xmc4xxx: Add XMC4800 support
[openocd.git] / src / flash / nor / xmc4xxx.c
1 /**************************************************************************
2 * Copyright (C) 2015 Jeff Ciesielski <jeffciesielski@gmail.com> *
3 * *
4 * This program is free software; you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation; either version 2 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 ***************************************************************************/
15
16 #ifdef HAVE_CONFIG_H
17 #include "config.h"
18 #endif
19
20 #include "imp.h"
21 #include <helper/binarybuffer.h>
22 #include <target/algorithm.h>
23 #include <target/armv7m.h>
24
25 /* Maximum number of sectors */
26 #define MAX_XMC_SECTORS 12
27
28 /* System control unit registers */
29 #define SCU_REG_BASE 0x50004000
30
31 #define SCU_ID_CHIP 0x04
32
33 /* Base of the non-cached flash memory */
34 #define PFLASH_BASE 0x0C000000
35
36 /* User configuration block offsets */
37 #define UCB0_BASE 0x00000000
38 #define UCB1_BASE 0x00000400
39 #define UCB2_BASE 0x00000800
40
41 /* Flash register base */
42 #define FLASH_REG_BASE 0x58000000
43
44 /* PMU ID Registers */
45 #define FLASH_REG_PMU_ID (FLASH_REG_BASE | 0x0508)
46
47 /* PMU Fields */
48 #define PMU_MOD_REV_MASK 0xFF
49 #define PMU_MOD_TYPE_MASK 0xFF00
50 #define PMU_MOD_NO_MASK 0xFFFF0000
51
52 /* Prefetch Config */
53 #define FLASH_REG_PREF_PCON (FLASH_REG_BASE | 0x4000)
54
55 /* Prefetch Fields */
56 #define PCON_IBYP (1 << 0)
57 #define PCON_IINV (1 << 1)
58
59 /* Flash ID Register */
60 #define FLASH_REG_FLASH0_ID (FLASH_REG_BASE | 0x2008)
61
62 /* Flash Status Register */
63 #define FLASH_REG_FLASH0_FSR (FLASH_REG_BASE | 0x2010)
64
65 #define FSR_PBUSY (0)
66 #define FSR_FABUSY (1)
67 #define FSR_PROG (4)
68 #define FSR_ERASE (5)
69 #define FSR_PFPAGE (6)
70 #define FSR_PFOPER (8)
71 #define FSR_SQER (10)
72 #define FSR_PROER (11)
73 #define FSR_PFSBER (12)
74 #define FSR_PFDBER (14)
75 #define FSR_PROIN (16)
76 #define FSR_RPROIN (18)
77 #define FSR_RPRODIS (19)
78 #define FSR_WPROIN0 (21)
79 #define FSR_WPROIN1 (22)
80 #define FSR_WPROIN2 (23)
81 #define FSR_WPRODIS0 (25)
82 #define FSR_WPRODIS1 (26)
83 #define FSR_SLM (28)
84 #define FSR_VER (31)
85
86 #define FSR_PBUSY_MASK (0x01 << FSR_PBUSY)
87 #define FSR_FABUSY_MASK (0x01 << FSR_FABUSY)
88 #define FSR_PROG_MASK (0x01 << FSR_PROG)
89 #define FSR_ERASE_MASK (0x01 << FSR_ERASE)
90 #define FSR_PFPAGE_MASK (0x01 << FSR_PFPAGE)
91 #define FSR_PFOPER_MASK (0x01 << FSR_PFOPER)
92 #define FSR_SQER_MASK (0x01 << FSR_SQER)
93 #define FSR_PROER_MASK (0x01 << FSR_PROER)
94 #define FSR_PFSBER_MASK (0x01 << FSR_PFSBER)
95 #define FSR_PFDBER_MASK (0x01 << FSR_PFDBER)
96 #define FSR_PROIN_MASK (0x01 << FSR_PROIN)
97 #define FSR_RPROIN_MASK (0x01 << FSR_RPROIN)
98 #define FSR_RPRODIS_MASK (0x01 << FSR_RPRODIS)
99 #define FSR_WPROIN0_MASK (0x01 << FSR_WPROIN0)
100 #define FSR_WPROIN1_MASK (0x01 << FSR_WPROIN1)
101 #define FSR_WPROIN2_MASK (0x01 << FSR_WPROIN2)
102 #define FSR_WPRODIS0_MASK (0x01 << FSR_WPRODIS0)
103 #define FSR_WPRODIS1_MASK (0x01 << FSR_WPRODIS1)
104 #define FSR_SLM_MASK (0x01 << FSR_SLM)
105 #define FSR_VER_MASK (0x01 << FSR_VER)
106
107 /* Flash Config Register */
108 #define FLASH_REG_FLASH0_FCON (FLASH_REG_BASE | 0x2014)
109
110 #define FCON_WSPFLASH (0)
111 #define FCON_WSECPF (4)
112 #define FCON_IDLE (13)
113 #define FCON_ESLDIS (14)
114 #define FCON_SLEEP (15)
115 #define FCON_RPA (16)
116 #define FCON_DCF (17)
117 #define FCON_DDF (18)
118 #define FCON_VOPERM (24)
119 #define FCON_SQERM (25)
120 #define FCON_PROERM (26)
121 #define FCON_PFSBERM (27)
122 #define FCON_PFDBERM (29)
123 #define FCON_EOBM (31)
124
125 #define FCON_WSPFLASH_MASK (0x0f << FCON_WSPFLASH)
126 #define FCON_WSECPF_MASK (0x01 << FCON_WSECPF)
127 #define FCON_IDLE_MASK (0x01 << FCON_IDLE)
128 #define FCON_ESLDIS_MASK (0x01 << FCON_ESLDIS)
129 #define FCON_SLEEP_MASK (0x01 << FCON_SLEEP)
130 #define FCON_RPA_MASK (0x01 << FCON_RPA)
131 #define FCON_DCF_MASK (0x01 << FCON_DCF)
132 #define FCON_DDF_MASK (0x01 << FCON_DDF)
133 #define FCON_VOPERM_MASK (0x01 << FCON_VOPERM)
134 #define FCON_SQERM_MASK (0x01 << FCON_SQERM)
135 #define FCON_PROERM_MASK (0x01 << FCON_PROERM)
136 #define FCON_PFSBERM_MASK (0x01 << FCON_PFSBERM)
137 #define FCON_PFDBERM_MASK (0x01 << FCON_PFDBERM)
138 #define FCON_EOBM_MASK (0x01 << FCON_EOBM)
139
140 /* Flash Margin Control Register */
141 #define FLASH_REG_FLASH0_MARP (FLASH_REG_BASE | 0x2018)
142
143 #define MARP_MARGIN (0)
144 #define MARP_TRAPDIS (15)
145
146 #define MARP_MARGIN_MASK (0x0f << MARP_MARGIN)
147 #define MARP_TRAPDIS_MASK (0x01 << MARP_TRAPDIS)
148
149 /* Flash Protection Registers */
150 #define FLASH_REG_FLASH0_PROCON0 (FLASH_REG_BASE | 0x2020)
151 #define FLASH_REG_FLASH0_PROCON1 (FLASH_REG_BASE | 0x2024)
152 #define FLASH_REG_FLASH0_PROCON2 (FLASH_REG_BASE | 0x2028)
153
154 #define PROCON_S0L (0)
155 #define PROCON_S1L (1)
156 #define PROCON_S2L (2)
157 #define PROCON_S3L (3)
158 #define PROCON_S4L (4)
159 #define PROCON_S5L (5)
160 #define PROCON_S6L (6)
161 #define PROCON_S7L (7)
162 #define PROCON_S8L (8)
163 #define PROCON_S9L (9)
164 #define PROCON_S10_S11L (10)
165 #define PROCON_RPRO (15)
166
167 #define PROCON_S0L_MASK (0x01 << PROCON_S0L)
168 #define PROCON_S1L_MASK (0x01 << PROCON_S1L)
169 #define PROCON_S2L_MASK (0x01 << PROCON_S2L)
170 #define PROCON_S3L_MASK (0x01 << PROCON_S3L)
171 #define PROCON_S4L_MASK (0x01 << PROCON_S4L)
172 #define PROCON_S5L_MASK (0x01 << PROCON_S5L)
173 #define PROCON_S6L_MASK (0x01 << PROCON_S6L)
174 #define PROCON_S7L_MASK (0x01 << PROCON_S7L)
175 #define PROCON_S8L_MASK (0x01 << PROCON_S8L)
176 #define PROCON_S9L_MASK (0x01 << PROCON_S9L)
177 #define PROCON_S10_S11L_MASK (0x01 << PROCON_S10_S11L)
178 #define PROCON_RPRO_MASK (0x01 << PROCON_RPRO)
179
180 #define FLASH_PROTECT_CONFIRMATION_CODE 0x8AFE15C3
181
182 /* Flash controller configuration values */
183 #define FLASH_ID_XMC4500 0xA2
184 #define FLASH_ID_XMC4800 0x92
185 #define FLASH_ID_XMC4100_4200 0x9C
186 #define FLASH_ID_XMC4400 0x9F
187
188 /* Timeouts */
189 #define FLASH_OP_TIMEOUT 5000
190
191 /* Flash commands (write/erase/protect) are performed using special
192 * command sequences that are written to magic addresses in the flash controller */
193 /* Command sequence addresses. See reference manual, section 8: Flash Command Sequences */
194 #define FLASH_CMD_ERASE_1 0x0C005554
195 #define FLASH_CMD_ERASE_2 0x0C00AAA8
196 #define FLASH_CMD_ERASE_3 FLASH_CMD_ERASE_1
197 #define FLASH_CMD_ERASE_4 FLASH_CMD_ERASE_1
198 #define FLASH_CMD_ERASE_5 FLASH_CMD_ERASE_2
199 /* ERASE_6 is the sector base address */
200
201 #define FLASH_CMD_CLEAR_STATUS FLASH_CMD_ERASE_1
202
203 #define FLASH_CMD_ENTER_PAGEMODE FLASH_CMD_ERASE_1
204
205 #define FLASH_CMD_LOAD_PAGE_1 0x0C0055F0
206 #define FLASH_CMD_LOAD_PAGE_2 0x0C0055F4
207
208 #define FLASH_CMD_WRITE_PAGE_1 FLASH_CMD_ERASE_1
209 #define FLASH_CMD_WRITE_PAGE_2 FLASH_CMD_ERASE_2
210 #define FLASH_CMD_WRITE_PAGE_3 FLASH_CMD_ERASE_1
211 /* WRITE_PAGE_4 is the page base address */
212
213 #define FLASH_CMD_TEMP_UNPROT_1 FLASH_CMD_ERASE_1
214 #define FLASH_CMD_TEMP_UNPROT_2 FLASH_CMD_ERASE_2
215 #define FLASH_CMD_TEMP_UNPROT_3 0x0C00553C
216 #define FLASH_CMD_TEMP_UNPROT_4 FLASH_CMD_ERASE_2
217 #define FLASH_CMD_TEMP_UNPROT_5 FLASH_CMD_ERASE_2
218 #define FLASH_CMD_TEMP_UNPROT_6 0x0C005558
219
220 struct xmc4xxx_flash_bank {
221 bool probed;
222
223 /* We need the flash controller ID to choose the sector layout */
224 uint32_t fcon_id;
225
226 /* Passwords used for protection operations */
227 uint32_t pw1;
228 uint32_t pw2;
229 bool pw_set;
230
231 /* Protection flags */
232 bool read_protected;
233
234 bool write_prot_otp[MAX_XMC_SECTORS];
235 };
236
237 struct xmc4xxx_command_seq {
238 uint32_t address;
239 uint32_t magic;
240 };
241
242 /* Sector capacities. See section 8 of xmc4x00_rm */
243 static const unsigned int sector_capacity_8[8] = {
244 16, 16, 16, 16, 16, 16, 16, 128
245 };
246
247 static const unsigned int sector_capacity_9[9] = {
248 16, 16, 16, 16, 16, 16, 16, 128, 256
249 };
250
251 static const unsigned int sector_capacity_12[12] = {
252 16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256
253 };
254
255 static const unsigned int sector_capacity_16[16] = {
256 16, 16, 16, 16, 16, 16, 16, 16, 128, 256, 256, 256, 256, 256, 256, 256
257 };
258
259 static int xmc4xxx_write_command_sequence(struct flash_bank *bank,
260 struct xmc4xxx_command_seq *seq,
261 int seq_len)
262 {
263 int res = ERROR_OK;
264
265 for (int i = 0; i < seq_len; i++) {
266 res = target_write_u32(bank->target, seq[i].address,
267 seq[i].magic);
268 if (res != ERROR_OK)
269 return res;
270 }
271
272 return ERROR_OK;
273 }
274
275 static int xmc4xxx_load_bank_layout(struct flash_bank *bank)
276 {
277 const unsigned int *capacity = NULL;
278
279 /* At this point, we know which flash controller ID we're
280 * talking to and simply need to fill out the bank structure accordingly */
281 LOG_DEBUG("%d sectors", bank->num_sectors);
282
283 switch (bank->num_sectors) {
284 case 8:
285 capacity = sector_capacity_8;
286 break;
287 case 9:
288 capacity = sector_capacity_9;
289 break;
290 case 12:
291 capacity = sector_capacity_12;
292 break;
293 case 16:
294 capacity = sector_capacity_16;
295 break;
296 default:
297 LOG_ERROR("Unexpected number of sectors, %d\n",
298 bank->num_sectors);
299 return ERROR_FAIL;
300 }
301
302 /* This looks like a bank that we understand, now we know the
303 * corresponding sector capacities and we can add those up into the
304 * bank size. */
305 uint32_t total_offset = 0;
306 bank->sectors = calloc(bank->num_sectors,
307 sizeof(struct flash_sector));
308 for (int i = 0; i < bank->num_sectors; i++) {
309 bank->sectors[i].size = capacity[i] * 1024;
310 bank->sectors[i].offset = total_offset;
311 bank->sectors[i].is_erased = -1;
312 bank->sectors[i].is_protected = -1;
313
314 bank->size += bank->sectors[i].size;
315 LOG_DEBUG("\t%d: %uk", i, capacity[i]);
316 total_offset += bank->sectors[i].size;
317 }
318
319 /* This part doesn't follow the typical standard of 0xff
320 * being the default padding value.*/
321 bank->default_padded_value = 0x00;
322
323 return ERROR_OK;
324 }
325
326 static int xmc4xxx_probe(struct flash_bank *bank)
327 {
328 int res;
329 uint32_t devid, config;
330 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
331 uint8_t flash_id;
332
333 if (fb->probed)
334 return ERROR_OK;
335
336 /* It's not possible for the DAP to access the OTP locations needed for
337 * probing the part info and Flash geometry so we require that the target
338 * be halted before proceeding. */
339 if (bank->target->state != TARGET_HALTED) {
340 LOG_WARNING("Cannot communicate... target not halted.");
341 return ERROR_TARGET_NOT_HALTED;
342 }
343
344 /* The SCU registers contain the ID of the chip */
345 res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &devid);
346 if (res != ERROR_OK) {
347 LOG_ERROR("Cannot read device identification register.");
348 return res;
349 }
350
351 /* Make sure this is a XMC4000 family device */
352 if ((devid & 0xF0000) != 0x40000 && devid != 0) {
353 LOG_ERROR("Platform ID doesn't match XMC4xxx: 0x%08" PRIx32, devid);
354 return ERROR_FAIL;
355 }
356
357 LOG_DEBUG("Found XMC4xxx with devid: 0x%08" PRIx32, devid);
358
359 /* Now sanity-check the Flash controller itself. */
360 res = target_read_u32(bank->target, FLASH_REG_FLASH0_ID,
361 &config);
362 if (res != ERROR_OK) {
363 LOG_ERROR("Cannot read Flash bank configuration.");
364 return res;
365 }
366 flash_id = (config & 0xff0000) >> 16;
367
368 /* The Flash configuration register is our only means of
369 * determining the sector layout. We need to make sure that
370 * we understand the type of controller we're dealing with */
371 switch (flash_id) {
372 case FLASH_ID_XMC4100_4200:
373 bank->num_sectors = 8;
374 LOG_DEBUG("XMC4xxx: XMC4100/4200 detected.");
375 break;
376 case FLASH_ID_XMC4400:
377 bank->num_sectors = 9;
378 LOG_DEBUG("XMC4xxx: XMC4400 detected.");
379 break;
380 case FLASH_ID_XMC4500:
381 bank->num_sectors = 12;
382 LOG_DEBUG("XMC4xxx: XMC4500 detected.");
383 break;
384 case FLASH_ID_XMC4800:
385 bank->num_sectors = 16;
386 LOG_DEBUG("XMC4xxx: XMC4800 detected.");
387 break;
388 default:
389 LOG_ERROR("XMC4xxx: Unexpected flash ID. got %02" PRIx8,
390 flash_id);
391 return ERROR_FAIL;
392 }
393
394 /* Retrieve information about the particular bank we're probing and fill in
395 * the bank structure accordingly. */
396 res = xmc4xxx_load_bank_layout(bank);
397 if (res == ERROR_OK) {
398 /* We're done */
399 fb->probed = true;
400 } else {
401 LOG_ERROR("Unable to load bank information.");
402 return ERROR_FAIL;
403 }
404
405 return ERROR_OK;
406 }
407
408 static int xmc4xxx_get_sector_start_addr(struct flash_bank *bank,
409 int sector, uint32_t *ret_addr)
410 {
411 /* Make sure we understand this sector */
412 if (sector > bank->num_sectors)
413 return ERROR_FAIL;
414
415 *ret_addr = bank->base + bank->sectors[sector].offset;
416
417 return ERROR_OK;
418
419 }
420
421 static int xmc4xxx_clear_flash_status(struct flash_bank *bank)
422 {
423 int res;
424 /* TODO: Do we need to check for sequence error? */
425 LOG_INFO("Clearing flash status");
426 res = target_write_u32(bank->target, FLASH_CMD_CLEAR_STATUS,
427 0xF5);
428 if (res != ERROR_OK) {
429 LOG_ERROR("Unable to write erase command sequence");
430 return res;
431 }
432
433 return ERROR_OK;
434 }
435
436 static int xmc4xxx_get_flash_status(struct flash_bank *bank, uint32_t *status)
437 {
438 int res;
439
440 res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, status);
441
442 if (res != ERROR_OK)
443 LOG_ERROR("Cannot read flash status register.");
444
445 return res;
446 }
447
448 static int xmc4xxx_wait_status_busy(struct flash_bank *bank, int timeout)
449 {
450 int res;
451 uint32_t status;
452
453 res = xmc4xxx_get_flash_status(bank, &status);
454 if (res != ERROR_OK)
455 return res;
456
457 /* While the flash controller is busy, wait */
458 while (status & FSR_PBUSY_MASK) {
459 res = xmc4xxx_get_flash_status(bank, &status);
460 if (res != ERROR_OK)
461 return res;
462
463 if (timeout-- <= 0) {
464 LOG_ERROR("Timed out waiting for flash");
465 return ERROR_FAIL;
466 }
467 alive_sleep(1);
468 keep_alive();
469 }
470
471 if (status & FSR_PROER_MASK) {
472 LOG_ERROR("XMC4xxx flash protected");
473 res = ERROR_FAIL;
474 }
475
476 return res;
477 }
478
479 static int xmc4xxx_erase_sector(struct flash_bank *bank, uint32_t address,
480 bool user_config)
481 {
482 int res;
483 uint32_t status;
484
485 /* See reference manual table 8.4: Command Sequences for Flash Control */
486 struct xmc4xxx_command_seq erase_cmd_seq[6] = {
487 {FLASH_CMD_ERASE_1, 0xAA},
488 {FLASH_CMD_ERASE_2, 0x55},
489 {FLASH_CMD_ERASE_3, 0x80},
490 {FLASH_CMD_ERASE_4, 0xAA},
491 {FLASH_CMD_ERASE_5, 0x55},
492 {0xFF, 0xFF} /* Needs filled in */
493 };
494
495 /* We need to fill in the base address of the sector we'll be
496 * erasing, as well as the magic code that determines whether
497 * this is a standard flash sector or a user configuration block */
498
499 erase_cmd_seq[5].address = address;
500 if (user_config) {
501 /* Removing flash protection requires the addition of
502 * the base address */
503 erase_cmd_seq[5].address += bank->base;
504 erase_cmd_seq[5].magic = 0xC0;
505 } else {
506 erase_cmd_seq[5].magic = 0x30;
507 }
508
509 res = xmc4xxx_write_command_sequence(bank, erase_cmd_seq,
510 ARRAY_SIZE(erase_cmd_seq));
511 if (res != ERROR_OK)
512 return res;
513
514 /* Read the flash status register */
515 res = target_read_u32(bank->target, FLASH_REG_FLASH0_FSR, &status);
516 if (res != ERROR_OK) {
517 LOG_ERROR("Cannot read flash status register.");
518 return res;
519 }
520
521 /* Check for a sequence error */
522 if (status & FSR_SQER_MASK) {
523 LOG_ERROR("Error with flash erase sequence");
524 return ERROR_FAIL;
525 }
526
527 /* Make sure a flash erase was triggered */
528 if (!(status & FSR_ERASE_MASK)) {
529 LOG_ERROR("Flash failed to erase");
530 return ERROR_FAIL;
531 }
532
533 /* Now we must wait for the erase operation to end */
534 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
535
536 return res;
537 }
538
539 static int xmc4xxx_erase(struct flash_bank *bank, int first, int last)
540 {
541 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
542 int res;
543
544 if (bank->target->state != TARGET_HALTED) {
545 LOG_ERROR("Unable to erase, target is not halted");
546 return ERROR_TARGET_NOT_HALTED;
547 }
548
549 if (!fb->probed) {
550 res = xmc4xxx_probe(bank);
551 if (res != ERROR_OK)
552 return res;
553 }
554
555 uint32_t tmp_addr;
556 /* Loop through the sectors and erase each one */
557 for (int i = first; i <= last; i++) {
558 res = xmc4xxx_get_sector_start_addr(bank, i, &tmp_addr);
559 if (res != ERROR_OK) {
560 LOG_ERROR("Invalid sector %d", i);
561 return res;
562 }
563
564 LOG_DEBUG("Erasing sector %d @ 0x%08"PRIx32, i, tmp_addr);
565
566 res = xmc4xxx_erase_sector(bank, tmp_addr, false);
567 if (res != ERROR_OK) {
568 LOG_ERROR("Unable to write erase command sequence");
569 goto clear_status_and_exit;
570 }
571
572 /* Now we must wait for the erase operation to end */
573 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
574
575 if (res != ERROR_OK)
576 goto clear_status_and_exit;
577
578 bank->sectors[i].is_erased = 1;
579 }
580
581 clear_status_and_exit:
582 res = xmc4xxx_clear_flash_status(bank);
583 return res;
584
585 }
586
587 static int xmc4xxx_enter_page_mode(struct flash_bank *bank)
588 {
589 int res;
590 uint32_t status;
591
592 res = target_write_u32(bank->target, FLASH_CMD_ENTER_PAGEMODE, 0x50);
593 if (res != ERROR_OK) {
594 LOG_ERROR("Unable to write enter page mode command");
595 return ERROR_FAIL;
596 }
597
598 res = xmc4xxx_get_flash_status(bank, &status);
599
600 if (res != ERROR_OK)
601 return res;
602
603 /* Make sure we're in page mode */
604 if (!(status & FSR_PFPAGE_MASK)) {
605 LOG_ERROR("Unable to enter page mode");
606 return ERROR_FAIL;
607 }
608
609 /* Make sure we didn't encounter a sequence error */
610 if (status & FSR_SQER_MASK) {
611 LOG_ERROR("Sequence error while entering page mode");
612 return ERROR_FAIL;
613 }
614
615 return res;
616 }
617
618 /* The logical erase value of an xmc4xxx memory cell is 0x00,
619 * therefore, we cannot use the built in flash blank check and must
620 * implement our own */
621
622 /** Checks whether a memory region is zeroed. */
623 int xmc4xxx_blank_check_memory(struct target *target,
624 uint32_t address, uint32_t count, uint32_t *blank)
625 {
626 struct working_area *erase_check_algorithm;
627 struct reg_param reg_params[3];
628 struct armv7m_algorithm armv7m_info;
629 int retval;
630
631 /* see contrib/loaders/erase_check/armv7m_0_erase_check.s for src */
632
633 static const uint8_t erase_check_code[] = {
634 /* loop: */
635 0x03, 0x78, /* ldrb r3, [r0] */
636 0x01, 0x30, /* adds r0, #1 */
637 0x1A, 0x43, /* orrs r2, r2, r3 */
638 0x01, 0x39, /* subs r1, r1, #1 */
639 0xFA, 0xD1, /* bne loop */
640 0x00, 0xBE /* bkpt #0 */
641 };
642
643 /* make sure we have a working area */
644 if (target_alloc_working_area(target, sizeof(erase_check_code),
645 &erase_check_algorithm) != ERROR_OK)
646 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
647
648 retval = target_write_buffer(target, erase_check_algorithm->address,
649 sizeof(erase_check_code), (uint8_t *)erase_check_code);
650 if (retval != ERROR_OK)
651 return retval;
652
653 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
654 armv7m_info.core_mode = ARM_MODE_THREAD;
655
656 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
657 buf_set_u32(reg_params[0].value, 0, 32, address);
658
659 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);
660 buf_set_u32(reg_params[1].value, 0, 32, count);
661
662 init_reg_param(&reg_params[2], "r2", 32, PARAM_IN_OUT);
663 buf_set_u32(reg_params[2].value, 0, 32, 0x00);
664
665 retval = target_run_algorithm(target,
666 0,
667 NULL,
668 3,
669 reg_params,
670 erase_check_algorithm->address,
671 erase_check_algorithm->address + (sizeof(erase_check_code) - 2),
672 10000,
673 &armv7m_info);
674
675 if (retval == ERROR_OK)
676 *blank = buf_get_u32(reg_params[2].value, 0, 32);
677
678 destroy_reg_param(&reg_params[0]);
679 destroy_reg_param(&reg_params[1]);
680 destroy_reg_param(&reg_params[2]);
681
682 target_free_working_area(target, erase_check_algorithm);
683
684 return retval;
685 }
686
687 static int xmc4xxx_flash_blank_check(struct flash_bank *bank)
688 {
689 struct target *target = bank->target;
690 int i;
691 int retval;
692 uint32_t blank;
693
694 if (bank->target->state != TARGET_HALTED) {
695 LOG_ERROR("Target not halted");
696 return ERROR_TARGET_NOT_HALTED;
697 }
698
699 for (i = 0; i < bank->num_sectors; i++) {
700 uint32_t address = bank->base + bank->sectors[i].offset;
701 uint32_t size = bank->sectors[i].size;
702
703 LOG_DEBUG("Erase checking 0x%08"PRIx32, address);
704 retval = xmc4xxx_blank_check_memory(target, address, size, &blank);
705
706 if (retval != ERROR_OK)
707 break;
708
709 if (blank == 0x00)
710 bank->sectors[i].is_erased = 1;
711 else
712 bank->sectors[i].is_erased = 0;
713 }
714
715 return ERROR_OK;
716 }
717
718 static int xmc4xxx_write_page(struct flash_bank *bank, const uint8_t *pg_buf,
719 uint32_t offset, bool user_config)
720 {
721 int res;
722 uint32_t status;
723
724 /* Base of the flash write command */
725 struct xmc4xxx_command_seq write_cmd_seq[4] = {
726 {FLASH_CMD_WRITE_PAGE_1, 0xAA},
727 {FLASH_CMD_WRITE_PAGE_2, 0x55},
728 {FLASH_CMD_WRITE_PAGE_3, 0xFF}, /* Needs filled in */
729 {0xFF, 0xFF} /* Needs filled in */
730 };
731
732 /* The command sequence differs depending on whether this is
733 * being written to standard flash or the user configuration
734 * area */
735 if (user_config)
736 write_cmd_seq[2].magic = 0xC0;
737 else
738 write_cmd_seq[2].magic = 0xA0;
739
740 /* Finally, we need to add the address that this page will be
741 * written to */
742 write_cmd_seq[3].address = bank->base + offset;
743 write_cmd_seq[3].magic = 0xAA;
744
745
746 /* Flash pages are written 256 bytes at a time. For each 256
747 * byte chunk, we need to:
748 * 1. Enter page mode. This activates the flash write buffer
749 * 2. Load the page buffer with data (2x 32 bit words at a time)
750 * 3. Burn the page buffer into its intended location
751 * If the starting offset is not on a 256 byte boundary, we
752 * will need to pad the beginning of the write buffer
753 * accordingly. Likewise, if the last page does not fill the
754 * buffer, we should pad it to avoid leftover data from being
755 * written to flash
756 */
757 res = xmc4xxx_enter_page_mode(bank);
758 if (res != ERROR_OK)
759 return res;
760
761 /* Copy the data into the page buffer*/
762 for (int i = 0; i < 256; i += 8) {
763 uint32_t w_lo = target_buffer_get_u32(bank->target, &pg_buf[i]);
764 uint32_t w_hi = target_buffer_get_u32(bank->target, &pg_buf[i + 4]);
765 LOG_DEBUG("WLO: %08"PRIx32, w_lo);
766 LOG_DEBUG("WHI: %08"PRIx32, w_hi);
767
768 /* Data is loaded 2x 32 bit words at a time */
769 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_1, w_lo);
770 if (res != ERROR_OK)
771 return res;
772
773 res = target_write_u32(bank->target, FLASH_CMD_LOAD_PAGE_2, w_hi);
774 if (res != ERROR_OK)
775 return res;
776
777 /* Check for an error */
778 res = xmc4xxx_get_flash_status(bank, &status);
779 if (res != ERROR_OK)
780 return res;
781
782 if (status & FSR_SQER_MASK) {
783 LOG_ERROR("Error loading page buffer");
784 return ERROR_FAIL;
785 }
786 }
787
788 /* The page buffer is now full, time to commit it to flash */
789
790 res = xmc4xxx_write_command_sequence(bank, write_cmd_seq, ARRAY_SIZE(write_cmd_seq));
791 if (res != ERROR_OK) {
792 LOG_ERROR("Unable to enter write command sequence");
793 return res;
794 }
795
796 /* Read the flash status register */
797 res = xmc4xxx_get_flash_status(bank, &status);
798 if (res != ERROR_OK)
799 return res;
800
801 /* Check for a sequence error */
802 if (status & FSR_SQER_MASK) {
803 LOG_ERROR("Error with flash write sequence");
804 return ERROR_FAIL;
805 }
806
807 /* Make sure a flash write was triggered */
808 if (!(status & FSR_PROG_MASK)) {
809 LOG_ERROR("Failed to write flash page");
810 return ERROR_FAIL;
811 }
812
813 /* Wait for the write operation to end */
814 res = xmc4xxx_wait_status_busy(bank, FLASH_OP_TIMEOUT);
815 if (res != ERROR_OK)
816 return res;
817
818 /* TODO: Verify that page was written without error */
819 return res;
820 }
821
822 static int xmc4xxx_write(struct flash_bank *bank, const uint8_t *buffer,
823 uint32_t offset, uint32_t count)
824 {
825 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
826 int res = ERROR_OK;
827
828 if (bank->target->state != TARGET_HALTED) {
829 LOG_ERROR("Unable to erase, target is not halted");
830 return ERROR_TARGET_NOT_HALTED;
831 }
832
833 if (!fb->probed) {
834 res = xmc4xxx_probe(bank);
835 if (res != ERROR_OK)
836 return res;
837 }
838
839 /* Make sure we won't run off the end of the flash bank */
840 if ((offset + count) > (bank->size)) {
841 LOG_ERROR("Attempting to write past the end of flash");
842 return ERROR_FAIL;
843 }
844
845
846 /* Attempt to write the passed in buffer to flash */
847 /* Pages are written 256 bytes at a time, we need to handle
848 * scenarios where padding is required at the beginning and
849 * end of a page */
850 while (count) {
851 /* page working area */
852 uint8_t tmp_buf[256] = {0};
853
854 /* Amount of data we'll be writing to this page */
855 int remaining;
856 int end_pad;
857
858 remaining = MIN(count, sizeof(tmp_buf));
859 end_pad = sizeof(tmp_buf) - remaining;
860
861 /* Make sure we're starting on a page boundary */
862 int start_pad = offset % 256;
863 if (start_pad) {
864 LOG_INFO("Write does not start on a 256 byte boundary. "
865 "Padding by %d bytes", start_pad);
866 memset(tmp_buf, 0xff, start_pad);
867 /* Subtract the amount of start offset from
868 * the amount of data we'll need to write */
869 remaining -= start_pad;
870 }
871
872 /* Remove the amount we'll be writing from the total count */
873 count -= remaining;
874
875 /* Now copy in the remaining data */
876 memcpy(&tmp_buf[start_pad], buffer, remaining);
877
878 if (end_pad) {
879 LOG_INFO("Padding end of page @%08"PRIx32" by %d bytes",
880 bank->base + offset, end_pad);
881 memset(&tmp_buf[256 - end_pad], 0xff, end_pad);
882 }
883
884 /* Now commit this page to flash, if there was start
885 * padding, we should subtract that from the target offset */
886 res = xmc4xxx_write_page(bank, tmp_buf, (offset - start_pad), false);
887 if (res != ERROR_OK) {
888 LOG_ERROR("Unable to write flash page");
889 goto abort_write_and_exit;
890 }
891
892 /* Advance the buffer pointer */
893 buffer += remaining;
894
895 /* Advance the offset */
896 offset += remaining;
897 }
898
899 abort_write_and_exit:
900 xmc4xxx_clear_flash_status(bank);
901 return res;
902
903 }
904
905 static int xmc4xxx_get_info_command(struct flash_bank *bank, char *buf, int buf_size)
906 {
907 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
908 uint32_t scu_idcode;
909
910 if (bank->target->state != TARGET_HALTED) {
911 LOG_WARNING("Cannot communicate... target not halted.");
912 return ERROR_TARGET_NOT_HALTED;
913 }
914
915 /* The SCU registers contain the ID of the chip */
916 int res = target_read_u32(bank->target, SCU_REG_BASE + SCU_ID_CHIP, &scu_idcode);
917 if (res != ERROR_OK) {
918 LOG_ERROR("Cannot read device identification register.");
919 return res;
920 }
921
922 uint16_t dev_id = (scu_idcode & 0xfff0) >> 4;
923 uint16_t rev_id = scu_idcode & 0xf;
924 const char *dev_str;
925 const char *rev_str = NULL;
926
927 switch (dev_id) {
928 case 0x100:
929 dev_str = "XMC4100";
930
931 switch (rev_id) {
932 case 0x1:
933 rev_str = "AA";
934 break;
935 case 0x2:
936 rev_str = "AB";
937 break;
938 }
939 break;
940 case 0x200:
941 dev_str = "XMC4200";
942
943 switch (rev_id) {
944 case 0x1:
945 rev_str = "AA";
946 break;
947 case 0x2:
948 rev_str = "AB";
949 break;
950 }
951 break;
952 case 0x400:
953 dev_str = "XMC4400";
954
955 switch (rev_id) {
956 case 0x1:
957 rev_str = "AA";
958 break;
959 case 0x2:
960 rev_str = "AB";
961 break;
962 }
963 break;
964 case 0:
965 /* XMC4500 EES AA13 with date codes before GE212
966 * had zero SCU_IDCHIP
967 */
968 dev_str = "XMC4500 EES";
969 rev_str = "AA13";
970 break;
971 case 0x500:
972 dev_str = "XMC4500";
973
974 switch (rev_id) {
975 case 0x2:
976 rev_str = "AA";
977 break;
978 case 0x3:
979 rev_str = "AB";
980 break;
981 case 0x4:
982 rev_str = "AC";
983 break;
984 }
985 break;
986 case 0x800:
987 dev_str = "XMC4800";
988
989 switch (rev_id) {
990 case 0x1:
991 rev_str = "EES-AA";
992 break;
993 }
994 break;
995
996 default:
997 snprintf(buf, buf_size,
998 "Cannot identify target as an XMC4xxx. SCU_ID: %"PRIx32"\n",
999 scu_idcode);
1000 return ERROR_OK;
1001 }
1002
1003 /* String to declare protection data held in the private driver */
1004 char prot_str[512] = {0};
1005 if (fb->read_protected)
1006 snprintf(prot_str, sizeof(prot_str), "\nFlash is read protected");
1007
1008 bool otp_enabled = false;
1009 for (int i = 0; i < bank->num_sectors; i++)
1010 if (fb->write_prot_otp[i])
1011 otp_enabled = true;
1012
1013 /* If OTP Write protection is enabled (User 2), list each
1014 * sector that has it enabled */
1015 char otp_str[8];
1016 if (otp_enabled) {
1017 strcat(prot_str, "\nOTP Protection is enabled for sectors:\n");
1018 for (int i = 0; i < bank->num_sectors; i++) {
1019 if (fb->write_prot_otp[i]) {
1020 snprintf(otp_str, sizeof(otp_str), "- %d\n", i);
1021 strncat(prot_str, otp_str, ARRAY_SIZE(otp_str));
1022 }
1023 }
1024 }
1025
1026 if (rev_str != NULL)
1027 snprintf(buf, buf_size, "%s - Rev: %s%s",
1028 dev_str, rev_str, prot_str);
1029 else
1030 snprintf(buf, buf_size, "%s - Rev: unknown (0x%01x)%s",
1031 dev_str, rev_id, prot_str);
1032
1033 return ERROR_OK;
1034 }
1035
1036 static int xmc4xxx_temp_unprotect(struct flash_bank *bank, int user_level)
1037 {
1038 struct xmc4xxx_flash_bank *fb;
1039 int res = ERROR_OK;
1040 uint32_t status = 0;
1041
1042 struct xmc4xxx_command_seq temp_unprot_seq[6] = {
1043 {FLASH_CMD_TEMP_UNPROT_1, 0xAA},
1044 {FLASH_CMD_TEMP_UNPROT_2, 0x55},
1045 {FLASH_CMD_TEMP_UNPROT_3, 0xFF}, /* Needs filled in */
1046 {FLASH_CMD_TEMP_UNPROT_4, 0xFF}, /* Needs filled in */
1047 {FLASH_CMD_TEMP_UNPROT_5, 0xFF}, /* Needs filled in */
1048 {FLASH_CMD_TEMP_UNPROT_6, 0x05}
1049 };
1050
1051 if (user_level < 0 || user_level > 2) {
1052 LOG_ERROR("Invalid user level, must be 0-2");
1053 return ERROR_FAIL;
1054 }
1055
1056 fb = bank->driver_priv;
1057
1058 /* Fill in the user level and passwords */
1059 temp_unprot_seq[2].magic = user_level;
1060 temp_unprot_seq[3].magic = fb->pw1;
1061 temp_unprot_seq[4].magic = fb->pw2;
1062
1063 res = xmc4xxx_write_command_sequence(bank, temp_unprot_seq,
1064 ARRAY_SIZE(temp_unprot_seq));
1065 if (res != ERROR_OK) {
1066 LOG_ERROR("Unable to write temp unprotect sequence");
1067 return res;
1068 }
1069
1070 res = xmc4xxx_get_flash_status(bank, &status);
1071 if (res != ERROR_OK)
1072 return res;
1073
1074 if (status & FSR_WPRODIS0) {
1075 LOG_INFO("Flash is temporarily unprotected");
1076 } else {
1077 LOG_INFO("Unable to disable flash protection");
1078 res = ERROR_FAIL;
1079 }
1080
1081
1082 return res;
1083 }
1084
1085 static int xmc4xxx_flash_unprotect(struct flash_bank *bank, int32_t level)
1086 {
1087 uint32_t addr;
1088 int res;
1089
1090 if ((level < 0) || (level > 1)) {
1091 LOG_ERROR("Invalid user level. Must be 0-1");
1092 return ERROR_FAIL;
1093 }
1094
1095 switch (level) {
1096 case 0:
1097 addr = UCB0_BASE;
1098 break;
1099 case 1:
1100 addr = UCB1_BASE;
1101 break;
1102 }
1103
1104 res = xmc4xxx_erase_sector(bank, addr, true);
1105
1106 if (res != ERROR_OK)
1107 LOG_ERROR("Error erasing user configuration block");
1108
1109 return res;
1110 }
1111
1112 /* Reference: "XMC4500 Flash Protection.pptx" app note */
1113 static int xmc4xxx_flash_protect(struct flash_bank *bank, int level, bool read_protect,
1114 int first, int last)
1115 {
1116 /* User configuration block buffers */
1117 uint8_t ucp0_buf[8 * sizeof(uint32_t)] = {0};
1118 uint32_t ucb_base = 0;
1119 uint32_t procon = 0;
1120 int res = ERROR_OK;
1121 uint32_t status = 0;
1122 bool proin = false;
1123
1124 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1125
1126 /* Read protect only works for user 0, make sure we don't try
1127 * to do something silly */
1128 if (level != 0 && read_protect) {
1129 LOG_ERROR("Read protection is for user level 0 only!");
1130 return ERROR_FAIL;
1131 }
1132
1133 /* Check to see if protection is already installed for the
1134 * specified user level. If it is, the user configuration
1135 * block will need to be erased before we can continue */
1136
1137 /* Grab the flash status register*/
1138 res = xmc4xxx_get_flash_status(bank, &status);
1139 if (res != ERROR_OK)
1140 return res;
1141
1142 switch (level) {
1143 case 0:
1144 if ((status & FSR_RPROIN_MASK) || (status & FSR_WPROIN0_MASK))
1145 proin = true;
1146 break;
1147 case 1:
1148 if (status & FSR_WPROIN1_MASK)
1149 proin = true;
1150 break;
1151 case 2:
1152 if (status & FSR_WPROIN2_MASK)
1153 proin = true;
1154 break;
1155 }
1156
1157 if (proin) {
1158 LOG_ERROR("Flash protection is installed for user %d"
1159 " and must be removed before continuing", level);
1160 return ERROR_FAIL;
1161 }
1162
1163 /* If this device has 12 flash sectors, protection for
1164 * sectors 10 & 11 are handled jointly. If we are trying to
1165 * write all sectors, we should decrement
1166 * last to ensure we don't write to a register bit that
1167 * doesn't exist*/
1168 if ((bank->num_sectors == 12) && (last == 12))
1169 last--;
1170
1171 /* We need to fill out the procon register representation
1172 * that we will be writing to the device */
1173 for (int i = first; i <= last; i++)
1174 procon |= 1 << i;
1175
1176 /* If read protection is requested, set the appropriate bit
1177 * (we checked that this is allowed above) */
1178 if (read_protect)
1179 procon |= PROCON_RPRO_MASK;
1180
1181 LOG_DEBUG("Setting flash protection with procon:");
1182 LOG_DEBUG("PROCON: %"PRIx32, procon);
1183
1184 /* First we need to copy in the procon register to the buffer
1185 * we're going to attempt to write. This is written twice */
1186 target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], procon);
1187 target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], procon);
1188
1189 /* Now we must copy in both flash passwords. As with the
1190 * procon data, this must be written twice (4 total words
1191 * worth of data) */
1192 target_buffer_set_u32(bank->target, &ucp0_buf[4 * 4], fb->pw1);
1193 target_buffer_set_u32(bank->target, &ucp0_buf[5 * 4], fb->pw2);
1194 target_buffer_set_u32(bank->target, &ucp0_buf[6 * 4], fb->pw1);
1195 target_buffer_set_u32(bank->target, &ucp0_buf[7 * 4], fb->pw2);
1196
1197 /* Finally, (if requested) we copy in the confirmation
1198 * code so that the protection is permanent and will
1199 * require a password to undo. */
1200 target_buffer_set_u32(bank->target, &ucp0_buf[0 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1201 target_buffer_set_u32(bank->target, &ucp0_buf[2 * 4], FLASH_PROTECT_CONFIRMATION_CODE);
1202
1203 /* Now that the data is copied into place, we must write
1204 * these pages into flash */
1205
1206 /* The user configuration block base depends on what level of
1207 * protection we're trying to install, select the proper one */
1208 switch (level) {
1209 case 0:
1210 ucb_base = UCB0_BASE;
1211 break;
1212 case 1:
1213 ucb_base = UCB1_BASE;
1214 break;
1215 case 2:
1216 ucb_base = UCB2_BASE;
1217 break;
1218 }
1219
1220 /* Write the user config pages */
1221 res = xmc4xxx_write_page(bank, ucp0_buf, ucb_base, true);
1222 if (res != ERROR_OK) {
1223 LOG_ERROR("Error writing user configuration block 0");
1224 return res;
1225 }
1226
1227 return ERROR_OK;
1228 }
1229
1230 static int xmc4xxx_protect(struct flash_bank *bank, int set, int first, int last)
1231 {
1232 int ret;
1233 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1234
1235 /* Check for flash passwords */
1236 if (!fb->pw_set) {
1237 LOG_ERROR("Flash passwords not set, use xmc4xxx flash_password to set them");
1238 return ERROR_FAIL;
1239 }
1240
1241 /* We want to clear flash protection temporarily*/
1242 if (set == 0) {
1243 LOG_WARNING("Flash protection will be temporarily disabled"
1244 " for all pages (User 0 only)!");
1245 ret = xmc4xxx_temp_unprotect(bank, 0);
1246 return ret;
1247 }
1248
1249 /* Install write protection for user 0 on the specified pages */
1250 ret = xmc4xxx_flash_protect(bank, 0, false, first, last);
1251
1252 return ret;
1253 }
1254
1255 static int xmc4xxx_protect_check(struct flash_bank *bank)
1256 {
1257 int ret;
1258 uint32_t protection[3] = {0};
1259 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1260
1261 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON0, &protection[0]);
1262 if (ret != ERROR_OK) {
1263 LOG_ERROR("Unable to read flash User0 protection register");
1264 return ret;
1265 }
1266
1267 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON1, &protection[1]);
1268 if (ret != ERROR_OK) {
1269 LOG_ERROR("Unable to read flash User1 protection register");
1270 return ret;
1271 }
1272
1273 ret = target_read_u32(bank->target, FLASH_REG_FLASH0_PROCON2, &protection[2]);
1274 if (ret != ERROR_OK) {
1275 LOG_ERROR("Unable to read flash User2 protection register");
1276 return ret;
1277 }
1278
1279 int sectors = bank->num_sectors;
1280
1281 /* On devices with 12 sectors, sectors 10 & 11 are ptected
1282 * together instead of individually */
1283 if (sectors == 12)
1284 sectors--;
1285
1286 /* Clear the protection status */
1287 for (int i = 0; i < bank->num_sectors; i++) {
1288 bank->sectors[i].is_protected = 0;
1289 fb->write_prot_otp[i] = false;
1290 }
1291 fb->read_protected = false;
1292
1293 /* The xmc4xxx series supports 3 levels of user protection
1294 * (User0, User1 (low priority), and User 2(OTP), we need to
1295 * check all 3 */
1296 for (unsigned int i = 0; i < ARRAY_SIZE(protection); i++) {
1297
1298 /* Check for write protection on every available
1299 * sector */
1300 for (int j = 0; j < sectors; j++) {
1301 int set = (protection[i] & (1 << j)) ? 1 : 0;
1302 bank->sectors[j].is_protected |= set;
1303
1304 /* Handle sector 11 */
1305 if (j == 10)
1306 bank->sectors[j + 1].is_protected |= set;
1307
1308 /* User 2 indicates this protection is
1309 * permanent, make note in the private driver structure */
1310 if (i == 2 && set) {
1311 fb->write_prot_otp[j] = true;
1312
1313 /* Handle sector 11 */
1314 if (j == 10)
1315 fb->write_prot_otp[j + 1] = true;
1316 }
1317
1318 }
1319 }
1320
1321 /* XMC4xxx also supports read proptection, make a note
1322 * in the private driver structure */
1323 if (protection[0] & PROCON_RPRO_MASK)
1324 fb->read_protected = true;
1325
1326 return ERROR_OK;
1327 }
1328
1329 FLASH_BANK_COMMAND_HANDLER(xmc4xxx_flash_bank_command)
1330 {
1331 bank->driver_priv = malloc(sizeof(struct xmc4xxx_flash_bank));
1332
1333 if (!bank->driver_priv)
1334 return ERROR_FLASH_OPERATION_FAILED;
1335
1336 (void)memset(bank->driver_priv, 0, sizeof(struct xmc4xxx_flash_bank));
1337
1338 return ERROR_OK;
1339 }
1340
1341 COMMAND_HANDLER(xmc4xxx_handle_flash_password_command)
1342 {
1343 int res;
1344 struct flash_bank *bank;
1345
1346 if (CMD_ARGC < 3)
1347 return ERROR_COMMAND_SYNTAX_ERROR;
1348
1349 res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1350 if (res != ERROR_OK)
1351 return res;
1352
1353 struct xmc4xxx_flash_bank *fb = bank->driver_priv;
1354
1355 errno = 0;
1356
1357 /* We skip over the flash bank */
1358 fb->pw1 = strtol(CMD_ARGV[1], NULL, 16);
1359
1360 if (errno)
1361 return ERROR_COMMAND_SYNTAX_ERROR;
1362
1363 fb->pw2 = strtol(CMD_ARGV[2], NULL, 16);
1364
1365 if (errno)
1366 return ERROR_COMMAND_SYNTAX_ERROR;
1367
1368 fb->pw_set = true;
1369
1370 command_print(CMD_CTX, "XMC4xxx flash passwords set to:\n");
1371 command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw1);
1372 command_print(CMD_CTX, "-0x%08"PRIx32"\n", fb->pw2);
1373 return ERROR_OK;
1374 }
1375
1376 COMMAND_HANDLER(xmc4xxx_handle_flash_unprotect_command)
1377 {
1378 struct flash_bank *bank;
1379 int res;
1380 int32_t level;
1381
1382 if (CMD_ARGC < 2)
1383 return ERROR_COMMAND_SYNTAX_ERROR;
1384
1385 res = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
1386 if (res != ERROR_OK)
1387 return res;
1388
1389 COMMAND_PARSE_NUMBER(s32, CMD_ARGV[1], level);
1390
1391 res = xmc4xxx_flash_unprotect(bank, level);
1392
1393 return res;
1394 }
1395
1396 static const struct command_registration xmc4xxx_exec_command_handlers[] = {
1397 {
1398 .name = "flash_password",
1399 .handler = xmc4xxx_handle_flash_password_command,
1400 .mode = COMMAND_EXEC,
1401 .usage = "bank_id password1 password2",
1402 .help = "Set the flash passwords used for protect operations. "
1403 "Passwords should be in standard hex form (0x00000000). "
1404 "(You must call this before any other protect commands) "
1405 "NOTE: The xmc4xxx's UCB area only allows for FOUR cycles. "
1406 "Please use protection carefully!",
1407 },
1408 {
1409 .name = "flash_unprotect",
1410 .handler = xmc4xxx_handle_flash_unprotect_command,
1411 .mode = COMMAND_EXEC,
1412 .usage = "bank_id user_level[0-1]",
1413 .help = "Permanently Removes flash protection (read and write) "
1414 "for the specified user level",
1415 }, COMMAND_REGISTRATION_DONE
1416 };
1417
1418 static const struct command_registration xmc4xxx_command_handlers[] = {
1419 {
1420 .name = "xmc4xxx",
1421 .mode = COMMAND_ANY,
1422 .help = "xmc4xxx flash command group",
1423 .usage = "",
1424 .chain = xmc4xxx_exec_command_handlers,
1425 },
1426 COMMAND_REGISTRATION_DONE
1427 };
1428
1429 struct flash_driver xmc4xxx_flash = {
1430 .name = "xmc4xxx",
1431 .commands = xmc4xxx_command_handlers,
1432 .flash_bank_command = xmc4xxx_flash_bank_command,
1433 .erase = xmc4xxx_erase,
1434 .write = xmc4xxx_write,
1435 .read = default_flash_read,
1436 .probe = xmc4xxx_probe,
1437 .auto_probe = xmc4xxx_probe,
1438 .erase_check = xmc4xxx_flash_blank_check,
1439 .info = xmc4xxx_get_info_command,
1440 .protect_check = xmc4xxx_protect_check,
1441 .protect = xmc4xxx_protect,
1442 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)