flash/nor/kinetis: Minor code cleanups
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45 * Implementation Notes
46 *
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
51 *
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
57 *
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
63 *
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
72 *
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
79 *
80 */
81
82 /* Addressess */
83 #define FCF_ADDRESS 0x00000400
84 #define FCF_FPROT 0x8
85 #define FCF_FSEC 0xc
86 #define FCF_FOPT 0xd
87 #define FCF_FDPROT 0xf
88 #define FCF_SIZE 0x10
89
90 #define FLEXRAM 0x14000000
91
92 #define MSCM_OCMDR0 0x40001400
93 #define FMC_PFB01CR 0x4001f004
94 #define FTFx_FSTAT 0x40020000
95 #define FTFx_FCNFG 0x40020001
96 #define FTFx_FCCOB3 0x40020004
97 #define FTFx_FPROT3 0x40020010
98 #define FTFx_FDPROT 0x40020017
99 #define SIM_BASE 0x40047000
100 #define SIM_BASE_KL28 0x40074000
101 #define SIM_COPC 0x40048100
102 /* SIM_COPC does not exist on devices with changed SIM_BASE */
103 #define WDOG_BASE 0x40052000
104 #define WDOG32_KE1X 0x40052000
105 #define WDOG32_KL28 0x40076000
106 #define SMC_PMCTRL 0x4007E001
107 #define SMC_PMSTAT 0x4007E003
108 #define SMC32_PMCTRL 0x4007E00C
109 #define SMC32_PMSTAT 0x4007E014
110 #define MCM_PLACR 0xF000300C
111
112 /* Offsets */
113 #define SIM_SOPT1_OFFSET 0x0000
114 #define SIM_SDID_OFFSET 0x1024
115 #define SIM_FCFG1_OFFSET 0x104c
116 #define SIM_FCFG2_OFFSET 0x1050
117
118 #define WDOG_STCTRLH_OFFSET 0
119 #define WDOG32_CS_OFFSET 0
120
121 /* Values */
122 #define PM_STAT_RUN 0x01
123 #define PM_STAT_VLPR 0x04
124 #define PM_CTRL_RUNM_RUN 0x00
125
126 /* Commands */
127 #define FTFx_CMD_BLOCKSTAT 0x00
128 #define FTFx_CMD_SECTSTAT 0x01
129 #define FTFx_CMD_LWORDPROG 0x06
130 #define FTFx_CMD_SECTERASE 0x09
131 #define FTFx_CMD_SECTWRITE 0x0b
132 #define FTFx_CMD_MASSERASE 0x44
133 #define FTFx_CMD_PGMPART 0x80
134 #define FTFx_CMD_SETFLEXRAM 0x81
135
136 /* The older Kinetis K series uses the following SDID layout :
137 * Bit 31-16 : 0
138 * Bit 15-12 : REVID
139 * Bit 11-7 : DIEID
140 * Bit 6-4 : FAMID
141 * Bit 3-0 : PINID
142 *
143 * The newer Kinetis series uses the following SDID layout :
144 * Bit 31-28 : FAMID
145 * Bit 27-24 : SUBFAMID
146 * Bit 23-20 : SERIESID
147 * Bit 19-16 : SRAMSIZE
148 * Bit 15-12 : REVID
149 * Bit 6-4 : Reserved (0)
150 * Bit 3-0 : PINID
151 *
152 * We assume that if bits 31-16 are 0 then it's an older
153 * K-series MCU.
154 */
155
156 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
157 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
158
159 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
160
161 #define KINETIS_SDID_DIEID_MASK 0x00000F80
162
163 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
164 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
165 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
166 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
167
168 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
169
170 /* We can't rely solely on the FAMID field to determine the MCU
171 * type since some FAMID values identify multiple MCUs with
172 * different flash sector sizes (K20 and K22 for instance).
173 * Therefore we combine it with the DIEID bits which may possibly
174 * break if Freescale bumps the DIEID for a particular MCU. */
175 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
176 #define KINETIS_K_SDID_K10_M50 0x00000000
177 #define KINETIS_K_SDID_K10_M72 0x00000080
178 #define KINETIS_K_SDID_K10_M100 0x00000100
179 #define KINETIS_K_SDID_K10_M120 0x00000180
180 #define KINETIS_K_SDID_K11 0x00000220
181 #define KINETIS_K_SDID_K12 0x00000200
182 #define KINETIS_K_SDID_K20_M50 0x00000010
183 #define KINETIS_K_SDID_K20_M72 0x00000090
184 #define KINETIS_K_SDID_K20_M100 0x00000110
185 #define KINETIS_K_SDID_K20_M120 0x00000190
186 #define KINETIS_K_SDID_K21_M50 0x00000230
187 #define KINETIS_K_SDID_K21_M120 0x00000330
188 #define KINETIS_K_SDID_K22_M50 0x00000210
189 #define KINETIS_K_SDID_K22_M120 0x00000310
190 #define KINETIS_K_SDID_K30_M72 0x000000A0
191 #define KINETIS_K_SDID_K30_M100 0x00000120
192 #define KINETIS_K_SDID_K40_M72 0x000000B0
193 #define KINETIS_K_SDID_K40_M100 0x00000130
194 #define KINETIS_K_SDID_K50_M72 0x000000E0
195 #define KINETIS_K_SDID_K51_M72 0x000000F0
196 #define KINETIS_K_SDID_K53 0x00000170
197 #define KINETIS_K_SDID_K60_M100 0x00000140
198 #define KINETIS_K_SDID_K60_M150 0x000001C0
199 #define KINETIS_K_SDID_K70_M150 0x000001D0
200
201 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
202 #define KINETIS_SDID_SERIESID_K 0x00000000
203 #define KINETIS_SDID_SERIESID_KL 0x00100000
204 #define KINETIS_SDID_SERIESID_KE 0x00200000
205 #define KINETIS_SDID_SERIESID_KW 0x00500000
206 #define KINETIS_SDID_SERIESID_KV 0x00600000
207
208 #define KINETIS_SDID_SUBFAMID_SHIFT 24
209 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
210 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
211 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
212 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
213 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
214 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
215 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
216 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
217 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
218 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
219
220 #define KINETIS_SDID_FAMILYID_SHIFT 28
221 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
222 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
223 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
224 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
225 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
226 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
227 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
228 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
229 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
230 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
231 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
232
233 /* The field originally named DIEID has new name/meaning on KE1x */
234 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
235 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
236 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
237
238 struct kinetis_flash_bank {
239 struct kinetis_chip *k_chip;
240 bool probed;
241 unsigned bank_number; /* bank number in particular chip */
242 struct flash_bank *bank;
243
244 uint32_t sector_size;
245 uint32_t protection_size;
246 uint32_t prog_base; /* base address for FTFx operations */
247 /* usually same as bank->base for pflash, differs for FlexNVM */
248 uint32_t protection_block; /* number of first protection block in this bank */
249
250 enum {
251 FC_AUTO = 0,
252 FC_PFLASH,
253 FC_FLEX_NVM,
254 FC_FLEX_RAM,
255 } flash_class;
256 };
257
258 #define KINETIS_MAX_BANKS 4u
259
260 struct kinetis_chip {
261 struct target *target;
262 bool probed;
263
264 uint32_t sim_sdid;
265 uint32_t sim_fcfg1;
266 uint32_t sim_fcfg2;
267 uint32_t fcfg2_maxaddr0_shifted;
268 uint32_t fcfg2_maxaddr1_shifted;
269
270 unsigned num_pflash_blocks, num_nvm_blocks;
271 unsigned pflash_sector_size, nvm_sector_size;
272 unsigned max_flash_prog_size;
273
274 uint32_t pflash_base;
275 uint32_t pflash_size;
276 uint32_t nvm_base;
277 uint32_t nvm_size; /* whole FlexNVM */
278 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
279
280 uint32_t progr_accel_ram;
281 uint32_t sim_base;
282
283 enum {
284 FS_PROGRAM_SECTOR = 1,
285 FS_PROGRAM_LONGWORD = 2,
286 FS_PROGRAM_PHRASE = 4, /* Unsupported */
287
288 FS_NO_CMD_BLOCKSTAT = 0x40,
289 FS_WIDTH_256BIT = 0x80,
290 FS_ECC = 0x100,
291 } flash_support;
292
293 enum {
294 KINETIS_CACHE_NONE,
295 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
296 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
297 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
298 } cache_type;
299
300 enum {
301 KINETIS_WDOG_NONE,
302 KINETIS_WDOG_K,
303 KINETIS_WDOG_COP,
304 KINETIS_WDOG32_KE1X,
305 KINETIS_WDOG32_KL28,
306 } watchdog_type;
307
308 enum {
309 KINETIS_SMC,
310 KINETIS_SMC32,
311 } sysmodectrlr_type;
312
313 char name[40];
314
315 unsigned num_banks;
316 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
317 };
318
319 struct kinetis_type {
320 uint32_t sdid;
321 char *name;
322 };
323
324 static const struct kinetis_type kinetis_types_old[] = {
325 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
326 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
327 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
328 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
329 { KINETIS_K_SDID_K11, "MK11D%s5" },
330 { KINETIS_K_SDID_K12, "MK12D%s5" },
331
332 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
333 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
334 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
335 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
336 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
337 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
338 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
339 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
340
341 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
342 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
343
344 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
345 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
346
347 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
348 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
349 { KINETIS_K_SDID_K53, "MK53D%s10" },
350
351 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
352 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
353
354 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
355 };
356
357
358 #define MDM_AP 1
359
360 #define MDM_REG_STAT 0x00
361 #define MDM_REG_CTRL 0x04
362 #define MDM_REG_ID 0xfc
363
364 #define MDM_STAT_FMEACK (1<<0)
365 #define MDM_STAT_FREADY (1<<1)
366 #define MDM_STAT_SYSSEC (1<<2)
367 #define MDM_STAT_SYSRES (1<<3)
368 #define MDM_STAT_FMEEN (1<<5)
369 #define MDM_STAT_BACKDOOREN (1<<6)
370 #define MDM_STAT_LPEN (1<<7)
371 #define MDM_STAT_VLPEN (1<<8)
372 #define MDM_STAT_LLSMODEXIT (1<<9)
373 #define MDM_STAT_VLLSXMODEXIT (1<<10)
374 #define MDM_STAT_CORE_HALTED (1<<16)
375 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
376 #define MDM_STAT_CORESLEEPING (1<<18)
377
378 #define MDM_CTRL_FMEIP (1<<0)
379 #define MDM_CTRL_DBG_DIS (1<<1)
380 #define MDM_CTRL_DBG_REQ (1<<2)
381 #define MDM_CTRL_SYS_RES_REQ (1<<3)
382 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
383 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
384 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
385 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
386
387 #define MDM_ACCESS_TIMEOUT 500 /* msec */
388
389
390 static bool allow_fcf_writes;
391 static uint8_t fcf_fopt = 0xff;
392 static bool fcf_fopt_configured;
393 static bool create_banks;
394
395
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398 uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
401
402
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
404 {
405 int retval;
406 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407
408 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
409 if (retval != ERROR_OK) {
410 LOG_DEBUG("MDM: failed to queue a write request");
411 return retval;
412 }
413
414 retval = dap_run(dap);
415 if (retval != ERROR_OK) {
416 LOG_DEBUG("MDM: dap_run failed");
417 return retval;
418 }
419
420
421 return ERROR_OK;
422 }
423
424 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
425 {
426 int retval;
427
428 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
429 if (retval != ERROR_OK) {
430 LOG_DEBUG("MDM: failed to queue a read request");
431 return retval;
432 }
433
434 retval = dap_run(dap);
435 if (retval != ERROR_OK) {
436 LOG_DEBUG("MDM: dap_run failed");
437 return retval;
438 }
439
440 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
441 return ERROR_OK;
442 }
443
444 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
445 uint32_t mask, uint32_t value, uint32_t timeout_ms)
446 {
447 uint32_t val;
448 int retval;
449 int64_t ms_timeout = timeval_ms() + timeout_ms;
450
451 do {
452 retval = kinetis_mdm_read_register(dap, reg, &val);
453 if (retval != ERROR_OK || (val & mask) == value)
454 return retval;
455
456 alive_sleep(1);
457 } while (timeval_ms() < ms_timeout);
458
459 LOG_DEBUG("MDM: polling timed out");
460 return ERROR_FAIL;
461 }
462
463 /*
464 * This command can be used to break a watchdog reset loop when
465 * connecting to an unsecured target. Unlike other commands, halt will
466 * automatically retry as it does not know how far into the boot process
467 * it is when the command is called.
468 */
469 COMMAND_HANDLER(kinetis_mdm_halt)
470 {
471 struct target *target = get_current_target(CMD_CTX);
472 struct cortex_m_common *cortex_m = target_to_cm(target);
473 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
474 int retval;
475 int tries = 0;
476 uint32_t stat;
477 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
478
479 if (!dap) {
480 LOG_ERROR("Cannot perform halt with a high-level adapter");
481 return ERROR_FAIL;
482 }
483
484 while (true) {
485 tries++;
486
487 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
488
489 alive_sleep(1);
490
491 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
492 if (retval != ERROR_OK) {
493 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
494 continue;
495 }
496
497 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
498 * reset with flash ready and without security
499 */
500 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
501 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
502 break;
503
504 if (timeval_ms() >= ms_timeout) {
505 LOG_ERROR("MDM: halt timed out");
506 return ERROR_FAIL;
507 }
508 }
509
510 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
511
512 target_poll(target);
513 /* enable polling in case kinetis_check_flash_security_status disabled it */
514 jtag_poll_set_enabled(true);
515
516 alive_sleep(100);
517
518 target->reset_halt = true;
519 target->type->assert_reset(target);
520
521 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522 if (retval != ERROR_OK) {
523 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524 return retval;
525 }
526
527 target->type->deassert_reset(target);
528
529 return ERROR_OK;
530 }
531
532 COMMAND_HANDLER(kinetis_mdm_reset)
533 {
534 struct target *target = get_current_target(CMD_CTX);
535 struct cortex_m_common *cortex_m = target_to_cm(target);
536 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
537 int retval;
538
539 if (!dap) {
540 LOG_ERROR("Cannot perform reset with a high-level adapter");
541 return ERROR_FAIL;
542 }
543
544 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
545 if (retval != ERROR_OK) {
546 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
547 return retval;
548 }
549
550 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
551 if (retval != ERROR_OK) {
552 LOG_ERROR("MDM: failed to assert reset");
553 return retval;
554 }
555
556 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
557 if (retval != ERROR_OK) {
558 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
559 return retval;
560 }
561
562 return ERROR_OK;
563 }
564
565 /*
566 * This function implements the procedure to mass erase the flash via
567 * SWD/JTAG on Kinetis K and L series of devices as it is described in
568 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
569 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
570 * the core remains halted after this function completes as suggested
571 * by the application note.
572 */
573 COMMAND_HANDLER(kinetis_mdm_mass_erase)
574 {
575 struct target *target = get_current_target(CMD_CTX);
576 struct cortex_m_common *cortex_m = target_to_cm(target);
577 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
578
579 if (!dap) {
580 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
581 return ERROR_FAIL;
582 }
583
584 int retval;
585
586 /*
587 * ... Power on the processor, or if power has already been
588 * applied, assert the RESET pin to reset the processor. For
589 * devices that do not have a RESET pin, write the System
590 * Reset Request bit in the MDM-AP control register after
591 * establishing communication...
592 */
593
594 /* assert SRST if configured */
595 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
596 if (has_srst)
597 adapter_assert_reset();
598
599 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
600 if (retval != ERROR_OK && !has_srst) {
601 LOG_ERROR("MDM: failed to assert reset");
602 goto deassert_reset_and_exit;
603 }
604
605 /*
606 * ... Read the MDM-AP status register repeatedly and wait for
607 * stable conditions suitable for mass erase:
608 * - mass erase is enabled
609 * - flash is ready
610 * - reset is finished
611 *
612 * Mass erase is started as soon as all conditions are met in 32
613 * subsequent status reads.
614 *
615 * In case of not stable conditions (RESET/WDOG loop in secured device)
616 * the user is asked for manual pressing of RESET button
617 * as a last resort.
618 */
619 int cnt_mass_erase_disabled = 0;
620 int cnt_ready = 0;
621 int64_t ms_start = timeval_ms();
622 bool man_reset_requested = false;
623
624 do {
625 uint32_t stat = 0;
626 int64_t ms_elapsed = timeval_ms() - ms_start;
627
628 if (!man_reset_requested && ms_elapsed > 100) {
629 LOG_INFO("MDM: Press RESET button now if possible.");
630 man_reset_requested = true;
631 }
632
633 if (ms_elapsed > 3000) {
634 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
635 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
636 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
637 goto deassert_reset_and_exit;
638 }
639 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
640 if (retval != ERROR_OK) {
641 cnt_ready = 0;
642 continue;
643 }
644
645 if (!(stat & MDM_STAT_FMEEN)) {
646 cnt_ready = 0;
647 cnt_mass_erase_disabled++;
648 if (cnt_mass_erase_disabled > 10) {
649 LOG_ERROR("MDM: mass erase is disabled");
650 goto deassert_reset_and_exit;
651 }
652 continue;
653 }
654
655 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
656 cnt_ready++;
657 else
658 cnt_ready = 0;
659
660 } while (cnt_ready < 32);
661
662 /*
663 * ... Write the MDM-AP control register to set the Flash Mass
664 * Erase in Progress bit. This will start the mass erase
665 * process...
666 */
667 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
668 if (retval != ERROR_OK) {
669 LOG_ERROR("MDM: failed to start mass erase");
670 goto deassert_reset_and_exit;
671 }
672
673 /*
674 * ... Read the MDM-AP control register until the Flash Mass
675 * Erase in Progress bit clears...
676 * Data sheed defines erase time <3.6 sec/512kB flash block.
677 * The biggest device has 4 pflash blocks => timeout 16 sec.
678 */
679 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
680 if (retval != ERROR_OK) {
681 LOG_ERROR("MDM: mass erase timeout");
682 goto deassert_reset_and_exit;
683 }
684
685 target_poll(target);
686 /* enable polling in case kinetis_check_flash_security_status disabled it */
687 jtag_poll_set_enabled(true);
688
689 alive_sleep(100);
690
691 target->reset_halt = true;
692 target->type->assert_reset(target);
693
694 /*
695 * ... Negate the RESET signal or clear the System Reset Request
696 * bit in the MDM-AP control register.
697 */
698 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
699 if (retval != ERROR_OK)
700 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
701
702 target->type->deassert_reset(target);
703
704 return retval;
705
706 deassert_reset_and_exit:
707 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
708 if (has_srst)
709 adapter_deassert_reset();
710 return retval;
711 }
712
713 static const uint32_t kinetis_known_mdm_ids[] = {
714 0x001C0000, /* Kinetis-K Series */
715 0x001C0020, /* Kinetis-L/M/V/E Series */
716 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
717 };
718
719 /*
720 * This function implements the procedure to connect to
721 * SWD/JTAG on Kinetis K and L series of devices as it is described in
722 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
723 * and L-series MCUs" Section 4.1.1
724 */
725 COMMAND_HANDLER(kinetis_check_flash_security_status)
726 {
727 struct target *target = get_current_target(CMD_CTX);
728 struct cortex_m_common *cortex_m = target_to_cm(target);
729 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
730
731 if (!dap) {
732 LOG_WARNING("Cannot check flash security status with a high-level adapter");
733 return ERROR_OK;
734 }
735
736 if (!dap->ops)
737 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
738
739 uint32_t val;
740 int retval;
741
742 /*
743 * ... The MDM-AP ID register can be read to verify that the
744 * connection is working correctly...
745 */
746 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
747 if (retval != ERROR_OK) {
748 LOG_ERROR("MDM: failed to read ID register");
749 return ERROR_OK;
750 }
751
752 if (val == 0)
753 return ERROR_OK; /* dap not yet initialised */
754
755 bool found = false;
756 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
757 if (val == kinetis_known_mdm_ids[i]) {
758 found = true;
759 break;
760 }
761 }
762
763 if (!found)
764 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
765
766 /*
767 * ... Read the System Security bit to determine if security is enabled.
768 * If System Security = 0, then proceed. If System Security = 1, then
769 * communication with the internals of the processor, including the
770 * flash, will not be possible without issuing a mass erase command or
771 * unsecuring the part through other means (backdoor key unlock)...
772 */
773 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
774 if (retval != ERROR_OK) {
775 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
776 return ERROR_OK;
777 }
778
779 /*
780 * System Security bit is also active for short time during reset.
781 * If a MCU has blank flash and runs in RESET/WDOG loop,
782 * System Security bit is active most of time!
783 * We should observe Flash Ready bit and read status several times
784 * to avoid false detection of secured MCU
785 */
786 int secured_score = 0, flash_not_ready_score = 0;
787
788 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
789 uint32_t stats[32];
790
791 for (unsigned int i = 0; i < 32; i++) {
792 stats[i] = MDM_STAT_FREADY;
793 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
794 }
795 retval = dap_run(dap);
796 if (retval != ERROR_OK) {
797 LOG_DEBUG("MDM: dap_run failed when validating secured state");
798 return ERROR_OK;
799 }
800 for (unsigned int i = 0; i < 32; i++) {
801 if (stats[i] & MDM_STAT_SYSSEC)
802 secured_score++;
803 if (!(stats[i] & MDM_STAT_FREADY))
804 flash_not_ready_score++;
805 }
806 }
807
808 if (flash_not_ready_score <= 8 && secured_score > 24) {
809 jtag_poll_set_enabled(false);
810
811 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
812 LOG_WARNING("**** ****");
813 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
814 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
815 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
816 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
817 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
818 LOG_WARNING("**** ****");
819 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
820
821 } else if (flash_not_ready_score > 24) {
822 jtag_poll_set_enabled(false);
823 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
824 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
825 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
826 LOG_WARNING("**** and configured, use 'reset halt' ****");
827 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
828 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
829
830 } else {
831 LOG_INFO("MDM: Chip is unsecured. Continuing.");
832 jtag_poll_set_enabled(true);
833 }
834
835 return ERROR_OK;
836 }
837
838
839 static struct kinetis_chip *kinetis_get_chip(struct target *target)
840 {
841 struct flash_bank *bank_iter;
842 struct kinetis_flash_bank *k_bank;
843
844 /* iterate over all kinetis banks */
845 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
846 if (bank_iter->driver != &kinetis_flash
847 || bank_iter->target != target)
848 continue;
849
850 k_bank = bank_iter->driver_priv;
851 if (!k_bank)
852 continue;
853
854 if (k_bank->k_chip)
855 return k_bank->k_chip;
856 }
857 return NULL;
858 }
859
860 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
861 {
862 for (int i = 0; i < argc; i++) {
863 if (strcmp(argv[i], "-sim-base") == 0) {
864 if (i + 1 < argc)
865 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
866 } else
867 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
868 }
869 return ERROR_OK;
870 }
871
872 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
873 {
874 struct target *target = bank->target;
875 struct kinetis_chip *k_chip;
876 struct kinetis_flash_bank *k_bank;
877 int retval;
878
879 if (CMD_ARGC < 6)
880 return ERROR_COMMAND_SYNTAX_ERROR;
881
882 LOG_INFO("add flash_bank kinetis %s", bank->name);
883
884 k_chip = kinetis_get_chip(target);
885
886 if (k_chip == NULL) {
887 k_chip = calloc(sizeof(struct kinetis_chip), 1);
888 if (k_chip == NULL) {
889 LOG_ERROR("No memory");
890 return ERROR_FAIL;
891 }
892
893 k_chip->target = target;
894
895 /* only the first defined bank can define chip options */
896 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
897 if (retval != ERROR_OK)
898 return retval;
899 }
900
901 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
902 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
903 return ERROR_FAIL;
904 }
905
906 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
907 k_bank->k_chip = k_chip;
908 k_bank->bank_number = k_chip->num_banks;
909 k_bank->bank = bank;
910 k_chip->num_banks++;
911
912 return ERROR_OK;
913 }
914
915
916 static void kinetis_free_driver_priv(struct flash_bank *bank)
917 {
918 struct kinetis_flash_bank *k_bank = bank->driver_priv;
919 if (k_bank == NULL)
920 return;
921
922 struct kinetis_chip *k_chip = k_bank->k_chip;
923 if (k_chip == NULL)
924 return;
925
926 k_chip->num_banks--;
927 if (k_chip->num_banks == 0)
928 free(k_chip);
929 }
930
931
932 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
933 {
934 unsigned num_blocks;
935 struct kinetis_flash_bank *k_bank;
936 struct flash_bank *bank;
937 char base_name[69], name[80], num[4];
938 char *class, *p;
939
940 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
941 if (num_blocks > KINETIS_MAX_BANKS) {
942 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
943 return ERROR_FAIL;
944 }
945
946 bank = k_chip->banks[0].bank;
947 if (bank && bank->name) {
948 strncpy(base_name, bank->name, sizeof(base_name) - 1);
949 base_name[sizeof(base_name) - 1] = '\0';
950 p = strstr(base_name, ".pflash");
951 if (p) {
952 *p = '\0';
953 if (k_chip->num_pflash_blocks > 1) {
954 /* rename first bank if numbering is needed */
955 snprintf(name, sizeof(name), "%s.pflash0", base_name);
956 free(bank->name);
957 bank->name = strdup(name);
958 }
959 }
960 } else {
961 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
962 base_name[sizeof(base_name) - 1] = '\0';
963 p = strstr(base_name, ".cpu");
964 if (p)
965 *p = '\0';
966 }
967
968 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
969 k_bank = &(k_chip->banks[bank_idx]);
970 bank = k_bank->bank;
971
972 if (bank)
973 continue;
974
975 num[0] = '\0';
976
977 if (bank_idx < k_chip->num_pflash_blocks) {
978 class = "pflash";
979 if (k_chip->num_pflash_blocks > 1)
980 snprintf(num, sizeof(num), "%u", bank_idx);
981 } else {
982 class = "flexnvm";
983 if (k_chip->num_nvm_blocks > 1)
984 snprintf(num, sizeof(num), "%u",
985 bank_idx - k_chip->num_pflash_blocks);
986 }
987
988 bank = calloc(sizeof(struct flash_bank), 1);
989 if (bank == NULL)
990 return ERROR_FAIL;
991
992 bank->target = k_chip->target;
993 bank->driver = &kinetis_flash;
994 bank->default_padded_value = bank->erased_value = 0xff;
995
996 snprintf(name, sizeof(name), "%s.%s%s",
997 base_name, class, num);
998 bank->name = strdup(name);
999
1000 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1001 k_bank->k_chip = k_chip;
1002 k_bank->bank_number = bank_idx;
1003 k_bank->bank = bank;
1004 if (k_chip->num_banks <= bank_idx)
1005 k_chip->num_banks = bank_idx + 1;
1006
1007 flash_bank_add(bank);
1008 }
1009 return ERROR_OK;
1010 }
1011
1012
1013 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1014 {
1015 struct working_area *wdog_algorithm;
1016 struct armv7m_algorithm armv7m_info;
1017 struct reg_param reg_params[1];
1018 int retval;
1019
1020 if (target->state != TARGET_HALTED) {
1021 LOG_ERROR("Target not halted");
1022 return ERROR_TARGET_NOT_HALTED;
1023 }
1024
1025 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1026 if (retval != ERROR_OK)
1027 return retval;
1028
1029 retval = target_write_buffer(target, wdog_algorithm->address,
1030 code_size, code);
1031 if (retval == ERROR_OK) {
1032 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1033 armv7m_info.core_mode = ARM_MODE_THREAD;
1034
1035 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1036 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1037
1038 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1039 wdog_algorithm->address,
1040 wdog_algorithm->address + code_size - 2,
1041 500, &armv7m_info);
1042
1043 destroy_reg_param(&reg_params[0]);
1044
1045 if (retval != ERROR_OK)
1046 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1047 }
1048
1049 target_free_working_area(target, wdog_algorithm);
1050
1051 return retval;
1052 }
1053
1054 /* Disable the watchdog on Kinetis devices
1055 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1056 */
1057 static int kinetis_disable_wdog_kx(struct target *target)
1058 {
1059 const uint32_t wdog_base = WDOG_BASE;
1060 uint16_t wdog;
1061 int retval;
1062
1063 static const uint8_t kinetis_unlock_wdog_code[] = {
1064 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1065 };
1066
1067 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1068 if (retval != ERROR_OK)
1069 return retval;
1070
1071 if ((wdog & 0x1) == 0) {
1072 /* watchdog already disabled */
1073 return ERROR_OK;
1074 }
1075 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1076
1077 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1078 if (retval != ERROR_OK)
1079 return retval;
1080
1081 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1086 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1087 }
1088
1089 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1090 {
1091 uint32_t wdog_cs;
1092 int retval;
1093
1094 static const uint8_t kinetis_unlock_wdog_code[] = {
1095 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1096 };
1097
1098 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1099 if (retval != ERROR_OK)
1100 return retval;
1101
1102 if ((wdog_cs & 0x80) == 0)
1103 return ERROR_OK; /* watchdog already disabled */
1104
1105 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1106
1107 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1108 if (retval != ERROR_OK)
1109 return retval;
1110
1111 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1112 if (retval != ERROR_OK)
1113 return retval;
1114
1115 if ((wdog_cs & 0x80) == 0)
1116 return ERROR_OK; /* watchdog disabled successfully */
1117
1118 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1119 return ERROR_FAIL;
1120 }
1121
1122 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1123 {
1124 struct target *target = k_chip->target;
1125 uint8_t sim_copc;
1126 int retval;
1127
1128 if (!k_chip->probed) {
1129 retval = kinetis_probe_chip(k_chip);
1130 if (retval != ERROR_OK)
1131 return retval;
1132 }
1133
1134 switch (k_chip->watchdog_type) {
1135 case KINETIS_WDOG_K:
1136 return kinetis_disable_wdog_kx(target);
1137
1138 case KINETIS_WDOG_COP:
1139 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 if ((sim_copc & 0xc) == 0)
1144 return ERROR_OK; /* watchdog already disabled */
1145
1146 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1147 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1148 if (retval != ERROR_OK)
1149 return retval;
1150
1151 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1152 if (retval != ERROR_OK)
1153 return retval;
1154
1155 if ((sim_copc & 0xc) == 0)
1156 return ERROR_OK; /* watchdog disabled successfully */
1157
1158 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1159 return ERROR_FAIL;
1160
1161 case KINETIS_WDOG32_KE1X:
1162 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1163
1164 case KINETIS_WDOG32_KL28:
1165 return kinetis_disable_wdog32(target, WDOG32_KL28);
1166
1167 default:
1168 return ERROR_OK;
1169 }
1170 }
1171
1172 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1173 {
1174 int result;
1175 struct target *target = get_current_target(CMD_CTX);
1176 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1177
1178 if (k_chip == NULL)
1179 return ERROR_FAIL;
1180
1181 if (CMD_ARGC > 0)
1182 return ERROR_COMMAND_SYNTAX_ERROR;
1183
1184 result = kinetis_disable_wdog(k_chip);
1185 return result;
1186 }
1187
1188
1189 static int kinetis_ftfx_decode_error(uint8_t fstat)
1190 {
1191 if (fstat & 0x20) {
1192 LOG_ERROR("Flash operation failed, illegal command");
1193 return ERROR_FLASH_OPER_UNSUPPORTED;
1194
1195 } else if (fstat & 0x10)
1196 LOG_ERROR("Flash operation failed, protection violated");
1197
1198 else if (fstat & 0x40)
1199 LOG_ERROR("Flash operation failed, read collision");
1200
1201 else if (fstat & 0x80)
1202 return ERROR_OK;
1203
1204 else
1205 LOG_ERROR("Flash operation timed out");
1206
1207 return ERROR_FLASH_OPERATION_FAILED;
1208 }
1209
1210 static int kinetis_ftfx_clear_error(struct target *target)
1211 {
1212 /* reset error flags */
1213 return target_write_u8(target, FTFx_FSTAT, 0x70);
1214 }
1215
1216
1217 static int kinetis_ftfx_prepare(struct target *target)
1218 {
1219 int result;
1220 uint8_t fstat;
1221
1222 /* wait until busy */
1223 for (unsigned int i = 0; i < 50; i++) {
1224 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1225 if (result != ERROR_OK)
1226 return result;
1227
1228 if (fstat & 0x80)
1229 break;
1230 }
1231
1232 if ((fstat & 0x80) == 0) {
1233 LOG_ERROR("Flash controller is busy");
1234 return ERROR_FLASH_OPERATION_FAILED;
1235 }
1236 if (fstat != 0x80) {
1237 /* reset error flags */
1238 result = kinetis_ftfx_clear_error(target);
1239 }
1240 return result;
1241 }
1242
1243 /* Kinetis Program-LongWord Microcodes */
1244 static const uint8_t kinetis_flash_write_code[] = {
1245 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1246 };
1247
1248 /* Program LongWord Block Write */
1249 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1250 uint32_t offset, uint32_t wcount)
1251 {
1252 struct target *target = bank->target;
1253 uint32_t buffer_size = 2048; /* Default minimum value */
1254 struct working_area *write_algorithm;
1255 struct working_area *source;
1256 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1257 uint32_t address = k_bank->prog_base + offset;
1258 uint32_t end_address;
1259 struct reg_param reg_params[5];
1260 struct armv7m_algorithm armv7m_info;
1261 int retval;
1262 uint8_t fstat;
1263
1264 /* Increase buffer_size if needed */
1265 if (buffer_size < (target->working_area_size/2))
1266 buffer_size = (target->working_area_size/2);
1267
1268 /* allocate working area with flash programming code */
1269 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1270 &write_algorithm) != ERROR_OK) {
1271 LOG_WARNING("no working area available, can't do block memory writes");
1272 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1273 }
1274
1275 retval = target_write_buffer(target, write_algorithm->address,
1276 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1277 if (retval != ERROR_OK)
1278 return retval;
1279
1280 /* memory buffer */
1281 while (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1282 buffer_size /= 4;
1283 if (buffer_size <= 256) {
1284 /* free working area, write algorithm already allocated */
1285 target_free_working_area(target, write_algorithm);
1286
1287 LOG_WARNING("No large enough working area available, can't do block memory writes");
1288 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1289 }
1290 }
1291
1292 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1293 armv7m_info.core_mode = ARM_MODE_THREAD;
1294
1295 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1296 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1297 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1298 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1299 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1300
1301 buf_set_u32(reg_params[0].value, 0, 32, address);
1302 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1303 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1304 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1305 buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1306
1307 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1308 0, NULL,
1309 5, reg_params,
1310 source->address, source->size,
1311 write_algorithm->address, 0,
1312 &armv7m_info);
1313
1314 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1315 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1316
1317 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1318
1319 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1320 if (retval == ERROR_OK) {
1321 retval = kinetis_ftfx_decode_error(fstat);
1322
1323 /* reset error flags */
1324 target_write_u8(target, FTFx_FSTAT, 0x70);
1325 }
1326 } else if (retval != ERROR_OK)
1327 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1328
1329 target_free_working_area(target, source);
1330 target_free_working_area(target, write_algorithm);
1331
1332 destroy_reg_param(&reg_params[0]);
1333 destroy_reg_param(&reg_params[1]);
1334 destroy_reg_param(&reg_params[2]);
1335 destroy_reg_param(&reg_params[3]);
1336 destroy_reg_param(&reg_params[4]);
1337
1338 return retval;
1339 }
1340
1341 static int kinetis_protect(struct flash_bank *bank, int set, int first, int last)
1342 {
1343 if (allow_fcf_writes) {
1344 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1345 return ERROR_FAIL;
1346 }
1347
1348 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1349 LOG_ERROR("No protection possible for current bank!");
1350 return ERROR_FLASH_BANK_INVALID;
1351 }
1352
1353 for (int i = first; i < bank->num_prot_blocks && i <= last; i++)
1354 bank->prot_blocks[i].is_protected = set;
1355
1356 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1357 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1358 LOG_INFO("doing so would re-read protection status from MCU.");
1359
1360 return ERROR_OK;
1361 }
1362
1363 static int kinetis_protect_check(struct flash_bank *bank)
1364 {
1365 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1366 int result;
1367 int b;
1368 uint32_t fprot;
1369
1370 if (k_bank->flash_class == FC_PFLASH) {
1371
1372 /* read protection register */
1373 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1374 if (result != ERROR_OK)
1375 return result;
1376
1377 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1378
1379 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1380 uint8_t fdprot;
1381
1382 /* read protection register */
1383 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1384 if (result != ERROR_OK)
1385 return result;
1386
1387 fprot = fdprot;
1388
1389 } else {
1390 LOG_ERROR("Protection checks for FlexRAM not supported");
1391 return ERROR_FLASH_BANK_INVALID;
1392 }
1393
1394 b = k_bank->protection_block;
1395 for (int i = 0; i < bank->num_prot_blocks; i++) {
1396 if ((fprot >> b) & 1)
1397 bank->prot_blocks[i].is_protected = 0;
1398 else
1399 bank->prot_blocks[i].is_protected = 1;
1400
1401 b++;
1402 }
1403
1404 return ERROR_OK;
1405 }
1406
1407
1408 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1409 {
1410 uint32_t fprot = 0xffffffff;
1411 uint8_t fsec = 0xfe; /* set MCU unsecure */
1412 uint8_t fdprot = 0xff;
1413 unsigned num_blocks;
1414 uint32_t pflash_bit;
1415 uint8_t dflash_bit;
1416 struct flash_bank *bank_iter;
1417 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1418 struct kinetis_chip *k_chip = k_bank->k_chip;
1419
1420 memset(fcf, 0xff, FCF_SIZE);
1421
1422 pflash_bit = 1;
1423 dflash_bit = 1;
1424
1425 /* iterate over all kinetis banks */
1426 /* current bank is bank 0, it contains FCF */
1427 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1428 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1429 k_bank = &(k_chip->banks[bank_idx]);
1430 bank_iter = k_bank->bank;
1431
1432 if (bank_iter == NULL) {
1433 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1434 continue;
1435 }
1436
1437 kinetis_auto_probe(bank_iter);
1438
1439 assert(bank_iter->prot_blocks);
1440
1441 if (k_bank->flash_class == FC_PFLASH) {
1442 for (int i = 0; i < bank_iter->num_prot_blocks; i++) {
1443 if (bank_iter->prot_blocks[i].is_protected == 1)
1444 fprot &= ~pflash_bit;
1445
1446 pflash_bit <<= 1;
1447 }
1448
1449 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1450 for (int i = 0; i < bank_iter->num_prot_blocks; i++) {
1451 if (bank_iter->prot_blocks[i].is_protected == 1)
1452 fdprot &= ~dflash_bit;
1453
1454 dflash_bit <<= 1;
1455 }
1456
1457 }
1458 }
1459
1460 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1461 fcf[FCF_FSEC] = fsec;
1462 fcf[FCF_FOPT] = fcf_fopt;
1463 fcf[FCF_FDPROT] = fdprot;
1464 return ERROR_OK;
1465 }
1466
1467 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1468 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1469 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1470 uint8_t *ftfx_fstat)
1471 {
1472 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1473 fccob7, fccob6, fccob5, fccob4,
1474 fccobb, fccoba, fccob9, fccob8};
1475 int result;
1476 uint8_t fstat;
1477 int64_t ms_timeout = timeval_ms() + 250;
1478
1479 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1480 if (result != ERROR_OK)
1481 return result;
1482
1483 /* start command */
1484 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1485 if (result != ERROR_OK)
1486 return result;
1487
1488 /* wait for done */
1489 do {
1490 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1491
1492 if (result != ERROR_OK)
1493 return result;
1494
1495 if (fstat & 0x80)
1496 break;
1497
1498 } while (timeval_ms() < ms_timeout);
1499
1500 if (ftfx_fstat)
1501 *ftfx_fstat = fstat;
1502
1503 if ((fstat & 0xf0) != 0x80) {
1504 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1505 fstat, command[3], command[2], command[1], command[0],
1506 command[7], command[6], command[5], command[4],
1507 command[11], command[10], command[9], command[8]);
1508
1509 return kinetis_ftfx_decode_error(fstat);
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515
1516 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1517 {
1518 int result;
1519 uint32_t stat32;
1520 struct target *target = k_chip->target;
1521
1522 switch (k_chip->sysmodectrlr_type) {
1523 case KINETIS_SMC:
1524 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1525 return result;
1526
1527 case KINETIS_SMC32:
1528 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1529 if (result == ERROR_OK)
1530 *pmstat = stat32 & 0xff;
1531 return result;
1532 }
1533 return ERROR_FAIL;
1534 }
1535
1536 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1537 {
1538 int result;
1539 uint8_t pmstat;
1540 struct target *target;
1541
1542 if (k_chip == NULL) {
1543 LOG_ERROR("Chip not probed.");
1544 return ERROR_FAIL;
1545 }
1546 target = k_chip->target;
1547
1548 if (target->state != TARGET_HALTED) {
1549 LOG_ERROR("Target not halted");
1550 return ERROR_TARGET_NOT_HALTED;
1551 }
1552
1553 result = kinetis_read_pmstat(k_chip, &pmstat);
1554 if (result != ERROR_OK)
1555 return result;
1556
1557 if (pmstat == PM_STAT_RUN)
1558 return ERROR_OK;
1559
1560 if (pmstat == PM_STAT_VLPR) {
1561 /* It is safe to switch from VLPR to RUN mode without changing clock */
1562 LOG_INFO("Switching from VLPR to RUN mode.");
1563
1564 switch (k_chip->sysmodectrlr_type) {
1565 case KINETIS_SMC:
1566 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1567 break;
1568
1569 case KINETIS_SMC32:
1570 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1571 break;
1572 }
1573 if (result != ERROR_OK)
1574 return result;
1575
1576 for (unsigned int i = 100; i > 0; i--) {
1577 result = kinetis_read_pmstat(k_chip, &pmstat);
1578 if (result != ERROR_OK)
1579 return result;
1580
1581 if (pmstat == PM_STAT_RUN)
1582 return ERROR_OK;
1583 }
1584 }
1585
1586 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1587 LOG_ERROR("Issue a 'reset init' command.");
1588 return ERROR_TARGET_NOT_HALTED;
1589 }
1590
1591
1592 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1593 {
1594 struct target *target = k_chip->target;
1595
1596 switch (k_chip->cache_type) {
1597 case KINETIS_CACHE_K:
1598 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1599 /* Set CINV_WAY bits - request invalidate of all cache ways */
1600 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1601 break;
1602
1603 case KINETIS_CACHE_L:
1604 target_write_u8(target, MCM_PLACR + 1, 0x04);
1605 /* set bit CFCC - Clear Flash Controller Cache */
1606 break;
1607
1608 case KINETIS_CACHE_MSCM:
1609 target_write_u32(target, MSCM_OCMDR0, 0x30);
1610 /* disable data prefetch and flash speculate */
1611 break;
1612
1613 default:
1614 break;
1615 }
1616 }
1617
1618
1619 static int kinetis_erase(struct flash_bank *bank, int first, int last)
1620 {
1621 int result;
1622 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1623 struct kinetis_chip *k_chip = k_bank->k_chip;
1624
1625 result = kinetis_check_run_mode(k_chip);
1626 if (result != ERROR_OK)
1627 return result;
1628
1629 /* reset error flags */
1630 result = kinetis_ftfx_prepare(bank->target);
1631 if (result != ERROR_OK)
1632 return result;
1633
1634 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1635 return ERROR_FLASH_OPERATION_FAILED;
1636
1637 /*
1638 * FIXME: TODO: use the 'Erase Flash Block' command if the
1639 * requested erase is PFlash or NVM and encompasses the entire
1640 * block. Should be quicker.
1641 */
1642 for (int i = first; i <= last; i++) {
1643 /* set command and sector address */
1644 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1645 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1646
1647 if (result != ERROR_OK) {
1648 LOG_WARNING("erase sector %d failed", i);
1649 return ERROR_FLASH_OPERATION_FAILED;
1650 }
1651
1652 bank->sectors[i].is_erased = 1;
1653
1654 if (k_bank->prog_base == 0
1655 && bank->sectors[i].offset <= FCF_ADDRESS
1656 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1657 if (allow_fcf_writes) {
1658 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1659 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1660 } else {
1661 uint8_t fcf_buffer[FCF_SIZE];
1662
1663 kinetis_fill_fcf(bank, fcf_buffer);
1664 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1665 if (result != ERROR_OK)
1666 LOG_WARNING("Flash Configuration Field write failed");
1667 bank->sectors[i].is_erased = 0;
1668 }
1669 }
1670 }
1671
1672 kinetis_invalidate_flash_cache(k_bank->k_chip);
1673
1674 return ERROR_OK;
1675 }
1676
1677 static int kinetis_make_ram_ready(struct target *target)
1678 {
1679 int result;
1680 uint8_t ftfx_fcnfg;
1681
1682 /* check if ram ready */
1683 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1684 if (result != ERROR_OK)
1685 return result;
1686
1687 if (ftfx_fcnfg & (1 << 1))
1688 return ERROR_OK; /* ram ready */
1689
1690 /* make flex ram available */
1691 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1692 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1693 if (result != ERROR_OK)
1694 return ERROR_FLASH_OPERATION_FAILED;
1695
1696 /* check again */
1697 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1698 if (result != ERROR_OK)
1699 return result;
1700
1701 if (ftfx_fcnfg & (1 << 1))
1702 return ERROR_OK; /* ram ready */
1703
1704 return ERROR_FLASH_OPERATION_FAILED;
1705 }
1706
1707
1708 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1709 uint32_t offset, uint32_t count)
1710 {
1711 int result = ERROR_OK;
1712 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1713 struct kinetis_chip *k_chip = k_bank->k_chip;
1714 uint8_t *buffer_aligned = NULL;
1715 /*
1716 * Kinetis uses different terms for the granularity of
1717 * sector writes, e.g. "phrase" or "128 bits". We use
1718 * the generic term "chunk". The largest possible
1719 * Kinetis "chunk" is 16 bytes (128 bits).
1720 */
1721 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1722 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1723
1724 while (count > 0) {
1725 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1726 uint32_t align_begin = offset % prog_section_chunk_bytes;
1727 uint32_t align_end;
1728 uint32_t size_aligned;
1729 uint16_t chunk_count;
1730 uint8_t ftfx_fstat;
1731
1732 if (size > count)
1733 size = count;
1734
1735 align_end = (align_begin + size) % prog_section_chunk_bytes;
1736 if (align_end)
1737 align_end = prog_section_chunk_bytes - align_end;
1738
1739 size_aligned = align_begin + size + align_end;
1740 chunk_count = size_aligned / prog_section_chunk_bytes;
1741
1742 if (size != size_aligned) {
1743 /* aligned section: the first, the last or the only */
1744 if (!buffer_aligned)
1745 buffer_aligned = malloc(prog_size_bytes);
1746
1747 memset(buffer_aligned, 0xff, size_aligned);
1748 memcpy(buffer_aligned + align_begin, buffer, size);
1749
1750 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1751 4, size_aligned / 4, buffer_aligned);
1752
1753 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1754 ", end %" PRIu32,
1755 bank->base + offset, align_begin, align_end);
1756 } else
1757 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1758 4, size_aligned / 4, buffer);
1759
1760 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1761 " bytes",
1762 bank->base + offset, size);
1763
1764 if (result != ERROR_OK) {
1765 LOG_ERROR("target_write_memory failed");
1766 break;
1767 }
1768
1769 /* execute section-write command */
1770 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1771 k_bank->prog_base + offset - align_begin,
1772 chunk_count>>8, chunk_count, 0, 0,
1773 0, 0, 0, 0, &ftfx_fstat);
1774
1775 if (result != ERROR_OK) {
1776 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1777 bank->base + offset);
1778 break;
1779 }
1780
1781 if (ftfx_fstat & 0x01) {
1782 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1783 bank->base + offset);
1784 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1785 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1786 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1787 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1788 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1789 LOG_ERROR("or set 'kinetis fcf_source write'");
1790 }
1791 }
1792
1793 buffer += size;
1794 offset += size;
1795 count -= size;
1796 }
1797
1798 free(buffer_aligned);
1799 return result;
1800 }
1801
1802
1803 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1804 uint32_t offset, uint32_t count)
1805 {
1806 int result;
1807 bool fallback = false;
1808 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1809 struct kinetis_chip *k_chip = k_bank->k_chip;
1810
1811 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1812 /* fallback to longword write */
1813 fallback = true;
1814 LOG_INFO("This device supports Program Longword execution only.");
1815 } else {
1816 result = kinetis_make_ram_ready(bank->target);
1817 if (result != ERROR_OK) {
1818 fallback = true;
1819 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1820 }
1821 }
1822
1823 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1824
1825 if (!fallback) {
1826 /* program section command */
1827 kinetis_write_sections(bank, buffer, offset, count);
1828 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1829 /* program longword command, not supported in FTFE */
1830 uint8_t *new_buffer = NULL;
1831
1832 /* check word alignment */
1833 if (offset & 0x3) {
1834 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1835 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1836 }
1837
1838 if (count & 0x3) {
1839 uint32_t old_count = count;
1840 count = (old_count | 3) + 1;
1841 new_buffer = malloc(count);
1842 if (new_buffer == NULL) {
1843 LOG_ERROR("odd number of bytes to write and no memory "
1844 "for padding buffer");
1845 return ERROR_FAIL;
1846 }
1847 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1848 "and padding with 0xff", old_count, count);
1849 memset(new_buffer + old_count, 0xff, count - old_count);
1850 buffer = memcpy(new_buffer, buffer, old_count);
1851 }
1852
1853 uint32_t words_remaining = count / 4;
1854
1855 kinetis_disable_wdog(k_chip);
1856
1857 /* try using a block write */
1858 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1859
1860 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1861 /* if block write failed (no sufficient working area),
1862 * we use normal (slow) single word accesses */
1863 LOG_WARNING("couldn't use block writes, falling back to single "
1864 "memory accesses");
1865
1866 while (words_remaining) {
1867 uint8_t ftfx_fstat;
1868
1869 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1870
1871 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1872 buffer[3], buffer[2], buffer[1], buffer[0],
1873 0, 0, 0, 0, &ftfx_fstat);
1874
1875 if (result != ERROR_OK) {
1876 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1877 bank->base + offset);
1878 break;
1879 }
1880
1881 if (ftfx_fstat & 0x01)
1882 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1883 bank->base + offset);
1884
1885 buffer += 4;
1886 offset += 4;
1887 words_remaining--;
1888 }
1889 }
1890 free(new_buffer);
1891 } else {
1892 LOG_ERROR("Flash write strategy not implemented");
1893 return ERROR_FLASH_OPERATION_FAILED;
1894 }
1895
1896 kinetis_invalidate_flash_cache(k_chip);
1897 return result;
1898 }
1899
1900
1901 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1902 uint32_t offset, uint32_t count)
1903 {
1904 int result;
1905 bool set_fcf = false;
1906 bool fcf_in_data_valid = false;
1907 int sect = 0;
1908 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1909 struct kinetis_chip *k_chip = k_bank->k_chip;
1910 uint8_t fcf_buffer[FCF_SIZE];
1911 uint8_t fcf_current[FCF_SIZE];
1912 uint8_t fcf_in_data[FCF_SIZE];
1913
1914 result = kinetis_check_run_mode(k_chip);
1915 if (result != ERROR_OK)
1916 return result;
1917
1918 /* reset error flags */
1919 result = kinetis_ftfx_prepare(bank->target);
1920 if (result != ERROR_OK)
1921 return result;
1922
1923 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1924 if (bank->sectors[1].offset <= FCF_ADDRESS)
1925 sect = 1; /* 1kb sector, FCF in 2nd sector */
1926
1927 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1928 && offset + count > bank->sectors[sect].offset)
1929 set_fcf = true; /* write to any part of sector with FCF */
1930 }
1931
1932 if (set_fcf) {
1933 kinetis_fill_fcf(bank, fcf_buffer);
1934
1935 fcf_in_data_valid = offset <= FCF_ADDRESS
1936 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1937 if (fcf_in_data_valid) {
1938 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1939 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) {
1940 fcf_in_data_valid = false;
1941 LOG_INFO("Flash protection requested in programmed file differs from current setting.");
1942 }
1943 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1944 fcf_in_data_valid = false;
1945 LOG_INFO("Data flash protection requested in programmed file differs from current setting.");
1946 }
1947 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1948 fcf_in_data_valid = false;
1949 LOG_INFO("Device security requested in programmed file!");
1950 } else if (k_chip->flash_support & FS_ECC
1951 && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1952 fcf_in_data_valid = false;
1953 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1954 "requested in programmed file!",
1955 fcf_in_data[FCF_FSEC]);
1956 }
1957 if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured)
1958 && fcf_in_data[FCF_FOPT] != fcf_fopt) {
1959 fcf_in_data_valid = false;
1960 LOG_INFO("FOPT requested in programmed file differs from current setting.");
1961 }
1962 if (!fcf_in_data_valid)
1963 LOG_INFO("Expect verify errors at FCF (0x408-0x40f).");
1964 }
1965 }
1966
1967 if (set_fcf && !fcf_in_data_valid) {
1968 if (offset < FCF_ADDRESS) {
1969 /* write part preceding FCF */
1970 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1971 if (result != ERROR_OK)
1972 return result;
1973 }
1974
1975 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1976 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1977 set_fcf = false;
1978
1979 if (set_fcf) {
1980 /* write FCF if differs from flash - eliminate multiple writes */
1981 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1982 if (result != ERROR_OK)
1983 return result;
1984 }
1985
1986 LOG_WARNING("Flash Configuration Field written.");
1987 LOG_WARNING("Reset or power off the device to make settings effective.");
1988
1989 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1990 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1991 /* write part after FCF */
1992 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1993 }
1994 return result;
1995
1996 } else {
1997 /* no FCF fiddling, normal write */
1998 return kinetis_write_inner(bank, buffer, offset, count);
1999 }
2000 }
2001
2002
2003 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2004 {
2005 int result;
2006 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2007 uint8_t fcfg2_pflsh;
2008 uint32_t ee_size = 0;
2009 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2010 uint32_t pflash_size_m;
2011 unsigned num_blocks = 0;
2012 unsigned maxaddr_shift = 13;
2013 struct target *target = k_chip->target;
2014
2015 unsigned familyid = 0, subfamid = 0;
2016 unsigned cpu_mhz = 120;
2017 bool use_nvm_marking = false;
2018 char flash_marking[12], nvm_marking[2];
2019 char name[40];
2020
2021 k_chip->probed = false;
2022 k_chip->pflash_sector_size = 0;
2023 k_chip->pflash_base = 0;
2024 k_chip->nvm_base = 0x10000000;
2025 k_chip->progr_accel_ram = FLEXRAM;
2026
2027 name[0] = '\0';
2028
2029 if (k_chip->sim_base)
2030 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2031 else {
2032 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2033 if (result == ERROR_OK)
2034 k_chip->sim_base = SIM_BASE;
2035 else {
2036 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2037 if (result == ERROR_OK)
2038 k_chip->sim_base = SIM_BASE_KL28;
2039 }
2040 }
2041 if (result != ERROR_OK)
2042 return result;
2043
2044 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2045 /* older K-series MCU */
2046 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2047 k_chip->cache_type = KINETIS_CACHE_K;
2048 k_chip->watchdog_type = KINETIS_WDOG_K;
2049
2050 switch (mcu_type) {
2051 case KINETIS_K_SDID_K10_M50:
2052 case KINETIS_K_SDID_K20_M50:
2053 /* 1kB sectors */
2054 k_chip->pflash_sector_size = 1<<10;
2055 k_chip->nvm_sector_size = 1<<10;
2056 num_blocks = 2;
2057 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2058 break;
2059 case KINETIS_K_SDID_K10_M72:
2060 case KINETIS_K_SDID_K20_M72:
2061 case KINETIS_K_SDID_K30_M72:
2062 case KINETIS_K_SDID_K30_M100:
2063 case KINETIS_K_SDID_K40_M72:
2064 case KINETIS_K_SDID_K40_M100:
2065 case KINETIS_K_SDID_K50_M72:
2066 /* 2kB sectors, 1kB FlexNVM sectors */
2067 k_chip->pflash_sector_size = 2<<10;
2068 k_chip->nvm_sector_size = 1<<10;
2069 num_blocks = 2;
2070 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2071 k_chip->max_flash_prog_size = 1<<10;
2072 break;
2073 case KINETIS_K_SDID_K10_M100:
2074 case KINETIS_K_SDID_K20_M100:
2075 case KINETIS_K_SDID_K11:
2076 case KINETIS_K_SDID_K12:
2077 case KINETIS_K_SDID_K21_M50:
2078 case KINETIS_K_SDID_K22_M50:
2079 case KINETIS_K_SDID_K51_M72:
2080 case KINETIS_K_SDID_K53:
2081 case KINETIS_K_SDID_K60_M100:
2082 /* 2kB sectors */
2083 k_chip->pflash_sector_size = 2<<10;
2084 k_chip->nvm_sector_size = 2<<10;
2085 num_blocks = 2;
2086 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2087 break;
2088 case KINETIS_K_SDID_K21_M120:
2089 case KINETIS_K_SDID_K22_M120:
2090 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2091 k_chip->pflash_sector_size = 4<<10;
2092 k_chip->max_flash_prog_size = 1<<10;
2093 k_chip->nvm_sector_size = 4<<10;
2094 num_blocks = 2;
2095 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2096 break;
2097 case KINETIS_K_SDID_K10_M120:
2098 case KINETIS_K_SDID_K20_M120:
2099 case KINETIS_K_SDID_K60_M150:
2100 case KINETIS_K_SDID_K70_M150:
2101 /* 4kB sectors */
2102 k_chip->pflash_sector_size = 4<<10;
2103 k_chip->nvm_sector_size = 4<<10;
2104 num_blocks = 4;
2105 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2106 break;
2107 default:
2108 LOG_ERROR("Unsupported K-family FAMID");
2109 }
2110
2111 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2112 if (kinetis_types_old[idx].sdid == mcu_type) {
2113 strcpy(name, kinetis_types_old[idx].name);
2114 use_nvm_marking = true;
2115 break;
2116 }
2117 }
2118
2119 } else {
2120 /* Newer K-series or KL series MCU */
2121 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2122 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2123
2124 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2125 case KINETIS_SDID_SERIESID_K:
2126 use_nvm_marking = true;
2127 k_chip->cache_type = KINETIS_CACHE_K;
2128 k_chip->watchdog_type = KINETIS_WDOG_K;
2129
2130 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2131 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2132 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2133 k_chip->pflash_sector_size = 2<<10;
2134 num_blocks = 1;
2135 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2136 cpu_mhz = 100;
2137 break;
2138
2139 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2140 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2141 uint32_t sopt1;
2142 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2143 if (result != ERROR_OK)
2144 return result;
2145
2146 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2147 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2148 /* MK24FN1M */
2149 k_chip->pflash_sector_size = 4<<10;
2150 num_blocks = 2;
2151 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2152 k_chip->max_flash_prog_size = 1<<10;
2153 subfamid = 4; /* errata 1N83J fix */
2154 break;
2155 }
2156 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2157 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2158 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2159 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2160 k_chip->pflash_sector_size = 2<<10;
2161 /* autodetect 1 or 2 blocks */
2162 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2163 break;
2164 }
2165 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2166 break;
2167 }
2168 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2169 k_chip->pflash_sector_size = 4<<10;
2170 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2171 /* K24FN256 - smaller pflash with FTFA */
2172 num_blocks = 1;
2173 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2174 break;
2175 }
2176 /* K24FN1M without errata 7534 */
2177 num_blocks = 2;
2178 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2179 k_chip->max_flash_prog_size = 1<<10;
2180 break;
2181
2182 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2183 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2184 subfamid += 2; /* errata 7534 fix */
2185 /* fallthrough */
2186 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2187 /* K63FN1M0 */
2188 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2189 /* K64FN1M0, K64FX512 */
2190 k_chip->pflash_sector_size = 4<<10;
2191 k_chip->nvm_sector_size = 4<<10;
2192 k_chip->max_flash_prog_size = 1<<10;
2193 num_blocks = 2;
2194 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2195 break;
2196
2197 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2198 /* K26FN2M0 */
2199 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2200 /* K66FN2M0, K66FX1M0 */
2201 k_chip->pflash_sector_size = 4<<10;
2202 k_chip->nvm_sector_size = 4<<10;
2203 k_chip->max_flash_prog_size = 1<<10;
2204 num_blocks = 4;
2205 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2206 cpu_mhz = 180;
2207 break;
2208
2209 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2210 /* K27FN2M0 */
2211 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2212 /* K28FN2M0 */
2213 k_chip->pflash_sector_size = 4<<10;
2214 k_chip->max_flash_prog_size = 1<<10;
2215 num_blocks = 4;
2216 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2217 cpu_mhz = 150;
2218 break;
2219
2220 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2221 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2222 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2223 /* K80FN256, K81FN256, K82FN256 */
2224 k_chip->pflash_sector_size = 4<<10;
2225 num_blocks = 1;
2226 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2227 cpu_mhz = 150;
2228 break;
2229
2230 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2231 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2232 /* KL81Z128, KL82Z128 */
2233 k_chip->pflash_sector_size = 2<<10;
2234 num_blocks = 1;
2235 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2236 k_chip->cache_type = KINETIS_CACHE_L;
2237
2238 use_nvm_marking = false;
2239 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2240 subfamid);
2241 break;
2242
2243 default:
2244 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2245 }
2246
2247 if (name[0] == '\0')
2248 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2249 familyid, subfamid, cpu_mhz / 10);
2250 break;
2251
2252 case KINETIS_SDID_SERIESID_KL:
2253 /* KL-series */
2254 k_chip->pflash_sector_size = 1<<10;
2255 k_chip->nvm_sector_size = 1<<10;
2256 /* autodetect 1 or 2 blocks */
2257 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2258 k_chip->cache_type = KINETIS_CACHE_L;
2259 k_chip->watchdog_type = KINETIS_WDOG_COP;
2260
2261 cpu_mhz = 48;
2262 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2263 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2264 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2265 subfamid = 7;
2266 break;
2267
2268 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2269 cpu_mhz = 72;
2270 k_chip->pflash_sector_size = 2<<10;
2271 num_blocks = 2;
2272 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2273 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2274 break;
2275 }
2276
2277 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2278 familyid, subfamid, cpu_mhz / 10);
2279 break;
2280
2281 case KINETIS_SDID_SERIESID_KW:
2282 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2283 cpu_mhz = 48;
2284 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2285 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2286 /* KW40Z */
2287 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2288 /* KW30Z */
2289 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2290 /* KW20Z */
2291 /* FTFA, 1kB sectors */
2292 k_chip->pflash_sector_size = 1<<10;
2293 k_chip->nvm_sector_size = 1<<10;
2294 /* autodetect 1 or 2 blocks */
2295 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2296 k_chip->cache_type = KINETIS_CACHE_L;
2297 k_chip->watchdog_type = KINETIS_WDOG_COP;
2298 break;
2299 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2300 /* KW41Z */
2301 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2302 /* KW31Z */
2303 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2304 /* KW21Z */
2305 /* FTFA, 2kB sectors */
2306 k_chip->pflash_sector_size = 2<<10;
2307 k_chip->nvm_sector_size = 2<<10;
2308 /* autodetect 1 or 2 blocks */
2309 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2310 k_chip->cache_type = KINETIS_CACHE_L;
2311 k_chip->watchdog_type = KINETIS_WDOG_COP;
2312 break;
2313 default:
2314 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2315 }
2316 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2317 familyid, subfamid, cpu_mhz / 10);
2318 break;
2319
2320 case KINETIS_SDID_SERIESID_KV:
2321 /* KV-series */
2322 k_chip->watchdog_type = KINETIS_WDOG_K;
2323 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2324 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2325 /* KV10: FTFA, 1kB sectors */
2326 k_chip->pflash_sector_size = 1<<10;
2327 num_blocks = 1;
2328 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2329 k_chip->cache_type = KINETIS_CACHE_L;
2330 strcpy(name, "MKV10Z%s7");
2331 break;
2332
2333 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2334 /* KV11: FTFA, 2kB sectors */
2335 k_chip->pflash_sector_size = 2<<10;
2336 num_blocks = 1;
2337 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2338 k_chip->cache_type = KINETIS_CACHE_L;
2339 strcpy(name, "MKV11Z%s7");
2340 break;
2341
2342 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2343 /* KV30: FTFA, 2kB sectors, 1 block */
2344 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2345 /* KV31: FTFA, 2kB sectors, 2 blocks */
2346 k_chip->pflash_sector_size = 2<<10;
2347 /* autodetect 1 or 2 blocks */
2348 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2349 k_chip->cache_type = KINETIS_CACHE_K;
2350 break;
2351
2352 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2353 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2354 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2355 /* KV4x: FTFA, 4kB sectors */
2356 k_chip->pflash_sector_size = 4<<10;
2357 num_blocks = 1;
2358 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2359 k_chip->cache_type = KINETIS_CACHE_K;
2360 cpu_mhz = 168;
2361 break;
2362
2363 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2364 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2365 /* KV5x: FTFE, 8kB sectors */
2366 k_chip->pflash_sector_size = 8<<10;
2367 k_chip->max_flash_prog_size = 1<<10;
2368 num_blocks = 1;
2369 maxaddr_shift = 14;
2370 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2371 k_chip->pflash_base = 0x10000000;
2372 k_chip->progr_accel_ram = 0x18000000;
2373 cpu_mhz = 240;
2374 break;
2375
2376 default:
2377 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2378 }
2379
2380 if (name[0] == '\0')
2381 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2382 familyid, subfamid, cpu_mhz / 10);
2383 break;
2384
2385 case KINETIS_SDID_SERIESID_KE:
2386 /* KE1x-series */
2387 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2388 switch (k_chip->sim_sdid &
2389 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2390 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2391 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2392 /* KE1xZ: FTFE, 2kB sectors */
2393 k_chip->pflash_sector_size = 2<<10;
2394 k_chip->nvm_sector_size = 2<<10;
2395 k_chip->max_flash_prog_size = 1<<9;
2396 num_blocks = 2;
2397 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2398 k_chip->cache_type = KINETIS_CACHE_L;
2399
2400 cpu_mhz = 72;
2401 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2402 familyid, subfamid, cpu_mhz / 10);
2403 break;
2404
2405 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2406 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2407 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2408 /* KE1xF: FTFE, 4kB sectors */
2409 k_chip->pflash_sector_size = 4<<10;
2410 k_chip->nvm_sector_size = 2<<10;
2411 k_chip->max_flash_prog_size = 1<<10;
2412 num_blocks = 2;
2413 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2414 k_chip->cache_type = KINETIS_CACHE_MSCM;
2415
2416 cpu_mhz = 168;
2417 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2418 familyid, subfamid, cpu_mhz / 10);
2419 break;
2420
2421 default:
2422 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2423 }
2424 break;
2425
2426 default:
2427 LOG_ERROR("Unsupported K-series");
2428 }
2429 }
2430
2431 if (k_chip->pflash_sector_size == 0) {
2432 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2433 return ERROR_FLASH_OPER_UNSUPPORTED;
2434 }
2435
2436 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2437 if (result != ERROR_OK)
2438 return result;
2439
2440 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2441 if (result != ERROR_OK)
2442 return result;
2443
2444 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2445 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2446
2447 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2448 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2449 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2450 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2451
2452 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2453 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2454 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2455
2456 if (num_blocks == 0)
2457 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2458 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2459 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2460 * Do not adjust block count in this case! */
2461 num_blocks = 1;
2462 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2463 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2464 num_blocks = 2;
2465 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2466 }
2467
2468 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2469 if (!fcfg2_pflsh) {
2470 switch (fcfg1_nvmsize) {
2471 case 0x03:
2472 case 0x05:
2473 case 0x07:
2474 case 0x09:
2475 case 0x0b:
2476 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2477 break;
2478 case 0x0f:
2479 if (k_chip->pflash_sector_size >= 4<<10)
2480 k_chip->nvm_size = 512<<10;
2481 else
2482 /* K20_100 */
2483 k_chip->nvm_size = 256<<10;
2484 break;
2485 default:
2486 k_chip->nvm_size = 0;
2487 break;
2488 }
2489
2490 switch (fcfg1_eesize) {
2491 case 0x00:
2492 case 0x01:
2493 case 0x02:
2494 case 0x03:
2495 case 0x04:
2496 case 0x05:
2497 case 0x06:
2498 case 0x07:
2499 case 0x08:
2500 case 0x09:
2501 ee_size = (16 << (10 - fcfg1_eesize));
2502 break;
2503 default:
2504 ee_size = 0;
2505 break;
2506 }
2507
2508 switch (fcfg1_depart) {
2509 case 0x01:
2510 case 0x02:
2511 case 0x03:
2512 case 0x04:
2513 case 0x05:
2514 case 0x06:
2515 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2516 break;
2517 case 0x07:
2518 case 0x08:
2519 k_chip->dflash_size = 0;
2520 break;
2521 case 0x09:
2522 case 0x0a:
2523 case 0x0b:
2524 case 0x0c:
2525 case 0x0d:
2526 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2527 break;
2528 default:
2529 k_chip->dflash_size = k_chip->nvm_size;
2530 break;
2531 }
2532 }
2533
2534 switch (fcfg1_pfsize) {
2535 case 0x00:
2536 k_chip->pflash_size = 8192;
2537 break;
2538 case 0x01:
2539 case 0x03:
2540 case 0x05:
2541 case 0x07:
2542 case 0x09:
2543 case 0x0b:
2544 case 0x0d:
2545 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2546 break;
2547 case 0x0f:
2548 /* a peculiar case: Freescale states different sizes for 0xf
2549 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2550 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2551 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2552 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2553 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2554 * K26P169M180SF5RM 2048 KB ... the only unique value
2555 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2556 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2557 */
2558 if (fcfg2_pflsh)
2559 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2560 else
2561 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2562 if (k_chip->pflash_size != 2048<<10)
2563 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2564
2565 break;
2566 default:
2567 k_chip->pflash_size = 0;
2568 break;
2569 }
2570
2571 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2572 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2573 /* Program section size is equal to sector size by default */
2574 }
2575
2576 if (fcfg2_pflsh) {
2577 k_chip->num_pflash_blocks = num_blocks;
2578 k_chip->num_nvm_blocks = 0;
2579 } else {
2580 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2581 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2582 }
2583
2584 if (use_nvm_marking) {
2585 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2586 nvm_marking[1] = '\0';
2587 } else
2588 nvm_marking[0] = '\0';
2589
2590 pflash_size_k = k_chip->pflash_size / 1024;
2591 pflash_size_m = pflash_size_k / 1024;
2592 if (pflash_size_m)
2593 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2594 else
2595 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2596
2597 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2598 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2599 LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2600 if (k_chip->num_nvm_blocks) {
2601 nvm_size_k = k_chip->nvm_size / 1024;
2602 dflash_size_k = k_chip->dflash_size / 1024;
2603 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2604 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2605 }
2606
2607 k_chip->probed = true;
2608
2609 if (create_banks)
2610 kinetis_create_missing_banks(k_chip);
2611
2612 return ERROR_OK;
2613 }
2614
2615 static int kinetis_probe(struct flash_bank *bank)
2616 {
2617 int result;
2618 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2619 unsigned num_blocks, first_nvm_bank;
2620 uint32_t size_k;
2621 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2622 struct kinetis_chip *k_chip;
2623
2624 assert(k_bank);
2625 k_chip = k_bank->k_chip;
2626
2627 k_bank->probed = false;
2628
2629 if (!k_chip->probed) {
2630 result = kinetis_probe_chip(k_chip);
2631 if (result != ERROR_OK)
2632 return result;
2633 }
2634
2635 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2636 first_nvm_bank = k_chip->num_pflash_blocks;
2637
2638 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2639 /* pflash, banks start at address zero */
2640 k_bank->flash_class = FC_PFLASH;
2641 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2642 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2643 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2644 k_bank->sector_size = k_chip->pflash_sector_size;
2645 /* pflash is divided into 32 protection areas for
2646 * parts with more than 32K of PFlash. For parts with
2647 * less the protection unit is set to 1024 bytes */
2648 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2649 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2650 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2651
2652 size_k = bank->size / 1024;
2653 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2654 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2655
2656 } else if (k_bank->bank_number < num_blocks) {
2657 /* nvm, banks start at address 0x10000000 */
2658 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2659 uint32_t limit;
2660
2661 k_bank->flash_class = FC_FLEX_NVM;
2662 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2663 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2664 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2665 k_bank->sector_size = k_chip->nvm_sector_size;
2666 if (k_chip->dflash_size == 0) {
2667 k_bank->protection_size = 0;
2668 } else {
2669 int i;
2670 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2671 ;
2672 if (i == 1)
2673 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2674 else
2675 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2676 }
2677 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2678 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2679
2680 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2681 if (k_chip->dflash_size > bank->size * nvm_ord)
2682 limit = k_chip->dflash_size - bank->size * nvm_ord;
2683 else
2684 limit = 0;
2685
2686 if (bank->size > limit) {
2687 bank->size = limit;
2688 LOG_DEBUG("FlexNVM bank %d limited to 0x%08" PRIx32 " due to active EEPROM backup",
2689 k_bank->bank_number, limit);
2690 }
2691
2692 size_k = bank->size / 1024;
2693 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2694 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2695
2696 } else {
2697 LOG_ERROR("Cannot determine parameters for bank %d, only %d banks on device",
2698 k_bank->bank_number, num_blocks);
2699 return ERROR_FLASH_BANK_INVALID;
2700 }
2701
2702 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2703 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2704 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2705
2706 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2707 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2708 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2709
2710 if (fcfg2_pflsh) {
2711 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2712 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2713 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2714 } else {
2715 if (k_bank->bank_number == first_nvm_bank
2716 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2717 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2718 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2719 }
2720
2721 if (bank->sectors) {
2722 free(bank->sectors);
2723 bank->sectors = NULL;
2724 }
2725 if (bank->prot_blocks) {
2726 free(bank->prot_blocks);
2727 bank->prot_blocks = NULL;
2728 }
2729
2730 if (k_bank->sector_size == 0) {
2731 LOG_ERROR("Unknown sector size for bank %d", bank->bank_number);
2732 return ERROR_FLASH_BANK_INVALID;
2733 }
2734
2735 bank->num_sectors = bank->size / k_bank->sector_size;
2736
2737 if (bank->num_sectors > 0) {
2738 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2739 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2740 if (!bank->sectors)
2741 return ERROR_FAIL;
2742
2743 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2744 if (!bank->prot_blocks)
2745 return ERROR_FAIL;
2746
2747 } else {
2748 bank->num_prot_blocks = 0;
2749 }
2750
2751 k_bank->probed = true;
2752
2753 return ERROR_OK;
2754 }
2755
2756 static int kinetis_auto_probe(struct flash_bank *bank)
2757 {
2758 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2759
2760 if (k_bank && k_bank->probed)
2761 return ERROR_OK;
2762
2763 return kinetis_probe(bank);
2764 }
2765
2766 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2767 {
2768 const char *bank_class_names[] = {
2769 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2770 };
2771
2772 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2773 struct kinetis_chip *k_chip = k_bank->k_chip;
2774 uint32_t size_k = bank->size / 1024;
2775
2776 snprintf(buf, buf_size,
2777 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2778 bank->driver->name, k_chip->name,
2779 size_k, bank_class_names[k_bank->flash_class],
2780 bank->name, bank->base);
2781
2782 return ERROR_OK;
2783 }
2784
2785 static int kinetis_blank_check(struct flash_bank *bank)
2786 {
2787 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2788 struct kinetis_chip *k_chip = k_bank->k_chip;
2789 int result;
2790
2791 /* suprisingly blank check does not work in VLPR and HSRUN modes */
2792 result = kinetis_check_run_mode(k_chip);
2793 if (result != ERROR_OK)
2794 return result;
2795
2796 /* reset error flags */
2797 result = kinetis_ftfx_prepare(bank->target);
2798 if (result != ERROR_OK)
2799 return result;
2800
2801 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2802 bool block_dirty = true;
2803 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2804 uint8_t ftfx_fstat;
2805
2806 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2807 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2808 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2809 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2810 use_block_cmd = false;
2811 }
2812
2813 if (use_block_cmd) {
2814 /* check if whole bank is blank */
2815 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2816 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2817
2818 if (result != ERROR_OK)
2819 kinetis_ftfx_clear_error(bank->target);
2820 else if ((ftfx_fstat & 0x01) == 0)
2821 block_dirty = false;
2822 }
2823
2824 if (block_dirty) {
2825 /* the whole bank is not erased, check sector-by-sector */
2826 for (int i = 0; i < bank->num_sectors; i++) {
2827 /* normal margin */
2828 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2829 k_bank->prog_base + bank->sectors[i].offset,
2830 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2831
2832 if (result == ERROR_OK) {
2833 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2834 } else {
2835 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2836 kinetis_ftfx_clear_error(bank->target);
2837 bank->sectors[i].is_erased = -1;
2838 }
2839 }
2840 } else {
2841 /* the whole bank is erased, update all sectors */
2842 for (int i = 0; i < bank->num_sectors; i++)
2843 bank->sectors[i].is_erased = 1;
2844 }
2845 } else {
2846 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2847 return ERROR_FLASH_OPERATION_FAILED;
2848 }
2849
2850 return ERROR_OK;
2851 }
2852
2853
2854 COMMAND_HANDLER(kinetis_nvm_partition)
2855 {
2856 int result;
2857 unsigned bank_idx;
2858 unsigned num_blocks, first_nvm_bank;
2859 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2860 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2861 bool enable;
2862 uint8_t load_flex_ram = 1;
2863 uint8_t ee_size_code = 0x3f;
2864 uint8_t flex_nvm_partition_code = 0;
2865 uint8_t ee_split = 3;
2866 struct target *target = get_current_target(CMD_CTX);
2867 struct kinetis_chip *k_chip;
2868 uint32_t sim_fcfg1;
2869
2870 k_chip = kinetis_get_chip(target);
2871
2872 if (CMD_ARGC >= 2) {
2873 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2874 sz_type = DF_SIZE;
2875 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2876 sz_type = EEBKP_SIZE;
2877
2878 par = strtoul(CMD_ARGV[1], NULL, 10);
2879 while (par >> (log2 + 3))
2880 log2++;
2881 }
2882 switch (sz_type) {
2883 case SHOW_INFO:
2884 if (k_chip == NULL) {
2885 LOG_ERROR("Chip not probed.");
2886 return ERROR_FAIL;
2887 }
2888 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2889 if (result != ERROR_OK)
2890 return result;
2891
2892 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2893 switch (flex_nvm_partition_code) {
2894 case 0:
2895 command_print(CMD, "No EEPROM backup, data flash only");
2896 break;
2897 case 1:
2898 case 2:
2899 case 3:
2900 case 4:
2901 case 5:
2902 case 6:
2903 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2904 break;
2905 case 8:
2906 command_print(CMD, "No data flash, EEPROM backup only");
2907 break;
2908 case 0x9:
2909 case 0xA:
2910 case 0xB:
2911 case 0xC:
2912 case 0xD:
2913 case 0xE:
2914 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2915 break;
2916 case 0xf:
2917 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2918 break;
2919 default:
2920 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2921 }
2922 return ERROR_OK;
2923
2924 case DF_SIZE:
2925 flex_nvm_partition_code = 0x8 | log2;
2926 break;
2927
2928 case EEBKP_SIZE:
2929 flex_nvm_partition_code = log2;
2930 break;
2931 }
2932
2933 if (CMD_ARGC == 3)
2934 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2935 else if (CMD_ARGC >= 4) {
2936 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2937 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2938 }
2939
2940 enable = ee1 + ee2 > 0;
2941 if (enable) {
2942 for (log2 = 2; ; log2++) {
2943 if (ee1 + ee2 == (16u << 10) >> log2)
2944 break;
2945 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2946 LOG_ERROR("Unsupported EEPROM size");
2947 return ERROR_FLASH_OPERATION_FAILED;
2948 }
2949 }
2950
2951 if (ee1 * 3 == ee2)
2952 ee_split = 1;
2953 else if (ee1 * 7 == ee2)
2954 ee_split = 0;
2955 else if (ee1 != ee2) {
2956 LOG_ERROR("Unsupported EEPROM sizes ratio");
2957 return ERROR_FLASH_OPERATION_FAILED;
2958 }
2959
2960 ee_size_code = log2 | ee_split << 4;
2961 }
2962
2963 if (CMD_ARGC >= 5)
2964 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2965 if (enable)
2966 load_flex_ram = 0;
2967
2968 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2969 flex_nvm_partition_code, ee_size_code);
2970
2971 result = kinetis_check_run_mode(k_chip);
2972 if (result != ERROR_OK)
2973 return result;
2974
2975 /* reset error flags */
2976 result = kinetis_ftfx_prepare(target);
2977 if (result != ERROR_OK)
2978 return result;
2979
2980 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2981 ee_size_code, flex_nvm_partition_code, 0, 0,
2982 0, 0, 0, 0, NULL);
2983 if (result != ERROR_OK)
2984 return result;
2985
2986 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
2987
2988 if (k_chip) {
2989 first_nvm_bank = k_chip->num_pflash_blocks;
2990 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2991 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
2992 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
2993 k_chip->probed = false;
2994 }
2995
2996 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
2997 return ERROR_OK;
2998 }
2999
3000 COMMAND_HANDLER(kinetis_fcf_source_handler)
3001 {
3002 if (CMD_ARGC > 1)
3003 return ERROR_COMMAND_SYNTAX_ERROR;
3004
3005 if (CMD_ARGC == 1) {
3006 if (strcmp(CMD_ARGV[0], "write") == 0)
3007 allow_fcf_writes = true;
3008 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3009 allow_fcf_writes = false;
3010 else
3011 return ERROR_COMMAND_SYNTAX_ERROR;
3012 }
3013
3014 if (allow_fcf_writes) {
3015 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3016 command_print(CMD, "Protection info writes to FCF disabled.");
3017 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3018 } else {
3019 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3020 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3021 }
3022
3023 return ERROR_OK;
3024 }
3025
3026 COMMAND_HANDLER(kinetis_fopt_handler)
3027 {
3028 if (CMD_ARGC > 1)
3029 return ERROR_COMMAND_SYNTAX_ERROR;
3030
3031 if (CMD_ARGC == 1) {
3032 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
3033 fcf_fopt_configured = true;
3034 } else {
3035 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3036 }
3037
3038 return ERROR_OK;
3039 }
3040
3041 COMMAND_HANDLER(kinetis_create_banks_handler)
3042 {
3043 if (CMD_ARGC > 0)
3044 return ERROR_COMMAND_SYNTAX_ERROR;
3045
3046 create_banks = true;
3047
3048 return ERROR_OK;
3049 }
3050
3051
3052 static const struct command_registration kinetis_security_command_handlers[] = {
3053 {
3054 .name = "check_security",
3055 .mode = COMMAND_EXEC,
3056 .help = "Check status of device security lock",
3057 .usage = "",
3058 .handler = kinetis_check_flash_security_status,
3059 },
3060 {
3061 .name = "halt",
3062 .mode = COMMAND_EXEC,
3063 .help = "Issue a halt via the MDM-AP",
3064 .usage = "",
3065 .handler = kinetis_mdm_halt,
3066 },
3067 {
3068 .name = "mass_erase",
3069 .mode = COMMAND_EXEC,
3070 .help = "Issue a complete flash erase via the MDM-AP",
3071 .usage = "",
3072 .handler = kinetis_mdm_mass_erase,
3073 },
3074 {
3075 .name = "reset",
3076 .mode = COMMAND_EXEC,
3077 .help = "Issue a reset via the MDM-AP",
3078 .usage = "",
3079 .handler = kinetis_mdm_reset,
3080 },
3081 COMMAND_REGISTRATION_DONE
3082 };
3083
3084 static const struct command_registration kinetis_exec_command_handlers[] = {
3085 {
3086 .name = "mdm",
3087 .mode = COMMAND_ANY,
3088 .help = "MDM-AP command group",
3089 .usage = "",
3090 .chain = kinetis_security_command_handlers,
3091 },
3092 {
3093 .name = "disable_wdog",
3094 .mode = COMMAND_EXEC,
3095 .help = "Disable the watchdog timer",
3096 .usage = "",
3097 .handler = kinetis_disable_wdog_handler,
3098 },
3099 {
3100 .name = "nvm_partition",
3101 .mode = COMMAND_EXEC,
3102 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3103 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3104 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3105 .handler = kinetis_nvm_partition,
3106 },
3107 {
3108 .name = "fcf_source",
3109 .mode = COMMAND_EXEC,
3110 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3111 " Mode 'protection' is safe from unwanted locking of the device.",
3112 .usage = "['protection'|'write']",
3113 .handler = kinetis_fcf_source_handler,
3114 },
3115 {
3116 .name = "fopt",
3117 .mode = COMMAND_EXEC,
3118 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3119 .usage = "[num]",
3120 .handler = kinetis_fopt_handler,
3121 },
3122 {
3123 .name = "create_banks",
3124 .mode = COMMAND_CONFIG,
3125 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3126 .handler = kinetis_create_banks_handler,
3127 .usage = "",
3128 },
3129 COMMAND_REGISTRATION_DONE
3130 };
3131
3132 static const struct command_registration kinetis_command_handler[] = {
3133 {
3134 .name = "kinetis",
3135 .mode = COMMAND_ANY,
3136 .help = "Kinetis flash controller commands",
3137 .usage = "",
3138 .chain = kinetis_exec_command_handlers,
3139 },
3140 COMMAND_REGISTRATION_DONE
3141 };
3142
3143
3144
3145 const struct flash_driver kinetis_flash = {
3146 .name = "kinetis",
3147 .commands = kinetis_command_handler,
3148 .flash_bank_command = kinetis_flash_bank_command,
3149 .erase = kinetis_erase,
3150 .protect = kinetis_protect,
3151 .write = kinetis_write,
3152 .read = default_flash_read,
3153 .probe = kinetis_probe,
3154 .auto_probe = kinetis_auto_probe,
3155 .erase_check = kinetis_blank_check,
3156 .protect_check = kinetis_protect_check,
3157 .info = kinetis_info,
3158 .free_driver_priv = kinetis_free_driver_priv,
3159 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)