- fix native win32 build issues
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32 #if 0
33 #define _DEBUG_JTAG_IO_
34 #endif
35
36 #ifndef DEBUG_JTAG_IOZ
37 #define DEBUG_JTAG_IOZ 64
38 #endif
39
40 /* 16 Tap States, from page 21 of ASSET InterTech, Inc.'s svf.pdf
41 */
42 enum tap_state {
43 TAP_RESET = 0, TAP_IDLE = 8,
44 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
45 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
46 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
47 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15
48 };
49
50 typedef enum tap_state tap_state_t;
51
52 typedef struct tap_transition_s
53 {
54 tap_state_t high;
55 tap_state_t low;
56 } tap_transition_t;
57
58 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
59
60 /*-----<Cable Helper API>-------------------------------------------*/
61
62 /* The "Cable Helper API" is what the cable drivers can use to help implement
63 * their "Cable API". So a Cable Helper API is a set of helper functions used by
64 * cable drivers, and this is different from a Cable API. A "Cable API" is what
65 * higher level code used to talk to a cable.
66 */
67
68
69 /** implementation of wrapper function tap_set_state() */
70 void tap_set_state_impl(tap_state_t new_state);
71
72 /**
73 * Function tap_set_state
74 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
75 * cable. The state follower is hopefully always in the same state as the actual
76 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
77 * cable driver. All the cable drivers call this function to indicate the state they think
78 * the TAPs attached to their cables are in. Because this function can also log transitions,
79 * it will be helpful to call this function with every transition that the TAPs being manipulated
80 * are expected to traverse, not just end points of a multi-step state path.
81 * @param new_state is the state we think the TAPs are currently in or are about to enter.
82 */
83 #if defined(_DEBUG_JTAG_IO_)
84 #define tap_set_state(new_state) \
85 do { \
86 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
87 tap_set_state_impl(new_state); \
88 } while (0)
89 #else
90 static inline void tap_set_state(tap_state_t new_state)
91 {
92 tap_set_state_impl(new_state);
93 }
94
95 #endif
96
97 /**
98 * Function tap_get_state
99 * gets the state of the "state follower" which tracks the state of the TAPs connected to
100 * the cable.
101 * @see tap_set_state
102 * @return tap_state_t - The state the TAPs are in now.
103 */
104 tap_state_t tap_get_state(void);
105
106 /**
107 * Function tap_set_end_state
108 * sets the state of an "end state follower" which tracks the state that any cable driver
109 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
110 * of that TAP operation this value is copied into the state follower via tap_set_state().
111 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
112 */
113 void tap_set_end_state(tap_state_t new_end_state);
114
115 /**
116 * Function tap_get_end_state
117 * @see tap_set_end_state
118 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
119 */
120 tap_state_t tap_get_end_state(void);
121
122 /**
123 * Function tap_get_tms_path
124 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
125 * during a sequence of seven TAP clock cycles in order to get from
126 * state \a "from" to state \a "to".
127 * @param from is the starting state
128 * @param to is the resultant or final state
129 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
130 */
131 int tap_get_tms_path(tap_state_t from, tap_state_t to);
132
133 /**
134 * Function tap_move_ndx
135 * when given a stable state, returns an index from 0-5. The index corresponds to a
136 * sequence of stable states which are given in this order: <p>
137 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
138 * <p>
139 * This sequence corresponds to look up tables which are used in some of the
140 * cable drivers.
141 * @param astate is the stable state to find in the sequence. If a non stable
142 * state is passed, this may cause the program to output an error message
143 * and terminate.
144 * @return int - the array (or sequence) index as described above
145 */
146 int tap_move_ndx(tap_state_t astate);
147
148 /**
149 * Function tap_is_state_stable
150 * returns TRUE if the \a astate is stable.
151 */
152 int tap_is_state_stable(tap_state_t astate);
153
154 /**
155 * Function tap_state_transition
156 * takes a current TAP state and returns the next state according to the tms value.
157 * @param current_state is the state of a TAP currently.
158 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
159 * @return tap_state_t - the next state a TAP would enter.
160 */
161 tap_state_t tap_state_transition(tap_state_t current_state, int tms);
162
163 /**
164 * Function tap_state_name
165 * Returns a string suitable for display representing the JTAG tap_state
166 */
167 const char* tap_state_name(tap_state_t state);
168
169 /*-----</Cable Helper API>------------------------------------------*/
170
171 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
172 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
173
174 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
175
176 struct scan_field_s;
177 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
178
179 typedef struct scan_field_s
180 {
181 jtag_tap_t* tap; /* tap pointer this instruction refers to */
182 int num_bits; /* number of bits this field specifies (up to 32) */
183 u8* out_value; /* value to be scanned into the device */
184 u8* out_mask; /* only masked bits care */
185 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
186 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
187 u8* in_check_value; /* used to validate scan results */
188 u8* in_check_mask; /* check specified bits against check_value */
189 in_handler_t in_handler; /* process received buffer using this handler */
190 void* in_handler_priv; /* additional information for the in_handler */
191 } scan_field_t;
192
193 enum scan_type {
194 /* IN: from device to host, OUT: from host to device */
195 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
196 };
197
198 typedef struct scan_command_s
199 {
200 int ir_scan; /* instruction/not data scan */
201 int num_fields; /* number of fields in *fields array */
202 scan_field_t* fields; /* pointer to an array of data scan fields */
203 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
204 } scan_command_t;
205
206 typedef struct statemove_command_s
207 {
208 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
209 } statemove_command_t;
210
211 typedef struct pathmove_command_s
212 {
213 int num_states; /* number of states in *path */
214 tap_state_t* path; /* states that have to be passed */
215 } pathmove_command_t;
216
217 typedef struct runtest_command_s
218 {
219 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
220 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
221 } runtest_command_t;
222
223
224 typedef struct stableclocks_command_s
225 {
226 int num_cycles; /* number of clock cycles that should be sent */
227 } stableclocks_command_t;
228
229
230 typedef struct reset_command_s
231 {
232 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
233 int srst;
234 } reset_command_t;
235
236 typedef struct end_state_command_s
237 {
238 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
239 } end_state_command_t;
240
241 typedef struct sleep_command_s
242 {
243 u32 us; /* number of microseconds to sleep */
244 } sleep_command_t;
245
246 typedef union jtag_command_container_u
247 {
248 scan_command_t* scan;
249 statemove_command_t* statemove;
250 pathmove_command_t* pathmove;
251 runtest_command_t* runtest;
252 stableclocks_command_t* stableclocks;
253 reset_command_t* reset;
254 end_state_command_t* end_state;
255 sleep_command_t* sleep;
256 } jtag_command_container_t;
257
258 enum jtag_command_type {
259 JTAG_SCAN = 1,
260 JTAG_STATEMOVE = 2,
261 JTAG_RUNTEST = 3,
262 JTAG_RESET = 4,
263 JTAG_END_STATE = 5,
264 JTAG_PATHMOVE = 6,
265 JTAG_SLEEP = 7,
266 JTAG_STABLECLOCKS = 8
267 };
268
269 typedef struct jtag_command_s
270 {
271 jtag_command_container_t cmd;
272 enum jtag_command_type type;
273 struct jtag_command_s* next;
274 } jtag_command_t;
275
276 extern jtag_command_t* jtag_command_queue;
277
278 /* forward declaration */
279 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
280
281 /* this is really: typedef jtag_tap_t */
282 /* But - the typedef is done in "types.h" */
283 /* due to "forward decloration reasons" */
284 struct jtag_tap_s
285 {
286 const char* chip;
287 const char* tapname;
288 const char* dotted_name;
289 int abs_chain_position;
290 int enabled;
291 int ir_length; /* size of instruction register */
292 u32 ir_capture_value;
293 u8* expected; /* Capture-IR expected value */
294 u32 ir_capture_mask;
295 u8* expected_mask; /* Capture-IR expected mask */
296 u32 idcode; /* device identification code */
297 u32* expected_ids; /* Array of expected identification codes */
298 u8 expected_ids_cnt; /* Number of expected identification codes */
299 u8* cur_instr; /* current instruction */
300 int bypass; /* bypass register selected */
301
302 jtag_tap_event_action_t* event_action;
303
304 jtag_tap_t* next_tap;
305 };
306 extern jtag_tap_t* jtag_AllTaps(void);
307 extern jtag_tap_t* jtag_TapByPosition(int n);
308 extern jtag_tap_t* jtag_TapByPosition(int n);
309 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
310 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
311 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
312 extern int jtag_NumEnabledTaps(void);
313 extern int jtag_NumTotalTaps(void);
314
315 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
316 {
317 if (p == NULL)
318 {
319 /* start at the head of list */
320 p = jtag_AllTaps();
321 }
322 else
323 {
324 /* start *after* this one */
325 p = p->next_tap;
326 }
327 while (p)
328 {
329 if (p->enabled)
330 {
331 break;
332 }
333 else
334 {
335 p = p->next_tap;
336 }
337 }
338
339 return p;
340 }
341
342
343 enum reset_line_mode {
344 LINE_OPEN_DRAIN = 0x0,
345 LINE_PUSH_PULL = 0x1,
346 };
347
348 typedef struct jtag_interface_s
349 {
350 char* name;
351
352 /* queued command execution
353 */
354 int (*execute_queue)(void);
355
356 /* interface initalization
357 */
358 int (*speed)(int speed);
359 int (*register_commands)(struct command_context_s* cmd_ctx);
360 int (*init)(void);
361 int (*quit)(void);
362
363 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
364 * a failure if it can't support the KHz/RTCK.
365 *
366 * WARNING!!!! if RTCK is *slow* then think carefully about
367 * whether you actually want to support this in the driver.
368 * Many target scripts are written to handle the absence of RTCK
369 * and use a fallback kHz TCK.
370 */
371 int (*khz)(int khz, int* jtag_speed);
372
373 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
374 * a failure if it can't support the KHz/RTCK. */
375 int (*speed_div)(int speed, int* khz);
376
377 /* Read and clear the power dropout flag. Note that a power dropout
378 * can be transitionary, easily much less than a ms.
379 *
380 * So to find out if the power is *currently* on, you must invoke
381 * this method twice. Once to clear the power dropout flag and a
382 * second time to read the current state.
383 *
384 * Currently the default implementation is never to detect power dropout.
385 */
386 int (*power_dropout)(int* power_dropout);
387
388 /* Read and clear the srst asserted detection flag.
389 *
390 * NB!!!! like power_dropout this does *not* read the current
391 * state. srst assertion is transitionary and *can* be much
392 * less than 1ms.
393 */
394 int (*srst_asserted)(int* srst_asserted);
395 } jtag_interface_t;
396
397 enum jtag_event {
398 JTAG_TRST_ASSERTED
399 };
400
401 extern char* jtag_event_strings[];
402
403 enum jtag_tap_event {
404 JTAG_TAP_EVENT_ENABLE,
405 JTAG_TAP_EVENT_DISABLE
406 };
407
408 extern const Jim_Nvp nvp_jtag_tap_event[];
409
410 struct jtag_tap_event_action_s
411 {
412 enum jtag_tap_event event;
413 Jim_Obj* body;
414 jtag_tap_event_action_t* next;
415 };
416
417 extern int jtag_trst;
418 extern int jtag_srst;
419
420 typedef struct jtag_event_callback_s
421 {
422 int (*callback)(enum jtag_event event, void* priv);
423 void* priv;
424 struct jtag_event_callback_s* next;
425 } jtag_event_callback_t;
426
427 extern jtag_event_callback_t* jtag_event_callbacks;
428
429 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
430
431 extern int jtag_speed;
432 extern int jtag_speed_post_reset;
433
434 enum reset_types {
435 RESET_NONE = 0x0,
436 RESET_HAS_TRST = 0x1,
437 RESET_HAS_SRST = 0x2,
438 RESET_TRST_AND_SRST = 0x3,
439 RESET_SRST_PULLS_TRST = 0x4,
440 RESET_TRST_PULLS_SRST = 0x8,
441 RESET_TRST_OPEN_DRAIN = 0x10,
442 RESET_SRST_PUSH_PULL = 0x20,
443 };
444
445 extern enum reset_types jtag_reset_config;
446
447 /* initialize interface upon startup. A successful no-op
448 * upon subsequent invocations
449 */
450 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
451
452 /* initialize JTAG chain using only a RESET reset. If init fails,
453 * try reset + init.
454 */
455 extern int jtag_init(struct command_context_s* cmd_ctx);
456
457 /* reset, then initialize JTAG chain */
458 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
459 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
460
461 /* JTAG interface, can be implemented with a software or hardware fifo
462 *
463 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
464 * can be emulated by using a larger scan.
465 *
466 * Code that is relatively insensitive to the path(as long
467 * as it is JTAG compliant) taken through state machine can use
468 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
469 * specified as end state and a subsequent jtag_add_pathmove() must
470 * be issued.
471 *
472 */
473 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
474 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
475 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
476 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
477 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
478 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
479 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
480 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
481
482 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
483 * of start state.
484 */
485 extern void jtag_add_tlr(void);
486 extern int interface_jtag_add_tlr(void);
487
488 /* Do not use jtag_add_pathmove() unless you need to, but do use it
489 * if you have to.
490 *
491 * DANGER! If the target is dependent upon a particular sequence
492 * of transitions for things to work correctly(e.g. as a workaround
493 * for an errata that contradicts the JTAG standard), then pathmove
494 * must be used, even if some jtag interfaces happen to use the
495 * desired path. Worse, the jtag interface used for testing a
496 * particular implementation, could happen to use the "desired"
497 * path when transitioning to/from end
498 * state.
499 *
500 * A list of unambigious single clock state transitions, not
501 * all drivers can support this, but it is required for e.g.
502 * XScale and Xilinx support
503 *
504 * Note! TAP_RESET must not be used in the path!
505 *
506 * Note that the first on the list must be reachable
507 * via a single transition from the current state.
508 *
509 * All drivers are required to implement jtag_add_pathmove().
510 * However, if the pathmove sequence can not be precisely
511 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
512 * must return an error. It is legal, but not recommended, that
513 * a driver returns an error in all cases for a pathmove if it
514 * can only implement a few transitions and therefore
515 * a partial implementation of pathmove would have little practical
516 * application.
517 */
518 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
519 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
520
521 /* go to TAP_IDLE, if we're not already there and cycle
522 * precisely num_cycles in the TAP_IDLE after which move
523 * to the end state, if it is != TAP_IDLE
524 *
525 * nb! num_cycles can be 0, in which case the fn will navigate
526 * to endstate via TAP_IDLE
527 */
528 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
529 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
530
531 /* A reset of the TAP state machine can be requested.
532 *
533 * Whether tms or trst reset is used depends on the capabilities of
534 * the target and jtag interface(reset_config command configures this).
535 *
536 * srst can driver a reset of the TAP state machine and vice
537 * versa
538 *
539 * Application code may need to examine value of jtag_reset_config
540 * to determine the proper codepath
541 *
542 * DANGER! Even though srst drives trst, trst might not be connected to
543 * the interface, and it might actually be *harmful* to assert trst in this case.
544 *
545 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
546 * are supported.
547 *
548 * only req_tlr_or_trst and srst can have a transition for a
549 * call as the effects of transitioning both at the "same time"
550 * are undefined, but when srst_pulls_trst or vice versa,
551 * then trst & srst *must* be asserted together.
552 */
553 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
554
555 /* this drives the actual srst and trst pins. srst will always be 0
556 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
557 * trst.
558 *
559 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
560 * approperiate
561 */
562 extern int interface_jtag_add_reset(int trst, int srst);
563 extern void jtag_add_end_state(tap_state_t endstate);
564 extern int interface_jtag_add_end_state(tap_state_t endstate);
565 extern void jtag_add_sleep(u32 us);
566 extern int interface_jtag_add_sleep(u32 us);
567
568
569 /**
570 * Function jtag_add_stable_clocks
571 * first checks that the state in which the clocks are to be issued is
572 * stable, then queues up clock_count clocks for transmission.
573 */
574 void jtag_add_clocks(int num_cycles);
575 int interface_jtag_add_clocks(int num_cycles);
576
577
578 /*
579 * For software FIFO implementations, the queued commands can be executed
580 * during this call or earlier. A sw queue might decide to push out
581 * some of the jtag_add_xxx() operations once the queue is "big enough".
582 *
583 * This fn will return an error code if any of the prior jtag_add_xxx()
584 * calls caused a failure, e.g. check failure. Note that it does not
585 * matter if the operation was executed *before* jtag_execute_queue(),
586 * jtag_execute_queue() will still return an error code.
587 *
588 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
589 * executed when this fn returns, but if what has been queued only
590 * clocks data out, without reading anything back, then JTAG could
591 * be running *after* jtag_execute_queue() returns. The API does
592 * not define a way to flush a hw FIFO that runs *after*
593 * jtag_execute_queue() returns.
594 *
595 * jtag_add_xxx() commands can either be executed immediately or
596 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
597 */
598 extern int jtag_execute_queue(void);
599
600 /* can be implemented by hw+sw */
601 extern int interface_jtag_execute_queue(void);
602 extern int jtag_power_dropout(int* dropout);
603 extern int jtag_srst_asserted(int* srst_asserted);
604
605 /* JTAG support functions */
606 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
607 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
608 extern int jtag_scan_size(scan_command_t* cmd);
609 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
610 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
611
612 extern void jtag_sleep(u32 us);
613 extern int jtag_call_event_callbacks(enum jtag_event event);
614 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
615
616 extern int jtag_verify_capture_ir;
617
618 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
619
620 /* error codes
621 * JTAG subsystem uses codes between -100 and -199 */
622
623 #define ERROR_JTAG_INIT_FAILED (-100)
624 #define ERROR_JTAG_INVALID_INTERFACE (-101)
625 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
626 #define ERROR_JTAG_TRST_ASSERTED (-103)
627 #define ERROR_JTAG_QUEUE_FAILED (-104)
628 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
629 #define ERROR_JTAG_DEVICE_ERROR (-107)
630
631
632 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
633 #ifdef HAVE_JTAG_MINIDRIVER_H
634 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
635 #include "jtag_minidriver.h"
636 #define MINIDRIVER(a) notused ## a
637 #else
638 #define MINIDRIVER(a) a
639
640 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
641 *
642 * Current or end_state can not be TAP_RESET. end_state can be -1
643 *
644 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
645 *
646 * If the device is in bypass, then that is an error condition in
647 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
648 * does detect it. Similarly if the device is not in bypass, data must
649 * be passed to it.
650 *
651 * If anything fails, then jtag_error will be set and jtag_execute() will
652 * return an error. There is no way to determine if there was a failure
653 * during this function call.
654 *
655 * Note that this jtag_add_dr_out can be defined as an inline function.
656 */
657 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
658 tap_state_t end_state);
659
660 #endif
661
662 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
663 tap_state_t end_state)
664 {
665 if (end_state != -1)
666 cmd_queue_end_state = end_state;
667 cmd_queue_cur_state = cmd_queue_end_state;
668 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
669 }
670
671
672 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)