* jtag_TapByPosition(int n);
334 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
335 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
336 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
337 extern int jtag_NumEnabledTaps(void);
338 extern int jtag_NumTotalTaps(void);
339
340 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
341 {
342 if (p == NULL)
343 {
344 /* start at the head of list */
345 p = jtag_AllTaps();
346 }
347 else
348 {
349 /* start *after* this one */
350 p = p->next_tap;
351 }
352 while (p)
353 {
354 if (p->enabled)
355 {
356 break;
357 }
358 else
359 {
360 p = p->next_tap;
361 }
362 }
363
364 return p;
365 }
366
367
368 enum reset_line_mode {
369 LINE_OPEN_DRAIN = 0x0,
370 LINE_PUSH_PULL = 0x1,
371 };
372
373 typedef struct jtag_interface_s
374 {
375 char* name;
376
377 /* queued command execution
378 */
379 int (*execute_queue)(void);
380
381 /* interface initalization
382 */
383 int (*speed)(int speed);
384 int (*register_commands)(struct command_context_s* cmd_ctx);
385 int (*init)(void);
386 int (*quit)(void);
387
388 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
389 * a failure if it can't support the KHz/RTCK.
390 *
391 * WARNING!!!! if RTCK is *slow* then think carefully about
392 * whether you actually want to support this in the driver.
393 * Many target scripts are written to handle the absence of RTCK
394 * and use a fallback kHz TCK.
395 */
396 int (*khz)(int khz, int* jtag_speed);
397
398 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
399 * a failure if it can't support the KHz/RTCK. */
400 int (*speed_div)(int speed, int* khz);
401
402 /* Read and clear the power dropout flag. Note that a power dropout
403 * can be transitionary, easily much less than a ms.
404 *
405 * So to find out if the power is *currently* on, you must invoke
406 * this method twice. Once to clear the power dropout flag and a
407 * second time to read the current state.
408 *
409 * Currently the default implementation is never to detect power dropout.
410 */
411 int (*power_dropout)(int* power_dropout);
412
413 /* Read and clear the srst asserted detection flag.
414 *
415 * NB!!!! like power_dropout this does *not* read the current
416 * state. srst assertion is transitionary and *can* be much
417 * less than 1ms.
418 */
419 int (*srst_asserted)(int* srst_asserted);
420 } jtag_interface_t;
421
422 enum jtag_event {
423 JTAG_TRST_ASSERTED
424 };
425
426 extern char* jtag_event_strings[];
427
428 enum jtag_tap_event {
429 JTAG_TAP_EVENT_ENABLE,
430 JTAG_TAP_EVENT_DISABLE
431 };
432
433 extern const Jim_Nvp nvp_jtag_tap_event[];
434
435 struct jtag_tap_event_action_s
436 {
437 enum jtag_tap_event event;
438 Jim_Obj* body;
439 jtag_tap_event_action_t* next;
440 };
441
442 extern int jtag_trst;
443 extern int jtag_srst;
444
445 typedef struct jtag_event_callback_s
446 {
447 int (*callback)(enum jtag_event event, void* priv);
448 void* priv;
449 struct jtag_event_callback_s* next;
450 } jtag_event_callback_t;
451
452 extern jtag_event_callback_t* jtag_event_callbacks;
453
454 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
455
456 extern int jtag_speed;
457 extern int jtag_speed_post_reset;
458
459 enum reset_types {
460 RESET_NONE = 0x0,
461 RESET_HAS_TRST = 0x1,
462 RESET_HAS_SRST = 0x2,
463 RESET_TRST_AND_SRST = 0x3,
464 RESET_SRST_PULLS_TRST = 0x4,
465 RESET_TRST_PULLS_SRST = 0x8,
466 RESET_TRST_OPEN_DRAIN = 0x10,
467 RESET_SRST_PUSH_PULL = 0x20,
468 };
469
470 extern enum reset_types jtag_reset_config;
471
472 /* initialize interface upon startup. A successful no-op
473 * upon subsequent invocations
474 */
475 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
476
477 /* initialize JTAG chain using only a RESET reset. If init fails,
478 * try reset + init.
479 */
480 extern int jtag_init(struct command_context_s* cmd_ctx);
481
482 /* reset, then initialize JTAG chain */
483 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
484 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
485
486 /* JTAG interface, can be implemented with a software or hardware fifo
487 *
488 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
489 * can be emulated by using a larger scan.
490 *
491 * Code that is relatively insensitive to the path(as long
492 * as it is JTAG compliant) taken through state machine can use
493 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
494 * specified as end state and a subsequent jtag_add_pathmove() must
495 * be issued.
496 *
497 */
498 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
499 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
500 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
501 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
502 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
503 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
504 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
505 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
506
507 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
508 * of start state.
509 */
510 extern void jtag_add_tlr(void);
511 extern int interface_jtag_add_tlr(void);
512
513 /* Do not use jtag_add_pathmove() unless you need to, but do use it
514 * if you have to.
515 *
516 * DANGER! If the target is dependent upon a particular sequence
517 * of transitions for things to work correctly(e.g. as a workaround
518 * for an errata that contradicts the JTAG standard), then pathmove
519 * must be used, even if some jtag interfaces happen to use the
520 * desired path. Worse, the jtag interface used for testing a
521 * particular implementation, could happen to use the "desired"
522 * path when transitioning to/from end
523 * state.
524 *
525 * A list of unambigious single clock state transitions, not
526 * all drivers can support this, but it is required for e.g.
527 * XScale and Xilinx support
528 *
529 * Note! TAP_RESET must not be used in the path!
530 *
531 * Note that the first on the list must be reachable
532 * via a single transition from the current state.
533 *
534 * All drivers are required to implement jtag_add_pathmove().
535 * However, if the pathmove sequence can not be precisely
536 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
537 * must return an error. It is legal, but not recommended, that
538 * a driver returns an error in all cases for a pathmove if it
539 * can only implement a few transitions and therefore
540 * a partial implementation of pathmove would have little practical
541 * application.
542 */
543 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
544 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
545
546 /* go to TAP_IDLE, if we're not already there and cycle
547 * precisely num_cycles in the TAP_IDLE after which move
548 * to the end state, if it is != TAP_IDLE
549 *
550 * nb! num_cycles can be 0, in which case the fn will navigate
551 * to endstate via TAP_IDLE
552 */
553 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
554 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
555
556 /* A reset of the TAP state machine can be requested.
557 *
558 * Whether tms or trst reset is used depends on the capabilities of
559 * the target and jtag interface(reset_config command configures this).
560 *
561 * srst can driver a reset of the TAP state machine and vice
562 * versa
563 *
564 * Application code may need to examine value of jtag_reset_config
565 * to determine the proper codepath
566 *
567 * DANGER! Even though srst drives trst, trst might not be connected to
568 * the interface, and it might actually be *harmful* to assert trst in this case.
569 *
570 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
571 * are supported.
572 *
573 * only req_tlr_or_trst and srst can have a transition for a
574 * call as the effects of transitioning both at the "same time"
575 * are undefined, but when srst_pulls_trst or vice versa,
576 * then trst & srst *must* be asserted together.
577 */
578 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
579
580 /* this drives the actual srst and trst pins. srst will always be 0
581 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
582 * trst.
583 *
584 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
585 * approperiate
586 */
587 extern int interface_jtag_add_reset(int trst, int srst);
588 extern void jtag_add_end_state(tap_state_t endstate);
589 extern int interface_jtag_add_end_state(tap_state_t endstate);
590 extern void jtag_add_sleep(u32 us);
591 extern int interface_jtag_add_sleep(u32 us);
592
593
594 /**
595 * Function jtag_add_stable_clocks
596 * first checks that the state in which the clocks are to be issued is
597 * stable, then queues up clock_count clocks for transmission.
598 */
599 void jtag_add_clocks(int num_cycles);
600 int interface_jtag_add_clocks(int num_cycles);
601
602
603 /*
604 * For software FIFO implementations, the queued commands can be executed
605 * during this call or earlier. A sw queue might decide to push out
606 * some of the jtag_add_xxx() operations once the queue is "big enough".
607 *
608 * This fn will return an error code if any of the prior jtag_add_xxx()
609 * calls caused a failure, e.g. check failure. Note that it does not
610 * matter if the operation was executed *before* jtag_execute_queue(),
611 * jtag_execute_queue() will still return an error code.
612 *
613 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
614 * executed when this fn returns, but if what has been queued only
615 * clocks data out, without reading anything back, then JTAG could
616 * be running *after* jtag_execute_queue() returns. The API does
617 * not define a way to flush a hw FIFO that runs *after*
618 * jtag_execute_queue() returns.
619 *
620 * jtag_add_xxx() commands can either be executed immediately or
621 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
622 */
623 extern int jtag_execute_queue(void);
624
625 /* can be implemented by hw+sw */
626 extern int interface_jtag_execute_queue(void);
627 extern int jtag_power_dropout(int* dropout);
628 extern int jtag_srst_asserted(int* srst_asserted);
629
630 /* JTAG support functions */
631 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
632 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
633 extern int jtag_scan_size(scan_command_t* cmd);
634 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
635 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
636
637 extern void jtag_sleep(u32 us);
638 extern int jtag_call_event_callbacks(enum jtag_event event);
639 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
640
641 extern int jtag_verify_capture_ir;
642
643 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
644
645 /* error codes
646 * JTAG subsystem uses codes between -100 and -199 */
647
648 #define ERROR_JTAG_INIT_FAILED (-100)
649 #define ERROR_JTAG_INVALID_INTERFACE (-101)
650 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
651 #define ERROR_JTAG_TRST_ASSERTED (-103)
652 #define ERROR_JTAG_QUEUE_FAILED (-104)
653 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
654 #define ERROR_JTAG_DEVICE_ERROR (-107)
655
656
657 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
658 #ifdef HAVE_JTAG_MINIDRIVER_H
659 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
660 #include "jtag_minidriver.h"
661 #define MINIDRIVER(a) notused ## a
662 #else
663 #define MINIDRIVER(a) a
664
665 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
666 *
667 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
668 *
669 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
670 *
671 * If the device is in bypass, then that is an error condition in
672 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
673 * does detect it. Similarly if the device is not in bypass, data must
674 * be passed to it.
675 *
676 * If anything fails, then jtag_error will be set and jtag_execute() will
677 * return an error. There is no way to determine if there was a failure
678 * during this function call.
679 *
680 * Note that this jtag_add_dr_out can be defined as an inline function.
681 */
682 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
683 tap_state_t end_state);
684
685 #endif
686
687 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
688 tap_state_t end_state)
689 {
690 if (end_state != TAP_INVALID)
691 cmd_queue_end_state = end_state;
692 cmd_queue_cur_state = cmd_queue_end_state;
693 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
694 }
695
696
697 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)