flash/nor/nrf5: unify size of HWID
[openocd.git] / src / flash / nor / nrf5.c
1 /***************************************************************************
2 * Copyright (C) 2013 Synapse Product Development *
3 * Andrey Smirnov <andrew.smironv@gmail.com> *
4 * Angus Gratton <gus@projectgus.com> *
5 * Erdem U. Altunyurt <spamjunkeater@gmail.com> *
6 * *
7 * This program is free software; you can redistribute it and/or modify *
8 * it under the terms of the GNU General Public License as published by *
9 * the Free Software Foundation; either version 2 of the License, or *
10 * (at your option) any later version. *
11 * *
12 * This program is distributed in the hope that it will be useful, *
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
15 * GNU General Public License for more details. *
16 * *
17 * You should have received a copy of the GNU General Public License *
18 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
19 ***************************************************************************/
20
21 #ifdef HAVE_CONFIG_H
22 #include "config.h"
23 #endif
24
25 #include "imp.h"
26 #include <target/algorithm.h>
27 #include <target/armv7m.h>
28 #include <helper/types.h>
29 #include <helper/time_support.h>
30
31 /* Both those values are constant across the current spectrum ofr nRF5 devices */
32 #define WATCHDOG_REFRESH_REGISTER 0x40010600
33 #define WATCHDOG_REFRESH_VALUE 0x6e524635
34
35 enum {
36 NRF5_FLASH_BASE = 0x00000000,
37 };
38
39 enum nrf5_ficr_registers {
40 NRF5_FICR_BASE = 0x10000000, /* Factory Information Configuration Registers */
41
42 #define NRF5_FICR_REG(offset) (NRF5_FICR_BASE + offset)
43
44 NRF5_FICR_CODEPAGESIZE = NRF5_FICR_REG(0x010),
45 NRF5_FICR_CODESIZE = NRF5_FICR_REG(0x014),
46
47 NRF51_FICR_CLENR0 = NRF5_FICR_REG(0x028),
48 NRF51_FICR_PPFC = NRF5_FICR_REG(0x02C),
49 NRF51_FICR_NUMRAMBLOCK = NRF5_FICR_REG(0x034),
50 NRF51_FICR_SIZERAMBLOCK0 = NRF5_FICR_REG(0x038),
51 NRF51_FICR_SIZERAMBLOCK1 = NRF5_FICR_REG(0x03C),
52 NRF51_FICR_SIZERAMBLOCK2 = NRF5_FICR_REG(0x040),
53 NRF51_FICR_SIZERAMBLOCK3 = NRF5_FICR_REG(0x044),
54
55 NRF5_FICR_CONFIGID = NRF5_FICR_REG(0x05C),
56 NRF5_FICR_DEVICEID0 = NRF5_FICR_REG(0x060),
57 NRF5_FICR_DEVICEID1 = NRF5_FICR_REG(0x064),
58 NRF5_FICR_ER0 = NRF5_FICR_REG(0x080),
59 NRF5_FICR_ER1 = NRF5_FICR_REG(0x084),
60 NRF5_FICR_ER2 = NRF5_FICR_REG(0x088),
61 NRF5_FICR_ER3 = NRF5_FICR_REG(0x08C),
62 NRF5_FICR_IR0 = NRF5_FICR_REG(0x090),
63 NRF5_FICR_IR1 = NRF5_FICR_REG(0x094),
64 NRF5_FICR_IR2 = NRF5_FICR_REG(0x098),
65 NRF5_FICR_IR3 = NRF5_FICR_REG(0x09C),
66 NRF5_FICR_DEVICEADDRTYPE = NRF5_FICR_REG(0x0A0),
67 NRF5_FICR_DEVICEADDR0 = NRF5_FICR_REG(0x0A4),
68 NRF5_FICR_DEVICEADDR1 = NRF5_FICR_REG(0x0A8),
69
70 NRF51_FICR_OVERRIDEN = NRF5_FICR_REG(0x0AC),
71 NRF51_FICR_NRF_1MBIT0 = NRF5_FICR_REG(0x0B0),
72 NRF51_FICR_NRF_1MBIT1 = NRF5_FICR_REG(0x0B4),
73 NRF51_FICR_NRF_1MBIT2 = NRF5_FICR_REG(0x0B8),
74 NRF51_FICR_NRF_1MBIT3 = NRF5_FICR_REG(0x0BC),
75 NRF51_FICR_NRF_1MBIT4 = NRF5_FICR_REG(0x0C0),
76 NRF51_FICR_BLE_1MBIT0 = NRF5_FICR_REG(0x0EC),
77 NRF51_FICR_BLE_1MBIT1 = NRF5_FICR_REG(0x0F0),
78 NRF51_FICR_BLE_1MBIT2 = NRF5_FICR_REG(0x0F4),
79 NRF51_FICR_BLE_1MBIT3 = NRF5_FICR_REG(0x0F8),
80 NRF51_FICR_BLE_1MBIT4 = NRF5_FICR_REG(0x0FC),
81
82 /* Following registers are available on nRF52 and on nRF51 since rev 3 */
83 NRF5_FICR_INFO_PART = NRF5_FICR_REG(0x100),
84 NRF5_FICR_INFO_VARIANT = NRF5_FICR_REG(0x104),
85 NRF5_FICR_INFO_PACKAGE = NRF5_FICR_REG(0x108),
86 NRF5_FICR_INFO_RAM = NRF5_FICR_REG(0x10C),
87 NRF5_FICR_INFO_FLASH = NRF5_FICR_REG(0x110),
88 };
89
90 enum nrf5_uicr_registers {
91 NRF5_UICR_BASE = 0x10001000, /* User Information
92 * Configuration Registers */
93
94 #define NRF5_UICR_REG(offset) (NRF5_UICR_BASE + offset)
95
96 NRF51_UICR_CLENR0 = NRF5_UICR_REG(0x000),
97 NRF51_UICR_RBPCONF = NRF5_UICR_REG(0x004),
98 NRF51_UICR_XTALFREQ = NRF5_UICR_REG(0x008),
99 NRF51_UICR_FWID = NRF5_UICR_REG(0x010),
100 };
101
102 enum nrf5_nvmc_registers {
103 NRF5_NVMC_BASE = 0x4001E000, /* Non-Volatile Memory
104 * Controller Registers */
105
106 #define NRF5_NVMC_REG(offset) (NRF5_NVMC_BASE + offset)
107
108 NRF5_NVMC_READY = NRF5_NVMC_REG(0x400),
109 NRF5_NVMC_CONFIG = NRF5_NVMC_REG(0x504),
110 NRF5_NVMC_ERASEPAGE = NRF5_NVMC_REG(0x508),
111 NRF5_NVMC_ERASEALL = NRF5_NVMC_REG(0x50C),
112 NRF5_NVMC_ERASEUICR = NRF5_NVMC_REG(0x514),
113
114 NRF5_BPROT_BASE = 0x40000000,
115 };
116
117 enum nrf5_nvmc_config_bits {
118 NRF5_NVMC_CONFIG_REN = 0x00,
119 NRF5_NVMC_CONFIG_WEN = 0x01,
120 NRF5_NVMC_CONFIG_EEN = 0x02,
121
122 };
123
124 struct nrf52_ficr_info {
125 uint32_t part;
126 uint32_t variant;
127 uint32_t package;
128 uint32_t ram;
129 uint32_t flash;
130 };
131
132 enum nrf5_features {
133 NRF5_FEATURE_SERIES_51 = 1 << 0,
134 NRF5_FEATURE_SERIES_52 = 1 << 1,
135 NRF5_FEATURE_BPROT = 1 << 2,
136 NRF5_FEATURE_ACL_PROT = 1 << 3,
137 };
138
139 struct nrf5_device_spec {
140 uint16_t hwid;
141 const char *part;
142 const char *variant;
143 const char *build_code;
144 unsigned int flash_size_kb;
145 enum nrf5_features features;
146 };
147
148 struct nrf5_info {
149 uint32_t refcount;
150
151 struct nrf5_bank {
152 struct nrf5_info *chip;
153 bool probed;
154 } bank[2];
155 struct target *target;
156
157 /* chip identification stored in nrf5_probe() for use in nrf5_info() */
158 bool ficr_info_valid;
159 struct nrf52_ficr_info ficr_info;
160 const struct nrf5_device_spec *spec;
161 uint16_t hwid;
162 enum nrf5_features features;
163 unsigned int flash_size_kb;
164 unsigned int ram_size_kb;
165 };
166
167 #define NRF51_DEVICE_DEF(id, pt, var, bcode, fsize) \
168 { \
169 .hwid = (id), \
170 .part = pt, \
171 .variant = var, \
172 .build_code = bcode, \
173 .flash_size_kb = (fsize), \
174 .features = NRF5_FEATURE_SERIES_51, \
175 }
176
177 #define NRF5_DEVICE_DEF(id, pt, var, bcode, fsize, features) \
178 { \
179 .hwid = (id), \
180 .part = pt, \
181 .variant = var, \
182 .build_code = bcode, \
183 .flash_size_kb = (fsize), \
184 .features = features, \
185 }
186
187 /* The known devices table below is derived from the "nRF5x series
188 * compatibility matrix" documents, which can be found in the "DocLib" of
189 * nordic:
190 *
191 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51422_ic_revision_overview
192 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51822_ic_revision_overview
193 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF51/latest/COMP/nrf51/nRF51824_ic_revision_overview
194 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52810/latest/COMP/nrf52810/nRF52810_ic_revision_overview
195 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52832/latest/COMP/nrf52832/ic_revision_overview
196 * https://www.nordicsemi.com/DocLib/Content/Comp_Matrix/nRF52840/latest/COMP/nrf52840/nRF52840_ic_revision_overview
197 *
198 * Up to date with Matrix v2.0, plus some additional HWIDs.
199 *
200 * The additional HWIDs apply where the build code in the matrix is
201 * shown as Gx0, Bx0, etc. In these cases the HWID in the matrix is
202 * for x==0, x!=0 means different (unspecified) HWIDs.
203 */
204 static const struct nrf5_device_spec nrf5_known_devices_table[] = {
205 /* nRF51822 Devices (IC rev 1). */
206 NRF51_DEVICE_DEF(0x001D, "51822", "QFAA", "CA/C0", 256),
207 NRF51_DEVICE_DEF(0x0026, "51822", "QFAB", "AA", 128),
208 NRF51_DEVICE_DEF(0x0027, "51822", "QFAB", "A0", 128),
209 NRF51_DEVICE_DEF(0x0020, "51822", "CEAA", "BA", 256),
210 NRF51_DEVICE_DEF(0x002F, "51822", "CEAA", "B0", 256),
211
212 /* Some early nRF51-DK (PCA10028) & nRF51-Dongle (PCA10031) boards
213 with built-in jlink seem to use engineering samples not listed
214 in the nRF51 Series Compatibility Matrix V1.0. */
215 NRF51_DEVICE_DEF(0x0071, "51822", "QFAC", "AB", 256),
216
217 /* nRF51822 Devices (IC rev 2). */
218 NRF51_DEVICE_DEF(0x002A, "51822", "QFAA", "FA0", 256),
219 NRF51_DEVICE_DEF(0x0044, "51822", "QFAA", "GC0", 256),
220 NRF51_DEVICE_DEF(0x003C, "51822", "QFAA", "G0", 256),
221 NRF51_DEVICE_DEF(0x0057, "51822", "QFAA", "G2", 256),
222 NRF51_DEVICE_DEF(0x0058, "51822", "QFAA", "G3", 256),
223 NRF51_DEVICE_DEF(0x004C, "51822", "QFAB", "B0", 128),
224 NRF51_DEVICE_DEF(0x0040, "51822", "CEAA", "CA0", 256),
225 NRF51_DEVICE_DEF(0x0047, "51822", "CEAA", "DA0", 256),
226 NRF51_DEVICE_DEF(0x004D, "51822", "CEAA", "D00", 256),
227
228 /* nRF51822 Devices (IC rev 3). */
229 NRF51_DEVICE_DEF(0x0072, "51822", "QFAA", "H0", 256),
230 NRF51_DEVICE_DEF(0x00D1, "51822", "QFAA", "H2", 256),
231 NRF51_DEVICE_DEF(0x007B, "51822", "QFAB", "C0", 128),
232 NRF51_DEVICE_DEF(0x0083, "51822", "QFAC", "A0", 256),
233 NRF51_DEVICE_DEF(0x0084, "51822", "QFAC", "A1", 256),
234 NRF51_DEVICE_DEF(0x007D, "51822", "CDAB", "A0", 128),
235 NRF51_DEVICE_DEF(0x0079, "51822", "CEAA", "E0", 256),
236 NRF51_DEVICE_DEF(0x0087, "51822", "CFAC", "A0", 256),
237 NRF51_DEVICE_DEF(0x008F, "51822", "QFAA", "H1", 256),
238
239 /* nRF51422 Devices (IC rev 1). */
240 NRF51_DEVICE_DEF(0x001E, "51422", "QFAA", "CA", 256),
241 NRF51_DEVICE_DEF(0x0024, "51422", "QFAA", "C0", 256),
242 NRF51_DEVICE_DEF(0x0031, "51422", "CEAA", "A0A", 256),
243
244 /* nRF51422 Devices (IC rev 2). */
245 NRF51_DEVICE_DEF(0x002D, "51422", "QFAA", "DAA", 256),
246 NRF51_DEVICE_DEF(0x002E, "51422", "QFAA", "E0", 256),
247 NRF51_DEVICE_DEF(0x0061, "51422", "QFAB", "A00", 128),
248 NRF51_DEVICE_DEF(0x0050, "51422", "CEAA", "B0", 256),
249
250 /* nRF51422 Devices (IC rev 3). */
251 NRF51_DEVICE_DEF(0x0073, "51422", "QFAA", "F0", 256),
252 NRF51_DEVICE_DEF(0x007C, "51422", "QFAB", "B0", 128),
253 NRF51_DEVICE_DEF(0x0085, "51422", "QFAC", "A0", 256),
254 NRF51_DEVICE_DEF(0x0086, "51422", "QFAC", "A1", 256),
255 NRF51_DEVICE_DEF(0x007E, "51422", "CDAB", "A0", 128),
256 NRF51_DEVICE_DEF(0x007A, "51422", "CEAA", "C0", 256),
257 NRF51_DEVICE_DEF(0x0088, "51422", "CFAC", "A0", 256),
258
259 /* The driver fully autodetects nRF52 series devices by FICR INFO,
260 * no need for nRF52xxx HWIDs in this table */
261 #if 0
262 /* nRF52810 Devices */
263 NRF5_DEVICE_DEF(0x0142, "52810", "QFAA", "B0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
264 NRF5_DEVICE_DEF(0x0143, "52810", "QCAA", "C0", 192, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
265
266 /* nRF52832 Devices */
267 NRF5_DEVICE_DEF(0x00C7, "52832", "QFAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
268 NRF5_DEVICE_DEF(0x0139, "52832", "QFAA", "E0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
269 NRF5_DEVICE_DEF(0x00E3, "52832", "CIAA", "B0", 512, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_BPROT),
270
271 /* nRF52840 Devices */
272 NRF5_DEVICE_DEF(0x0150, "52840", "QIAA", "C0", 1024, NRF5_FEATURE_SERIES_52 | NRF5_FEATURE_ACL_PROT),
273 #endif
274 };
275
276 struct nrf5_device_package {
277 uint32_t package;
278 const char *code;
279 };
280
281 /* Newer devices have FICR INFO.PACKAGE.
282 * This table converts its value to two character code */
283 static const struct nrf5_device_package nrf5_packages_table[] = {
284 { 0x2000, "QF" },
285 { 0x2001, "CH" },
286 { 0x2002, "CI" },
287 { 0x2005, "CK" },
288 };
289
290 const struct flash_driver nrf5_flash, nrf51_flash;
291
292 static int nrf5_bank_is_probed(struct flash_bank *bank)
293 {
294 struct nrf5_bank *nbank = bank->driver_priv;
295
296 assert(nbank != NULL);
297
298 return nbank->probed;
299 }
300 static int nrf5_probe(struct flash_bank *bank);
301
302 static int nrf5_get_probed_chip_if_halted(struct flash_bank *bank, struct nrf5_info **chip)
303 {
304 if (bank->target->state != TARGET_HALTED) {
305 LOG_ERROR("Target not halted");
306 return ERROR_TARGET_NOT_HALTED;
307 }
308
309 struct nrf5_bank *nbank = bank->driver_priv;
310 *chip = nbank->chip;
311
312 int probed = nrf5_bank_is_probed(bank);
313 if (probed < 0)
314 return probed;
315 else if (!probed)
316 return nrf5_probe(bank);
317 else
318 return ERROR_OK;
319 }
320
321 static int nrf5_wait_for_nvmc(struct nrf5_info *chip)
322 {
323 uint32_t ready;
324 int res;
325 int timeout_ms = 340;
326 int64_t ts_start = timeval_ms();
327
328 do {
329 res = target_read_u32(chip->target, NRF5_NVMC_READY, &ready);
330 if (res != ERROR_OK) {
331 LOG_ERROR("Error waiting NVMC_READY: generic flash write/erase error (check protection etc...)");
332 return res;
333 }
334
335 if (ready == 0x00000001)
336 return ERROR_OK;
337
338 keep_alive();
339
340 } while ((timeval_ms()-ts_start) < timeout_ms);
341
342 LOG_DEBUG("Timed out waiting for NVMC_READY");
343 return ERROR_FLASH_BUSY;
344 }
345
346 static int nrf5_nvmc_erase_enable(struct nrf5_info *chip)
347 {
348 int res;
349 res = target_write_u32(chip->target,
350 NRF5_NVMC_CONFIG,
351 NRF5_NVMC_CONFIG_EEN);
352
353 if (res != ERROR_OK) {
354 LOG_ERROR("Failed to enable erase operation");
355 return res;
356 }
357
358 /*
359 According to NVMC examples in Nordic SDK busy status must be
360 checked after writing to NVMC_CONFIG
361 */
362 res = nrf5_wait_for_nvmc(chip);
363 if (res != ERROR_OK)
364 LOG_ERROR("Erase enable did not complete");
365
366 return res;
367 }
368
369 static int nrf5_nvmc_write_enable(struct nrf5_info *chip)
370 {
371 int res;
372 res = target_write_u32(chip->target,
373 NRF5_NVMC_CONFIG,
374 NRF5_NVMC_CONFIG_WEN);
375
376 if (res != ERROR_OK) {
377 LOG_ERROR("Failed to enable write operation");
378 return res;
379 }
380
381 /*
382 According to NVMC examples in Nordic SDK busy status must be
383 checked after writing to NVMC_CONFIG
384 */
385 res = nrf5_wait_for_nvmc(chip);
386 if (res != ERROR_OK)
387 LOG_ERROR("Write enable did not complete");
388
389 return res;
390 }
391
392 static int nrf5_nvmc_read_only(struct nrf5_info *chip)
393 {
394 int res;
395 res = target_write_u32(chip->target,
396 NRF5_NVMC_CONFIG,
397 NRF5_NVMC_CONFIG_REN);
398
399 if (res != ERROR_OK) {
400 LOG_ERROR("Failed to enable read-only operation");
401 return res;
402 }
403 /*
404 According to NVMC examples in Nordic SDK busy status must be
405 checked after writing to NVMC_CONFIG
406 */
407 res = nrf5_wait_for_nvmc(chip);
408 if (res != ERROR_OK)
409 LOG_ERROR("Read only enable did not complete");
410
411 return res;
412 }
413
414 static int nrf5_nvmc_generic_erase(struct nrf5_info *chip,
415 uint32_t erase_register, uint32_t erase_value)
416 {
417 int res;
418
419 res = nrf5_nvmc_erase_enable(chip);
420 if (res != ERROR_OK)
421 goto error;
422
423 res = target_write_u32(chip->target,
424 erase_register,
425 erase_value);
426 if (res != ERROR_OK)
427 goto set_read_only;
428
429 res = nrf5_wait_for_nvmc(chip);
430 if (res != ERROR_OK)
431 goto set_read_only;
432
433 return nrf5_nvmc_read_only(chip);
434
435 set_read_only:
436 nrf5_nvmc_read_only(chip);
437 error:
438 LOG_ERROR("Failed to erase reg: 0x%08"PRIx32" val: 0x%08"PRIx32,
439 erase_register, erase_value);
440 return ERROR_FAIL;
441 }
442
443 static int nrf5_protect_check_clenr0(struct flash_bank *bank)
444 {
445 int res;
446 uint32_t clenr0;
447 struct nrf5_bank *nbank = bank->driver_priv;
448 struct nrf5_info *chip = nbank->chip;
449
450 assert(chip != NULL);
451
452 res = target_read_u32(chip->target, NRF51_FICR_CLENR0,
453 &clenr0);
454 if (res != ERROR_OK) {
455 LOG_ERROR("Couldn't read code region 0 size[FICR]");
456 return res;
457 }
458
459 if (clenr0 == 0xFFFFFFFF) {
460 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
461 &clenr0);
462 if (res != ERROR_OK) {
463 LOG_ERROR("Couldn't read code region 0 size[UICR]");
464 return res;
465 }
466 }
467
468 for (unsigned int i = 0; i < bank->num_sectors; i++)
469 bank->sectors[i].is_protected =
470 clenr0 != 0xFFFFFFFF && bank->sectors[i].offset < clenr0;
471
472 return ERROR_OK;
473 }
474
475 static int nrf5_protect_check_bprot(struct flash_bank *bank)
476 {
477 struct nrf5_bank *nbank = bank->driver_priv;
478 struct nrf5_info *chip = nbank->chip;
479
480 assert(chip != NULL);
481
482 static uint32_t nrf5_bprot_offsets[4] = { 0x600, 0x604, 0x610, 0x614 };
483 uint32_t bprot_reg = 0;
484 int res;
485
486 for (unsigned int i = 0; i < bank->num_sectors; i++) {
487 unsigned int bit = i % 32;
488 if (bit == 0) {
489 unsigned int n_reg = i / 32;
490 if (n_reg >= ARRAY_SIZE(nrf5_bprot_offsets))
491 break;
492
493 res = target_read_u32(chip->target, NRF5_BPROT_BASE + nrf5_bprot_offsets[n_reg], &bprot_reg);
494 if (res != ERROR_OK)
495 return res;
496 }
497 bank->sectors[i].is_protected = (bprot_reg & (1 << bit)) ? 1 : 0;
498 }
499 return ERROR_OK;
500 }
501
502 static int nrf5_protect_check(struct flash_bank *bank)
503 {
504 /* UICR cannot be write protected so just return early */
505 if (bank->base == NRF5_UICR_BASE)
506 return ERROR_OK;
507
508 struct nrf5_bank *nbank = bank->driver_priv;
509 struct nrf5_info *chip = nbank->chip;
510
511 assert(chip != NULL);
512
513 if (chip->features & NRF5_FEATURE_BPROT)
514 return nrf5_protect_check_bprot(bank);
515
516 if (chip->features & NRF5_FEATURE_SERIES_51)
517 return nrf5_protect_check_clenr0(bank);
518
519 LOG_WARNING("Flash protection of this nRF device is not supported");
520 return ERROR_FLASH_OPER_UNSUPPORTED;
521 }
522
523 static int nrf5_protect_clenr0(struct flash_bank *bank, int set, unsigned int first,
524 unsigned int last)
525 {
526 int res;
527 uint32_t clenr0, ppfc;
528 struct nrf5_bank *nbank = bank->driver_priv;
529 struct nrf5_info *chip = nbank->chip;
530
531 if (first != 0) {
532 LOG_ERROR("Code region 0 must start at the beginning of the bank");
533 return ERROR_FAIL;
534 }
535
536 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
537 &ppfc);
538 if (res != ERROR_OK) {
539 LOG_ERROR("Couldn't read PPFC register");
540 return res;
541 }
542
543 if ((ppfc & 0xFF) == 0x00) {
544 LOG_ERROR("Code region 0 size was pre-programmed at the factory, can't change flash protection settings");
545 return ERROR_FAIL;
546 }
547
548 res = target_read_u32(chip->target, NRF51_UICR_CLENR0,
549 &clenr0);
550 if (res != ERROR_OK) {
551 LOG_ERROR("Couldn't read code region 0 size from UICR");
552 return res;
553 }
554
555 if (!set || clenr0 != 0xFFFFFFFF) {
556 LOG_ERROR("You need to perform chip erase before changing the protection settings");
557 return ERROR_FAIL;
558 }
559
560 res = nrf5_nvmc_write_enable(chip);
561 if (res != ERROR_OK)
562 goto error;
563
564 clenr0 = bank->sectors[last].offset + bank->sectors[last].size;
565 res = target_write_u32(chip->target, NRF51_UICR_CLENR0, clenr0);
566
567 int res2 = nrf5_wait_for_nvmc(chip);
568
569 if (res == ERROR_OK)
570 res = res2;
571
572 if (res == ERROR_OK)
573 LOG_INFO("A reset or power cycle is required for the new protection settings to take effect.");
574 else
575 LOG_ERROR("Couldn't write code region 0 size to UICR");
576
577 error:
578 nrf5_nvmc_read_only(chip);
579
580 return res;
581 }
582
583 static int nrf5_protect(struct flash_bank *bank, int set, unsigned int first,
584 unsigned int last)
585 {
586 int res;
587 struct nrf5_info *chip;
588
589 /* UICR cannot be write protected so just bail out early */
590 if (bank->base == NRF5_UICR_BASE) {
591 LOG_ERROR("UICR page does not support protection");
592 return ERROR_FLASH_OPER_UNSUPPORTED;
593 }
594
595 res = nrf5_get_probed_chip_if_halted(bank, &chip);
596 if (res != ERROR_OK)
597 return res;
598
599 if (chip->features & NRF5_FEATURE_SERIES_51)
600 return nrf5_protect_clenr0(bank, set, first, last);
601
602 LOG_ERROR("Flash protection setting is not supported on this nRF5 device");
603 return ERROR_FLASH_OPER_UNSUPPORTED;
604 }
605
606 static bool nrf5_info_variant_to_str(uint32_t variant, char *bf)
607 {
608 uint8_t b[4];
609
610 h_u32_to_be(b, variant);
611 if (isalnum(b[0]) && isalnum(b[1]) && isalnum(b[2]) && isalnum(b[3])) {
612 memcpy(bf, b, 4);
613 bf[4] = 0;
614 return true;
615 }
616
617 strcpy(bf, "xxxx");
618 return false;
619 }
620
621 static const char *nrf5_decode_info_package(uint32_t package)
622 {
623 for (size_t i = 0; i < ARRAY_SIZE(nrf5_packages_table); i++) {
624 if (nrf5_packages_table[i].package == package)
625 return nrf5_packages_table[i].code;
626 }
627 return "xx";
628 }
629
630 static int nrf5_info(struct flash_bank *bank, char *buf, int buf_size)
631 {
632 struct nrf5_bank *nbank = bank->driver_priv;
633 struct nrf5_info *chip = nbank->chip;
634 int res;
635
636 if (chip->spec) {
637 res = snprintf(buf, buf_size,
638 "nRF%s-%s(build code: %s)",
639 chip->spec->part, chip->spec->variant, chip->spec->build_code);
640
641 } else if (chip->ficr_info_valid) {
642 char variant[5];
643 nrf5_info_variant_to_str(chip->ficr_info.variant, variant);
644 res = snprintf(buf, buf_size,
645 "nRF%" PRIx32 "-%s%.2s(build code: %s)",
646 chip->ficr_info.part,
647 nrf5_decode_info_package(chip->ficr_info.package),
648 variant, &variant[2]);
649
650 } else {
651 res = snprintf(buf, buf_size, "nRF51xxx (HWID 0x%04" PRIx16 ")",
652 chip->hwid);
653 }
654 if (res <= 0)
655 return ERROR_FAIL;
656
657 snprintf(buf + res, buf_size - res, " %ukB Flash, %ukB RAM",
658 chip->flash_size_kb, chip->ram_size_kb);
659 return ERROR_OK;
660 }
661
662 static int nrf5_read_ficr_info(struct nrf5_info *chip)
663 {
664 int res;
665 struct target *target = chip->target;
666
667 chip->ficr_info_valid = false;
668
669 res = target_read_u32(target, NRF5_FICR_INFO_PART, &chip->ficr_info.part);
670 if (res != ERROR_OK) {
671 LOG_DEBUG("Couldn't read FICR INFO.PART register");
672 return res;
673 }
674
675 uint32_t series = chip->ficr_info.part & 0xfffff000;
676 switch (series) {
677 case 0x51000:
678 chip->features = NRF5_FEATURE_SERIES_51;
679 break;
680
681 case 0x52000:
682 chip->features = NRF5_FEATURE_SERIES_52;
683
684 switch (chip->ficr_info.part) {
685 case 0x52810:
686 case 0x52832:
687 chip->features |= NRF5_FEATURE_BPROT;
688 break;
689
690 case 0x52840:
691 chip->features |= NRF5_FEATURE_ACL_PROT;
692 break;
693 }
694 break;
695
696 default:
697 LOG_DEBUG("FICR INFO likely not implemented. Invalid PART value 0x%08"
698 PRIx32, chip->ficr_info.part);
699 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
700 }
701
702 /* Now we know the device has FICR INFO filled by something relevant:
703 * Although it is not documented, the tested nRF51 rev 3 devices
704 * have FICR INFO.PART, RAM and FLASH of the same format as nRF52.
705 * VARIANT and PACKAGE coding is unknown for a nRF51 device.
706 * nRF52 devices have FICR INFO documented and always filled. */
707
708 res = target_read_u32(target, NRF5_FICR_INFO_VARIANT, &chip->ficr_info.variant);
709 if (res != ERROR_OK)
710 return res;
711
712 res = target_read_u32(target, NRF5_FICR_INFO_PACKAGE, &chip->ficr_info.package);
713 if (res != ERROR_OK)
714 return res;
715
716 res = target_read_u32(target, NRF5_FICR_INFO_RAM, &chip->ficr_info.ram);
717 if (res != ERROR_OK)
718 return res;
719
720 res = target_read_u32(target, NRF5_FICR_INFO_FLASH, &chip->ficr_info.flash);
721 if (res != ERROR_OK)
722 return res;
723
724 chip->ficr_info_valid = true;
725 return ERROR_OK;
726 }
727
728 static int nrf5_get_ram_size(struct target *target, uint32_t *ram_size)
729 {
730 int res;
731
732 *ram_size = 0;
733
734 uint32_t numramblock;
735 res = target_read_u32(target, NRF51_FICR_NUMRAMBLOCK, &numramblock);
736 if (res != ERROR_OK) {
737 LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
738 return res;
739 }
740
741 if (numramblock < 1 || numramblock > 4) {
742 LOG_DEBUG("FICR NUMRAMBLOCK strange value %" PRIx32, numramblock);
743 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
744 }
745
746 for (unsigned int i = 0; i < numramblock; i++) {
747 uint32_t sizeramblock;
748 res = target_read_u32(target, NRF51_FICR_SIZERAMBLOCK0 + sizeof(uint32_t)*i, &sizeramblock);
749 if (res != ERROR_OK) {
750 LOG_DEBUG("Couldn't read FICR NUMRAMBLOCK register");
751 return res;
752 }
753 if (sizeramblock < 1024 || sizeramblock > 65536)
754 LOG_DEBUG("FICR SIZERAMBLOCK strange value %" PRIx32, sizeramblock);
755 else
756 *ram_size += sizeramblock;
757 }
758 return res;
759 }
760
761 static int nrf5_probe(struct flash_bank *bank)
762 {
763 int res;
764 struct nrf5_bank *nbank = bank->driver_priv;
765 struct nrf5_info *chip = nbank->chip;
766 struct target *target = chip->target;
767
768 uint32_t configid;
769 res = target_read_u32(target, NRF5_FICR_CONFIGID, &configid);
770 if (res != ERROR_OK) {
771 LOG_ERROR("Couldn't read CONFIGID register");
772 return res;
773 }
774
775 /* HWID is stored in the lower two bytes of the CONFIGID register */
776 chip->hwid = configid & 0xFFFF;
777
778 /* guess a nRF51 series if the device has no FICR INFO and we don't know HWID */
779 chip->features = NRF5_FEATURE_SERIES_51;
780
781 /* Don't bail out on error for the case that some old engineering
782 * sample has FICR INFO registers unreadable. We can proceed anyway. */
783 (void)nrf5_read_ficr_info(chip);
784
785 chip->spec = NULL;
786 for (size_t i = 0; i < ARRAY_SIZE(nrf5_known_devices_table); i++) {
787 if (chip->hwid == nrf5_known_devices_table[i].hwid) {
788 chip->spec = &nrf5_known_devices_table[i];
789 chip->features = chip->spec->features;
790 break;
791 }
792 }
793
794 if (chip->spec && chip->ficr_info_valid) {
795 /* check if HWID table gives the same part as FICR INFO */
796 if (chip->ficr_info.part != strtoul(chip->spec->part, NULL, 16))
797 LOG_WARNING("HWID 0x%04" PRIx32 " mismatch: FICR INFO.PART %"
798 PRIx32, chip->hwid, chip->ficr_info.part);
799 }
800
801 if (chip->ficr_info_valid) {
802 chip->ram_size_kb = chip->ficr_info.ram;
803 } else {
804 uint32_t ram_size;
805 nrf5_get_ram_size(target, &ram_size);
806 chip->ram_size_kb = ram_size / 1024;
807 }
808
809 /* The value stored in NRF5_FICR_CODEPAGESIZE is the number of bytes in one page of FLASH. */
810 uint32_t flash_page_size;
811 res = target_read_u32(chip->target, NRF5_FICR_CODEPAGESIZE,
812 &flash_page_size);
813 if (res != ERROR_OK) {
814 LOG_ERROR("Couldn't read code page size");
815 return res;
816 }
817
818 /* Note the register name is misleading,
819 * NRF5_FICR_CODESIZE is the number of pages in flash memory, not the number of bytes! */
820 uint32_t num_sectors;
821 res = target_read_u32(chip->target, NRF5_FICR_CODESIZE, &num_sectors);
822 if (res != ERROR_OK) {
823 LOG_ERROR("Couldn't read code memory size");
824 return res;
825 }
826
827 chip->flash_size_kb = num_sectors * flash_page_size / 1024;
828
829 if (!chip->bank[0].probed && !chip->bank[1].probed) {
830 char buf[80];
831 nrf5_info(bank, buf, sizeof(buf));
832 if (!chip->spec && !chip->ficr_info_valid) {
833 LOG_INFO("Unknown device: %s", buf);
834 } else {
835 LOG_INFO("%s", buf);
836 }
837 }
838
839 free(bank->sectors);
840
841 if (bank->base == NRF5_FLASH_BASE) {
842 /* Sanity check */
843 if (chip->spec && chip->flash_size_kb != chip->spec->flash_size_kb)
844 LOG_WARNING("Chip's reported Flash capacity does not match expected one");
845 if (chip->ficr_info_valid && chip->flash_size_kb != chip->ficr_info.flash)
846 LOG_WARNING("Chip's reported Flash capacity does not match FICR INFO.FLASH");
847
848 bank->num_sectors = num_sectors;
849 bank->size = num_sectors * flash_page_size;
850
851 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
852 if (!bank->sectors)
853 return ERROR_FAIL;
854
855 chip->bank[0].probed = true;
856
857 } else {
858 bank->num_sectors = 1;
859 bank->size = flash_page_size;
860
861 bank->sectors = alloc_block_array(0, flash_page_size, num_sectors);
862 if (!bank->sectors)
863 return ERROR_FAIL;
864
865 bank->sectors[0].is_protected = 0;
866
867 chip->bank[1].probed = true;
868 }
869
870 return ERROR_OK;
871 }
872
873 static int nrf5_auto_probe(struct flash_bank *bank)
874 {
875 int probed = nrf5_bank_is_probed(bank);
876
877 if (probed < 0)
878 return probed;
879 else if (probed)
880 return ERROR_OK;
881 else
882 return nrf5_probe(bank);
883 }
884
885 static int nrf5_erase_all(struct nrf5_info *chip)
886 {
887 LOG_DEBUG("Erasing all non-volatile memory");
888 return nrf5_nvmc_generic_erase(chip,
889 NRF5_NVMC_ERASEALL,
890 0x00000001);
891 }
892
893 static int nrf5_erase_page(struct flash_bank *bank,
894 struct nrf5_info *chip,
895 struct flash_sector *sector)
896 {
897 int res;
898
899 LOG_DEBUG("Erasing page at 0x%"PRIx32, sector->offset);
900
901 if (bank->base == NRF5_UICR_BASE) {
902 if (chip->features & NRF5_FEATURE_SERIES_51) {
903 uint32_t ppfc;
904 res = target_read_u32(chip->target, NRF51_FICR_PPFC,
905 &ppfc);
906 if (res != ERROR_OK) {
907 LOG_ERROR("Couldn't read PPFC register");
908 return res;
909 }
910
911 if ((ppfc & 0xFF) == 0xFF) {
912 /* We can't erase the UICR. Double-check to
913 see if it's already erased before complaining. */
914 default_flash_blank_check(bank);
915 if (sector->is_erased == 1)
916 return ERROR_OK;
917
918 LOG_ERROR("The chip was not pre-programmed with SoftDevice stack and UICR cannot be erased separately. Please issue mass erase before trying to write to this region");
919 return ERROR_FAIL;
920 }
921 }
922
923 res = nrf5_nvmc_generic_erase(chip,
924 NRF5_NVMC_ERASEUICR,
925 0x00000001);
926
927
928 } else {
929 res = nrf5_nvmc_generic_erase(chip,
930 NRF5_NVMC_ERASEPAGE,
931 sector->offset);
932 }
933
934 return res;
935 }
936
937 /* Start a low level flash write for the specified region */
938 static int nrf5_ll_flash_write(struct nrf5_info *chip, uint32_t address, const uint8_t *buffer, uint32_t bytes)
939 {
940 struct target *target = chip->target;
941 uint32_t buffer_size = 8192;
942 struct working_area *write_algorithm;
943 struct working_area *source;
944 struct reg_param reg_params[6];
945 struct armv7m_algorithm armv7m_info;
946 int retval = ERROR_OK;
947
948 static const uint8_t nrf5_flash_write_code[] = {
949 #include "../../../contrib/loaders/flash/nrf5/nrf5.inc"
950 };
951
952 LOG_DEBUG("Writing buffer to flash address=0x%"PRIx32" bytes=0x%"PRIx32, address, bytes);
953 assert(bytes % 4 == 0);
954
955 /* allocate working area with flash programming code */
956 if (target_alloc_working_area(target, sizeof(nrf5_flash_write_code),
957 &write_algorithm) != ERROR_OK) {
958 LOG_WARNING("no working area available, falling back to slow memory writes");
959
960 for (; bytes > 0; bytes -= 4) {
961 retval = target_write_memory(target, address, 4, 1, buffer);
962 if (retval != ERROR_OK)
963 return retval;
964
965 retval = nrf5_wait_for_nvmc(chip);
966 if (retval != ERROR_OK)
967 return retval;
968
969 address += 4;
970 buffer += 4;
971 }
972
973 return ERROR_OK;
974 }
975
976 retval = target_write_buffer(target, write_algorithm->address,
977 sizeof(nrf5_flash_write_code),
978 nrf5_flash_write_code);
979 if (retval != ERROR_OK)
980 return retval;
981
982 /* memory buffer */
983 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
984 buffer_size /= 2;
985 buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */
986 if (buffer_size <= 256) {
987 /* free working area, write algorithm already allocated */
988 target_free_working_area(target, write_algorithm);
989
990 LOG_WARNING("No large enough working area available, can't do block memory writes");
991 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
992 }
993 }
994
995 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
996 armv7m_info.core_mode = ARM_MODE_THREAD;
997
998 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* byte count */
999 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* buffer start */
1000 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT); /* buffer end */
1001 init_reg_param(&reg_params[3], "r3", 32, PARAM_IN_OUT); /* target address */
1002 init_reg_param(&reg_params[4], "r6", 32, PARAM_OUT); /* watchdog refresh value */
1003 init_reg_param(&reg_params[5], "r7", 32, PARAM_OUT); /* watchdog refresh register address */
1004
1005 buf_set_u32(reg_params[0].value, 0, 32, bytes);
1006 buf_set_u32(reg_params[1].value, 0, 32, source->address);
1007 buf_set_u32(reg_params[2].value, 0, 32, source->address + source->size);
1008 buf_set_u32(reg_params[3].value, 0, 32, address);
1009 buf_set_u32(reg_params[4].value, 0, 32, WATCHDOG_REFRESH_VALUE);
1010 buf_set_u32(reg_params[5].value, 0, 32, WATCHDOG_REFRESH_REGISTER);
1011
1012 retval = target_run_flash_async_algorithm(target, buffer, bytes/4, 4,
1013 0, NULL,
1014 ARRAY_SIZE(reg_params), reg_params,
1015 source->address, source->size,
1016 write_algorithm->address, write_algorithm->address + sizeof(nrf5_flash_write_code) - 2,
1017 &armv7m_info);
1018
1019 target_free_working_area(target, source);
1020 target_free_working_area(target, write_algorithm);
1021
1022 destroy_reg_param(&reg_params[0]);
1023 destroy_reg_param(&reg_params[1]);
1024 destroy_reg_param(&reg_params[2]);
1025 destroy_reg_param(&reg_params[3]);
1026 destroy_reg_param(&reg_params[4]);
1027 destroy_reg_param(&reg_params[5]);
1028
1029 return retval;
1030 }
1031
1032 static int nrf5_write(struct flash_bank *bank, const uint8_t *buffer,
1033 uint32_t offset, uint32_t count)
1034 {
1035 struct nrf5_info *chip;
1036
1037 int res = nrf5_get_probed_chip_if_halted(bank, &chip);
1038 if (res != ERROR_OK)
1039 return res;
1040
1041 assert(offset % 4 == 0);
1042 assert(count % 4 == 0);
1043
1044 /* UICR CLENR0 based protection used on nRF51 is somewhat clumsy:
1045 * RM reads: Code running from code region 1 will not be able to write
1046 * to code region 0.
1047 * Unfortunately the flash loader running from RAM can write to both
1048 * code regions whithout any hint the protection is violated.
1049 *
1050 * Update protection state and check if any flash sector to be written
1051 * is protected. */
1052 if (chip->features & NRF5_FEATURE_SERIES_51) {
1053
1054 res = nrf5_protect_check_clenr0(bank);
1055 if (res != ERROR_OK)
1056 return res;
1057
1058 for (unsigned int sector = 0; sector < bank->num_sectors; sector++) {
1059 struct flash_sector *bs = &bank->sectors[sector];
1060
1061 /* Start offset in or before this sector? */
1062 /* End offset in or behind this sector? */
1063 if ((offset < (bs->offset + bs->size))
1064 && ((offset + count - 1) >= bs->offset)
1065 && bs->is_protected == 1) {
1066 LOG_ERROR("Write refused, sector %d is protected", sector);
1067 return ERROR_FLASH_PROTECTED;
1068 }
1069 }
1070 }
1071
1072 res = nrf5_nvmc_write_enable(chip);
1073 if (res != ERROR_OK)
1074 goto error;
1075
1076 res = nrf5_ll_flash_write(chip, bank->base + offset, buffer, count);
1077 if (res != ERROR_OK)
1078 goto error;
1079
1080 return nrf5_nvmc_read_only(chip);
1081
1082 error:
1083 nrf5_nvmc_read_only(chip);
1084 LOG_ERROR("Failed to write to nrf5 flash");
1085 return res;
1086 }
1087
1088 static int nrf5_erase(struct flash_bank *bank, unsigned int first,
1089 unsigned int last)
1090 {
1091 int res;
1092 struct nrf5_info *chip;
1093
1094 res = nrf5_get_probed_chip_if_halted(bank, &chip);
1095 if (res != ERROR_OK)
1096 return res;
1097
1098 /* UICR CLENR0 based protection used on nRF51 prevents erase
1099 * absolutely silently. NVMC has no flag to indicate the protection
1100 * was violated.
1101 *
1102 * Update protection state and check if any flash sector to be erased
1103 * is protected. */
1104 if (chip->features & NRF5_FEATURE_SERIES_51) {
1105
1106 res = nrf5_protect_check_clenr0(bank);
1107 if (res != ERROR_OK)
1108 return res;
1109 }
1110
1111 /* For each sector to be erased */
1112 for (unsigned int s = first; s <= last && res == ERROR_OK; s++) {
1113
1114 if (chip->features & NRF5_FEATURE_SERIES_51
1115 && bank->sectors[s].is_protected == 1) {
1116 LOG_ERROR("Flash sector %d is protected", s);
1117 return ERROR_FLASH_PROTECTED;
1118 }
1119
1120 res = nrf5_erase_page(bank, chip, &bank->sectors[s]);
1121 if (res != ERROR_OK) {
1122 LOG_ERROR("Error erasing sector %d", s);
1123 return res;
1124 }
1125 }
1126
1127 return ERROR_OK;
1128 }
1129
1130 static void nrf5_free_driver_priv(struct flash_bank *bank)
1131 {
1132 struct nrf5_bank *nbank = bank->driver_priv;
1133 struct nrf5_info *chip = nbank->chip;
1134 if (chip == NULL)
1135 return;
1136
1137 chip->refcount--;
1138 if (chip->refcount == 0) {
1139 free(chip);
1140 bank->driver_priv = NULL;
1141 }
1142 }
1143
1144 static struct nrf5_info *nrf5_get_chip(struct target *target)
1145 {
1146 struct flash_bank *bank_iter;
1147
1148 /* iterate over nrf5 banks of same target */
1149 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
1150 if (bank_iter->driver != &nrf5_flash && bank_iter->driver != &nrf51_flash)
1151 continue;
1152
1153 if (bank_iter->target != target)
1154 continue;
1155
1156 struct nrf5_bank *nbank = bank_iter->driver_priv;
1157 if (!nbank)
1158 continue;
1159
1160 if (nbank->chip)
1161 return nbank->chip;
1162 }
1163 return NULL;
1164 }
1165
1166 FLASH_BANK_COMMAND_HANDLER(nrf5_flash_bank_command)
1167 {
1168 struct nrf5_info *chip;
1169 struct nrf5_bank *nbank = NULL;
1170
1171 switch (bank->base) {
1172 case NRF5_FLASH_BASE:
1173 case NRF5_UICR_BASE:
1174 break;
1175 default:
1176 LOG_ERROR("Invalid bank address " TARGET_ADDR_FMT, bank->base);
1177 return ERROR_FAIL;
1178 }
1179
1180 chip = nrf5_get_chip(bank->target);
1181 if (!chip) {
1182 /* Create a new chip */
1183 chip = calloc(1, sizeof(*chip));
1184 if (!chip)
1185 return ERROR_FAIL;
1186
1187 chip->target = bank->target;
1188 }
1189
1190 switch (bank->base) {
1191 case NRF5_FLASH_BASE:
1192 nbank = &chip->bank[0];
1193 break;
1194 case NRF5_UICR_BASE:
1195 nbank = &chip->bank[1];
1196 break;
1197 }
1198 assert(nbank != NULL);
1199
1200 chip->refcount++;
1201 nbank->chip = chip;
1202 nbank->probed = false;
1203 bank->driver_priv = nbank;
1204 bank->write_start_alignment = bank->write_end_alignment = 4;
1205
1206 return ERROR_OK;
1207 }
1208
1209 COMMAND_HANDLER(nrf5_handle_mass_erase_command)
1210 {
1211 int res;
1212 struct flash_bank *bank = NULL;
1213 struct target *target = get_current_target(CMD_CTX);
1214
1215 res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1216 if (res != ERROR_OK)
1217 return res;
1218
1219 assert(bank != NULL);
1220
1221 struct nrf5_info *chip;
1222
1223 res = nrf5_get_probed_chip_if_halted(bank, &chip);
1224 if (res != ERROR_OK)
1225 return res;
1226
1227 if (chip->features & NRF5_FEATURE_SERIES_51) {
1228 uint32_t ppfc;
1229 res = target_read_u32(target, NRF51_FICR_PPFC,
1230 &ppfc);
1231 if (res != ERROR_OK) {
1232 LOG_ERROR("Couldn't read PPFC register");
1233 return res;
1234 }
1235
1236 if ((ppfc & 0xFF) == 0x00) {
1237 LOG_ERROR("Code region 0 size was pre-programmed at the factory, "
1238 "mass erase command won't work.");
1239 return ERROR_FAIL;
1240 }
1241 }
1242
1243 res = nrf5_erase_all(chip);
1244 if (res == ERROR_OK) {
1245 LOG_INFO("Mass erase completed.");
1246 if (chip->features & NRF5_FEATURE_SERIES_51)
1247 LOG_INFO("A reset or power cycle is required if the flash was protected before.");
1248
1249 } else {
1250 LOG_ERROR("Failed to erase the chip");
1251 }
1252
1253 return res;
1254 }
1255
1256 COMMAND_HANDLER(nrf5_handle_info_command)
1257 {
1258 int res;
1259 struct flash_bank *bank = NULL;
1260 struct target *target = get_current_target(CMD_CTX);
1261
1262 res = get_flash_bank_by_addr(target, NRF5_FLASH_BASE, true, &bank);
1263 if (res != ERROR_OK)
1264 return res;
1265
1266 assert(bank != NULL);
1267
1268 struct nrf5_info *chip;
1269
1270 res = nrf5_get_probed_chip_if_halted(bank, &chip);
1271 if (res != ERROR_OK)
1272 return res;
1273
1274 static struct {
1275 const uint32_t address;
1276 uint32_t value;
1277 } ficr[] = {
1278 { .address = NRF5_FICR_CODEPAGESIZE },
1279 { .address = NRF5_FICR_CODESIZE },
1280 { .address = NRF51_FICR_CLENR0 },
1281 { .address = NRF51_FICR_PPFC },
1282 { .address = NRF51_FICR_NUMRAMBLOCK },
1283 { .address = NRF51_FICR_SIZERAMBLOCK0 },
1284 { .address = NRF51_FICR_SIZERAMBLOCK1 },
1285 { .address = NRF51_FICR_SIZERAMBLOCK2 },
1286 { .address = NRF51_FICR_SIZERAMBLOCK3 },
1287 { .address = NRF5_FICR_CONFIGID },
1288 { .address = NRF5_FICR_DEVICEID0 },
1289 { .address = NRF5_FICR_DEVICEID1 },
1290 { .address = NRF5_FICR_ER0 },
1291 { .address = NRF5_FICR_ER1 },
1292 { .address = NRF5_FICR_ER2 },
1293 { .address = NRF5_FICR_ER3 },
1294 { .address = NRF5_FICR_IR0 },
1295 { .address = NRF5_FICR_IR1 },
1296 { .address = NRF5_FICR_IR2 },
1297 { .address = NRF5_FICR_IR3 },
1298 { .address = NRF5_FICR_DEVICEADDRTYPE },
1299 { .address = NRF5_FICR_DEVICEADDR0 },
1300 { .address = NRF5_FICR_DEVICEADDR1 },
1301 { .address = NRF51_FICR_OVERRIDEN },
1302 { .address = NRF51_FICR_NRF_1MBIT0 },
1303 { .address = NRF51_FICR_NRF_1MBIT1 },
1304 { .address = NRF51_FICR_NRF_1MBIT2 },
1305 { .address = NRF51_FICR_NRF_1MBIT3 },
1306 { .address = NRF51_FICR_NRF_1MBIT4 },
1307 { .address = NRF51_FICR_BLE_1MBIT0 },
1308 { .address = NRF51_FICR_BLE_1MBIT1 },
1309 { .address = NRF51_FICR_BLE_1MBIT2 },
1310 { .address = NRF51_FICR_BLE_1MBIT3 },
1311 { .address = NRF51_FICR_BLE_1MBIT4 },
1312 }, uicr[] = {
1313 { .address = NRF51_UICR_CLENR0, },
1314 { .address = NRF51_UICR_RBPCONF },
1315 { .address = NRF51_UICR_XTALFREQ },
1316 { .address = NRF51_UICR_FWID },
1317 };
1318
1319 for (size_t i = 0; i < ARRAY_SIZE(ficr); i++) {
1320 res = target_read_u32(chip->target, ficr[i].address,
1321 &ficr[i].value);
1322 if (res != ERROR_OK) {
1323 LOG_ERROR("Couldn't read %" PRIx32, ficr[i].address);
1324 return res;
1325 }
1326 }
1327
1328 for (size_t i = 0; i < ARRAY_SIZE(uicr); i++) {
1329 res = target_read_u32(chip->target, uicr[i].address,
1330 &uicr[i].value);
1331 if (res != ERROR_OK) {
1332 LOG_ERROR("Couldn't read %" PRIx32, uicr[i].address);
1333 return res;
1334 }
1335 }
1336
1337 command_print(CMD,
1338 "\n[factory information control block]\n\n"
1339 "code page size: %"PRIu32"B\n"
1340 "code memory size: %"PRIu32"kB\n"
1341 "code region 0 size: %"PRIu32"kB\n"
1342 "pre-programmed code: %s\n"
1343 "number of ram blocks: %"PRIu32"\n"
1344 "ram block 0 size: %"PRIu32"B\n"
1345 "ram block 1 size: %"PRIu32"B\n"
1346 "ram block 2 size: %"PRIu32"B\n"
1347 "ram block 3 size: %"PRIu32 "B\n"
1348 "config id: %" PRIx32 "\n"
1349 "device id: 0x%"PRIx32"%08"PRIx32"\n"
1350 "encryption root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1351 "identity root: 0x%08"PRIx32"%08"PRIx32"%08"PRIx32"%08"PRIx32"\n"
1352 "device address type: 0x%"PRIx32"\n"
1353 "device address: 0x%"PRIx32"%08"PRIx32"\n"
1354 "override enable: %"PRIx32"\n"
1355 "NRF_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1356 "BLE_1MBIT values: %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32" %"PRIx32"\n"
1357 "\n[user information control block]\n\n"
1358 "code region 0 size: %"PRIu32"kB\n"
1359 "read back protection configuration: %"PRIx32"\n"
1360 "reset value for XTALFREQ: %"PRIx32"\n"
1361 "firmware id: 0x%04"PRIx32,
1362 ficr[0].value,
1363 (ficr[1].value * ficr[0].value) / 1024,
1364 (ficr[2].value == 0xFFFFFFFF) ? 0 : ficr[2].value / 1024,
1365 ((ficr[3].value & 0xFF) == 0x00) ? "present" : "not present",
1366 ficr[4].value,
1367 ficr[5].value,
1368 (ficr[6].value == 0xFFFFFFFF) ? 0 : ficr[6].value,
1369 (ficr[7].value == 0xFFFFFFFF) ? 0 : ficr[7].value,
1370 (ficr[8].value == 0xFFFFFFFF) ? 0 : ficr[8].value,
1371 ficr[9].value,
1372 ficr[10].value, ficr[11].value,
1373 ficr[12].value, ficr[13].value, ficr[14].value, ficr[15].value,
1374 ficr[16].value, ficr[17].value, ficr[18].value, ficr[19].value,
1375 ficr[20].value,
1376 ficr[21].value, ficr[22].value,
1377 ficr[23].value,
1378 ficr[24].value, ficr[25].value, ficr[26].value, ficr[27].value, ficr[28].value,
1379 ficr[29].value, ficr[30].value, ficr[31].value, ficr[32].value, ficr[33].value,
1380 (uicr[0].value == 0xFFFFFFFF) ? 0 : uicr[0].value / 1024,
1381 uicr[1].value & 0xFFFF,
1382 uicr[2].value & 0xFF,
1383 uicr[3].value & 0xFFFF);
1384
1385 return ERROR_OK;
1386 }
1387
1388 static const struct command_registration nrf5_exec_command_handlers[] = {
1389 {
1390 .name = "mass_erase",
1391 .handler = nrf5_handle_mass_erase_command,
1392 .mode = COMMAND_EXEC,
1393 .help = "Erase all flash contents of the chip.",
1394 .usage = "",
1395 },
1396 {
1397 .name = "info",
1398 .handler = nrf5_handle_info_command,
1399 .mode = COMMAND_EXEC,
1400 .help = "Show FICR and UICR info.",
1401 .usage = "",
1402 },
1403 COMMAND_REGISTRATION_DONE
1404 };
1405
1406 static const struct command_registration nrf5_command_handlers[] = {
1407 {
1408 .name = "nrf5",
1409 .mode = COMMAND_ANY,
1410 .help = "nrf5 flash command group",
1411 .usage = "",
1412 .chain = nrf5_exec_command_handlers,
1413 },
1414 {
1415 .name = "nrf51",
1416 .mode = COMMAND_ANY,
1417 .help = "nrf51 flash command group",
1418 .usage = "",
1419 .chain = nrf5_exec_command_handlers,
1420 },
1421 COMMAND_REGISTRATION_DONE
1422 };
1423
1424 const struct flash_driver nrf5_flash = {
1425 .name = "nrf5",
1426 .commands = nrf5_command_handlers,
1427 .flash_bank_command = nrf5_flash_bank_command,
1428 .info = nrf5_info,
1429 .erase = nrf5_erase,
1430 .protect = nrf5_protect,
1431 .write = nrf5_write,
1432 .read = default_flash_read,
1433 .probe = nrf5_probe,
1434 .auto_probe = nrf5_auto_probe,
1435 .erase_check = default_flash_blank_check,
1436 .protect_check = nrf5_protect_check,
1437 .free_driver_priv = nrf5_free_driver_priv,
1438 };
1439
1440 /* We need to retain the flash-driver name as well as the commands
1441 * for backwards compatibility */
1442 const struct flash_driver nrf51_flash = {
1443 .name = "nrf51",
1444 .commands = nrf5_command_handlers,
1445 .flash_bank_command = nrf5_flash_bank_command,
1446 .info = nrf5_info,
1447 .erase = nrf5_erase,
1448 .protect = nrf5_protect,
1449 .write = nrf5_write,
1450 .read = default_flash_read,
1451 .probe = nrf5_probe,
1452 .auto_probe = nrf5_auto_probe,
1453 .erase_check = default_flash_blank_check,
1454 .protect_check = nrf5_protect_check,
1455 .free_driver_priv = nrf5_free_driver_priv,
1456 };