Remove support for the GPL incompatible FTDI D2XX library
[openocd.git] / src / jtag / drivers / usb_blaster / usb_blaster.c
1 /*
2 * Driver for USB-JTAG, Altera USB-Blaster and compatibles
3 *
4 * Inspired from original code from Kolja Waschk's USB-JTAG project
5 * (http://www.ixo.de/info/usb_jtag/), and from openocd project.
6 *
7 * Copyright (C) 2013 Franck Jullien franck.jullien@gmail.com
8 * Copyright (C) 2012 Robert Jarzmik robert.jarzmik@free.fr
9 * Copyright (C) 2011 Ali Lown ali@lown.me.uk
10 * Copyright (C) 2009 Catalin Patulea cat@vv.carleton.ca
11 * Copyright (C) 2006 Kolja Waschk usbjtag@ixo.de
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program. If not, see <http://www.gnu.org/licenses/>.
25 *
26 */
27
28 /*
29 * The following information is originally from Kolja Waschk's USB-JTAG,
30 * where it was obtained by reverse engineering an Altera USB-Blaster.
31 * See http://www.ixo.de/info/usb_jtag/ for USB-Blaster block diagram and
32 * usb_jtag-20080705-1200.zip#usb_jtag/host/openocd for protocol.
33 *
34 * The same information is also on the UrJTAG mediawiki, with some additional
35 * notes on bits marked as "unknown" by usb_jtag.
36 * (http://sourceforge.net/apps/mediawiki/urjtag/index.php?
37 * title=Cable_Altera_USB-Blaster)
38 *
39 * USB-JTAG, Altera USB-Blaster and compatibles are typically implemented as
40 * an FTDIChip FT245 followed by a CPLD which handles a two-mode protocol:
41 *
42 * _________
43 * | |
44 * | AT93C46 |
45 * |_________|
46 * __|__________ _________
47 * | | | |
48 * USB__| FTDI 245BM |__| EPM7064 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
49 * |_____________| |_________|
50 * __|__________ _|___________
51 * | | | |
52 * | 6 MHz XTAL | | 24 MHz Osc. |
53 * |_____________| |_____________|
54 *
55 * USB-JTAG, Altera USB-Blaster II are typically implemented as a Cypress
56 * EZ-USB FX2LP followed by a CPLD.
57 * _____________ _________
58 * | | | |
59 * USB__| EZ-USB FX2 |__| EPM570 |__JTAG (B_TDO,B_TDI,B_TMS,B_TCK)
60 * |_____________| |_________|
61 * __|__________
62 * | |
63 * | 24 MHz XTAL |
64 * |_____________|
65 */
66
67 #ifdef HAVE_CONFIG_H
68 #include "config.h"
69 #endif
70
71 #if IS_CYGWIN == 1
72 #include "windows.h"
73 #undef LOG_ERROR
74 #endif
75
76 /* project specific includes */
77 #include <jtag/interface.h>
78 #include <jtag/commands.h>
79 #include <helper/time_support.h>
80 #include "ublast_access.h"
81
82 /* system includes */
83 #include <string.h>
84 #include <stdlib.h>
85 #include <unistd.h>
86 #include <sys/time.h>
87 #include <time.h>
88
89 /* Size of USB endpoint max packet size, ie. 64 bytes */
90 #define MAX_PACKET_SIZE 64
91 /*
92 * Size of data buffer that holds bytes in byte-shift mode.
93 * This buffer can hold multiple USB packets aligned to
94 * MAX_PACKET_SIZE bytes boundaries.
95 * BUF_LEN must be grater than or equal MAX_PACKET_SIZE.
96 */
97 #define BUF_LEN 4096
98
99 /* USB-Blaster II specific command */
100 #define CMD_COPY_TDO_BUFFER 0x5F
101
102 enum gpio_steer {
103 FIXED_0 = 0,
104 FIXED_1,
105 SRST,
106 TRST,
107 };
108
109 struct ublast_info {
110 enum gpio_steer pin6;
111 enum gpio_steer pin8;
112 int tms;
113 int tdi;
114 bool trst_asserted;
115 bool srst_asserted;
116 uint8_t buf[BUF_LEN];
117 int bufidx;
118
119 char *lowlevel_name;
120 struct ublast_lowlevel *drv;
121 char *ublast_device_desc;
122 uint16_t ublast_vid, ublast_pid;
123 uint16_t ublast_vid_uninit, ublast_pid_uninit;
124 int flags;
125 char *firmware_path;
126 };
127
128 /*
129 * Global device control
130 */
131 static struct ublast_info info = {
132 .ublast_vid = 0x09fb, /* Altera */
133 .ublast_pid = 0x6001, /* USB-Blaster */
134 .lowlevel_name = NULL,
135 .srst_asserted = false,
136 .trst_asserted = false,
137 .pin6 = FIXED_1,
138 .pin8 = FIXED_1,
139 };
140
141 /*
142 * Available lowlevel drivers (FTDI, FTD2xx, ...)
143 */
144 struct drvs_map {
145 char *name;
146 struct ublast_lowlevel *(*drv_register)(void);
147 };
148
149 static struct drvs_map lowlevel_drivers_map[] = {
150 #if BUILD_USB_BLASTER
151 { .name = "ftdi", .drv_register = ublast_register_ftdi },
152 #endif
153 #if BUILD_USB_BLASTER_2
154 { .name = "ublast2", .drv_register = ublast2_register_libusb },
155 #endif
156 { NULL, NULL },
157 };
158
159 /*
160 * Access functions to lowlevel driver, agnostic of libftdi/libftdxx
161 */
162 static char *hexdump(uint8_t *buf, unsigned int size)
163 {
164 unsigned int i;
165 char *str = calloc(size * 2 + 1, 1);
166
167 for (i = 0; i < size; i++)
168 sprintf(str + 2*i, "%02x", buf[i]);
169 return str;
170 }
171
172 static int ublast_buf_read(uint8_t *buf, unsigned size, uint32_t *bytes_read)
173 {
174 int ret = info.drv->read(info.drv, buf, size, bytes_read);
175 char *str = hexdump(buf, *bytes_read);
176
177 DEBUG_JTAG_IO("(size=%d, buf=[%s]) -> %u", size, str,
178 *bytes_read);
179 free(str);
180 return ret;
181 }
182
183 static int ublast_buf_write(uint8_t *buf, int size, uint32_t *bytes_written)
184 {
185 int ret = info.drv->write(info.drv, buf, size, bytes_written);
186 char *str = hexdump(buf, *bytes_written);
187
188 DEBUG_JTAG_IO("(size=%d, buf=[%s]) -> %u", size, str,
189 *bytes_written);
190 free(str);
191 return ret;
192 }
193
194 static int nb_buf_remaining(void)
195 {
196 return BUF_LEN - info.bufidx;
197 }
198
199 static void ublast_flush_buffer(void)
200 {
201 unsigned int retlen;
202 int nb = info.bufidx, ret = ERROR_OK;
203
204 while (ret == ERROR_OK && nb > 0) {
205 ret = ublast_buf_write(info.buf, nb, &retlen);
206 nb -= retlen;
207 }
208 info.bufidx = 0;
209 }
210
211 /*
212 * Actually, the USB-Blaster offers a byte-shift mode to transmit up to 504 data
213 * bits (bidirectional) in a single USB packet. A header byte has to be sent as
214 * the first byte in a packet with the following meaning:
215 *
216 * Bit 7 (0x80): Must be set to indicate byte-shift mode.
217 * Bit 6 (0x40): If set, the USB-Blaster will also read data, not just write.
218 * Bit 5..0: Define the number N of following bytes
219 *
220 * All N following bytes will then be clocked out serially on TDI. If Bit 6 was
221 * set, it will afterwards return N bytes with TDO data read while clocking out
222 * the TDI data. LSB of the first byte after the header byte will appear first
223 * on TDI.
224 */
225
226 /* Simple bit banging mode:
227 *
228 * Bit 7 (0x80): Must be zero (see byte-shift mode above)
229 * Bit 6 (0x40): If set, you will receive a byte indicating the state of TDO
230 * in return.
231 * Bit 5 (0x20): Output Enable/LED.
232 * Bit 4 (0x10): TDI Output.
233 * Bit 3 (0x08): nCS Output (not used in JTAG mode).
234 * Bit 2 (0x04): nCE Output (not used in JTAG mode).
235 * Bit 1 (0x02): TMS Output.
236 * Bit 0 (0x01): TCK Output.
237 *
238 * For transmitting a single data bit, you need to write two bytes (one for
239 * setting up TDI/TMS/TCK=0, and one to trigger TCK high with same TDI/TMS
240 * held). Up to 64 bytes can be combined in a single USB packet.
241 * It isn't possible to read a data without transmitting data.
242 */
243
244 #define TCK (1 << 0)
245 #define TMS (1 << 1)
246 #define NCE (1 << 2)
247 #define NCS (1 << 3)
248 #define TDI (1 << 4)
249 #define LED (1 << 5)
250 #define READ (1 << 6)
251 #define SHMODE (1 << 7)
252 #define READ_TDO (1 << 0)
253
254 /**
255 * ublast_queue_byte - queue one 'bitbang mode' byte for USB Blaster
256 * @abyte: the byte to queue
257 *
258 * Queues one byte in 'bitbang mode' to the USB Blaster. The byte is not
259 * actually sent, but stored in a buffer. The write is performed once
260 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
261 */
262 static void ublast_queue_byte(uint8_t abyte)
263 {
264 if (nb_buf_remaining() < 1)
265 ublast_flush_buffer();
266 info.buf[info.bufidx++] = abyte;
267 if (nb_buf_remaining() == 0)
268 ublast_flush_buffer();
269 DEBUG_JTAG_IO("(byte=0x%02x)", abyte);
270 }
271
272 /**
273 * ublast_compute_pin - compute if gpio should be asserted
274 * @steer: control (ie. TRST driven, SRST driven, of fixed)
275 *
276 * Returns pin value (1 means driven high, 0 mean driven low)
277 */
278 bool ublast_compute_pin(enum gpio_steer steer)
279 {
280 switch (steer) {
281 case FIXED_0:
282 return 0;
283 case FIXED_1:
284 return 1;
285 case SRST:
286 return !info.srst_asserted;
287 case TRST:
288 return !info.trst_asserted;
289 default:
290 return 1;
291 }
292 }
293
294 /**
295 * ublast_build_out - build bitbang mode output byte
296 * @type: says if reading back TDO is required
297 *
298 * Returns the compute bitbang mode byte
299 */
300 static uint8_t ublast_build_out(enum scan_type type)
301 {
302 uint8_t abyte = 0;
303
304 abyte |= info.tms ? TMS : 0;
305 abyte |= ublast_compute_pin(info.pin6) ? NCE : 0;
306 abyte |= ublast_compute_pin(info.pin8) ? NCS : 0;
307 abyte |= info.tdi ? TDI : 0;
308 abyte |= LED;
309 if (type == SCAN_IN || type == SCAN_IO)
310 abyte |= READ;
311 return abyte;
312 }
313
314 /**
315 * ublast_reset - reset the JTAG device is possible
316 * @trst: 1 if TRST is to be asserted
317 * @srst: 1 if SRST is to be asserted
318 */
319 static void ublast_reset(int trst, int srst)
320 {
321 uint8_t out_value;
322
323 info.trst_asserted = trst;
324 info.srst_asserted = srst;
325 out_value = ublast_build_out(SCAN_OUT);
326 ublast_queue_byte(out_value);
327 ublast_flush_buffer();
328 }
329
330 /**
331 * ublast_clock_tms - clock a TMS transition
332 * @tms: the TMS to be sent
333 *
334 * Triggers a TMS transition (ie. one JTAG TAP state move).
335 */
336 static void ublast_clock_tms(int tms)
337 {
338 uint8_t out;
339
340 DEBUG_JTAG_IO("(tms=%d)", !!tms);
341 info.tms = !!tms;
342 info.tdi = 0;
343 out = ublast_build_out(SCAN_OUT);
344 ublast_queue_byte(out);
345 ublast_queue_byte(out | TCK);
346 }
347
348 /**
349 * ublast_idle_clock - put back TCK to low level
350 *
351 * See ublast_queue_tdi() comment for the usage of this function.
352 */
353 static void ublast_idle_clock(void)
354 {
355 uint8_t out = ublast_build_out(SCAN_OUT);
356
357 DEBUG_JTAG_IO(".");
358 ublast_queue_byte(out);
359 }
360
361 /**
362 * ublast_clock_tdi - Output a TDI with bitbang mode
363 * @tdi: the TDI bit to be shifted out
364 * @type: scan type (ie. does a readback of TDO is required)
365 *
366 * Output a TDI bit and assert clock to push it into the JTAG device :
367 * - writing out TCK=0, TMS=<old_state>=0, TDI=<tdi>
368 * - writing out TCK=1, TMS=<new_state>, TDI=<tdi> which triggers the JTAG
369 * device aquiring the data.
370 *
371 * If a TDO is to be read back, the required read is requested (bitbang mode),
372 * and the USB Blaster will send back a byte with bit0 reprensenting the TDO.
373 */
374 static void ublast_clock_tdi(int tdi, enum scan_type type)
375 {
376 uint8_t out;
377
378 DEBUG_JTAG_IO("(tdi=%d)", !!tdi);
379 info.tdi = !!tdi;
380
381 out = ublast_build_out(SCAN_OUT);
382 ublast_queue_byte(out);
383
384 out = ublast_build_out(type);
385 ublast_queue_byte(out | TCK);
386 }
387
388 /**
389 * ublast_clock_tdi_flip_tms - Output a TDI with bitbang mode, change JTAG state
390 * @tdi: the TDI bit to be shifted out
391 * @type: scan type (ie. does a readback of TDO is required)
392 *
393 * This function is the same as ublast_clock_tdi(), but it changes also the TMS
394 * while outputing the TDI. This should be the last TDI output of a TDI
395 * sequence, which will change state from :
396 * - IRSHIFT -> IREXIT1
397 * - or DRSHIFT -> DREXIT1
398 */
399 static void ublast_clock_tdi_flip_tms(int tdi, enum scan_type type)
400 {
401 uint8_t out;
402
403 DEBUG_JTAG_IO("(tdi=%d)", !!tdi);
404 info.tdi = !!tdi;
405 info.tms = !info.tms;
406
407 out = ublast_build_out(SCAN_OUT);
408 ublast_queue_byte(out);
409
410 out = ublast_build_out(type);
411 ublast_queue_byte(out | TCK);
412
413 out = ublast_build_out(SCAN_OUT);
414 ublast_queue_byte(out);
415 }
416
417 /**
418 * ublast_queue_bytes - queue bytes for the USB Blaster
419 * @bytes: byte array
420 * @nb_bytes: number of bytes
421 *
422 * Queues bytes to be sent to the USB Blaster. The bytes are not
423 * actually sent, but stored in a buffer. The write is performed once
424 * the buffer is filled, or if an explicit ublast_flush_buffer() is called.
425 */
426 static void ublast_queue_bytes(uint8_t *bytes, int nb_bytes)
427 {
428 if (info.bufidx + nb_bytes > BUF_LEN) {
429 LOG_ERROR("buggy code, should never queue more that %d bytes",
430 info.bufidx + nb_bytes);
431 exit(-1);
432 }
433 DEBUG_JTAG_IO("(nb_bytes=%d, bytes=[0x%02x, ...])", nb_bytes,
434 bytes ? bytes[0] : 0);
435 if (bytes)
436 memcpy(&info.buf[info.bufidx], bytes, nb_bytes);
437 else
438 memset(&info.buf[info.bufidx], 0, nb_bytes);
439 info.bufidx += nb_bytes;
440 if (nb_buf_remaining() == 0)
441 ublast_flush_buffer();
442 }
443
444 /**
445 * ublast_tms_seq - write a TMS sequence transition to JTAG
446 * @bits: TMS bits to be written (bit0, bit1 .. bitN)
447 * @nb_bits: number of TMS bits (between 1 and 8)
448 *
449 * Write a serie of TMS transitions, where each transition consists in :
450 * - writing out TCK=0, TMS=<new_state>, TDI=<???>
451 * - writing out TCK=1, TMS=<new_state>, TDI=<???> which triggers the transition
452 * The function ensures that at the end of the sequence, the clock (TCK) is put
453 * low.
454 */
455 static void ublast_tms_seq(const uint8_t *bits, int nb_bits)
456 {
457 int i;
458
459 DEBUG_JTAG_IO("(bits=%02x..., nb_bits=%d)", bits[0], nb_bits);
460 for (i = 0; i < nb_bits; i++)
461 ublast_clock_tms((bits[i / 8] >> (i % 8)) & 0x01);
462 ublast_idle_clock();
463 }
464
465 /**
466 * ublast_tms - write a tms command
467 * @cmd: tms command
468 */
469 static void ublast_tms(struct tms_command *cmd)
470 {
471 DEBUG_JTAG_IO("(num_bits=%d)", cmd->num_bits);
472 ublast_tms_seq(cmd->bits, cmd->num_bits);
473 }
474
475 /**
476 * ublast_path_move - write a TMS sequence transition to JTAG
477 * @cmd: path transition
478 *
479 * Write a serie of TMS transitions, where each transition consists in :
480 * - writing out TCK=0, TMS=<new_state>, TDI=<???>
481 * - writing out TCK=1, TMS=<new_state>, TDI=<???> which triggers the transition
482 * The function ensures that at the end of the sequence, the clock (TCK) is put
483 * low.
484 */
485 static void ublast_path_move(struct pathmove_command *cmd)
486 {
487 int i;
488
489 DEBUG_JTAG_IO("(num_states=%d, last_state=%d)",
490 cmd->num_states, cmd->path[cmd->num_states - 1]);
491 for (i = 0; i < cmd->num_states; i++) {
492 if (tap_state_transition(tap_get_state(), false) == cmd->path[i])
493 ublast_clock_tms(0);
494 if (tap_state_transition(tap_get_state(), true) == cmd->path[i])
495 ublast_clock_tms(1);
496 tap_set_state(cmd->path[i]);
497 }
498 ublast_idle_clock();
499 }
500
501 /**
502 * ublast_state_move - move JTAG state to the target state
503 * @state: the target state
504 *
505 * Input the correct TMS sequence to the JTAG TAP so that we end up in the
506 * target state. This assumes the current state (tap_get_state()) is correct.
507 */
508 static void ublast_state_move(tap_state_t state)
509 {
510 uint8_t tms_scan;
511 int tms_len;
512
513 DEBUG_JTAG_IO("(from %s to %s)", tap_state_name(tap_get_state()),
514 tap_state_name(state));
515 if (tap_get_state() == state)
516 return;
517 tms_scan = tap_get_tms_path(tap_get_state(), state);
518 tms_len = tap_get_tms_path_len(tap_get_state(), state);
519 ublast_tms_seq(&tms_scan, tms_len);
520 tap_set_state(state);
521 }
522
523 /**
524 * ublast_read_byteshifted_tdos - read TDO of byteshift writes
525 * @buf: the buffer to store the bits
526 * @nb_bits: the number of bits
527 *
528 * Reads back from USB Blaster TDO bits, triggered by a 'byteshift write', ie. eight
529 * bits per received byte from USB interface, and store them in buffer.
530 *
531 * As the USB blaster stores the TDO bits in LSB (ie. first bit in (byte0,
532 * bit0), second bit in (byte0, bit1), ...), which is what we want to return,
533 * simply read bytes from USB interface and store them.
534 *
535 * Returns ERROR_OK if OK, ERROR_xxx if a read error occured
536 */
537 static int ublast_read_byteshifted_tdos(uint8_t *buf, int nb_bytes)
538 {
539 unsigned int retlen;
540 int ret = ERROR_OK;
541
542 DEBUG_JTAG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bytes * 8);
543 ublast_flush_buffer();
544 while (ret == ERROR_OK && nb_bytes > 0) {
545 ret = ublast_buf_read(buf, nb_bytes, &retlen);
546 nb_bytes -= retlen;
547 }
548 return ret;
549 }
550
551 /**
552 * ublast_read_bitbang_tdos - read TDO of bitbang writes
553 * @buf: the buffer to store the bits
554 * @nb_bits: the number of bits
555 *
556 * Reads back from USB Blaster TDO bits, triggered by a 'bitbang write', ie. one
557 * bit per received byte from USB interface, and store them in buffer, where :
558 * - first bit is stored in byte0, bit0 (LSB)
559 * - second bit is stored in byte0, bit 1
560 * ...
561 * - eight bit is sotred in byte0, bit 7
562 * - ninth bit is sotred in byte1, bit 0
563 * - etc ...
564 *
565 * Returns ERROR_OK if OK, ERROR_xxx if a read error occured
566 */
567 static int ublast_read_bitbang_tdos(uint8_t *buf, int nb_bits)
568 {
569 int nb1 = nb_bits;
570 int i, ret = ERROR_OK;
571 unsigned int retlen;
572 uint8_t tmp[8];
573
574 DEBUG_JTAG_IO("%s(buf=%p, num_bits=%d)", __func__, buf, nb_bits);
575
576 /*
577 * Ensure all previous bitbang writes were issued to the dongle, so that
578 * it returns back the read values.
579 */
580 ublast_flush_buffer();
581
582 ret = ublast_buf_read(tmp, nb1, &retlen);
583 for (i = 0; ret == ERROR_OK && i < nb1; i++)
584 if (tmp[i] & READ_TDO)
585 *buf |= (1 << i);
586 else
587 *buf &= ~(1 << i);
588 return ret;
589 }
590
591 /**
592 * ublast_queue_tdi - short description
593 * @bits: bits to be queued on TDI (or NULL if 0 are to be queued)
594 * @nb_bits: number of bits
595 * @scan: scan type (ie. if TDO read back is required or not)
596 *
597 * Outputs a serie of TDI bits on TDI.
598 * As a side effect, the last TDI bit is sent along a TMS=1, and triggers a JTAG
599 * TAP state shift if input bits were non NULL.
600 *
601 * In order to not saturate the USB Blaster queues, this method reads back TDO
602 * if the scan type requests it, and stores them back in bits.
603 *
604 * As a side note, the state of TCK when entering this function *must* be
605 * low. This is because byteshift mode outputs TDI on rising TCK and reads TDO
606 * on falling TCK if and only if TCK is low before queuing byteshift mode bytes.
607 * If TCK was high, the USB blaster will queue TDI on falling edge, and read TDO
608 * on rising edge !!!
609 */
610 static void ublast_queue_tdi(uint8_t *bits, int nb_bits, enum scan_type scan)
611 {
612 int nb8 = nb_bits / 8;
613 int nb1 = nb_bits % 8;
614 int nbfree_in_packet, i, trans = 0, read_tdos;
615 uint8_t *tdos = calloc(1, nb_bits / 8 + 1);
616 static uint8_t byte0[BUF_LEN];
617
618 /*
619 * As the last TDI bit should always be output in bitbang mode in order
620 * to activate the TMS=1 transition to EXIT_?R state. Therefore a
621 * situation where nb_bits is a multiple of 8 is handled as follows:
622 * - the number of TDI shifted out in "byteshift mode" is 8 less than
623 * nb_bits
624 * - nb1 = 8
625 * This ensures that nb1 is never 0, and allows the TMS transition.
626 */
627 if (nb8 > 0 && nb1 == 0) {
628 nb8--;
629 nb1 = 8;
630 }
631
632 read_tdos = (scan == SCAN_IN || scan == SCAN_IO);
633 for (i = 0; i < nb8; i += trans) {
634 /*
635 * Calculate number of bytes to fill USB packet of size MAX_PACKET_SIZE
636 */
637 nbfree_in_packet = (MAX_PACKET_SIZE - (info.bufidx%MAX_PACKET_SIZE));
638 trans = MIN(nbfree_in_packet - 1, nb8 - i);
639
640 /*
641 * Queue a byte-shift mode transmission, with as many bytes as
642 * is possible with regard to :
643 * - current filling level of write buffer
644 * - remaining bytes to write in byte-shift mode
645 */
646 if (read_tdos)
647 ublast_queue_byte(SHMODE | READ | trans);
648 else
649 ublast_queue_byte(SHMODE | trans);
650 if (bits)
651 ublast_queue_bytes(&bits[i], trans);
652 else
653 ublast_queue_bytes(byte0, trans);
654 if (read_tdos) {
655 if (info.flags & COPY_TDO_BUFFER)
656 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
657 ublast_read_byteshifted_tdos(&tdos[i], trans);
658 }
659 }
660
661 /*
662 * Queue the remaining TDI bits in bitbang mode.
663 */
664 for (i = 0; i < nb1; i++) {
665 int tdi = bits ? bits[nb8 + i / 8] & (1 << i) : 0;
666 if (bits && i == nb1 - 1)
667 ublast_clock_tdi_flip_tms(tdi, scan);
668 else
669 ublast_clock_tdi(tdi, scan);
670 }
671 if (nb1 && read_tdos) {
672 if (info.flags & COPY_TDO_BUFFER)
673 ublast_queue_byte(CMD_COPY_TDO_BUFFER);
674 ublast_read_bitbang_tdos(&tdos[nb8], nb1);
675 }
676
677 if (bits)
678 memcpy(bits, tdos, DIV_ROUND_UP(nb_bits, 8));
679 free(tdos);
680
681 /*
682 * Ensure clock is in lower state
683 */
684 ublast_idle_clock();
685 }
686
687 static void ublast_runtest(int cycles, tap_state_t state)
688 {
689 DEBUG_JTAG_IO("%s(cycles=%i, end_state=%d)", __func__, cycles, state);
690
691 ublast_state_move(TAP_IDLE);
692 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
693 ublast_state_move(state);
694 }
695
696 static void ublast_stableclocks(int cycles)
697 {
698 DEBUG_JTAG_IO("%s(cycles=%i)", __func__, cycles);
699 ublast_queue_tdi(NULL, cycles, SCAN_OUT);
700 }
701
702 /**
703 * ublast_scan - launches a DR-scan or IR-scan
704 * @cmd: the command to launch
705 *
706 * Launch a JTAG IR-scan or DR-scan
707 *
708 * Returns ERROR_OK if OK, ERROR_xxx if a read/write error occured.
709 */
710 static int ublast_scan(struct scan_command *cmd)
711 {
712 int scan_bits;
713 uint8_t *buf = NULL;
714 enum scan_type type;
715 int ret = ERROR_OK;
716 static const char * const type2str[] = { "", "SCAN_IN", "SCAN_OUT", "SCAN_IO" };
717 char *log_buf = NULL;
718
719 type = jtag_scan_type(cmd);
720 scan_bits = jtag_build_buffer(cmd, &buf);
721
722 if (cmd->ir_scan)
723 ublast_state_move(TAP_IRSHIFT);
724 else
725 ublast_state_move(TAP_DRSHIFT);
726
727 log_buf = hexdump(buf, DIV_ROUND_UP(scan_bits, 8));
728 DEBUG_JTAG_IO("%s(scan=%s, type=%s, bits=%d, buf=[%s], end_state=%d)", __func__,
729 cmd->ir_scan ? "IRSCAN" : "DRSCAN",
730 type2str[type],
731 scan_bits, log_buf, cmd->end_state);
732 free(log_buf);
733
734 ublast_queue_tdi(buf, scan_bits, type);
735
736 /*
737 * As our JTAG is in an unstable state (IREXIT1 or DREXIT1), move it
738 * forward to a stable IRPAUSE or DRPAUSE.
739 */
740 ublast_clock_tms(0);
741 if (cmd->ir_scan)
742 tap_set_state(TAP_IRPAUSE);
743 else
744 tap_set_state(TAP_DRPAUSE);
745
746 ret = jtag_read_buffer(buf, cmd);
747 if (buf)
748 free(buf);
749 ublast_state_move(cmd->end_state);
750 return ret;
751 }
752
753 static void ublast_usleep(int us)
754 {
755 DEBUG_JTAG_IO("%s(us=%d)", __func__, us);
756 jtag_sleep(us);
757 }
758
759 static void ublast_initial_wipeout(void)
760 {
761 static uint8_t tms_reset = 0xff;
762 uint8_t out_value;
763 uint32_t retlen;
764 int i;
765
766 out_value = ublast_build_out(SCAN_OUT);
767 for (i = 0; i < BUF_LEN; i++)
768 info.buf[i] = out_value | ((i % 2) ? TCK : 0);
769
770 /*
771 * Flush USB-Blaster queue fifos
772 * - empty the write FIFO (128 bytes)
773 * - empty the read FIFO (384 bytes)
774 */
775 ublast_buf_write(info.buf, BUF_LEN, &retlen);
776 /*
777 * Put JTAG in RESET state (five 1 on TMS)
778 */
779 ublast_tms_seq(&tms_reset, 5);
780 tap_set_state(TAP_RESET);
781 }
782
783 static int ublast_execute_queue(void)
784 {
785 struct jtag_command *cmd;
786 static int first_call = 1;
787 int ret = ERROR_OK;
788
789 if (first_call) {
790 first_call--;
791 ublast_initial_wipeout();
792 }
793
794 for (cmd = jtag_command_queue; ret == ERROR_OK && cmd != NULL;
795 cmd = cmd->next) {
796 switch (cmd->type) {
797 case JTAG_RESET:
798 ublast_reset(cmd->cmd.reset->trst, cmd->cmd.reset->srst);
799 break;
800 case JTAG_RUNTEST:
801 ublast_runtest(cmd->cmd.runtest->num_cycles,
802 cmd->cmd.runtest->end_state);
803 break;
804 case JTAG_STABLECLOCKS:
805 ublast_stableclocks(cmd->cmd.stableclocks->num_cycles);
806 break;
807 case JTAG_TLR_RESET:
808 ublast_state_move(cmd->cmd.statemove->end_state);
809 break;
810 case JTAG_PATHMOVE:
811 ublast_path_move(cmd->cmd.pathmove);
812 break;
813 case JTAG_TMS:
814 ublast_tms(cmd->cmd.tms);
815 break;
816 case JTAG_SLEEP:
817 ublast_usleep(cmd->cmd.sleep->us);
818 break;
819 case JTAG_SCAN:
820 ret = ublast_scan(cmd->cmd.scan);
821 break;
822 }
823 }
824
825 ublast_flush_buffer();
826 return ret;
827 }
828
829 /**
830 * ublast_init - Initialize the Altera device
831 *
832 * Initialize the device :
833 * - open the USB device
834 * - pretend it's initialized while actual init is delayed until first jtag command
835 *
836 * Returns ERROR_OK if USB device found, error if not.
837 */
838 static int ublast_init(void)
839 {
840 int ret, i;
841
842 if (info.lowlevel_name) {
843 for (i = 0; lowlevel_drivers_map[i].name; i++)
844 if (!strcmp(lowlevel_drivers_map[i].name, info.lowlevel_name))
845 break;
846 if (lowlevel_drivers_map[i].name)
847 info.drv = lowlevel_drivers_map[i].drv_register();
848 if (!info.drv) {
849 LOG_ERROR("no lowlevel driver found for %s or lowlevel driver opening error",
850 info.lowlevel_name);
851 return ERROR_JTAG_DEVICE_ERROR;
852 }
853 } else {
854 LOG_INFO("No lowlevel driver configured, will try them all");
855 for (i = 0; !info.drv && lowlevel_drivers_map[i].name; i++)
856 info.drv = lowlevel_drivers_map[i].drv_register();
857 if (!info.drv) {
858 LOG_ERROR("no lowlevel driver found");
859 return ERROR_JTAG_DEVICE_ERROR;
860 }
861 info.lowlevel_name = strdup(lowlevel_drivers_map[i-1].name);
862 }
863
864 /*
865 * Register the lowlevel driver
866 */
867 info.drv->ublast_vid = info.ublast_vid;
868 info.drv->ublast_pid = info.ublast_pid;
869 info.drv->ublast_vid_uninit = info.ublast_vid_uninit;
870 info.drv->ublast_pid_uninit = info.ublast_pid_uninit;
871 info.drv->ublast_device_desc = info.ublast_device_desc;
872 info.drv->firmware_path = info.firmware_path;
873
874 info.flags |= info.drv->flags;
875
876 ret = info.drv->open(info.drv);
877
878 /*
879 * Let lie here : the TAP is in an unknown state, but the first
880 * execute_queue() will trigger a ublast_initial_wipeout(), which will
881 * put the TAP in RESET.
882 */
883 tap_set_state(TAP_RESET);
884 return ret;
885 }
886
887 /**
888 * ublast_quit - Release the Altera device
889 *
890 * Releases the device :
891 * - put the device pins in 'high impedance' mode
892 * - close the USB device
893 *
894 * Returns always ERROR_OK
895 */
896 static int ublast_quit(void)
897 {
898 uint8_t byte0 = 0;
899 unsigned int retlen;
900
901 ublast_buf_write(&byte0, 1, &retlen);
902 return info.drv->close(info.drv);
903 }
904
905 COMMAND_HANDLER(ublast_handle_device_desc_command)
906 {
907 if (CMD_ARGC != 1)
908 return ERROR_COMMAND_SYNTAX_ERROR;
909
910 info.ublast_device_desc = strdup(CMD_ARGV[0]);
911
912 return ERROR_OK;
913 }
914
915 COMMAND_HANDLER(ublast_handle_vid_pid_command)
916 {
917 if (CMD_ARGC > 4) {
918 LOG_WARNING("ignoring extra IDs in ublast_vid_pid "
919 "(maximum is 2 pairs)");
920 CMD_ARGC = 4;
921 }
922
923 if (CMD_ARGC >= 2) {
924 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], info.ublast_vid);
925 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], info.ublast_pid);
926 } else {
927 LOG_WARNING("incomplete ublast_vid_pid configuration");
928 }
929
930 if (CMD_ARGC == 4) {
931 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[2], info.ublast_vid_uninit);
932 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[3], info.ublast_pid_uninit);
933 } else {
934 LOG_WARNING("incomplete ublast_vid_pid configuration");
935 }
936
937 return ERROR_OK;
938 }
939
940 COMMAND_HANDLER(ublast_handle_pin_command)
941 {
942 uint8_t out_value;
943 const char * const pin_name = CMD_ARGV[0];
944 enum gpio_steer *steer = NULL;
945 static const char * const pin_val_str[] = {
946 [FIXED_0] = "0",
947 [FIXED_1] = "1",
948 [SRST] = "SRST driven",
949 [TRST] = "TRST driven",
950 };
951
952 if (CMD_ARGC > 2) {
953 LOG_ERROR("%s takes exactly one or two arguments", CMD_NAME);
954 return ERROR_COMMAND_SYNTAX_ERROR;
955 }
956
957 if (!strcmp(pin_name, "pin6"))
958 steer = &info.pin6;
959 if (!strcmp(pin_name, "pin8"))
960 steer = &info.pin8;
961 if (!steer) {
962 LOG_ERROR("%s: pin name must be \"pin6\" or \"pin8\"",
963 CMD_NAME);
964 return ERROR_COMMAND_SYNTAX_ERROR;
965 }
966
967 if (CMD_ARGC == 1) {
968 LOG_INFO("%s: %s is set as %s\n", CMD_NAME, pin_name,
969 pin_val_str[*steer]);
970 }
971
972 if (CMD_ARGC == 2) {
973 const char * const pin_value = CMD_ARGV[1];
974 char val = pin_value[0];
975
976 if (strlen(pin_value) > 1)
977 val = '?';
978 switch (tolower((unsigned char)val)) {
979 case '0':
980 *steer = FIXED_0;
981 break;
982 case '1':
983 *steer = FIXED_1;
984 break;
985 case 't':
986 *steer = TRST;
987 break;
988 case 's':
989 *steer = SRST;
990 break;
991 default:
992 LOG_ERROR("%s: pin value must be 0, 1, s (SRST) or t (TRST)",
993 pin_value);
994 return ERROR_COMMAND_SYNTAX_ERROR;
995 }
996
997 if (info.drv) {
998 out_value = ublast_build_out(SCAN_OUT);
999 ublast_queue_byte(out_value);
1000 ublast_flush_buffer();
1001 }
1002 }
1003 return ERROR_OK;
1004 }
1005
1006 COMMAND_HANDLER(ublast_handle_lowlevel_drv_command)
1007 {
1008 if (CMD_ARGC != 1)
1009 return ERROR_COMMAND_SYNTAX_ERROR;
1010
1011 info.lowlevel_name = strdup(CMD_ARGV[0]);
1012
1013 return ERROR_OK;
1014 }
1015
1016 COMMAND_HANDLER(ublast_firmware_command)
1017 {
1018 if (CMD_ARGC != 1)
1019 return ERROR_COMMAND_SYNTAX_ERROR;
1020
1021 info.firmware_path = strdup(CMD_ARGV[0]);
1022
1023 return ERROR_OK;
1024 }
1025
1026
1027 static const struct command_registration ublast_command_handlers[] = {
1028 {
1029 .name = "usb_blaster_device_desc",
1030 .handler = ublast_handle_device_desc_command,
1031 .mode = COMMAND_CONFIG,
1032 .help = "set the USB device description of the USB-Blaster",
1033 .usage = "description-string",
1034 },
1035 {
1036 .name = "usb_blaster_vid_pid",
1037 .handler = ublast_handle_vid_pid_command,
1038 .mode = COMMAND_CONFIG,
1039 .help = "the vendor ID and product ID of the USB-Blaster and " \
1040 "vendor ID and product ID of the uninitialized device " \
1041 "for USB-Blaster II",
1042 .usage = "vid pid vid_uninit pid_uninit",
1043 },
1044 {
1045 .name = "usb_blaster_lowlevel_driver",
1046 .handler = ublast_handle_lowlevel_drv_command,
1047 .mode = COMMAND_CONFIG,
1048 .help = "set the lowlevel access for the USB Blaster (ftdi, ublast2)",
1049 .usage = "(ftdi|ublast2)",
1050 },
1051 {
1052 .name = "usb_blaster_pin",
1053 .handler = ublast_handle_pin_command,
1054 .mode = COMMAND_ANY,
1055 .help = "show or set pin state for the unused GPIO pins",
1056 .usage = "(pin6|pin8) (0|1|s|t)",
1057 },
1058 {
1059 .name = "usb_blaster_firmware",
1060 .handler = &ublast_firmware_command,
1061 .mode = COMMAND_CONFIG,
1062 .help = "configure the USB-Blaster II firmware location",
1063 .usage = "path/to/blaster_xxxx.hex",
1064 },
1065 COMMAND_REGISTRATION_DONE
1066 };
1067
1068 struct jtag_interface usb_blaster_interface = {
1069 .name = "usb_blaster",
1070 .commands = ublast_command_handlers,
1071 .supported = DEBUG_CAP_TMS_SEQ,
1072
1073 .execute_queue = ublast_execute_queue,
1074 .init = ublast_init,
1075 .quit = ublast_quit,
1076 };