4566ed3cf845c6fb447cb8028284efa23946eb1e
[openocd.git] / src / jtag / drivers / ftdi.c
1 /**************************************************************************
2 * Copyright (C) 2012 by Andreas Fritiofson *
3 * andreas.fritiofson@gmail.com *
4 * *
5 * This program is free software; you can redistribute it and/or modify *
6 * it under the terms of the GNU General Public License as published by *
7 * the Free Software Foundation; either version 2 of the License, or *
8 * (at your option) any later version. *
9 * *
10 * This program is distributed in the hope that it will be useful, *
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
13 * GNU General Public License for more details. *
14 * *
15 * You should have received a copy of the GNU General Public License *
16 * along with this program; if not, write to the *
17 * Free Software Foundation, Inc., *
18 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. *
19 ***************************************************************************/
20
21 /**
22 * @file
23 * JTAG adapters based on the FT2232 full and high speed USB parts are
24 * popular low cost JTAG debug solutions. Many FT2232 based JTAG adapters
25 * are discrete, but development boards may integrate them as alternatives
26 * to more capable (and expensive) third party JTAG pods.
27 *
28 * JTAG uses only one of the two communications channels ("MPSSE engines")
29 * on these devices. Adapters based on FT4232 parts have four ports/channels
30 * (A/B/C/D), instead of just two (A/B).
31 *
32 * Especially on development boards integrating one of these chips (as
33 * opposed to discrete pods/dongles), the additional channels can be used
34 * for a variety of purposes, but OpenOCD only uses one channel at a time.
35 *
36 * - As a USB-to-serial adapter for the target's console UART ...
37 * which may be able to support ROM boot loaders that load initial
38 * firmware images to flash (or SRAM).
39 *
40 * - On systems which support ARM's SWD in addition to JTAG, or instead
41 * of it, that second port can be used for reading SWV/SWO trace data.
42 *
43 * - Additional JTAG links, e.g. to a CPLD or * FPGA.
44 *
45 * FT2232 based JTAG adapters are "dumb" not "smart", because most JTAG
46 * request/response interactions involve round trips over the USB link.
47 * A "smart" JTAG adapter has intelligence close to the scan chain, so it
48 * can for example poll quickly for a status change (usually taking on the
49 * order of microseconds not milliseconds) before beginning a queued
50 * transaction which require the previous one to have completed.
51 *
52 * There are dozens of adapters of this type, differing in details which
53 * this driver needs to understand. Those "layout" details are required
54 * as part of FT2232 driver configuration.
55 *
56 * This code uses information contained in the MPSSE specification which was
57 * found here:
58 * http://www.ftdichip.com/Documents/AppNotes/AN2232C-01_MPSSE_Cmnd.pdf
59 * Hereafter this is called the "MPSSE Spec".
60 *
61 * The datasheet for the ftdichip.com's FT2232D part is here:
62 * http://www.ftdichip.com/Documents/DataSheets/DS_FT2232D.pdf
63 *
64 * Also note the issue with code 0x4b (clock data to TMS) noted in
65 * http://developer.intra2net.com/mailarchive/html/libftdi/2009/msg00292.html
66 * which can affect longer JTAG state paths.
67 */
68
69 #ifdef HAVE_CONFIG_H
70 #include "config.h"
71 #endif
72
73 /* project specific includes */
74 #include <jtag/interface.h>
75 #include <transport/transport.h>
76 #include <helper/time_support.h>
77
78 #if IS_CYGWIN == 1
79 #include <windows.h>
80 #endif
81
82 #include <assert.h>
83
84 /* FTDI access library includes */
85 #include "mpsse.h"
86
87 #define JTAG_MODE (LSB_FIRST | POS_EDGE_IN | NEG_EDGE_OUT)
88
89 static char *ftdi_device_desc;
90 static char *ftdi_serial;
91 static uint8_t ftdi_channel;
92
93 #define MAX_USB_IDS 8
94 /* vid = pid = 0 marks the end of the list */
95 static uint16_t ftdi_vid[MAX_USB_IDS + 1] = { 0 };
96 static uint16_t ftdi_pid[MAX_USB_IDS + 1] = { 0 };
97
98 static struct mpsse_ctx *mpsse_ctx;
99
100 struct signal {
101 const char *name;
102 uint16_t data_mask;
103 uint16_t oe_mask;
104 bool invert_data;
105 bool invert_oe;
106 struct signal *next;
107 };
108
109 static struct signal *signals;
110
111 static uint16_t output;
112 static uint16_t direction;
113
114 static struct signal *find_signal_by_name(const char *name)
115 {
116 for (struct signal *sig = signals; sig; sig = sig->next) {
117 if (strcmp(name, sig->name) == 0)
118 return sig;
119 }
120 return NULL;
121 }
122
123 static struct signal *create_signal(const char *name)
124 {
125 struct signal **psig = &signals;
126 while (*psig)
127 psig = &(*psig)->next;
128
129 *psig = calloc(1, sizeof(**psig));
130 if (*psig == NULL)
131 return NULL;
132
133 (*psig)->name = strdup(name);
134 if ((*psig)->name == NULL) {
135 free(*psig);
136 *psig = NULL;
137 }
138 return *psig;
139 }
140
141 static int ftdi_set_signal(const struct signal *s, char value)
142 {
143 bool data;
144 bool oe;
145
146 if (s->data_mask == 0 && s->oe_mask == 0) {
147 LOG_ERROR("interface doesn't provide signal '%s'", s->name);
148 return ERROR_FAIL;
149 }
150 switch (value) {
151 case '0':
152 data = s->invert_data;
153 oe = !s->invert_oe;
154 break;
155 case '1':
156 if (s->data_mask == 0) {
157 LOG_ERROR("interface can't drive '%s' high", s->name);
158 return ERROR_FAIL;
159 }
160 data = !s->invert_data;
161 oe = !s->invert_oe;
162 break;
163 case 'z':
164 case 'Z':
165 if (s->oe_mask == 0) {
166 LOG_ERROR("interface can't tri-state '%s'", s->name);
167 return ERROR_FAIL;
168 }
169 data = s->invert_data;
170 oe = s->invert_oe;
171 break;
172 default:
173 assert(0 && "invalid signal level specifier");
174 return ERROR_FAIL;
175 }
176
177 output = data ? output | s->data_mask : output & ~s->data_mask;
178 if (s->oe_mask == s->data_mask)
179 direction = oe ? direction | s->oe_mask : direction & ~s->oe_mask;
180 else
181 output = oe ? output | s->oe_mask : output & ~s->oe_mask;
182
183 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
184 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
185
186 return ERROR_OK;
187 }
188
189
190 /**
191 * Function move_to_state
192 * moves the TAP controller from the current state to a
193 * \a goal_state through a path given by tap_get_tms_path(). State transition
194 * logging is performed by delegation to clock_tms().
195 *
196 * @param goal_state is the destination state for the move.
197 */
198 static void move_to_state(tap_state_t goal_state)
199 {
200 tap_state_t start_state = tap_get_state();
201
202 /* goal_state is 1/2 of a tuple/pair of states which allow convenient
203 lookup of the required TMS pattern to move to this state from the
204 start state.
205 */
206
207 /* do the 2 lookups */
208 int tms_bits = tap_get_tms_path(start_state, goal_state);
209 int tms_count = tap_get_tms_path_len(start_state, goal_state);
210
211 DEBUG_JTAG_IO("start=%s goal=%s", tap_state_name(start_state), tap_state_name(goal_state));
212
213 /* Track state transitions step by step */
214 for (int i = 0; i < tms_count; i++)
215 tap_set_state(tap_state_transition(tap_get_state(), (tms_bits >> i) & 1));
216
217 mpsse_clock_tms_cs_out(mpsse_ctx,
218 (uint8_t *)&tms_bits,
219 0,
220 tms_count,
221 false,
222 JTAG_MODE);
223 }
224
225 static int ftdi_speed(int speed)
226 {
227 int retval;
228 retval = mpsse_set_frequency(mpsse_ctx, speed);
229
230 if (retval < 0) {
231 LOG_ERROR("couldn't set FTDI TCK speed");
232 return retval;
233 }
234
235 return ERROR_OK;
236 }
237
238 static int ftdi_speed_div(int speed, int *khz)
239 {
240 *khz = speed / 1000;
241 return ERROR_OK;
242 }
243
244 static int ftdi_khz(int khz, int *jtag_speed)
245 {
246 if (khz == 0 && !mpsse_is_high_speed(mpsse_ctx)) {
247 LOG_DEBUG("RCLK not supported");
248 return ERROR_FAIL;
249 }
250
251 *jtag_speed = khz * 1000;
252 return ERROR_OK;
253 }
254
255 static void ftdi_end_state(tap_state_t state)
256 {
257 if (tap_is_state_stable(state))
258 tap_set_end_state(state);
259 else {
260 LOG_ERROR("BUG: %s is not a stable end state", tap_state_name(state));
261 exit(-1);
262 }
263 }
264
265 static void ftdi_execute_runtest(struct jtag_command *cmd)
266 {
267 int i;
268 uint8_t zero = 0;
269
270 DEBUG_JTAG_IO("runtest %i cycles, end in %s",
271 cmd->cmd.runtest->num_cycles,
272 tap_state_name(cmd->cmd.runtest->end_state));
273
274 if (tap_get_state() != TAP_IDLE)
275 move_to_state(TAP_IDLE);
276
277 /* TODO: Reuse ftdi_execute_stableclocks */
278 i = cmd->cmd.runtest->num_cycles;
279 while (i > 0) {
280 /* there are no state transitions in this code, so omit state tracking */
281 unsigned this_len = i > 7 ? 7 : i;
282 mpsse_clock_tms_cs_out(mpsse_ctx, &zero, 0, this_len, false, JTAG_MODE);
283 i -= this_len;
284 }
285
286 ftdi_end_state(cmd->cmd.runtest->end_state);
287
288 if (tap_get_state() != tap_get_end_state())
289 move_to_state(tap_get_end_state());
290
291 DEBUG_JTAG_IO("runtest: %i, end in %s",
292 cmd->cmd.runtest->num_cycles,
293 tap_state_name(tap_get_end_state()));
294 }
295
296 static void ftdi_execute_statemove(struct jtag_command *cmd)
297 {
298 DEBUG_JTAG_IO("statemove end in %s",
299 tap_state_name(cmd->cmd.statemove->end_state));
300
301 ftdi_end_state(cmd->cmd.statemove->end_state);
302
303 /* shortest-path move to desired end state */
304 if (tap_get_state() != tap_get_end_state() || tap_get_end_state() == TAP_RESET)
305 move_to_state(tap_get_end_state());
306 }
307
308 /**
309 * Clock a bunch of TMS (or SWDIO) transitions, to change the JTAG
310 * (or SWD) state machine. REVISIT: Not the best method, perhaps.
311 */
312 static void ftdi_execute_tms(struct jtag_command *cmd)
313 {
314 DEBUG_JTAG_IO("TMS: %d bits", cmd->cmd.tms->num_bits);
315
316 /* TODO: Missing tap state tracking, also missing from ft2232.c! */
317 mpsse_clock_tms_cs_out(mpsse_ctx,
318 cmd->cmd.tms->bits,
319 0,
320 cmd->cmd.tms->num_bits,
321 false,
322 JTAG_MODE);
323 }
324
325 static void ftdi_execute_pathmove(struct jtag_command *cmd)
326 {
327 tap_state_t *path = cmd->cmd.pathmove->path;
328 int num_states = cmd->cmd.pathmove->num_states;
329
330 DEBUG_JTAG_IO("pathmove: %i states, current: %s end: %s", num_states,
331 tap_state_name(tap_get_state()),
332 tap_state_name(path[num_states-1]));
333
334 int state_count = 0;
335 unsigned bit_count = 0;
336 uint8_t tms_byte = 0;
337
338 DEBUG_JTAG_IO("-");
339
340 /* this loop verifies that the path is legal and logs each state in the path */
341 while (num_states--) {
342
343 /* either TMS=0 or TMS=1 must work ... */
344 if (tap_state_transition(tap_get_state(), false)
345 == path[state_count])
346 buf_set_u32(&tms_byte, bit_count++, 1, 0x0);
347 else if (tap_state_transition(tap_get_state(), true)
348 == path[state_count]) {
349 buf_set_u32(&tms_byte, bit_count++, 1, 0x1);
350
351 /* ... or else the caller goofed BADLY */
352 } else {
353 LOG_ERROR("BUG: %s -> %s isn't a valid "
354 "TAP state transition",
355 tap_state_name(tap_get_state()),
356 tap_state_name(path[state_count]));
357 exit(-1);
358 }
359
360 tap_set_state(path[state_count]);
361 state_count++;
362
363 if (bit_count == 7 || num_states == 0) {
364 mpsse_clock_tms_cs_out(mpsse_ctx,
365 &tms_byte,
366 0,
367 bit_count,
368 false,
369 JTAG_MODE);
370 bit_count = 0;
371 }
372 }
373 tap_set_end_state(tap_get_state());
374 }
375
376 static void ftdi_execute_scan(struct jtag_command *cmd)
377 {
378 DEBUG_JTAG_IO("%s type:%d", cmd->cmd.scan->ir_scan ? "IRSCAN" : "DRSCAN",
379 jtag_scan_type(cmd->cmd.scan));
380
381 /* Make sure there are no trailing fields with num_bits == 0, or the logic below will fail. */
382 while (cmd->cmd.scan->num_fields > 0
383 && cmd->cmd.scan->fields[cmd->cmd.scan->num_fields - 1].num_bits == 0) {
384 cmd->cmd.scan->num_fields--;
385 LOG_DEBUG("discarding trailing empty field");
386 }
387
388 if (cmd->cmd.scan->num_fields == 0) {
389 LOG_DEBUG("empty scan, doing nothing");
390 return;
391 }
392
393 if (cmd->cmd.scan->ir_scan) {
394 if (tap_get_state() != TAP_IRSHIFT)
395 move_to_state(TAP_IRSHIFT);
396 } else {
397 if (tap_get_state() != TAP_DRSHIFT)
398 move_to_state(TAP_DRSHIFT);
399 }
400
401 ftdi_end_state(cmd->cmd.scan->end_state);
402
403 struct scan_field *field = cmd->cmd.scan->fields;
404 unsigned scan_size = 0;
405
406 for (int i = 0; i < cmd->cmd.scan->num_fields; i++, field++) {
407 scan_size += field->num_bits;
408 DEBUG_JTAG_IO("%s%s field %d/%d %d bits",
409 field->in_value ? "in" : "",
410 field->out_value ? "out" : "",
411 i,
412 cmd->cmd.scan->num_fields,
413 field->num_bits);
414
415 if (i == cmd->cmd.scan->num_fields - 1 && tap_get_state() != tap_get_end_state()) {
416 /* Last field, and we're leaving IRSHIFT/DRSHIFT. Clock last bit during tap
417 * movement. This last field can't have length zero, it was checked above. */
418 mpsse_clock_data(mpsse_ctx,
419 field->out_value,
420 0,
421 field->in_value,
422 0,
423 field->num_bits - 1,
424 JTAG_MODE);
425 uint8_t last_bit = 0;
426 if (field->out_value)
427 bit_copy(&last_bit, 0, field->out_value, field->num_bits - 1, 1);
428 uint8_t tms_bits = 0x01;
429 mpsse_clock_tms_cs(mpsse_ctx,
430 &tms_bits,
431 0,
432 field->in_value,
433 field->num_bits - 1,
434 1,
435 last_bit,
436 JTAG_MODE);
437 tap_set_state(tap_state_transition(tap_get_state(), 1));
438 mpsse_clock_tms_cs_out(mpsse_ctx,
439 &tms_bits,
440 1,
441 1,
442 last_bit,
443 JTAG_MODE);
444 tap_set_state(tap_state_transition(tap_get_state(), 0));
445 } else
446 mpsse_clock_data(mpsse_ctx,
447 field->out_value,
448 0,
449 field->in_value,
450 0,
451 field->num_bits,
452 JTAG_MODE);
453 }
454
455 if (tap_get_state() != tap_get_end_state())
456 move_to_state(tap_get_end_state());
457
458 DEBUG_JTAG_IO("%s scan, %i bits, end in %s",
459 (cmd->cmd.scan->ir_scan) ? "IR" : "DR", scan_size,
460 tap_state_name(tap_get_end_state()));
461 }
462
463 static void ftdi_execute_reset(struct jtag_command *cmd)
464 {
465 DEBUG_JTAG_IO("reset trst: %i srst %i",
466 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
467
468 if (cmd->cmd.reset->trst == 1
469 || (cmd->cmd.reset->srst
470 && (jtag_get_reset_config() & RESET_SRST_PULLS_TRST)))
471 tap_set_state(TAP_RESET);
472
473 struct signal *trst = find_signal_by_name("nTRST");
474 if (trst && cmd->cmd.reset->trst == 1) {
475 ftdi_set_signal(trst, '0');
476 } else if (trst && cmd->cmd.reset->trst == 0) {
477 if (jtag_get_reset_config() & RESET_TRST_OPEN_DRAIN)
478 ftdi_set_signal(trst, 'z');
479 else
480 ftdi_set_signal(trst, '1');
481 }
482
483 struct signal *srst = find_signal_by_name("nSRST");
484 if (srst && cmd->cmd.reset->srst == 1) {
485 ftdi_set_signal(srst, '0');
486 } else if (srst && cmd->cmd.reset->srst == 0) {
487 if (jtag_get_reset_config() & RESET_SRST_PUSH_PULL)
488 ftdi_set_signal(srst, '1');
489 else
490 ftdi_set_signal(srst, 'z');
491 }
492
493 DEBUG_JTAG_IO("trst: %i, srst: %i",
494 cmd->cmd.reset->trst, cmd->cmd.reset->srst);
495 }
496
497 static void ftdi_execute_sleep(struct jtag_command *cmd)
498 {
499 DEBUG_JTAG_IO("sleep %" PRIi32, cmd->cmd.sleep->us);
500
501 mpsse_flush(mpsse_ctx);
502 jtag_sleep(cmd->cmd.sleep->us);
503 DEBUG_JTAG_IO("sleep %" PRIi32 " usec while in %s",
504 cmd->cmd.sleep->us,
505 tap_state_name(tap_get_state()));
506 }
507
508 static void ftdi_execute_stableclocks(struct jtag_command *cmd)
509 {
510 /* this is only allowed while in a stable state. A check for a stable
511 * state was done in jtag_add_clocks()
512 */
513 int num_cycles = cmd->cmd.stableclocks->num_cycles;
514
515 /* 7 bits of either ones or zeros. */
516 uint8_t tms = tap_get_state() == TAP_RESET ? 0x7f : 0x00;
517
518 /* TODO: Use mpsse_clock_data with in=out=0 for this, if TMS can be set to
519 * the correct level and remain there during the scan */
520 while (num_cycles > 0) {
521 /* there are no state transitions in this code, so omit state tracking */
522 unsigned this_len = num_cycles > 7 ? 7 : num_cycles;
523 mpsse_clock_tms_cs_out(mpsse_ctx, &tms, 0, this_len, false, JTAG_MODE);
524 num_cycles -= this_len;
525 }
526
527 DEBUG_JTAG_IO("clocks %i while in %s",
528 cmd->cmd.stableclocks->num_cycles,
529 tap_state_name(tap_get_state()));
530 }
531
532 static void ftdi_execute_command(struct jtag_command *cmd)
533 {
534 switch (cmd->type) {
535 case JTAG_RESET:
536 ftdi_execute_reset(cmd);
537 break;
538 case JTAG_RUNTEST:
539 ftdi_execute_runtest(cmd);
540 break;
541 case JTAG_TLR_RESET:
542 ftdi_execute_statemove(cmd);
543 break;
544 case JTAG_PATHMOVE:
545 ftdi_execute_pathmove(cmd);
546 break;
547 case JTAG_SCAN:
548 ftdi_execute_scan(cmd);
549 break;
550 case JTAG_SLEEP:
551 ftdi_execute_sleep(cmd);
552 break;
553 case JTAG_STABLECLOCKS:
554 ftdi_execute_stableclocks(cmd);
555 break;
556 case JTAG_TMS:
557 ftdi_execute_tms(cmd);
558 break;
559 default:
560 LOG_ERROR("BUG: unknown JTAG command type encountered: %d", cmd->type);
561 break;
562 }
563 }
564
565 static int ftdi_execute_queue(void)
566 {
567 /* blink, if the current layout has that feature */
568 struct signal *led = find_signal_by_name("LED");
569 if (led)
570 ftdi_set_signal(led, '1');
571
572 for (struct jtag_command *cmd = jtag_command_queue; cmd; cmd = cmd->next) {
573 /* fill the write buffer with the desired command */
574 ftdi_execute_command(cmd);
575 }
576
577 if (led)
578 ftdi_set_signal(led, '0');
579
580 int retval = mpsse_flush(mpsse_ctx);
581 if (retval != ERROR_OK)
582 LOG_ERROR("error while flushing MPSSE queue: %d", retval);
583
584 return retval;
585 }
586
587 static int ftdi_initialize(void)
588 {
589 if (tap_get_tms_path_len(TAP_IRPAUSE, TAP_IRPAUSE) == 7)
590 LOG_DEBUG("ftdi interface using 7 step jtag state transitions");
591 else
592 LOG_DEBUG("ftdi interface using shortest path jtag state transitions");
593
594 for (int i = 0; ftdi_vid[i] || ftdi_pid[i]; i++) {
595 mpsse_ctx = mpsse_open(&ftdi_vid[i], &ftdi_pid[i], ftdi_device_desc,
596 ftdi_serial, ftdi_channel);
597 if (mpsse_ctx)
598 break;
599 }
600
601 if (!mpsse_ctx)
602 return ERROR_JTAG_INIT_FAILED;
603
604 mpsse_set_data_bits_low_byte(mpsse_ctx, output & 0xff, direction & 0xff);
605 mpsse_set_data_bits_high_byte(mpsse_ctx, output >> 8, direction >> 8);
606
607 mpsse_loopback_config(mpsse_ctx, false);
608
609 return mpsse_flush(mpsse_ctx);
610 }
611
612 static int ftdi_quit(void)
613 {
614 mpsse_close(mpsse_ctx);
615
616 return ERROR_OK;
617 }
618
619 COMMAND_HANDLER(ftdi_handle_device_desc_command)
620 {
621 if (CMD_ARGC == 1) {
622 if (ftdi_device_desc)
623 free(ftdi_device_desc);
624 ftdi_device_desc = strdup(CMD_ARGV[0]);
625 } else {
626 LOG_ERROR("expected exactly one argument to ftdi_device_desc <description>");
627 }
628
629 return ERROR_OK;
630 }
631
632 COMMAND_HANDLER(ftdi_handle_serial_command)
633 {
634 if (CMD_ARGC == 1) {
635 if (ftdi_serial)
636 free(ftdi_serial);
637 ftdi_serial = strdup(CMD_ARGV[0]);
638 } else {
639 return ERROR_COMMAND_SYNTAX_ERROR;
640 }
641
642 return ERROR_OK;
643 }
644
645 COMMAND_HANDLER(ftdi_handle_channel_command)
646 {
647 if (CMD_ARGC == 1)
648 COMMAND_PARSE_NUMBER(u8, CMD_ARGV[0], ftdi_channel);
649 else
650 return ERROR_COMMAND_SYNTAX_ERROR;
651
652 return ERROR_OK;
653 }
654
655 COMMAND_HANDLER(ftdi_handle_layout_init_command)
656 {
657 if (CMD_ARGC != 2)
658 return ERROR_COMMAND_SYNTAX_ERROR;
659
660 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[0], output);
661 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[1], direction);
662
663 return ERROR_OK;
664 }
665
666 COMMAND_HANDLER(ftdi_handle_layout_signal_command)
667 {
668 if (CMD_ARGC < 1)
669 return ERROR_COMMAND_SYNTAX_ERROR;
670
671 bool invert_data = false;
672 uint16_t data_mask = 0;
673 bool invert_oe = false;
674 uint16_t oe_mask = 0;
675 for (unsigned i = 1; i < CMD_ARGC; i += 2) {
676 if (strcmp("-data", CMD_ARGV[i]) == 0) {
677 invert_data = false;
678 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
679 } else if (strcmp("-ndata", CMD_ARGV[i]) == 0) {
680 invert_data = true;
681 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], data_mask);
682 } else if (strcmp("-oe", CMD_ARGV[i]) == 0) {
683 invert_oe = false;
684 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
685 } else if (strcmp("-noe", CMD_ARGV[i]) == 0) {
686 invert_oe = true;
687 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], oe_mask);
688 } else {
689 LOG_ERROR("unknown option '%s'", CMD_ARGV[i]);
690 return ERROR_COMMAND_SYNTAX_ERROR;
691 }
692 }
693
694 struct signal *sig;
695 sig = find_signal_by_name(CMD_ARGV[0]);
696 if (!sig)
697 sig = create_signal(CMD_ARGV[0]);
698 if (!sig) {
699 LOG_ERROR("failed to create signal %s", CMD_ARGV[0]);
700 return ERROR_FAIL;
701 }
702
703 sig->invert_data = invert_data;
704 sig->data_mask = data_mask;
705 sig->invert_oe = invert_oe;
706 sig->oe_mask = oe_mask;
707
708 return ERROR_OK;
709 }
710
711 COMMAND_HANDLER(ftdi_handle_set_signal_command)
712 {
713 if (CMD_ARGC < 2)
714 return ERROR_COMMAND_SYNTAX_ERROR;
715
716 struct signal *sig;
717 sig = find_signal_by_name(CMD_ARGV[0]);
718 if (!sig) {
719 LOG_ERROR("interface configuration doesn't define signal '%s'", CMD_ARGV[0]);
720 return ERROR_FAIL;
721 }
722
723 switch (*CMD_ARGV[1]) {
724 case '0':
725 case '1':
726 case 'z':
727 case 'Z':
728 /* single character level specifier only */
729 if (CMD_ARGV[1][1] == '\0') {
730 ftdi_set_signal(sig, *CMD_ARGV[1]);
731 break;
732 }
733 default:
734 LOG_ERROR("unknown signal level '%s', use 0, 1 or z", CMD_ARGV[1]);
735 return ERROR_COMMAND_SYNTAX_ERROR;
736 }
737
738 return mpsse_flush(mpsse_ctx);
739 }
740
741 COMMAND_HANDLER(ftdi_handle_vid_pid_command)
742 {
743 if (CMD_ARGC > MAX_USB_IDS * 2) {
744 LOG_WARNING("ignoring extra IDs in ftdi_vid_pid "
745 "(maximum is %d pairs)", MAX_USB_IDS);
746 CMD_ARGC = MAX_USB_IDS * 2;
747 }
748 if (CMD_ARGC < 2 || (CMD_ARGC & 1)) {
749 LOG_WARNING("incomplete ftdi_vid_pid configuration directive");
750 if (CMD_ARGC < 2)
751 return ERROR_COMMAND_SYNTAX_ERROR;
752 /* remove the incomplete trailing id */
753 CMD_ARGC -= 1;
754 }
755
756 unsigned i;
757 for (i = 0; i < CMD_ARGC; i += 2) {
758 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i], ftdi_vid[i >> 1]);
759 COMMAND_PARSE_NUMBER(u16, CMD_ARGV[i + 1], ftdi_pid[i >> 1]);
760 }
761
762 /*
763 * Explicitly terminate, in case there are multiples instances of
764 * ftdi_vid_pid.
765 */
766 ftdi_vid[i >> 1] = ftdi_pid[i >> 1] = 0;
767
768 return ERROR_OK;
769 }
770
771 static const struct command_registration ftdi_command_handlers[] = {
772 {
773 .name = "ftdi_device_desc",
774 .handler = &ftdi_handle_device_desc_command,
775 .mode = COMMAND_CONFIG,
776 .help = "set the USB device description of the FTDI device",
777 .usage = "description_string",
778 },
779 {
780 .name = "ftdi_serial",
781 .handler = &ftdi_handle_serial_command,
782 .mode = COMMAND_CONFIG,
783 .help = "set the serial number of the FTDI device",
784 .usage = "serial_string",
785 },
786 {
787 .name = "ftdi_channel",
788 .handler = &ftdi_handle_channel_command,
789 .mode = COMMAND_CONFIG,
790 .help = "set the channel of the FTDI device that is used as JTAG",
791 .usage = "(0-3)",
792 },
793 {
794 .name = "ftdi_layout_init",
795 .handler = &ftdi_handle_layout_init_command,
796 .mode = COMMAND_CONFIG,
797 .help = "initialize the FTDI GPIO signals used "
798 "to control output-enables and reset signals",
799 .usage = "data direction",
800 },
801 {
802 .name = "ftdi_layout_signal",
803 .handler = &ftdi_handle_layout_signal_command,
804 .mode = COMMAND_ANY,
805 .help = "define a signal controlled by one or more FTDI GPIO as data "
806 "and/or output enable",
807 .usage = "name [-data mask|-ndata mask] [-oe mask|-noe mask]",
808 },
809 {
810 .name = "ftdi_set_signal",
811 .handler = &ftdi_handle_set_signal_command,
812 .mode = COMMAND_EXEC,
813 .help = "control a layout-specific signal",
814 .usage = "name (1|0|z)",
815 },
816 {
817 .name = "ftdi_vid_pid",
818 .handler = &ftdi_handle_vid_pid_command,
819 .mode = COMMAND_CONFIG,
820 .help = "the vendor ID and product ID of the FTDI device",
821 .usage = "(vid pid)* ",
822 },
823 COMMAND_REGISTRATION_DONE
824 };
825
826 struct jtag_interface ftdi_interface = {
827 .name = "ftdi",
828 .supported = DEBUG_CAP_TMS_SEQ,
829 .commands = ftdi_command_handlers,
830 .transports = jtag_only,
831
832 .init = ftdi_initialize,
833 .quit = ftdi_quit,
834 .speed = ftdi_speed,
835 .speed_div = ftdi_speed_div,
836 .khz = ftdi_khz,
837 .execute_queue = ftdi_execute_queue,
838 };