4f34806225e37c8cf379c3eb1bceefdf8b7b9939
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43
44 /* 16 Tap States, from page 21 of ASSET InterTech, Inc.'s svf.pdf
45 */
46 enum tap_state {
47 TAP_RESET = 0, TAP_IDLE = 8,
48 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
49 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
50 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
51 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
52
53 TAP_NUM_STATES = 16, TAP_INVALID = -1,
54 };
55
56 typedef enum tap_state tap_state_t;
57
58 typedef struct tap_transition_s
59 {
60 tap_state_t high;
61 tap_state_t low;
62 } tap_transition_t;
63
64 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
65
66
67 /*-----<Cable Helper API>-------------------------------------------*/
68
69 /* The "Cable Helper API" is what the cable drivers can use to help implement
70 * their "Cable API". So a Cable Helper API is a set of helper functions used by
71 * cable drivers, and this is different from a Cable API. A "Cable API" is what
72 * higher level code used to talk to a cable.
73 */
74
75
76 /** implementation of wrapper function tap_set_state() */
77 void tap_set_state_impl(tap_state_t new_state);
78
79 /**
80 * Function tap_set_state
81 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
82 * cable. The state follower is hopefully always in the same state as the actual
83 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
84 * cable driver. All the cable drivers call this function to indicate the state they think
85 * the TAPs attached to their cables are in. Because this function can also log transitions,
86 * it will be helpful to call this function with every transition that the TAPs being manipulated
87 * are expected to traverse, not just end points of a multi-step state path.
88 * @param new_state is the state we think the TAPs are currently in or are about to enter.
89 */
90 #if defined(_DEBUG_JTAG_IO_)
91 #define tap_set_state(new_state) \
92 do { \
93 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
94 tap_set_state_impl(new_state); \
95 } while (0)
96 #else
97 static inline void tap_set_state(tap_state_t new_state)
98 {
99 tap_set_state_impl(new_state);
100 }
101
102 #endif
103
104 /**
105 * Function tap_get_state
106 * gets the state of the "state follower" which tracks the state of the TAPs connected to
107 * the cable.
108 * @see tap_set_state
109 * @return tap_state_t - The state the TAPs are in now.
110 */
111 tap_state_t tap_get_state(void);
112
113 /**
114 * Function tap_set_end_state
115 * sets the state of an "end state follower" which tracks the state that any cable driver
116 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
117 * of that TAP operation this value is copied into the state follower via tap_set_state().
118 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
119 */
120 void tap_set_end_state(tap_state_t new_end_state);
121
122 /**
123 * Function tap_get_end_state
124 * @see tap_set_end_state
125 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
126 */
127 tap_state_t tap_get_end_state(void);
128
129 /**
130 * Function tap_get_tms_path
131 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
132 * during a sequence of seven TAP clock cycles in order to get from
133 * state \a "from" to state \a "to".
134 * @param from is the starting state
135 * @param to is the resultant or final state
136 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
137 */
138 int tap_get_tms_path(tap_state_t from, tap_state_t to);
139
140 /**
141 * Function tap_move_ndx
142 * when given a stable state, returns an index from 0-5. The index corresponds to a
143 * sequence of stable states which are given in this order: <p>
144 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
145 * <p>
146 * This sequence corresponds to look up tables which are used in some of the
147 * cable drivers.
148 * @param astate is the stable state to find in the sequence. If a non stable
149 * state is passed, this may cause the program to output an error message
150 * and terminate.
151 * @return int - the array (or sequence) index as described above
152 */
153 int tap_move_ndx(tap_state_t astate);
154
155 /**
156 * Function tap_is_state_stable
157 * returns true if the \a astate is stable.
158 */
159 bool tap_is_state_stable(tap_state_t astate);
160
161 /**
162 * Function tap_state_transition
163 * takes a current TAP state and returns the next state according to the tms value.
164 * @param current_state is the state of a TAP currently.
165 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
166 * @return tap_state_t - the next state a TAP would enter.
167 */
168 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
169
170 /**
171 * Function tap_state_name
172 * Returns a string suitable for display representing the JTAG tap_state
173 */
174 const char* tap_state_name(tap_state_t state);
175
176 /*-----</Cable Helper API>------------------------------------------*/
177
178
179 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
180 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
181
182 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
183
184 struct scan_field_s;
185 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
186
187 typedef struct scan_field_s
188 {
189 jtag_tap_t* tap; /* tap pointer this instruction refers to */
190 int num_bits; /* number of bits this field specifies (up to 32) */
191 u8* out_value; /* value to be scanned into the device */
192 u8* out_mask; /* only masked bits care */
193 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
194 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
195 u8* in_check_value; /* used to validate scan results */
196 u8* in_check_mask; /* check specified bits against check_value */
197 in_handler_t in_handler; /* process received buffer using this handler */
198 void* in_handler_priv; /* additional information for the in_handler */
199 } scan_field_t;
200
201 enum scan_type {
202 /* IN: from device to host, OUT: from host to device */
203 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
204 };
205
206 typedef struct scan_command_s
207 {
208 int ir_scan; /* instruction/not data scan */
209 int num_fields; /* number of fields in *fields array */
210 scan_field_t* fields; /* pointer to an array of data scan fields */
211 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
212 } scan_command_t;
213
214 typedef struct statemove_command_s
215 {
216 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
217 } statemove_command_t;
218
219 typedef struct pathmove_command_s
220 {
221 int num_states; /* number of states in *path */
222 tap_state_t* path; /* states that have to be passed */
223 } pathmove_command_t;
224
225 typedef struct runtest_command_s
226 {
227 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
228 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
229 } runtest_command_t;
230
231
232 typedef struct stableclocks_command_s
233 {
234 int num_cycles; /* number of clock cycles that should be sent */
235 } stableclocks_command_t;
236
237
238 typedef struct reset_command_s
239 {
240 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
241 int srst;
242 } reset_command_t;
243
244 typedef struct end_state_command_s
245 {
246 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
247 } end_state_command_t;
248
249 typedef struct sleep_command_s
250 {
251 u32 us; /* number of microseconds to sleep */
252 } sleep_command_t;
253
254 typedef union jtag_command_container_u
255 {
256 scan_command_t* scan;
257 statemove_command_t* statemove;
258 pathmove_command_t* pathmove;
259 runtest_command_t* runtest;
260 stableclocks_command_t* stableclocks;
261 reset_command_t* reset;
262 end_state_command_t* end_state;
263 sleep_command_t* sleep;
264 } jtag_command_container_t;
265
266 enum jtag_command_type {
267 JTAG_SCAN = 1,
268 JTAG_STATEMOVE = 2,
269 JTAG_RUNTEST = 3,
270 JTAG_RESET = 4,
271 JTAG_END_STATE = 5,
272 JTAG_PATHMOVE = 6,
273 JTAG_SLEEP = 7,
274 JTAG_STABLECLOCKS = 8
275 };
276
277 typedef struct jtag_command_s
278 {
279 jtag_command_container_t cmd;
280 enum jtag_command_type type;
281 struct jtag_command_s* next;
282 } jtag_command_t;
283
284 extern jtag_command_t* jtag_command_queue;
285
286 /* forward declaration */
287 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
288
289 /* this is really: typedef jtag_tap_t */
290 /* But - the typedef is done in "types.h" */
291 /* due to "forward decloration reasons" */
292 struct jtag_tap_s
293 {
294 const char* chip;
295 const char* tapname;
296 const char* dotted_name;
297 int abs_chain_position;
298 int enabled;
299 int ir_length; /* size of instruction register */
300 u32 ir_capture_value;
301 u8* expected; /* Capture-IR expected value */
302 u32 ir_capture_mask;
303 u8* expected_mask; /* Capture-IR expected mask */
304 u32 idcode; /* device identification code */
305 u32* expected_ids; /* Array of expected identification codes */
306 u8 expected_ids_cnt; /* Number of expected identification codes */
307 u8* cur_instr; /* current instruction */
308 int bypass; /* bypass register selected */
309
310 jtag_tap_event_action_t* event_action;
311
312 jtag_tap_t* next_tap;
313 };
314 extern jtag_tap_t* jtag_AllTaps(void);
315 extern jtag_tap_t* jtag_TapByPosition(int n);
316 extern jtag_tap_t* jtag_TapByPosition(int n);
317 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
318 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
319 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
320 extern int jtag_NumEnabledTaps(void);
321 extern int jtag_NumTotalTaps(void);
322
323 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
324 {
325 if (p == NULL)
326 {
327 /* start at the head of list */
328 p = jtag_AllTaps();
329 }
330 else
331 {
332 /* start *after* this one */
333 p = p->next_tap;
334 }
335 while (p)
336 {
337 if (p->enabled)
338 {
339 break;
340 }
341 else
342 {
343 p = p->next_tap;
344 }
345 }
346
347 return p;
348 }
349
350
351 enum reset_line_mode {
352 LINE_OPEN_DRAIN = 0x0,
353 LINE_PUSH_PULL = 0x1,
354 };
355
356 typedef struct jtag_interface_s
357 {
358 char* name;
359
360 /* queued command execution
361 */
362 int (*execute_queue)(void);
363
364 /* interface initalization
365 */
366 int (*speed)(int speed);
367 int (*register_commands)(struct command_context_s* cmd_ctx);
368 int (*init)(void);
369 int (*quit)(void);
370
371 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
372 * a failure if it can't support the KHz/RTCK.
373 *
374 * WARNING!!!! if RTCK is *slow* then think carefully about
375 * whether you actually want to support this in the driver.
376 * Many target scripts are written to handle the absence of RTCK
377 * and use a fallback kHz TCK.
378 */
379 int (*khz)(int khz, int* jtag_speed);
380
381 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
382 * a failure if it can't support the KHz/RTCK. */
383 int (*speed_div)(int speed, int* khz);
384
385 /* Read and clear the power dropout flag. Note that a power dropout
386 * can be transitionary, easily much less than a ms.
387 *
388 * So to find out if the power is *currently* on, you must invoke
389 * this method twice. Once to clear the power dropout flag and a
390 * second time to read the current state.
391 *
392 * Currently the default implementation is never to detect power dropout.
393 */
394 int (*power_dropout)(int* power_dropout);
395
396 /* Read and clear the srst asserted detection flag.
397 *
398 * NB!!!! like power_dropout this does *not* read the current
399 * state. srst assertion is transitionary and *can* be much
400 * less than 1ms.
401 */
402 int (*srst_asserted)(int* srst_asserted);
403 } jtag_interface_t;
404
405 enum jtag_event {
406 JTAG_TRST_ASSERTED
407 };
408
409 extern char* jtag_event_strings[];
410
411 enum jtag_tap_event {
412 JTAG_TAP_EVENT_ENABLE,
413 JTAG_TAP_EVENT_DISABLE
414 };
415
416 extern const Jim_Nvp nvp_jtag_tap_event[];
417
418 struct jtag_tap_event_action_s
419 {
420 enum jtag_tap_event event;
421 Jim_Obj* body;
422 jtag_tap_event_action_t* next;
423 };
424
425 extern int jtag_trst;
426 extern int jtag_srst;
427
428 typedef struct jtag_event_callback_s
429 {
430 int (*callback)(enum jtag_event event, void* priv);
431 void* priv;
432 struct jtag_event_callback_s* next;
433 } jtag_event_callback_t;
434
435 extern jtag_event_callback_t* jtag_event_callbacks;
436
437 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
438
439 extern int jtag_speed;
440 extern int jtag_speed_post_reset;
441
442 enum reset_types {
443 RESET_NONE = 0x0,
444 RESET_HAS_TRST = 0x1,
445 RESET_HAS_SRST = 0x2,
446 RESET_TRST_AND_SRST = 0x3,
447 RESET_SRST_PULLS_TRST = 0x4,
448 RESET_TRST_PULLS_SRST = 0x8,
449 RESET_TRST_OPEN_DRAIN = 0x10,
450 RESET_SRST_PUSH_PULL = 0x20,
451 };
452
453 extern enum reset_types jtag_reset_config;
454
455 /* initialize interface upon startup. A successful no-op
456 * upon subsequent invocations
457 */
458 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
459
460 /* initialize JTAG chain using only a RESET reset. If init fails,
461 * try reset + init.
462 */
463 extern int jtag_init(struct command_context_s* cmd_ctx);
464
465 /* reset, then initialize JTAG chain */
466 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
467 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
468
469 /* JTAG interface, can be implemented with a software or hardware fifo
470 *
471 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
472 * can be emulated by using a larger scan.
473 *
474 * Code that is relatively insensitive to the path(as long
475 * as it is JTAG compliant) taken through state machine can use
476 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
477 * specified as end state and a subsequent jtag_add_pathmove() must
478 * be issued.
479 *
480 */
481 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
482 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
483 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
484 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
485 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
486 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
487 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
488 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
489
490 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
491 * of start state.
492 */
493 extern void jtag_add_tlr(void);
494 extern int interface_jtag_add_tlr(void);
495
496 /* Do not use jtag_add_pathmove() unless you need to, but do use it
497 * if you have to.
498 *
499 * DANGER! If the target is dependent upon a particular sequence
500 * of transitions for things to work correctly(e.g. as a workaround
501 * for an errata that contradicts the JTAG standard), then pathmove
502 * must be used, even if some jtag interfaces happen to use the
503 * desired path. Worse, the jtag interface used for testing a
504 * particular implementation, could happen to use the "desired"
505 * path when transitioning to/from end
506 * state.
507 *
508 * A list of unambigious single clock state transitions, not
509 * all drivers can support this, but it is required for e.g.
510 * XScale and Xilinx support
511 *
512 * Note! TAP_RESET must not be used in the path!
513 *
514 * Note that the first on the list must be reachable
515 * via a single transition from the current state.
516 *
517 * All drivers are required to implement jtag_add_pathmove().
518 * However, if the pathmove sequence can not be precisely
519 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
520 * must return an error. It is legal, but not recommended, that
521 * a driver returns an error in all cases for a pathmove if it
522 * can only implement a few transitions and therefore
523 * a partial implementation of pathmove would have little practical
524 * application.
525 */
526 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
527 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
528
529 /* go to TAP_IDLE, if we're not already there and cycle
530 * precisely num_cycles in the TAP_IDLE after which move
531 * to the end state, if it is != TAP_IDLE
532 *
533 * nb! num_cycles can be 0, in which case the fn will navigate
534 * to endstate via TAP_IDLE
535 */
536 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
537 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
538
539 /* A reset of the TAP state machine can be requested.
540 *
541 * Whether tms or trst reset is used depends on the capabilities of
542 * the target and jtag interface(reset_config command configures this).
543 *
544 * srst can driver a reset of the TAP state machine and vice
545 * versa
546 *
547 * Application code may need to examine value of jtag_reset_config
548 * to determine the proper codepath
549 *
550 * DANGER! Even though srst drives trst, trst might not be connected to
551 * the interface, and it might actually be *harmful* to assert trst in this case.
552 *
553 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
554 * are supported.
555 *
556 * only req_tlr_or_trst and srst can have a transition for a
557 * call as the effects of transitioning both at the "same time"
558 * are undefined, but when srst_pulls_trst or vice versa,
559 * then trst & srst *must* be asserted together.
560 */
561 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
562
563 /* this drives the actual srst and trst pins. srst will always be 0
564 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
565 * trst.
566 *
567 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
568 * approperiate
569 */
570 extern int interface_jtag_add_reset(int trst, int srst);
571 extern void jtag_add_end_state(tap_state_t endstate);
572 extern int interface_jtag_add_end_state(tap_state_t endstate);
573 extern void jtag_add_sleep(u32 us);
574 extern int interface_jtag_add_sleep(u32 us);
575
576
577 /**
578 * Function jtag_add_stable_clocks
579 * first checks that the state in which the clocks are to be issued is
580 * stable, then queues up clock_count clocks for transmission.
581 */
582 void jtag_add_clocks(int num_cycles);
583 int interface_jtag_add_clocks(int num_cycles);
584
585
586 /*
587 * For software FIFO implementations, the queued commands can be executed
588 * during this call or earlier. A sw queue might decide to push out
589 * some of the jtag_add_xxx() operations once the queue is "big enough".
590 *
591 * This fn will return an error code if any of the prior jtag_add_xxx()
592 * calls caused a failure, e.g. check failure. Note that it does not
593 * matter if the operation was executed *before* jtag_execute_queue(),
594 * jtag_execute_queue() will still return an error code.
595 *
596 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
597 * executed when this fn returns, but if what has been queued only
598 * clocks data out, without reading anything back, then JTAG could
599 * be running *after* jtag_execute_queue() returns. The API does
600 * not define a way to flush a hw FIFO that runs *after*
601 * jtag_execute_queue() returns.
602 *
603 * jtag_add_xxx() commands can either be executed immediately or
604 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
605 */
606 extern int jtag_execute_queue(void);
607
608 /* can be implemented by hw+sw */
609 extern int interface_jtag_execute_queue(void);
610 extern int jtag_power_dropout(int* dropout);
611 extern int jtag_srst_asserted(int* srst_asserted);
612
613 /* JTAG support functions */
614 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
615 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
616 extern int jtag_scan_size(scan_command_t* cmd);
617 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
618 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
619
620 extern void jtag_sleep(u32 us);
621 extern int jtag_call_event_callbacks(enum jtag_event event);
622 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
623
624 extern int jtag_verify_capture_ir;
625
626 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
627
628 /* error codes
629 * JTAG subsystem uses codes between -100 and -199 */
630
631 #define ERROR_JTAG_INIT_FAILED (-100)
632 #define ERROR_JTAG_INVALID_INTERFACE (-101)
633 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
634 #define ERROR_JTAG_TRST_ASSERTED (-103)
635 #define ERROR_JTAG_QUEUE_FAILED (-104)
636 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
637 #define ERROR_JTAG_DEVICE_ERROR (-107)
638
639
640 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
641 #ifdef HAVE_JTAG_MINIDRIVER_H
642 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
643 #include "jtag_minidriver.h"
644 #define MINIDRIVER(a) notused ## a
645 #else
646 #define MINIDRIVER(a) a
647
648 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
649 *
650 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
651 *
652 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
653 *
654 * If the device is in bypass, then that is an error condition in
655 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
656 * does detect it. Similarly if the device is not in bypass, data must
657 * be passed to it.
658 *
659 * If anything fails, then jtag_error will be set and jtag_execute() will
660 * return an error. There is no way to determine if there was a failure
661 * during this function call.
662 *
663 * Note that this jtag_add_dr_out can be defined as an inline function.
664 */
665 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
666 tap_state_t end_state);
667
668 #endif
669
670 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
671 tap_state_t end_state)
672 {
673 if (end_state != TAP_INVALID)
674 cmd_queue_end_state = end_state;
675 cmd_queue_cur_state = cmd_queue_end_state;
676 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
677 }
678
679
680 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)