flash/nor/kinetis: use target_get_working_area_avail()
[openocd.git] / src / flash / nor / kinetis.c
1 /***************************************************************************
2 * Copyright (C) 2011 by Mathias Kuester *
3 * kesmtp@freenet.de *
4 * *
5 * Copyright (C) 2011 sleep(5) ltd *
6 * tomas@sleepfive.com *
7 * *
8 * Copyright (C) 2012 by Christopher D. Kilgour *
9 * techie at whiterocker.com *
10 * *
11 * Copyright (C) 2013 Nemui Trinomius *
12 * nemuisan_kawausogasuki@live.jp *
13 * *
14 * Copyright (C) 2015 Tomas Vanek *
15 * vanekt@fbl.cz *
16 * *
17 * This program is free software; you can redistribute it and/or modify *
18 * it under the terms of the GNU General Public License as published by *
19 * the Free Software Foundation; either version 2 of the License, or *
20 * (at your option) any later version. *
21 * *
22 * This program is distributed in the hope that it will be useful, *
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
25 * GNU General Public License for more details. *
26 * *
27 * You should have received a copy of the GNU General Public License *
28 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
29 ***************************************************************************/
30
31 #ifdef HAVE_CONFIG_H
32 #include "config.h"
33 #endif
34
35 #include "jtag/interface.h"
36 #include "imp.h"
37 #include <helper/binarybuffer.h>
38 #include <helper/time_support.h>
39 #include <target/target_type.h>
40 #include <target/algorithm.h>
41 #include <target/armv7m.h>
42 #include <target/cortex_m.h>
43
44 /*
45 * Implementation Notes
46 *
47 * The persistent memories in the Kinetis chip families K10 through
48 * K70 are all manipulated with the Flash Memory Module. Some
49 * variants call this module the FTFE, others call it the FTFL. To
50 * indicate that both are considered here, we use FTFX.
51 *
52 * Within the module, according to the chip variant, the persistent
53 * memory is divided into what Freescale terms Program Flash, FlexNVM,
54 * and FlexRAM. All chip variants have Program Flash. Some chip
55 * variants also have FlexNVM and FlexRAM, which always appear
56 * together.
57 *
58 * A given Kinetis chip may have 1, 2 or 4 blocks of flash. Here we map
59 * each block to a separate bank. Each block size varies by chip and
60 * may be determined by the read-only SIM_FCFG1 register. The sector
61 * size within each bank/block varies by chip, and may be 1, 2 or 4k.
62 * The sector size may be different for flash and FlexNVM.
63 *
64 * The first half of the flash (1 or 2 blocks) is always Program Flash
65 * and always starts at address 0x00000000. The "PFLSH" flag, bit 23
66 * of the read-only SIM_FCFG2 register, determines whether the second
67 * half of the flash is also Program Flash or FlexNVM+FlexRAM. When
68 * PFLSH is set, the second from the first half. When PFLSH is clear,
69 * the second half of flash is FlexNVM and always starts at address
70 * 0x10000000. FlexRAM, which is also present when PFLSH is clear,
71 * always starts at address 0x14000000.
72 *
73 * The Flash Memory Module provides a register set where flash
74 * commands are loaded to perform flash operations like erase and
75 * program. Different commands are available depending on whether
76 * Program Flash or FlexNVM/FlexRAM is being manipulated. Although
77 * the commands used are quite consistent between flash blocks, the
78 * parameters they accept differ according to the flash sector size.
79 *
80 */
81
82 /* Addressess */
83 #define FCF_ADDRESS 0x00000400
84 #define FCF_FPROT 0x8
85 #define FCF_FSEC 0xc
86 #define FCF_FOPT 0xd
87 #define FCF_FDPROT 0xf
88 #define FCF_SIZE 0x10
89
90 #define FLEXRAM 0x14000000
91
92 #define MSCM_OCMDR0 0x40001400
93 #define FMC_PFB01CR 0x4001f004
94 #define FTFx_FSTAT 0x40020000
95 #define FTFx_FCNFG 0x40020001
96 #define FTFx_FCCOB3 0x40020004
97 #define FTFx_FPROT3 0x40020010
98 #define FTFx_FDPROT 0x40020017
99 #define SIM_BASE 0x40047000
100 #define SIM_BASE_KL28 0x40074000
101 #define SIM_COPC 0x40048100
102 /* SIM_COPC does not exist on devices with changed SIM_BASE */
103 #define WDOG_BASE 0x40052000
104 #define WDOG32_KE1X 0x40052000
105 #define WDOG32_KL28 0x40076000
106 #define SMC_PMCTRL 0x4007E001
107 #define SMC_PMSTAT 0x4007E003
108 #define SMC32_PMCTRL 0x4007E00C
109 #define SMC32_PMSTAT 0x4007E014
110 #define MCM_PLACR 0xF000300C
111
112 /* Offsets */
113 #define SIM_SOPT1_OFFSET 0x0000
114 #define SIM_SDID_OFFSET 0x1024
115 #define SIM_FCFG1_OFFSET 0x104c
116 #define SIM_FCFG2_OFFSET 0x1050
117
118 #define WDOG_STCTRLH_OFFSET 0
119 #define WDOG32_CS_OFFSET 0
120
121 /* Values */
122 #define PM_STAT_RUN 0x01
123 #define PM_STAT_VLPR 0x04
124 #define PM_CTRL_RUNM_RUN 0x00
125
126 /* Commands */
127 #define FTFx_CMD_BLOCKSTAT 0x00
128 #define FTFx_CMD_SECTSTAT 0x01
129 #define FTFx_CMD_LWORDPROG 0x06
130 #define FTFx_CMD_SECTERASE 0x09
131 #define FTFx_CMD_SECTWRITE 0x0b
132 #define FTFx_CMD_MASSERASE 0x44
133 #define FTFx_CMD_PGMPART 0x80
134 #define FTFx_CMD_SETFLEXRAM 0x81
135
136 /* The older Kinetis K series uses the following SDID layout :
137 * Bit 31-16 : 0
138 * Bit 15-12 : REVID
139 * Bit 11-7 : DIEID
140 * Bit 6-4 : FAMID
141 * Bit 3-0 : PINID
142 *
143 * The newer Kinetis series uses the following SDID layout :
144 * Bit 31-28 : FAMID
145 * Bit 27-24 : SUBFAMID
146 * Bit 23-20 : SERIESID
147 * Bit 19-16 : SRAMSIZE
148 * Bit 15-12 : REVID
149 * Bit 6-4 : Reserved (0)
150 * Bit 3-0 : PINID
151 *
152 * We assume that if bits 31-16 are 0 then it's an older
153 * K-series MCU.
154 */
155
156 #define KINETIS_SOPT1_RAMSIZE_MASK 0x0000F000
157 #define KINETIS_SOPT1_RAMSIZE_K24FN1M 0x0000B000
158
159 #define KINETIS_SDID_K_SERIES_MASK 0x0000FFFF
160
161 #define KINETIS_SDID_DIEID_MASK 0x00000F80
162
163 #define KINETIS_SDID_DIEID_K22FN128 0x00000680 /* smaller pflash with FTFA */
164 #define KINETIS_SDID_DIEID_K22FN256 0x00000A80
165 #define KINETIS_SDID_DIEID_K22FN512 0x00000E80
166 #define KINETIS_SDID_DIEID_K24FN256 0x00000700
167
168 #define KINETIS_SDID_DIEID_K24FN1M 0x00000300 /* Detect Errata 7534 */
169
170 /* We can't rely solely on the FAMID field to determine the MCU
171 * type since some FAMID values identify multiple MCUs with
172 * different flash sector sizes (K20 and K22 for instance).
173 * Therefore we combine it with the DIEID bits which may possibly
174 * break if Freescale bumps the DIEID for a particular MCU. */
175 #define KINETIS_K_SDID_TYPE_MASK 0x00000FF0
176 #define KINETIS_K_SDID_K10_M50 0x00000000
177 #define KINETIS_K_SDID_K10_M72 0x00000080
178 #define KINETIS_K_SDID_K10_M100 0x00000100
179 #define KINETIS_K_SDID_K10_M120 0x00000180
180 #define KINETIS_K_SDID_K11 0x00000220
181 #define KINETIS_K_SDID_K12 0x00000200
182 #define KINETIS_K_SDID_K20_M50 0x00000010
183 #define KINETIS_K_SDID_K20_M72 0x00000090
184 #define KINETIS_K_SDID_K20_M100 0x00000110
185 #define KINETIS_K_SDID_K20_M120 0x00000190
186 #define KINETIS_K_SDID_K21_M50 0x00000230
187 #define KINETIS_K_SDID_K21_M120 0x00000330
188 #define KINETIS_K_SDID_K22_M50 0x00000210
189 #define KINETIS_K_SDID_K22_M120 0x00000310
190 #define KINETIS_K_SDID_K30_M72 0x000000A0
191 #define KINETIS_K_SDID_K30_M100 0x00000120
192 #define KINETIS_K_SDID_K40_M72 0x000000B0
193 #define KINETIS_K_SDID_K40_M100 0x00000130
194 #define KINETIS_K_SDID_K50_M72 0x000000E0
195 #define KINETIS_K_SDID_K51_M72 0x000000F0
196 #define KINETIS_K_SDID_K53 0x00000170
197 #define KINETIS_K_SDID_K60_M100 0x00000140
198 #define KINETIS_K_SDID_K60_M150 0x000001C0
199 #define KINETIS_K_SDID_K70_M150 0x000001D0
200
201 #define KINETIS_SDID_SERIESID_MASK 0x00F00000
202 #define KINETIS_SDID_SERIESID_K 0x00000000
203 #define KINETIS_SDID_SERIESID_KL 0x00100000
204 #define KINETIS_SDID_SERIESID_KE 0x00200000
205 #define KINETIS_SDID_SERIESID_KW 0x00500000
206 #define KINETIS_SDID_SERIESID_KV 0x00600000
207
208 #define KINETIS_SDID_SUBFAMID_SHIFT 24
209 #define KINETIS_SDID_SUBFAMID_MASK 0x0F000000
210 #define KINETIS_SDID_SUBFAMID_KX0 0x00000000
211 #define KINETIS_SDID_SUBFAMID_KX1 0x01000000
212 #define KINETIS_SDID_SUBFAMID_KX2 0x02000000
213 #define KINETIS_SDID_SUBFAMID_KX3 0x03000000
214 #define KINETIS_SDID_SUBFAMID_KX4 0x04000000
215 #define KINETIS_SDID_SUBFAMID_KX5 0x05000000
216 #define KINETIS_SDID_SUBFAMID_KX6 0x06000000
217 #define KINETIS_SDID_SUBFAMID_KX7 0x07000000
218 #define KINETIS_SDID_SUBFAMID_KX8 0x08000000
219
220 #define KINETIS_SDID_FAMILYID_SHIFT 28
221 #define KINETIS_SDID_FAMILYID_MASK 0xF0000000
222 #define KINETIS_SDID_FAMILYID_K0X 0x00000000
223 #define KINETIS_SDID_FAMILYID_K1X 0x10000000
224 #define KINETIS_SDID_FAMILYID_K2X 0x20000000
225 #define KINETIS_SDID_FAMILYID_K3X 0x30000000
226 #define KINETIS_SDID_FAMILYID_K4X 0x40000000
227 #define KINETIS_SDID_FAMILYID_K5X 0x50000000
228 #define KINETIS_SDID_FAMILYID_K6X 0x60000000
229 #define KINETIS_SDID_FAMILYID_K7X 0x70000000
230 #define KINETIS_SDID_FAMILYID_K8X 0x80000000
231 #define KINETIS_SDID_FAMILYID_KL8X 0x90000000
232
233 /* The field originally named DIEID has new name/meaning on KE1x */
234 #define KINETIS_SDID_PROJECTID_MASK KINETIS_SDID_DIEID_MASK
235 #define KINETIS_SDID_PROJECTID_KE1xF 0x00000080
236 #define KINETIS_SDID_PROJECTID_KE1xZ 0x00000100
237
238 struct kinetis_flash_bank {
239 struct kinetis_chip *k_chip;
240 bool probed;
241 unsigned bank_number; /* bank number in particular chip */
242 struct flash_bank *bank;
243
244 uint32_t sector_size;
245 uint32_t protection_size;
246 uint32_t prog_base; /* base address for FTFx operations */
247 /* usually same as bank->base for pflash, differs for FlexNVM */
248 uint32_t protection_block; /* number of first protection block in this bank */
249
250 enum {
251 FC_AUTO = 0,
252 FC_PFLASH,
253 FC_FLEX_NVM,
254 FC_FLEX_RAM,
255 } flash_class;
256 };
257
258 #define KINETIS_MAX_BANKS 4u
259
260 struct kinetis_chip {
261 struct target *target;
262 bool probed;
263
264 uint32_t sim_sdid;
265 uint32_t sim_fcfg1;
266 uint32_t sim_fcfg2;
267 uint32_t fcfg2_maxaddr0_shifted;
268 uint32_t fcfg2_maxaddr1_shifted;
269
270 unsigned num_pflash_blocks, num_nvm_blocks;
271 unsigned pflash_sector_size, nvm_sector_size;
272 unsigned max_flash_prog_size;
273
274 uint32_t pflash_base;
275 uint32_t pflash_size;
276 uint32_t nvm_base;
277 uint32_t nvm_size; /* whole FlexNVM */
278 uint32_t dflash_size; /* accessible rest of FlexNVM if EEPROM backup uses part of FlexNVM */
279
280 uint32_t progr_accel_ram;
281 uint32_t sim_base;
282
283 enum {
284 FS_PROGRAM_SECTOR = 1,
285 FS_PROGRAM_LONGWORD = 2,
286 FS_PROGRAM_PHRASE = 4, /* Unsupported */
287
288 FS_NO_CMD_BLOCKSTAT = 0x40,
289 FS_WIDTH_256BIT = 0x80,
290 FS_ECC = 0x100,
291 } flash_support;
292
293 enum {
294 KINETIS_CACHE_NONE,
295 KINETIS_CACHE_K, /* invalidate using FMC->PFB0CR/PFB01CR */
296 KINETIS_CACHE_L, /* invalidate using MCM->PLACR */
297 KINETIS_CACHE_MSCM, /* devices like KE1xF, invalidate MSCM->OCMDR0 */
298 } cache_type;
299
300 enum {
301 KINETIS_WDOG_NONE,
302 KINETIS_WDOG_K,
303 KINETIS_WDOG_COP,
304 KINETIS_WDOG32_KE1X,
305 KINETIS_WDOG32_KL28,
306 } watchdog_type;
307
308 enum {
309 KINETIS_SMC,
310 KINETIS_SMC32,
311 } sysmodectrlr_type;
312
313 char name[40];
314
315 unsigned num_banks;
316 struct kinetis_flash_bank banks[KINETIS_MAX_BANKS];
317 };
318
319 struct kinetis_type {
320 uint32_t sdid;
321 char *name;
322 };
323
324 static const struct kinetis_type kinetis_types_old[] = {
325 { KINETIS_K_SDID_K10_M50, "MK10D%s5" },
326 { KINETIS_K_SDID_K10_M72, "MK10D%s7" },
327 { KINETIS_K_SDID_K10_M100, "MK10D%s10" },
328 { KINETIS_K_SDID_K10_M120, "MK10F%s12" },
329 { KINETIS_K_SDID_K11, "MK11D%s5" },
330 { KINETIS_K_SDID_K12, "MK12D%s5" },
331
332 { KINETIS_K_SDID_K20_M50, "MK20D%s5" },
333 { KINETIS_K_SDID_K20_M72, "MK20D%s7" },
334 { KINETIS_K_SDID_K20_M100, "MK20D%s10" },
335 { KINETIS_K_SDID_K20_M120, "MK20F%s12" },
336 { KINETIS_K_SDID_K21_M50, "MK21D%s5" },
337 { KINETIS_K_SDID_K21_M120, "MK21F%s12" },
338 { KINETIS_K_SDID_K22_M50, "MK22D%s5" },
339 { KINETIS_K_SDID_K22_M120, "MK22F%s12" },
340
341 { KINETIS_K_SDID_K30_M72, "MK30D%s7" },
342 { KINETIS_K_SDID_K30_M100, "MK30D%s10" },
343
344 { KINETIS_K_SDID_K40_M72, "MK40D%s7" },
345 { KINETIS_K_SDID_K40_M100, "MK40D%s10" },
346
347 { KINETIS_K_SDID_K50_M72, "MK50D%s7" },
348 { KINETIS_K_SDID_K51_M72, "MK51D%s7" },
349 { KINETIS_K_SDID_K53, "MK53D%s10" },
350
351 { KINETIS_K_SDID_K60_M100, "MK60D%s10" },
352 { KINETIS_K_SDID_K60_M150, "MK60F%s15" },
353
354 { KINETIS_K_SDID_K70_M150, "MK70F%s15" },
355 };
356
357
358 #define MDM_AP 1
359
360 #define MDM_REG_STAT 0x00
361 #define MDM_REG_CTRL 0x04
362 #define MDM_REG_ID 0xfc
363
364 #define MDM_STAT_FMEACK (1<<0)
365 #define MDM_STAT_FREADY (1<<1)
366 #define MDM_STAT_SYSSEC (1<<2)
367 #define MDM_STAT_SYSRES (1<<3)
368 #define MDM_STAT_FMEEN (1<<5)
369 #define MDM_STAT_BACKDOOREN (1<<6)
370 #define MDM_STAT_LPEN (1<<7)
371 #define MDM_STAT_VLPEN (1<<8)
372 #define MDM_STAT_LLSMODEXIT (1<<9)
373 #define MDM_STAT_VLLSXMODEXIT (1<<10)
374 #define MDM_STAT_CORE_HALTED (1<<16)
375 #define MDM_STAT_CORE_SLEEPDEEP (1<<17)
376 #define MDM_STAT_CORESLEEPING (1<<18)
377
378 #define MDM_CTRL_FMEIP (1<<0)
379 #define MDM_CTRL_DBG_DIS (1<<1)
380 #define MDM_CTRL_DBG_REQ (1<<2)
381 #define MDM_CTRL_SYS_RES_REQ (1<<3)
382 #define MDM_CTRL_CORE_HOLD_RES (1<<4)
383 #define MDM_CTRL_VLLSX_DBG_REQ (1<<5)
384 #define MDM_CTRL_VLLSX_DBG_ACK (1<<6)
385 #define MDM_CTRL_VLLSX_STAT_ACK (1<<7)
386
387 #define MDM_ACCESS_TIMEOUT 500 /* msec */
388
389
390 static bool allow_fcf_writes;
391 static uint8_t fcf_fopt = 0xff;
392 static bool fcf_fopt_configured;
393 static bool create_banks;
394
395
396 const struct flash_driver kinetis_flash;
397 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
398 uint32_t offset, uint32_t count);
399 static int kinetis_probe_chip(struct kinetis_chip *k_chip);
400 static int kinetis_auto_probe(struct flash_bank *bank);
401
402
403 static int kinetis_mdm_write_register(struct adiv5_dap *dap, unsigned reg, uint32_t value)
404 {
405 int retval;
406 LOG_DEBUG("MDM_REG[0x%02x] <- %08" PRIX32, reg, value);
407
408 retval = dap_queue_ap_write(dap_ap(dap, MDM_AP), reg, value);
409 if (retval != ERROR_OK) {
410 LOG_DEBUG("MDM: failed to queue a write request");
411 return retval;
412 }
413
414 retval = dap_run(dap);
415 if (retval != ERROR_OK) {
416 LOG_DEBUG("MDM: dap_run failed");
417 return retval;
418 }
419
420
421 return ERROR_OK;
422 }
423
424 static int kinetis_mdm_read_register(struct adiv5_dap *dap, unsigned reg, uint32_t *result)
425 {
426 int retval;
427
428 retval = dap_queue_ap_read(dap_ap(dap, MDM_AP), reg, result);
429 if (retval != ERROR_OK) {
430 LOG_DEBUG("MDM: failed to queue a read request");
431 return retval;
432 }
433
434 retval = dap_run(dap);
435 if (retval != ERROR_OK) {
436 LOG_DEBUG("MDM: dap_run failed");
437 return retval;
438 }
439
440 LOG_DEBUG("MDM_REG[0x%02x]: %08" PRIX32, reg, *result);
441 return ERROR_OK;
442 }
443
444 static int kinetis_mdm_poll_register(struct adiv5_dap *dap, unsigned reg,
445 uint32_t mask, uint32_t value, uint32_t timeout_ms)
446 {
447 uint32_t val;
448 int retval;
449 int64_t ms_timeout = timeval_ms() + timeout_ms;
450
451 do {
452 retval = kinetis_mdm_read_register(dap, reg, &val);
453 if (retval != ERROR_OK || (val & mask) == value)
454 return retval;
455
456 alive_sleep(1);
457 } while (timeval_ms() < ms_timeout);
458
459 LOG_DEBUG("MDM: polling timed out");
460 return ERROR_FAIL;
461 }
462
463 /*
464 * This command can be used to break a watchdog reset loop when
465 * connecting to an unsecured target. Unlike other commands, halt will
466 * automatically retry as it does not know how far into the boot process
467 * it is when the command is called.
468 */
469 COMMAND_HANDLER(kinetis_mdm_halt)
470 {
471 struct target *target = get_current_target(CMD_CTX);
472 struct cortex_m_common *cortex_m = target_to_cm(target);
473 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
474 int retval;
475 int tries = 0;
476 uint32_t stat;
477 int64_t ms_timeout = timeval_ms() + MDM_ACCESS_TIMEOUT;
478
479 if (!dap) {
480 LOG_ERROR("Cannot perform halt with a high-level adapter");
481 return ERROR_FAIL;
482 }
483
484 while (true) {
485 tries++;
486
487 kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_CORE_HOLD_RES);
488
489 alive_sleep(1);
490
491 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
492 if (retval != ERROR_OK) {
493 LOG_DEBUG("MDM: failed to read MDM_REG_STAT");
494 continue;
495 }
496
497 /* Repeat setting MDM_CTRL_CORE_HOLD_RES until system is out of
498 * reset with flash ready and without security
499 */
500 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSSEC | MDM_STAT_SYSRES))
501 == (MDM_STAT_FREADY | MDM_STAT_SYSRES))
502 break;
503
504 if (timeval_ms() >= ms_timeout) {
505 LOG_ERROR("MDM: halt timed out");
506 return ERROR_FAIL;
507 }
508 }
509
510 LOG_DEBUG("MDM: halt succeded after %d attempts.", tries);
511
512 target_poll(target);
513 /* enable polling in case kinetis_check_flash_security_status disabled it */
514 jtag_poll_set_enabled(true);
515
516 alive_sleep(100);
517
518 target->reset_halt = true;
519 target->type->assert_reset(target);
520
521 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
522 if (retval != ERROR_OK) {
523 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
524 return retval;
525 }
526
527 target->type->deassert_reset(target);
528
529 return ERROR_OK;
530 }
531
532 COMMAND_HANDLER(kinetis_mdm_reset)
533 {
534 struct target *target = get_current_target(CMD_CTX);
535 struct cortex_m_common *cortex_m = target_to_cm(target);
536 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
537 int retval;
538
539 if (!dap) {
540 LOG_ERROR("Cannot perform reset with a high-level adapter");
541 return ERROR_FAIL;
542 }
543
544 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
545 if (retval != ERROR_OK) {
546 LOG_ERROR("MDM: failed to write MDM_REG_CTRL");
547 return retval;
548 }
549
550 retval = kinetis_mdm_poll_register(dap, MDM_REG_STAT, MDM_STAT_SYSRES, 0, 500);
551 if (retval != ERROR_OK) {
552 LOG_ERROR("MDM: failed to assert reset");
553 return retval;
554 }
555
556 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
557 if (retval != ERROR_OK) {
558 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
559 return retval;
560 }
561
562 return ERROR_OK;
563 }
564
565 /*
566 * This function implements the procedure to mass erase the flash via
567 * SWD/JTAG on Kinetis K and L series of devices as it is described in
568 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
569 * and L-series MCUs" Section 4.2.1. To prevent a watchdog reset loop,
570 * the core remains halted after this function completes as suggested
571 * by the application note.
572 */
573 COMMAND_HANDLER(kinetis_mdm_mass_erase)
574 {
575 struct target *target = get_current_target(CMD_CTX);
576 struct cortex_m_common *cortex_m = target_to_cm(target);
577 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
578
579 if (!dap) {
580 LOG_ERROR("Cannot perform mass erase with a high-level adapter");
581 return ERROR_FAIL;
582 }
583
584 int retval;
585
586 /*
587 * ... Power on the processor, or if power has already been
588 * applied, assert the RESET pin to reset the processor. For
589 * devices that do not have a RESET pin, write the System
590 * Reset Request bit in the MDM-AP control register after
591 * establishing communication...
592 */
593
594 /* assert SRST if configured */
595 bool has_srst = jtag_get_reset_config() & RESET_HAS_SRST;
596 if (has_srst)
597 adapter_assert_reset();
598
599 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ);
600 if (retval != ERROR_OK && !has_srst) {
601 LOG_ERROR("MDM: failed to assert reset");
602 goto deassert_reset_and_exit;
603 }
604
605 /*
606 * ... Read the MDM-AP status register repeatedly and wait for
607 * stable conditions suitable for mass erase:
608 * - mass erase is enabled
609 * - flash is ready
610 * - reset is finished
611 *
612 * Mass erase is started as soon as all conditions are met in 32
613 * subsequent status reads.
614 *
615 * In case of not stable conditions (RESET/WDOG loop in secured device)
616 * the user is asked for manual pressing of RESET button
617 * as a last resort.
618 */
619 int cnt_mass_erase_disabled = 0;
620 int cnt_ready = 0;
621 int64_t ms_start = timeval_ms();
622 bool man_reset_requested = false;
623
624 do {
625 uint32_t stat = 0;
626 int64_t ms_elapsed = timeval_ms() - ms_start;
627
628 if (!man_reset_requested && ms_elapsed > 100) {
629 LOG_INFO("MDM: Press RESET button now if possible.");
630 man_reset_requested = true;
631 }
632
633 if (ms_elapsed > 3000) {
634 LOG_ERROR("MDM: waiting for mass erase conditions timed out.");
635 LOG_INFO("Mass erase of a secured MCU is not possible without hardware reset.");
636 LOG_INFO("Connect SRST, use 'reset_config srst_only' and retry.");
637 goto deassert_reset_and_exit;
638 }
639 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &stat);
640 if (retval != ERROR_OK) {
641 cnt_ready = 0;
642 continue;
643 }
644
645 if (!(stat & MDM_STAT_FMEEN)) {
646 cnt_ready = 0;
647 cnt_mass_erase_disabled++;
648 if (cnt_mass_erase_disabled > 10) {
649 LOG_ERROR("MDM: mass erase is disabled");
650 goto deassert_reset_and_exit;
651 }
652 continue;
653 }
654
655 if ((stat & (MDM_STAT_FREADY | MDM_STAT_SYSRES)) == MDM_STAT_FREADY)
656 cnt_ready++;
657 else
658 cnt_ready = 0;
659
660 } while (cnt_ready < 32);
661
662 /*
663 * ... Write the MDM-AP control register to set the Flash Mass
664 * Erase in Progress bit. This will start the mass erase
665 * process...
666 */
667 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, MDM_CTRL_SYS_RES_REQ | MDM_CTRL_FMEIP);
668 if (retval != ERROR_OK) {
669 LOG_ERROR("MDM: failed to start mass erase");
670 goto deassert_reset_and_exit;
671 }
672
673 /*
674 * ... Read the MDM-AP control register until the Flash Mass
675 * Erase in Progress bit clears...
676 * Data sheed defines erase time <3.6 sec/512kB flash block.
677 * The biggest device has 4 pflash blocks => timeout 16 sec.
678 */
679 retval = kinetis_mdm_poll_register(dap, MDM_REG_CTRL, MDM_CTRL_FMEIP, 0, 16000);
680 if (retval != ERROR_OK) {
681 LOG_ERROR("MDM: mass erase timeout");
682 goto deassert_reset_and_exit;
683 }
684
685 target_poll(target);
686 /* enable polling in case kinetis_check_flash_security_status disabled it */
687 jtag_poll_set_enabled(true);
688
689 alive_sleep(100);
690
691 target->reset_halt = true;
692 target->type->assert_reset(target);
693
694 /*
695 * ... Negate the RESET signal or clear the System Reset Request
696 * bit in the MDM-AP control register.
697 */
698 retval = kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
699 if (retval != ERROR_OK)
700 LOG_ERROR("MDM: failed to clear MDM_REG_CTRL");
701
702 target->type->deassert_reset(target);
703
704 return retval;
705
706 deassert_reset_and_exit:
707 kinetis_mdm_write_register(dap, MDM_REG_CTRL, 0);
708 if (has_srst)
709 adapter_deassert_reset();
710 return retval;
711 }
712
713 static const uint32_t kinetis_known_mdm_ids[] = {
714 0x001C0000, /* Kinetis-K Series */
715 0x001C0020, /* Kinetis-L/M/V/E Series */
716 0x001C0030, /* Kinetis with a Cortex-M7, in time of writing KV58 */
717 };
718
719 /*
720 * This function implements the procedure to connect to
721 * SWD/JTAG on Kinetis K and L series of devices as it is described in
722 * AN4835 "Production Flash Programming Best Practices for Kinetis K-
723 * and L-series MCUs" Section 4.1.1
724 */
725 COMMAND_HANDLER(kinetis_check_flash_security_status)
726 {
727 struct target *target = get_current_target(CMD_CTX);
728 struct cortex_m_common *cortex_m = target_to_cm(target);
729 struct adiv5_dap *dap = cortex_m->armv7m.arm.dap;
730
731 if (!dap) {
732 LOG_WARNING("Cannot check flash security status with a high-level adapter");
733 return ERROR_OK;
734 }
735
736 if (!dap->ops)
737 return ERROR_OK; /* too early to check, in JTAG mode ops may not be initialised */
738
739 uint32_t val;
740 int retval;
741
742 /*
743 * ... The MDM-AP ID register can be read to verify that the
744 * connection is working correctly...
745 */
746 retval = kinetis_mdm_read_register(dap, MDM_REG_ID, &val);
747 if (retval != ERROR_OK) {
748 LOG_ERROR("MDM: failed to read ID register");
749 return ERROR_OK;
750 }
751
752 if (val == 0)
753 return ERROR_OK; /* dap not yet initialised */
754
755 bool found = false;
756 for (size_t i = 0; i < ARRAY_SIZE(kinetis_known_mdm_ids); i++) {
757 if (val == kinetis_known_mdm_ids[i]) {
758 found = true;
759 break;
760 }
761 }
762
763 if (!found)
764 LOG_WARNING("MDM: unknown ID %08" PRIX32, val);
765
766 /*
767 * ... Read the System Security bit to determine if security is enabled.
768 * If System Security = 0, then proceed. If System Security = 1, then
769 * communication with the internals of the processor, including the
770 * flash, will not be possible without issuing a mass erase command or
771 * unsecuring the part through other means (backdoor key unlock)...
772 */
773 retval = kinetis_mdm_read_register(dap, MDM_REG_STAT, &val);
774 if (retval != ERROR_OK) {
775 LOG_ERROR("MDM: failed to read MDM_REG_STAT");
776 return ERROR_OK;
777 }
778
779 /*
780 * System Security bit is also active for short time during reset.
781 * If a MCU has blank flash and runs in RESET/WDOG loop,
782 * System Security bit is active most of time!
783 * We should observe Flash Ready bit and read status several times
784 * to avoid false detection of secured MCU
785 */
786 int secured_score = 0, flash_not_ready_score = 0;
787
788 if ((val & (MDM_STAT_SYSSEC | MDM_STAT_FREADY)) != MDM_STAT_FREADY) {
789 uint32_t stats[32];
790
791 for (unsigned int i = 0; i < 32; i++) {
792 stats[i] = MDM_STAT_FREADY;
793 dap_queue_ap_read(dap_ap(dap, MDM_AP), MDM_REG_STAT, &stats[i]);
794 }
795 retval = dap_run(dap);
796 if (retval != ERROR_OK) {
797 LOG_DEBUG("MDM: dap_run failed when validating secured state");
798 return ERROR_OK;
799 }
800 for (unsigned int i = 0; i < 32; i++) {
801 if (stats[i] & MDM_STAT_SYSSEC)
802 secured_score++;
803 if (!(stats[i] & MDM_STAT_FREADY))
804 flash_not_ready_score++;
805 }
806 }
807
808 if (flash_not_ready_score <= 8 && secured_score > 24) {
809 jtag_poll_set_enabled(false);
810
811 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
812 LOG_WARNING("**** ****");
813 LOG_WARNING("**** Your Kinetis MCU is in secured state, which means that, ****");
814 LOG_WARNING("**** with exception for very basic communication, JTAG/SWD ****");
815 LOG_WARNING("**** interface will NOT work. In order to restore its ****");
816 LOG_WARNING("**** functionality please issue 'kinetis mdm mass_erase' ****");
817 LOG_WARNING("**** command, power cycle the MCU and restart OpenOCD. ****");
818 LOG_WARNING("**** ****");
819 LOG_WARNING("*********** ATTENTION! ATTENTION! ATTENTION! ATTENTION! **********");
820
821 } else if (flash_not_ready_score > 24) {
822 jtag_poll_set_enabled(false);
823 LOG_WARNING("**** Your Kinetis MCU is probably locked-up in RESET/WDOG loop. ****");
824 LOG_WARNING("**** Common reason is a blank flash (at least a reset vector). ****");
825 LOG_WARNING("**** Issue 'kinetis mdm halt' command or if SRST is connected ****");
826 LOG_WARNING("**** and configured, use 'reset halt' ****");
827 LOG_WARNING("**** If MCU cannot be halted, it is likely secured and running ****");
828 LOG_WARNING("**** in RESET/WDOG loop. Issue 'kinetis mdm mass_erase' ****");
829
830 } else {
831 LOG_INFO("MDM: Chip is unsecured. Continuing.");
832 jtag_poll_set_enabled(true);
833 }
834
835 return ERROR_OK;
836 }
837
838
839 static struct kinetis_chip *kinetis_get_chip(struct target *target)
840 {
841 struct flash_bank *bank_iter;
842 struct kinetis_flash_bank *k_bank;
843
844 /* iterate over all kinetis banks */
845 for (bank_iter = flash_bank_list(); bank_iter; bank_iter = bank_iter->next) {
846 if (bank_iter->driver != &kinetis_flash
847 || bank_iter->target != target)
848 continue;
849
850 k_bank = bank_iter->driver_priv;
851 if (!k_bank)
852 continue;
853
854 if (k_bank->k_chip)
855 return k_bank->k_chip;
856 }
857 return NULL;
858 }
859
860 static int kinetis_chip_options(struct kinetis_chip *k_chip, int argc, const char *argv[])
861 {
862 for (int i = 0; i < argc; i++) {
863 if (strcmp(argv[i], "-sim-base") == 0) {
864 if (i + 1 < argc)
865 k_chip->sim_base = strtoul(argv[++i], NULL, 0);
866 } else
867 LOG_ERROR("Unsupported flash bank option %s", argv[i]);
868 }
869 return ERROR_OK;
870 }
871
872 FLASH_BANK_COMMAND_HANDLER(kinetis_flash_bank_command)
873 {
874 struct target *target = bank->target;
875 struct kinetis_chip *k_chip;
876 struct kinetis_flash_bank *k_bank;
877 int retval;
878
879 if (CMD_ARGC < 6)
880 return ERROR_COMMAND_SYNTAX_ERROR;
881
882 LOG_INFO("add flash_bank kinetis %s", bank->name);
883
884 k_chip = kinetis_get_chip(target);
885
886 if (k_chip == NULL) {
887 k_chip = calloc(sizeof(struct kinetis_chip), 1);
888 if (k_chip == NULL) {
889 LOG_ERROR("No memory");
890 return ERROR_FAIL;
891 }
892
893 k_chip->target = target;
894
895 /* only the first defined bank can define chip options */
896 retval = kinetis_chip_options(k_chip, CMD_ARGC - 6, CMD_ARGV + 6);
897 if (retval != ERROR_OK)
898 return retval;
899 }
900
901 if (k_chip->num_banks >= KINETIS_MAX_BANKS) {
902 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
903 return ERROR_FAIL;
904 }
905
906 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
907 k_bank->k_chip = k_chip;
908 k_bank->bank_number = k_chip->num_banks;
909 k_bank->bank = bank;
910 k_chip->num_banks++;
911
912 return ERROR_OK;
913 }
914
915
916 static void kinetis_free_driver_priv(struct flash_bank *bank)
917 {
918 struct kinetis_flash_bank *k_bank = bank->driver_priv;
919 if (k_bank == NULL)
920 return;
921
922 struct kinetis_chip *k_chip = k_bank->k_chip;
923 if (k_chip == NULL)
924 return;
925
926 k_chip->num_banks--;
927 if (k_chip->num_banks == 0)
928 free(k_chip);
929 }
930
931
932 static int kinetis_create_missing_banks(struct kinetis_chip *k_chip)
933 {
934 unsigned num_blocks;
935 struct kinetis_flash_bank *k_bank;
936 struct flash_bank *bank;
937 char base_name[69], name[80], num[4];
938 char *class, *p;
939
940 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
941 if (num_blocks > KINETIS_MAX_BANKS) {
942 LOG_ERROR("Only %u Kinetis flash banks are supported", KINETIS_MAX_BANKS);
943 return ERROR_FAIL;
944 }
945
946 bank = k_chip->banks[0].bank;
947 if (bank && bank->name) {
948 strncpy(base_name, bank->name, sizeof(base_name) - 1);
949 base_name[sizeof(base_name) - 1] = '\0';
950 p = strstr(base_name, ".pflash");
951 if (p) {
952 *p = '\0';
953 if (k_chip->num_pflash_blocks > 1) {
954 /* rename first bank if numbering is needed */
955 snprintf(name, sizeof(name), "%s.pflash0", base_name);
956 free(bank->name);
957 bank->name = strdup(name);
958 }
959 }
960 } else {
961 strncpy(base_name, target_name(k_chip->target), sizeof(base_name) - 1);
962 base_name[sizeof(base_name) - 1] = '\0';
963 p = strstr(base_name, ".cpu");
964 if (p)
965 *p = '\0';
966 }
967
968 for (unsigned int bank_idx = 1; bank_idx < num_blocks; bank_idx++) {
969 k_bank = &(k_chip->banks[bank_idx]);
970 bank = k_bank->bank;
971
972 if (bank)
973 continue;
974
975 num[0] = '\0';
976
977 if (bank_idx < k_chip->num_pflash_blocks) {
978 class = "pflash";
979 if (k_chip->num_pflash_blocks > 1)
980 snprintf(num, sizeof(num), "%u", bank_idx);
981 } else {
982 class = "flexnvm";
983 if (k_chip->num_nvm_blocks > 1)
984 snprintf(num, sizeof(num), "%u",
985 bank_idx - k_chip->num_pflash_blocks);
986 }
987
988 bank = calloc(sizeof(struct flash_bank), 1);
989 if (bank == NULL)
990 return ERROR_FAIL;
991
992 bank->target = k_chip->target;
993 bank->driver = &kinetis_flash;
994 bank->default_padded_value = bank->erased_value = 0xff;
995
996 snprintf(name, sizeof(name), "%s.%s%s",
997 base_name, class, num);
998 bank->name = strdup(name);
999
1000 bank->driver_priv = k_bank = &(k_chip->banks[k_chip->num_banks]);
1001 k_bank->k_chip = k_chip;
1002 k_bank->bank_number = bank_idx;
1003 k_bank->bank = bank;
1004 if (k_chip->num_banks <= bank_idx)
1005 k_chip->num_banks = bank_idx + 1;
1006
1007 flash_bank_add(bank);
1008 }
1009 return ERROR_OK;
1010 }
1011
1012
1013 static int kinetis_disable_wdog_algo(struct target *target, size_t code_size, const uint8_t *code, uint32_t wdog_base)
1014 {
1015 struct working_area *wdog_algorithm;
1016 struct armv7m_algorithm armv7m_info;
1017 struct reg_param reg_params[1];
1018 int retval;
1019
1020 if (target->state != TARGET_HALTED) {
1021 LOG_ERROR("Target not halted");
1022 return ERROR_TARGET_NOT_HALTED;
1023 }
1024
1025 retval = target_alloc_working_area(target, code_size, &wdog_algorithm);
1026 if (retval != ERROR_OK)
1027 return retval;
1028
1029 retval = target_write_buffer(target, wdog_algorithm->address,
1030 code_size, code);
1031 if (retval == ERROR_OK) {
1032 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1033 armv7m_info.core_mode = ARM_MODE_THREAD;
1034
1035 init_reg_param(&reg_params[0], "r0", 32, PARAM_OUT);
1036 buf_set_u32(reg_params[0].value, 0, 32, wdog_base);
1037
1038 retval = target_run_algorithm(target, 0, NULL, 1, reg_params,
1039 wdog_algorithm->address,
1040 wdog_algorithm->address + code_size - 2,
1041 500, &armv7m_info);
1042
1043 destroy_reg_param(&reg_params[0]);
1044
1045 if (retval != ERROR_OK)
1046 LOG_ERROR("Error executing Kinetis WDOG unlock algorithm");
1047 }
1048
1049 target_free_working_area(target, wdog_algorithm);
1050
1051 return retval;
1052 }
1053
1054 /* Disable the watchdog on Kinetis devices
1055 * Standard Kx WDOG peripheral checks timing and therefore requires to run algo.
1056 */
1057 static int kinetis_disable_wdog_kx(struct target *target)
1058 {
1059 const uint32_t wdog_base = WDOG_BASE;
1060 uint16_t wdog;
1061 int retval;
1062
1063 static const uint8_t kinetis_unlock_wdog_code[] = {
1064 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog.inc"
1065 };
1066
1067 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1068 if (retval != ERROR_OK)
1069 return retval;
1070
1071 if ((wdog & 0x1) == 0) {
1072 /* watchdog already disabled */
1073 return ERROR_OK;
1074 }
1075 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_STCTRLH = 0x%04" PRIx16 ")", wdog);
1076
1077 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1078 if (retval != ERROR_OK)
1079 return retval;
1080
1081 retval = target_read_u16(target, wdog_base + WDOG_STCTRLH_OFFSET, &wdog);
1082 if (retval != ERROR_OK)
1083 return retval;
1084
1085 LOG_INFO("WDOG_STCTRLH = 0x%04" PRIx16, wdog);
1086 return (wdog & 0x1) ? ERROR_FAIL : ERROR_OK;
1087 }
1088
1089 static int kinetis_disable_wdog32(struct target *target, uint32_t wdog_base)
1090 {
1091 uint32_t wdog_cs;
1092 int retval;
1093
1094 static const uint8_t kinetis_unlock_wdog_code[] = {
1095 #include "../../../contrib/loaders/watchdog/armv7m_kinetis_wdog32.inc"
1096 };
1097
1098 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1099 if (retval != ERROR_OK)
1100 return retval;
1101
1102 if ((wdog_cs & 0x80) == 0)
1103 return ERROR_OK; /* watchdog already disabled */
1104
1105 LOG_INFO("Disabling Kinetis watchdog (initial WDOG_CS 0x%08" PRIx32 ")", wdog_cs);
1106
1107 retval = kinetis_disable_wdog_algo(target, sizeof(kinetis_unlock_wdog_code), kinetis_unlock_wdog_code, wdog_base);
1108 if (retval != ERROR_OK)
1109 return retval;
1110
1111 retval = target_read_u32(target, wdog_base + WDOG32_CS_OFFSET, &wdog_cs);
1112 if (retval != ERROR_OK)
1113 return retval;
1114
1115 if ((wdog_cs & 0x80) == 0)
1116 return ERROR_OK; /* watchdog disabled successfully */
1117
1118 LOG_ERROR("Cannot disable Kinetis watchdog (WDOG_CS 0x%08" PRIx32 "), issue 'reset init'", wdog_cs);
1119 return ERROR_FAIL;
1120 }
1121
1122 static int kinetis_disable_wdog(struct kinetis_chip *k_chip)
1123 {
1124 struct target *target = k_chip->target;
1125 uint8_t sim_copc;
1126 int retval;
1127
1128 if (!k_chip->probed) {
1129 retval = kinetis_probe_chip(k_chip);
1130 if (retval != ERROR_OK)
1131 return retval;
1132 }
1133
1134 switch (k_chip->watchdog_type) {
1135 case KINETIS_WDOG_K:
1136 return kinetis_disable_wdog_kx(target);
1137
1138 case KINETIS_WDOG_COP:
1139 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1140 if (retval != ERROR_OK)
1141 return retval;
1142
1143 if ((sim_copc & 0xc) == 0)
1144 return ERROR_OK; /* watchdog already disabled */
1145
1146 LOG_INFO("Disabling Kinetis watchdog (initial SIM_COPC 0x%02" PRIx8 ")", sim_copc);
1147 retval = target_write_u8(target, SIM_COPC, sim_copc & ~0xc);
1148 if (retval != ERROR_OK)
1149 return retval;
1150
1151 retval = target_read_u8(target, SIM_COPC, &sim_copc);
1152 if (retval != ERROR_OK)
1153 return retval;
1154
1155 if ((sim_copc & 0xc) == 0)
1156 return ERROR_OK; /* watchdog disabled successfully */
1157
1158 LOG_ERROR("Cannot disable Kinetis watchdog (SIM_COPC 0x%02" PRIx8 "), issue 'reset init'", sim_copc);
1159 return ERROR_FAIL;
1160
1161 case KINETIS_WDOG32_KE1X:
1162 return kinetis_disable_wdog32(target, WDOG32_KE1X);
1163
1164 case KINETIS_WDOG32_KL28:
1165 return kinetis_disable_wdog32(target, WDOG32_KL28);
1166
1167 default:
1168 return ERROR_OK;
1169 }
1170 }
1171
1172 COMMAND_HANDLER(kinetis_disable_wdog_handler)
1173 {
1174 int result;
1175 struct target *target = get_current_target(CMD_CTX);
1176 struct kinetis_chip *k_chip = kinetis_get_chip(target);
1177
1178 if (k_chip == NULL)
1179 return ERROR_FAIL;
1180
1181 if (CMD_ARGC > 0)
1182 return ERROR_COMMAND_SYNTAX_ERROR;
1183
1184 result = kinetis_disable_wdog(k_chip);
1185 return result;
1186 }
1187
1188
1189 static int kinetis_ftfx_decode_error(uint8_t fstat)
1190 {
1191 if (fstat & 0x20) {
1192 LOG_ERROR("Flash operation failed, illegal command");
1193 return ERROR_FLASH_OPER_UNSUPPORTED;
1194
1195 } else if (fstat & 0x10)
1196 LOG_ERROR("Flash operation failed, protection violated");
1197
1198 else if (fstat & 0x40)
1199 LOG_ERROR("Flash operation failed, read collision");
1200
1201 else if (fstat & 0x80)
1202 return ERROR_OK;
1203
1204 else
1205 LOG_ERROR("Flash operation timed out");
1206
1207 return ERROR_FLASH_OPERATION_FAILED;
1208 }
1209
1210 static int kinetis_ftfx_clear_error(struct target *target)
1211 {
1212 /* reset error flags */
1213 return target_write_u8(target, FTFx_FSTAT, 0x70);
1214 }
1215
1216
1217 static int kinetis_ftfx_prepare(struct target *target)
1218 {
1219 int result;
1220 uint8_t fstat;
1221
1222 /* wait until busy */
1223 for (unsigned int i = 0; i < 50; i++) {
1224 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1225 if (result != ERROR_OK)
1226 return result;
1227
1228 if (fstat & 0x80)
1229 break;
1230 }
1231
1232 if ((fstat & 0x80) == 0) {
1233 LOG_ERROR("Flash controller is busy");
1234 return ERROR_FLASH_OPERATION_FAILED;
1235 }
1236 if (fstat != 0x80) {
1237 /* reset error flags */
1238 result = kinetis_ftfx_clear_error(target);
1239 }
1240 return result;
1241 }
1242
1243 /* Kinetis Program-LongWord Microcodes */
1244 static const uint8_t kinetis_flash_write_code[] = {
1245 #include "../../../contrib/loaders/flash/kinetis/kinetis_flash.inc"
1246 };
1247
1248 /* Program LongWord Block Write */
1249 static int kinetis_write_block(struct flash_bank *bank, const uint8_t *buffer,
1250 uint32_t offset, uint32_t wcount)
1251 {
1252 struct target *target = bank->target;
1253 uint32_t buffer_size;
1254 struct working_area *write_algorithm;
1255 struct working_area *source;
1256 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1257 uint32_t address = k_bank->prog_base + offset;
1258 uint32_t end_address;
1259 struct reg_param reg_params[5];
1260 struct armv7m_algorithm armv7m_info;
1261 int retval;
1262 uint8_t fstat;
1263
1264 /* allocate working area with flash programming code */
1265 if (target_alloc_working_area(target, sizeof(kinetis_flash_write_code),
1266 &write_algorithm) != ERROR_OK) {
1267 LOG_WARNING("no working area available, can't do block memory writes");
1268 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1269 }
1270
1271 retval = target_write_buffer(target, write_algorithm->address,
1272 sizeof(kinetis_flash_write_code), kinetis_flash_write_code);
1273 if (retval != ERROR_OK)
1274 return retval;
1275
1276 /* memory buffer, size *must* be multiple of word */
1277 buffer_size = target_get_working_area_avail(target) & ~(sizeof(uint32_t) - 1);
1278 if (buffer_size < 256) {
1279 LOG_WARNING("large enough working area not available, can't do block memory writes");
1280 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1281 } else if (buffer_size > 16384) {
1282 /* probably won't benefit from more than 16k ... */
1283 buffer_size = 16384;
1284 }
1285
1286 if (target_alloc_working_area(target, buffer_size, &source) != ERROR_OK) {
1287 LOG_ERROR("allocating working area failed");
1288 return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
1289 }
1290
1291 armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
1292 armv7m_info.core_mode = ARM_MODE_THREAD;
1293
1294 init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT); /* address */
1295 init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT); /* word count */
1296 init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);
1297 init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);
1298 init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);
1299
1300 buf_set_u32(reg_params[0].value, 0, 32, address);
1301 buf_set_u32(reg_params[1].value, 0, 32, wcount);
1302 buf_set_u32(reg_params[2].value, 0, 32, source->address);
1303 buf_set_u32(reg_params[3].value, 0, 32, source->address + source->size);
1304 buf_set_u32(reg_params[4].value, 0, 32, FTFx_FSTAT);
1305
1306 retval = target_run_flash_async_algorithm(target, buffer, wcount, 4,
1307 0, NULL,
1308 5, reg_params,
1309 source->address, source->size,
1310 write_algorithm->address, 0,
1311 &armv7m_info);
1312
1313 if (retval == ERROR_FLASH_OPERATION_FAILED) {
1314 end_address = buf_get_u32(reg_params[0].value, 0, 32);
1315
1316 LOG_ERROR("Error writing flash at %08" PRIx32, end_address);
1317
1318 retval = target_read_u8(target, FTFx_FSTAT, &fstat);
1319 if (retval == ERROR_OK) {
1320 retval = kinetis_ftfx_decode_error(fstat);
1321
1322 /* reset error flags */
1323 target_write_u8(target, FTFx_FSTAT, 0x70);
1324 }
1325 } else if (retval != ERROR_OK)
1326 LOG_ERROR("Error executing kinetis Flash programming algorithm");
1327
1328 target_free_working_area(target, source);
1329 target_free_working_area(target, write_algorithm);
1330
1331 destroy_reg_param(&reg_params[0]);
1332 destroy_reg_param(&reg_params[1]);
1333 destroy_reg_param(&reg_params[2]);
1334 destroy_reg_param(&reg_params[3]);
1335 destroy_reg_param(&reg_params[4]);
1336
1337 return retval;
1338 }
1339
1340 static int kinetis_protect(struct flash_bank *bank, int set, unsigned int first,
1341 unsigned int last)
1342 {
1343 if (allow_fcf_writes) {
1344 LOG_ERROR("Protection setting is possible with 'kinetis fcf_source protection' only!");
1345 return ERROR_FAIL;
1346 }
1347
1348 if (!bank->prot_blocks || bank->num_prot_blocks == 0) {
1349 LOG_ERROR("No protection possible for current bank!");
1350 return ERROR_FLASH_BANK_INVALID;
1351 }
1352
1353 for (unsigned int i = first; i < bank->num_prot_blocks && i <= last; i++)
1354 bank->prot_blocks[i].is_protected = set;
1355
1356 LOG_INFO("Protection bits will be written at the next FCF sector erase or write.");
1357 LOG_INFO("Do not issue 'flash info' command until protection is written,");
1358 LOG_INFO("doing so would re-read protection status from MCU.");
1359
1360 return ERROR_OK;
1361 }
1362
1363 static int kinetis_protect_check(struct flash_bank *bank)
1364 {
1365 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1366 int result;
1367 int b;
1368 uint32_t fprot;
1369
1370 if (k_bank->flash_class == FC_PFLASH) {
1371
1372 /* read protection register */
1373 result = target_read_u32(bank->target, FTFx_FPROT3, &fprot);
1374 if (result != ERROR_OK)
1375 return result;
1376
1377 /* Every bit protects 1/32 of the full flash (not necessarily just this bank) */
1378
1379 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1380 uint8_t fdprot;
1381
1382 /* read protection register */
1383 result = target_read_u8(bank->target, FTFx_FDPROT, &fdprot);
1384 if (result != ERROR_OK)
1385 return result;
1386
1387 fprot = fdprot;
1388
1389 } else {
1390 LOG_ERROR("Protection checks for FlexRAM not supported");
1391 return ERROR_FLASH_BANK_INVALID;
1392 }
1393
1394 b = k_bank->protection_block;
1395 for (unsigned int i = 0; i < bank->num_prot_blocks; i++) {
1396 if ((fprot >> b) & 1)
1397 bank->prot_blocks[i].is_protected = 0;
1398 else
1399 bank->prot_blocks[i].is_protected = 1;
1400
1401 b++;
1402 }
1403
1404 return ERROR_OK;
1405 }
1406
1407
1408 static int kinetis_fill_fcf(struct flash_bank *bank, uint8_t *fcf)
1409 {
1410 uint32_t fprot = 0xffffffff;
1411 uint8_t fsec = 0xfe; /* set MCU unsecure */
1412 uint8_t fdprot = 0xff;
1413 unsigned num_blocks;
1414 uint32_t pflash_bit;
1415 uint8_t dflash_bit;
1416 struct flash_bank *bank_iter;
1417 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1418 struct kinetis_chip *k_chip = k_bank->k_chip;
1419
1420 memset(fcf, 0xff, FCF_SIZE);
1421
1422 pflash_bit = 1;
1423 dflash_bit = 1;
1424
1425 /* iterate over all kinetis banks */
1426 /* current bank is bank 0, it contains FCF */
1427 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
1428 for (unsigned int bank_idx = 0; bank_idx < num_blocks; bank_idx++) {
1429 k_bank = &(k_chip->banks[bank_idx]);
1430 bank_iter = k_bank->bank;
1431
1432 if (bank_iter == NULL) {
1433 LOG_WARNING("Missing bank %u configuration, FCF protection flags may be incomplette", bank_idx);
1434 continue;
1435 }
1436
1437 kinetis_auto_probe(bank_iter);
1438
1439 assert(bank_iter->prot_blocks);
1440
1441 if (k_bank->flash_class == FC_PFLASH) {
1442 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1443 if (bank_iter->prot_blocks[i].is_protected == 1)
1444 fprot &= ~pflash_bit;
1445
1446 pflash_bit <<= 1;
1447 }
1448
1449 } else if (k_bank->flash_class == FC_FLEX_NVM) {
1450 for (unsigned int i = 0; i < bank_iter->num_prot_blocks; i++) {
1451 if (bank_iter->prot_blocks[i].is_protected == 1)
1452 fdprot &= ~dflash_bit;
1453
1454 dflash_bit <<= 1;
1455 }
1456
1457 }
1458 }
1459
1460 target_buffer_set_u32(bank->target, fcf + FCF_FPROT, fprot);
1461 fcf[FCF_FSEC] = fsec;
1462 fcf[FCF_FOPT] = fcf_fopt;
1463 fcf[FCF_FDPROT] = fdprot;
1464 return ERROR_OK;
1465 }
1466
1467 static int kinetis_ftfx_command(struct target *target, uint8_t fcmd, uint32_t faddr,
1468 uint8_t fccob4, uint8_t fccob5, uint8_t fccob6, uint8_t fccob7,
1469 uint8_t fccob8, uint8_t fccob9, uint8_t fccoba, uint8_t fccobb,
1470 uint8_t *ftfx_fstat)
1471 {
1472 uint8_t command[12] = {faddr & 0xff, (faddr >> 8) & 0xff, (faddr >> 16) & 0xff, fcmd,
1473 fccob7, fccob6, fccob5, fccob4,
1474 fccobb, fccoba, fccob9, fccob8};
1475 int result;
1476 uint8_t fstat;
1477 int64_t ms_timeout = timeval_ms() + 250;
1478
1479 result = target_write_memory(target, FTFx_FCCOB3, 4, 3, command);
1480 if (result != ERROR_OK)
1481 return result;
1482
1483 /* start command */
1484 result = target_write_u8(target, FTFx_FSTAT, 0x80);
1485 if (result != ERROR_OK)
1486 return result;
1487
1488 /* wait for done */
1489 do {
1490 result = target_read_u8(target, FTFx_FSTAT, &fstat);
1491
1492 if (result != ERROR_OK)
1493 return result;
1494
1495 if (fstat & 0x80)
1496 break;
1497
1498 } while (timeval_ms() < ms_timeout);
1499
1500 if (ftfx_fstat)
1501 *ftfx_fstat = fstat;
1502
1503 if ((fstat & 0xf0) != 0x80) {
1504 LOG_DEBUG("ftfx command failed FSTAT: %02X FCCOB: %02X%02X%02X%02X %02X%02X%02X%02X %02X%02X%02X%02X",
1505 fstat, command[3], command[2], command[1], command[0],
1506 command[7], command[6], command[5], command[4],
1507 command[11], command[10], command[9], command[8]);
1508
1509 return kinetis_ftfx_decode_error(fstat);
1510 }
1511
1512 return ERROR_OK;
1513 }
1514
1515
1516 static int kinetis_read_pmstat(struct kinetis_chip *k_chip, uint8_t *pmstat)
1517 {
1518 int result;
1519 uint32_t stat32;
1520 struct target *target = k_chip->target;
1521
1522 switch (k_chip->sysmodectrlr_type) {
1523 case KINETIS_SMC:
1524 result = target_read_u8(target, SMC_PMSTAT, pmstat);
1525 return result;
1526
1527 case KINETIS_SMC32:
1528 result = target_read_u32(target, SMC32_PMSTAT, &stat32);
1529 if (result == ERROR_OK)
1530 *pmstat = stat32 & 0xff;
1531 return result;
1532 }
1533 return ERROR_FAIL;
1534 }
1535
1536 static int kinetis_check_run_mode(struct kinetis_chip *k_chip)
1537 {
1538 int result;
1539 uint8_t pmstat;
1540 struct target *target;
1541
1542 if (k_chip == NULL) {
1543 LOG_ERROR("Chip not probed.");
1544 return ERROR_FAIL;
1545 }
1546 target = k_chip->target;
1547
1548 if (target->state != TARGET_HALTED) {
1549 LOG_ERROR("Target not halted");
1550 return ERROR_TARGET_NOT_HALTED;
1551 }
1552
1553 result = kinetis_read_pmstat(k_chip, &pmstat);
1554 if (result != ERROR_OK)
1555 return result;
1556
1557 if (pmstat == PM_STAT_RUN)
1558 return ERROR_OK;
1559
1560 if (pmstat == PM_STAT_VLPR) {
1561 /* It is safe to switch from VLPR to RUN mode without changing clock */
1562 LOG_INFO("Switching from VLPR to RUN mode.");
1563
1564 switch (k_chip->sysmodectrlr_type) {
1565 case KINETIS_SMC:
1566 result = target_write_u8(target, SMC_PMCTRL, PM_CTRL_RUNM_RUN);
1567 break;
1568
1569 case KINETIS_SMC32:
1570 result = target_write_u32(target, SMC32_PMCTRL, PM_CTRL_RUNM_RUN);
1571 break;
1572 }
1573 if (result != ERROR_OK)
1574 return result;
1575
1576 for (unsigned int i = 100; i > 0; i--) {
1577 result = kinetis_read_pmstat(k_chip, &pmstat);
1578 if (result != ERROR_OK)
1579 return result;
1580
1581 if (pmstat == PM_STAT_RUN)
1582 return ERROR_OK;
1583 }
1584 }
1585
1586 LOG_ERROR("Flash operation not possible in current run mode: SMC_PMSTAT: 0x%x", pmstat);
1587 LOG_ERROR("Issue a 'reset init' command.");
1588 return ERROR_TARGET_NOT_HALTED;
1589 }
1590
1591
1592 static void kinetis_invalidate_flash_cache(struct kinetis_chip *k_chip)
1593 {
1594 struct target *target = k_chip->target;
1595
1596 switch (k_chip->cache_type) {
1597 case KINETIS_CACHE_K:
1598 target_write_u8(target, FMC_PFB01CR + 2, 0xf0);
1599 /* Set CINV_WAY bits - request invalidate of all cache ways */
1600 /* FMC_PFB0CR has same address and CINV_WAY bits as FMC_PFB01CR */
1601 break;
1602
1603 case KINETIS_CACHE_L:
1604 target_write_u8(target, MCM_PLACR + 1, 0x04);
1605 /* set bit CFCC - Clear Flash Controller Cache */
1606 break;
1607
1608 case KINETIS_CACHE_MSCM:
1609 target_write_u32(target, MSCM_OCMDR0, 0x30);
1610 /* disable data prefetch and flash speculate */
1611 break;
1612
1613 default:
1614 break;
1615 }
1616 }
1617
1618
1619 static int kinetis_erase(struct flash_bank *bank, unsigned int first,
1620 unsigned int last)
1621 {
1622 int result;
1623 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1624 struct kinetis_chip *k_chip = k_bank->k_chip;
1625
1626 result = kinetis_check_run_mode(k_chip);
1627 if (result != ERROR_OK)
1628 return result;
1629
1630 /* reset error flags */
1631 result = kinetis_ftfx_prepare(bank->target);
1632 if (result != ERROR_OK)
1633 return result;
1634
1635 if ((first > bank->num_sectors) || (last > bank->num_sectors))
1636 return ERROR_FLASH_OPERATION_FAILED;
1637
1638 /*
1639 * FIXME: TODO: use the 'Erase Flash Block' command if the
1640 * requested erase is PFlash or NVM and encompasses the entire
1641 * block. Should be quicker.
1642 */
1643 for (unsigned int i = first; i <= last; i++) {
1644 /* set command and sector address */
1645 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTERASE, k_bank->prog_base + bank->sectors[i].offset,
1646 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1647
1648 if (result != ERROR_OK) {
1649 LOG_WARNING("erase sector %u failed", i);
1650 return ERROR_FLASH_OPERATION_FAILED;
1651 }
1652
1653 bank->sectors[i].is_erased = 1;
1654
1655 if (k_bank->prog_base == 0
1656 && bank->sectors[i].offset <= FCF_ADDRESS
1657 && bank->sectors[i].offset + bank->sectors[i].size > FCF_ADDRESS + FCF_SIZE) {
1658 if (allow_fcf_writes) {
1659 LOG_WARNING("Flash Configuration Field erased, DO NOT reset or power off the device");
1660 LOG_WARNING("until correct FCF is programmed or MCU gets security lock.");
1661 } else {
1662 uint8_t fcf_buffer[FCF_SIZE];
1663
1664 kinetis_fill_fcf(bank, fcf_buffer);
1665 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1666 if (result != ERROR_OK)
1667 LOG_WARNING("Flash Configuration Field write failed");
1668 bank->sectors[i].is_erased = 0;
1669 }
1670 }
1671 }
1672
1673 kinetis_invalidate_flash_cache(k_bank->k_chip);
1674
1675 return ERROR_OK;
1676 }
1677
1678 static int kinetis_make_ram_ready(struct target *target)
1679 {
1680 int result;
1681 uint8_t ftfx_fcnfg;
1682
1683 /* check if ram ready */
1684 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1685 if (result != ERROR_OK)
1686 return result;
1687
1688 if (ftfx_fcnfg & (1 << 1))
1689 return ERROR_OK; /* ram ready */
1690
1691 /* make flex ram available */
1692 result = kinetis_ftfx_command(target, FTFx_CMD_SETFLEXRAM, 0x00ff0000,
1693 0, 0, 0, 0, 0, 0, 0, 0, NULL);
1694 if (result != ERROR_OK)
1695 return ERROR_FLASH_OPERATION_FAILED;
1696
1697 /* check again */
1698 result = target_read_u8(target, FTFx_FCNFG, &ftfx_fcnfg);
1699 if (result != ERROR_OK)
1700 return result;
1701
1702 if (ftfx_fcnfg & (1 << 1))
1703 return ERROR_OK; /* ram ready */
1704
1705 return ERROR_FLASH_OPERATION_FAILED;
1706 }
1707
1708
1709 static int kinetis_write_sections(struct flash_bank *bank, const uint8_t *buffer,
1710 uint32_t offset, uint32_t count)
1711 {
1712 int result = ERROR_OK;
1713 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1714 struct kinetis_chip *k_chip = k_bank->k_chip;
1715 uint8_t *buffer_aligned = NULL;
1716 /*
1717 * Kinetis uses different terms for the granularity of
1718 * sector writes, e.g. "phrase" or "128 bits". We use
1719 * the generic term "chunk". The largest possible
1720 * Kinetis "chunk" is 16 bytes (128 bits).
1721 */
1722 uint32_t prog_section_chunk_bytes = k_bank->sector_size >> 8;
1723 uint32_t prog_size_bytes = k_chip->max_flash_prog_size;
1724
1725 while (count > 0) {
1726 uint32_t size = prog_size_bytes - offset % prog_size_bytes;
1727 uint32_t align_begin = offset % prog_section_chunk_bytes;
1728 uint32_t align_end;
1729 uint32_t size_aligned;
1730 uint16_t chunk_count;
1731 uint8_t ftfx_fstat;
1732
1733 if (size > count)
1734 size = count;
1735
1736 align_end = (align_begin + size) % prog_section_chunk_bytes;
1737 if (align_end)
1738 align_end = prog_section_chunk_bytes - align_end;
1739
1740 size_aligned = align_begin + size + align_end;
1741 chunk_count = size_aligned / prog_section_chunk_bytes;
1742
1743 if (size != size_aligned) {
1744 /* aligned section: the first, the last or the only */
1745 if (!buffer_aligned)
1746 buffer_aligned = malloc(prog_size_bytes);
1747
1748 memset(buffer_aligned, 0xff, size_aligned);
1749 memcpy(buffer_aligned + align_begin, buffer, size);
1750
1751 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1752 4, size_aligned / 4, buffer_aligned);
1753
1754 LOG_DEBUG("section @ " TARGET_ADDR_FMT " aligned begin %" PRIu32
1755 ", end %" PRIu32,
1756 bank->base + offset, align_begin, align_end);
1757 } else
1758 result = target_write_memory(bank->target, k_chip->progr_accel_ram,
1759 4, size_aligned / 4, buffer);
1760
1761 LOG_DEBUG("write section @ " TARGET_ADDR_FMT " with length %" PRIu32
1762 " bytes",
1763 bank->base + offset, size);
1764
1765 if (result != ERROR_OK) {
1766 LOG_ERROR("target_write_memory failed");
1767 break;
1768 }
1769
1770 /* execute section-write command */
1771 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTWRITE,
1772 k_bank->prog_base + offset - align_begin,
1773 chunk_count>>8, chunk_count, 0, 0,
1774 0, 0, 0, 0, &ftfx_fstat);
1775
1776 if (result != ERROR_OK) {
1777 LOG_ERROR("Error writing section at " TARGET_ADDR_FMT,
1778 bank->base + offset);
1779 break;
1780 }
1781
1782 if (ftfx_fstat & 0x01) {
1783 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1784 bank->base + offset);
1785 if (k_bank->prog_base == 0 && offset == FCF_ADDRESS + FCF_SIZE
1786 && (k_chip->flash_support & FS_WIDTH_256BIT)) {
1787 LOG_ERROR("Flash write immediately after the end of Flash Config Field shows error");
1788 LOG_ERROR("because the flash memory is 256 bits wide (data were written correctly).");
1789 LOG_ERROR("Either change the linker script to add a gap of 16 bytes after FCF");
1790 LOG_ERROR("or set 'kinetis fcf_source write'");
1791 }
1792 }
1793
1794 buffer += size;
1795 offset += size;
1796 count -= size;
1797
1798 keep_alive();
1799 }
1800
1801 free(buffer_aligned);
1802 return result;
1803 }
1804
1805
1806 static int kinetis_write_inner(struct flash_bank *bank, const uint8_t *buffer,
1807 uint32_t offset, uint32_t count)
1808 {
1809 int result;
1810 bool fallback = false;
1811 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1812 struct kinetis_chip *k_chip = k_bank->k_chip;
1813
1814 if (!(k_chip->flash_support & FS_PROGRAM_SECTOR)) {
1815 /* fallback to longword write */
1816 fallback = true;
1817 LOG_INFO("This device supports Program Longword execution only.");
1818 } else {
1819 result = kinetis_make_ram_ready(bank->target);
1820 if (result != ERROR_OK) {
1821 fallback = true;
1822 LOG_WARNING("FlexRAM not ready, fallback to slow longword write.");
1823 }
1824 }
1825
1826 LOG_DEBUG("flash write @ " TARGET_ADDR_FMT, bank->base + offset);
1827
1828 if (!fallback) {
1829 /* program section command */
1830 kinetis_write_sections(bank, buffer, offset, count);
1831 } else if (k_chip->flash_support & FS_PROGRAM_LONGWORD) {
1832 /* program longword command, not supported in FTFE */
1833 uint8_t *new_buffer = NULL;
1834
1835 /* check word alignment */
1836 if (offset & 0x3) {
1837 LOG_ERROR("offset 0x%" PRIx32 " breaks the required alignment", offset);
1838 return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
1839 }
1840
1841 if (count & 0x3) {
1842 uint32_t old_count = count;
1843 count = (old_count | 3) + 1;
1844 new_buffer = malloc(count);
1845 if (new_buffer == NULL) {
1846 LOG_ERROR("odd number of bytes to write and no memory "
1847 "for padding buffer");
1848 return ERROR_FAIL;
1849 }
1850 LOG_INFO("odd number of bytes to write (%" PRIu32 "), extending to %" PRIu32 " "
1851 "and padding with 0xff", old_count, count);
1852 memset(new_buffer + old_count, 0xff, count - old_count);
1853 buffer = memcpy(new_buffer, buffer, old_count);
1854 }
1855
1856 uint32_t words_remaining = count / 4;
1857
1858 kinetis_disable_wdog(k_chip);
1859
1860 /* try using a block write */
1861 result = kinetis_write_block(bank, buffer, offset, words_remaining);
1862
1863 if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
1864 /* if block write failed (no sufficient working area),
1865 * we use normal (slow) single word accesses */
1866 LOG_WARNING("couldn't use block writes, falling back to single "
1867 "memory accesses");
1868
1869 while (words_remaining) {
1870 uint8_t ftfx_fstat;
1871
1872 LOG_DEBUG("write longword @ %08" PRIx32, (uint32_t)(bank->base + offset));
1873
1874 result = kinetis_ftfx_command(bank->target, FTFx_CMD_LWORDPROG, k_bank->prog_base + offset,
1875 buffer[3], buffer[2], buffer[1], buffer[0],
1876 0, 0, 0, 0, &ftfx_fstat);
1877
1878 if (result != ERROR_OK) {
1879 LOG_ERROR("Error writing longword at " TARGET_ADDR_FMT,
1880 bank->base + offset);
1881 break;
1882 }
1883
1884 if (ftfx_fstat & 0x01)
1885 LOG_ERROR("Flash write error at " TARGET_ADDR_FMT,
1886 bank->base + offset);
1887
1888 buffer += 4;
1889 offset += 4;
1890 words_remaining--;
1891
1892 keep_alive();
1893 }
1894 }
1895 free(new_buffer);
1896 } else {
1897 LOG_ERROR("Flash write strategy not implemented");
1898 return ERROR_FLASH_OPERATION_FAILED;
1899 }
1900
1901 kinetis_invalidate_flash_cache(k_chip);
1902 return result;
1903 }
1904
1905
1906 static int kinetis_write(struct flash_bank *bank, const uint8_t *buffer,
1907 uint32_t offset, uint32_t count)
1908 {
1909 int result;
1910 bool set_fcf = false;
1911 bool fcf_in_data_valid = false;
1912 int sect = 0;
1913 struct kinetis_flash_bank *k_bank = bank->driver_priv;
1914 struct kinetis_chip *k_chip = k_bank->k_chip;
1915 uint8_t fcf_buffer[FCF_SIZE];
1916 uint8_t fcf_current[FCF_SIZE];
1917 uint8_t fcf_in_data[FCF_SIZE];
1918
1919 result = kinetis_check_run_mode(k_chip);
1920 if (result != ERROR_OK)
1921 return result;
1922
1923 /* reset error flags */
1924 result = kinetis_ftfx_prepare(bank->target);
1925 if (result != ERROR_OK)
1926 return result;
1927
1928 if (k_bank->prog_base == 0 && !allow_fcf_writes) {
1929 if (bank->sectors[1].offset <= FCF_ADDRESS)
1930 sect = 1; /* 1kb sector, FCF in 2nd sector */
1931
1932 if (offset < bank->sectors[sect].offset + bank->sectors[sect].size
1933 && offset + count > bank->sectors[sect].offset)
1934 set_fcf = true; /* write to any part of sector with FCF */
1935 }
1936
1937 if (set_fcf) {
1938 kinetis_fill_fcf(bank, fcf_buffer);
1939
1940 fcf_in_data_valid = offset <= FCF_ADDRESS
1941 && offset + count >= FCF_ADDRESS + FCF_SIZE;
1942 if (fcf_in_data_valid) {
1943 memcpy(fcf_in_data, buffer + FCF_ADDRESS - offset, FCF_SIZE);
1944 if (memcmp(fcf_in_data + FCF_FPROT, fcf_buffer, 4)) {
1945 fcf_in_data_valid = false;
1946 LOG_INFO("Flash protection requested in programmed file differs from current setting.");
1947 }
1948 if (fcf_in_data[FCF_FDPROT] != fcf_buffer[FCF_FDPROT]) {
1949 fcf_in_data_valid = false;
1950 LOG_INFO("Data flash protection requested in programmed file differs from current setting.");
1951 }
1952 if ((fcf_in_data[FCF_FSEC] & 3) != 2) {
1953 fcf_in_data_valid = false;
1954 LOG_INFO("Device security requested in programmed file!");
1955 } else if (k_chip->flash_support & FS_ECC
1956 && fcf_in_data[FCF_FSEC] != fcf_buffer[FCF_FSEC]) {
1957 fcf_in_data_valid = false;
1958 LOG_INFO("Strange unsecure mode 0x%02" PRIx8
1959 "requested in programmed file!",
1960 fcf_in_data[FCF_FSEC]);
1961 }
1962 if ((k_chip->flash_support & FS_ECC || fcf_fopt_configured)
1963 && fcf_in_data[FCF_FOPT] != fcf_fopt) {
1964 fcf_in_data_valid = false;
1965 LOG_INFO("FOPT requested in programmed file differs from current setting.");
1966 }
1967 if (!fcf_in_data_valid)
1968 LOG_INFO("Expect verify errors at FCF (0x408-0x40f).");
1969 }
1970 }
1971
1972 if (set_fcf && !fcf_in_data_valid) {
1973 if (offset < FCF_ADDRESS) {
1974 /* write part preceding FCF */
1975 result = kinetis_write_inner(bank, buffer, offset, FCF_ADDRESS - offset);
1976 if (result != ERROR_OK)
1977 return result;
1978 }
1979
1980 result = target_read_memory(bank->target, bank->base + FCF_ADDRESS, 4, FCF_SIZE / 4, fcf_current);
1981 if (result == ERROR_OK && memcmp(fcf_current, fcf_buffer, FCF_SIZE) == 0)
1982 set_fcf = false;
1983
1984 if (set_fcf) {
1985 /* write FCF if differs from flash - eliminate multiple writes */
1986 result = kinetis_write_inner(bank, fcf_buffer, FCF_ADDRESS, FCF_SIZE);
1987 if (result != ERROR_OK)
1988 return result;
1989 }
1990
1991 LOG_WARNING("Flash Configuration Field written.");
1992 LOG_WARNING("Reset or power off the device to make settings effective.");
1993
1994 if (offset + count > FCF_ADDRESS + FCF_SIZE) {
1995 uint32_t delta = FCF_ADDRESS + FCF_SIZE - offset;
1996 /* write part after FCF */
1997 result = kinetis_write_inner(bank, buffer + delta, FCF_ADDRESS + FCF_SIZE, count - delta);
1998 }
1999 return result;
2000
2001 } else {
2002 /* no FCF fiddling, normal write */
2003 return kinetis_write_inner(bank, buffer, offset, count);
2004 }
2005 }
2006
2007
2008 static int kinetis_probe_chip(struct kinetis_chip *k_chip)
2009 {
2010 int result;
2011 uint8_t fcfg1_nvmsize, fcfg1_pfsize, fcfg1_eesize, fcfg1_depart;
2012 uint8_t fcfg2_pflsh;
2013 uint32_t ee_size = 0;
2014 uint32_t pflash_size_k, nvm_size_k, dflash_size_k;
2015 uint32_t pflash_size_m;
2016 unsigned num_blocks = 0;
2017 unsigned maxaddr_shift = 13;
2018 struct target *target = k_chip->target;
2019
2020 unsigned familyid = 0, subfamid = 0;
2021 unsigned cpu_mhz = 120;
2022 bool use_nvm_marking = false;
2023 char flash_marking[12], nvm_marking[2];
2024 char name[40];
2025
2026 k_chip->probed = false;
2027 k_chip->pflash_sector_size = 0;
2028 k_chip->pflash_base = 0;
2029 k_chip->nvm_base = 0x10000000;
2030 k_chip->progr_accel_ram = FLEXRAM;
2031
2032 name[0] = '\0';
2033
2034 if (k_chip->sim_base)
2035 result = target_read_u32(target, k_chip->sim_base + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2036 else {
2037 result = target_read_u32(target, SIM_BASE + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2038 if (result == ERROR_OK)
2039 k_chip->sim_base = SIM_BASE;
2040 else {
2041 result = target_read_u32(target, SIM_BASE_KL28 + SIM_SDID_OFFSET, &k_chip->sim_sdid);
2042 if (result == ERROR_OK)
2043 k_chip->sim_base = SIM_BASE_KL28;
2044 }
2045 }
2046 if (result != ERROR_OK)
2047 return result;
2048
2049 if ((k_chip->sim_sdid & (~KINETIS_SDID_K_SERIES_MASK)) == 0) {
2050 /* older K-series MCU */
2051 uint32_t mcu_type = k_chip->sim_sdid & KINETIS_K_SDID_TYPE_MASK;
2052 k_chip->cache_type = KINETIS_CACHE_K;
2053 k_chip->watchdog_type = KINETIS_WDOG_K;
2054
2055 switch (mcu_type) {
2056 case KINETIS_K_SDID_K10_M50:
2057 case KINETIS_K_SDID_K20_M50:
2058 /* 1kB sectors */
2059 k_chip->pflash_sector_size = 1<<10;
2060 k_chip->nvm_sector_size = 1<<10;
2061 num_blocks = 2;
2062 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2063 break;
2064 case KINETIS_K_SDID_K10_M72:
2065 case KINETIS_K_SDID_K20_M72:
2066 case KINETIS_K_SDID_K30_M72:
2067 case KINETIS_K_SDID_K30_M100:
2068 case KINETIS_K_SDID_K40_M72:
2069 case KINETIS_K_SDID_K40_M100:
2070 case KINETIS_K_SDID_K50_M72:
2071 /* 2kB sectors, 1kB FlexNVM sectors */
2072 k_chip->pflash_sector_size = 2<<10;
2073 k_chip->nvm_sector_size = 1<<10;
2074 num_blocks = 2;
2075 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2076 k_chip->max_flash_prog_size = 1<<10;
2077 break;
2078 case KINETIS_K_SDID_K10_M100:
2079 case KINETIS_K_SDID_K20_M100:
2080 case KINETIS_K_SDID_K11:
2081 case KINETIS_K_SDID_K12:
2082 case KINETIS_K_SDID_K21_M50:
2083 case KINETIS_K_SDID_K22_M50:
2084 case KINETIS_K_SDID_K51_M72:
2085 case KINETIS_K_SDID_K53:
2086 case KINETIS_K_SDID_K60_M100:
2087 /* 2kB sectors */
2088 k_chip->pflash_sector_size = 2<<10;
2089 k_chip->nvm_sector_size = 2<<10;
2090 num_blocks = 2;
2091 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_PROGRAM_SECTOR;
2092 break;
2093 case KINETIS_K_SDID_K21_M120:
2094 case KINETIS_K_SDID_K22_M120:
2095 /* 4kB sectors (MK21FN1M0, MK21FX512, MK22FN1M0, MK22FX512) */
2096 k_chip->pflash_sector_size = 4<<10;
2097 k_chip->max_flash_prog_size = 1<<10;
2098 k_chip->nvm_sector_size = 4<<10;
2099 num_blocks = 2;
2100 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2101 break;
2102 case KINETIS_K_SDID_K10_M120:
2103 case KINETIS_K_SDID_K20_M120:
2104 case KINETIS_K_SDID_K60_M150:
2105 case KINETIS_K_SDID_K70_M150:
2106 /* 4kB sectors */
2107 k_chip->pflash_sector_size = 4<<10;
2108 k_chip->nvm_sector_size = 4<<10;
2109 num_blocks = 4;
2110 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2111 break;
2112 default:
2113 LOG_ERROR("Unsupported K-family FAMID");
2114 }
2115
2116 for (size_t idx = 0; idx < ARRAY_SIZE(kinetis_types_old); idx++) {
2117 if (kinetis_types_old[idx].sdid == mcu_type) {
2118 strcpy(name, kinetis_types_old[idx].name);
2119 use_nvm_marking = true;
2120 break;
2121 }
2122 }
2123
2124 } else {
2125 /* Newer K-series or KL series MCU */
2126 familyid = (k_chip->sim_sdid & KINETIS_SDID_FAMILYID_MASK) >> KINETIS_SDID_FAMILYID_SHIFT;
2127 subfamid = (k_chip->sim_sdid & KINETIS_SDID_SUBFAMID_MASK) >> KINETIS_SDID_SUBFAMID_SHIFT;
2128
2129 switch (k_chip->sim_sdid & KINETIS_SDID_SERIESID_MASK) {
2130 case KINETIS_SDID_SERIESID_K:
2131 use_nvm_marking = true;
2132 k_chip->cache_type = KINETIS_CACHE_K;
2133 k_chip->watchdog_type = KINETIS_WDOG_K;
2134
2135 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2136 case KINETIS_SDID_FAMILYID_K0X | KINETIS_SDID_SUBFAMID_KX2:
2137 /* K02FN64, K02FN128: FTFA, 2kB sectors */
2138 k_chip->pflash_sector_size = 2<<10;
2139 num_blocks = 1;
2140 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2141 cpu_mhz = 100;
2142 break;
2143
2144 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX2: {
2145 /* MK24FN1M reports as K22, this should detect it (according to errata note 1N83J) */
2146 uint32_t sopt1;
2147 result = target_read_u32(target, k_chip->sim_base + SIM_SOPT1_OFFSET, &sopt1);
2148 if (result != ERROR_OK)
2149 return result;
2150
2151 if (((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN1M) &&
2152 ((sopt1 & KINETIS_SOPT1_RAMSIZE_MASK) == KINETIS_SOPT1_RAMSIZE_K24FN1M)) {
2153 /* MK24FN1M */
2154 k_chip->pflash_sector_size = 4<<10;
2155 num_blocks = 2;
2156 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2157 k_chip->max_flash_prog_size = 1<<10;
2158 subfamid = 4; /* errata 1N83J fix */
2159 break;
2160 }
2161 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN128
2162 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN256
2163 || (k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K22FN512) {
2164 /* K22 with new-style SDID - smaller pflash with FTFA, 2kB sectors */
2165 k_chip->pflash_sector_size = 2<<10;
2166 /* autodetect 1 or 2 blocks */
2167 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2168 break;
2169 }
2170 LOG_ERROR("Unsupported Kinetis K22 DIEID");
2171 break;
2172 }
2173 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX4:
2174 k_chip->pflash_sector_size = 4<<10;
2175 if ((k_chip->sim_sdid & (KINETIS_SDID_DIEID_MASK)) == KINETIS_SDID_DIEID_K24FN256) {
2176 /* K24FN256 - smaller pflash with FTFA */
2177 num_blocks = 1;
2178 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2179 break;
2180 }
2181 /* K24FN1M without errata 7534 */
2182 num_blocks = 2;
2183 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2184 k_chip->max_flash_prog_size = 1<<10;
2185 break;
2186
2187 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX1: /* errata 7534 - should be K63 */
2188 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX2: /* errata 7534 - should be K64 */
2189 subfamid += 2; /* errata 7534 fix */
2190 /* fallthrough */
2191 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX3:
2192 /* K63FN1M0 */
2193 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX4:
2194 /* K64FN1M0, K64FX512 */
2195 k_chip->pflash_sector_size = 4<<10;
2196 k_chip->nvm_sector_size = 4<<10;
2197 k_chip->max_flash_prog_size = 1<<10;
2198 num_blocks = 2;
2199 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2200 break;
2201
2202 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX6:
2203 /* K26FN2M0 */
2204 case KINETIS_SDID_FAMILYID_K6X | KINETIS_SDID_SUBFAMID_KX6:
2205 /* K66FN2M0, K66FX1M0 */
2206 k_chip->pflash_sector_size = 4<<10;
2207 k_chip->nvm_sector_size = 4<<10;
2208 k_chip->max_flash_prog_size = 1<<10;
2209 num_blocks = 4;
2210 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2211 cpu_mhz = 180;
2212 break;
2213
2214 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX7:
2215 /* K27FN2M0 */
2216 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2217 /* K28FN2M0 */
2218 k_chip->pflash_sector_size = 4<<10;
2219 k_chip->max_flash_prog_size = 1<<10;
2220 num_blocks = 4;
2221 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_ECC;
2222 cpu_mhz = 150;
2223 break;
2224
2225 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX0:
2226 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX1:
2227 case KINETIS_SDID_FAMILYID_K8X | KINETIS_SDID_SUBFAMID_KX2:
2228 /* K80FN256, K81FN256, K82FN256 */
2229 k_chip->pflash_sector_size = 4<<10;
2230 num_blocks = 1;
2231 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2232 cpu_mhz = 150;
2233 break;
2234
2235 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX1:
2236 case KINETIS_SDID_FAMILYID_KL8X | KINETIS_SDID_SUBFAMID_KX2:
2237 /* KL81Z128, KL82Z128 */
2238 k_chip->pflash_sector_size = 2<<10;
2239 num_blocks = 1;
2240 k_chip->flash_support = FS_PROGRAM_LONGWORD | FS_NO_CMD_BLOCKSTAT;
2241 k_chip->cache_type = KINETIS_CACHE_L;
2242
2243 use_nvm_marking = false;
2244 snprintf(name, sizeof(name), "MKL8%uZ%%s7",
2245 subfamid);
2246 break;
2247
2248 default:
2249 LOG_ERROR("Unsupported Kinetis FAMILYID SUBFAMID");
2250 }
2251
2252 if (name[0] == '\0')
2253 snprintf(name, sizeof(name), "MK%u%uF%%s%u",
2254 familyid, subfamid, cpu_mhz / 10);
2255 break;
2256
2257 case KINETIS_SDID_SERIESID_KL:
2258 /* KL-series */
2259 k_chip->pflash_sector_size = 1<<10;
2260 k_chip->nvm_sector_size = 1<<10;
2261 /* autodetect 1 or 2 blocks */
2262 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2263 k_chip->cache_type = KINETIS_CACHE_L;
2264 k_chip->watchdog_type = KINETIS_WDOG_COP;
2265
2266 cpu_mhz = 48;
2267 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2268 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX3:
2269 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX3:
2270 subfamid = 7;
2271 break;
2272
2273 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX8:
2274 cpu_mhz = 72;
2275 k_chip->pflash_sector_size = 2<<10;
2276 num_blocks = 2;
2277 k_chip->watchdog_type = KINETIS_WDOG32_KL28;
2278 k_chip->sysmodectrlr_type = KINETIS_SMC32;
2279 break;
2280 }
2281
2282 snprintf(name, sizeof(name), "MKL%u%uZ%%s%u",
2283 familyid, subfamid, cpu_mhz / 10);
2284 break;
2285
2286 case KINETIS_SDID_SERIESID_KW:
2287 /* Newer KW-series (all KW series except KW2xD, KW01Z) */
2288 cpu_mhz = 48;
2289 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2290 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX0:
2291 /* KW40Z */
2292 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2293 /* KW30Z */
2294 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX0:
2295 /* KW20Z */
2296 /* FTFA, 1kB sectors */
2297 k_chip->pflash_sector_size = 1<<10;
2298 k_chip->nvm_sector_size = 1<<10;
2299 /* autodetect 1 or 2 blocks */
2300 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2301 k_chip->cache_type = KINETIS_CACHE_L;
2302 k_chip->watchdog_type = KINETIS_WDOG_COP;
2303 break;
2304 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX1:
2305 /* KW41Z */
2306 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2307 /* KW31Z */
2308 case KINETIS_SDID_FAMILYID_K2X | KINETIS_SDID_SUBFAMID_KX1:
2309 /* KW21Z */
2310 /* FTFA, 2kB sectors */
2311 k_chip->pflash_sector_size = 2<<10;
2312 k_chip->nvm_sector_size = 2<<10;
2313 /* autodetect 1 or 2 blocks */
2314 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2315 k_chip->cache_type = KINETIS_CACHE_L;
2316 k_chip->watchdog_type = KINETIS_WDOG_COP;
2317 break;
2318 default:
2319 LOG_ERROR("Unsupported KW FAMILYID SUBFAMID");
2320 }
2321 snprintf(name, sizeof(name), "MKW%u%uZ%%s%u",
2322 familyid, subfamid, cpu_mhz / 10);
2323 break;
2324
2325 case KINETIS_SDID_SERIESID_KV:
2326 /* KV-series */
2327 k_chip->watchdog_type = KINETIS_WDOG_K;
2328 switch (k_chip->sim_sdid & (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK)) {
2329 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX0:
2330 /* KV10: FTFA, 1kB sectors */
2331 k_chip->pflash_sector_size = 1<<10;
2332 num_blocks = 1;
2333 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2334 k_chip->cache_type = KINETIS_CACHE_L;
2335 strcpy(name, "MKV10Z%s7");
2336 break;
2337
2338 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX1:
2339 /* KV11: FTFA, 2kB sectors */
2340 k_chip->pflash_sector_size = 2<<10;
2341 num_blocks = 1;
2342 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2343 k_chip->cache_type = KINETIS_CACHE_L;
2344 strcpy(name, "MKV11Z%s7");
2345 break;
2346
2347 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX0:
2348 /* KV30: FTFA, 2kB sectors, 1 block */
2349 case KINETIS_SDID_FAMILYID_K3X | KINETIS_SDID_SUBFAMID_KX1:
2350 /* KV31: FTFA, 2kB sectors, 2 blocks */
2351 k_chip->pflash_sector_size = 2<<10;
2352 /* autodetect 1 or 2 blocks */
2353 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2354 k_chip->cache_type = KINETIS_CACHE_K;
2355 break;
2356
2357 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX2:
2358 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX4:
2359 case KINETIS_SDID_FAMILYID_K4X | KINETIS_SDID_SUBFAMID_KX6:
2360 /* KV4x: FTFA, 4kB sectors */
2361 k_chip->pflash_sector_size = 4<<10;
2362 num_blocks = 1;
2363 k_chip->flash_support = FS_PROGRAM_LONGWORD;
2364 k_chip->cache_type = KINETIS_CACHE_K;
2365 cpu_mhz = 168;
2366 break;
2367
2368 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX6:
2369 case KINETIS_SDID_FAMILYID_K5X | KINETIS_SDID_SUBFAMID_KX8:
2370 /* KV5x: FTFE, 8kB sectors */
2371 k_chip->pflash_sector_size = 8<<10;
2372 k_chip->max_flash_prog_size = 1<<10;
2373 num_blocks = 1;
2374 maxaddr_shift = 14;
2375 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR | FS_WIDTH_256BIT | FS_ECC;
2376 k_chip->pflash_base = 0x10000000;
2377 k_chip->progr_accel_ram = 0x18000000;
2378 cpu_mhz = 240;
2379 break;
2380
2381 default:
2382 LOG_ERROR("Unsupported KV FAMILYID SUBFAMID");
2383 }
2384
2385 if (name[0] == '\0')
2386 snprintf(name, sizeof(name), "MKV%u%uF%%s%u",
2387 familyid, subfamid, cpu_mhz / 10);
2388 break;
2389
2390 case KINETIS_SDID_SERIESID_KE:
2391 /* KE1x-series */
2392 k_chip->watchdog_type = KINETIS_WDOG32_KE1X;
2393 switch (k_chip->sim_sdid &
2394 (KINETIS_SDID_FAMILYID_MASK | KINETIS_SDID_SUBFAMID_MASK | KINETIS_SDID_PROJECTID_MASK)) {
2395 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xZ:
2396 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX5 | KINETIS_SDID_PROJECTID_KE1xZ:
2397 /* KE1xZ: FTFE, 2kB sectors */
2398 k_chip->pflash_sector_size = 2<<10;
2399 k_chip->nvm_sector_size = 2<<10;
2400 k_chip->max_flash_prog_size = 1<<9;
2401 num_blocks = 2;
2402 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2403 k_chip->cache_type = KINETIS_CACHE_L;
2404
2405 cpu_mhz = 72;
2406 snprintf(name, sizeof(name), "MKE%u%uZ%%s%u",
2407 familyid, subfamid, cpu_mhz / 10);
2408 break;
2409
2410 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX4 | KINETIS_SDID_PROJECTID_KE1xF:
2411 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX6 | KINETIS_SDID_PROJECTID_KE1xF:
2412 case KINETIS_SDID_FAMILYID_K1X | KINETIS_SDID_SUBFAMID_KX8 | KINETIS_SDID_PROJECTID_KE1xF:
2413 /* KE1xF: FTFE, 4kB sectors */
2414 k_chip->pflash_sector_size = 4<<10;
2415 k_chip->nvm_sector_size = 2<<10;
2416 k_chip->max_flash_prog_size = 1<<10;
2417 num_blocks = 2;
2418 k_chip->flash_support = FS_PROGRAM_PHRASE | FS_PROGRAM_SECTOR;
2419 k_chip->cache_type = KINETIS_CACHE_MSCM;
2420
2421 cpu_mhz = 168;
2422 snprintf(name, sizeof(name), "MKE%u%uF%%s%u",
2423 familyid, subfamid, cpu_mhz / 10);
2424 break;
2425
2426 default:
2427 LOG_ERROR("Unsupported KE FAMILYID SUBFAMID");
2428 }
2429 break;
2430
2431 default:
2432 LOG_ERROR("Unsupported K-series");
2433 }
2434 }
2435
2436 if (k_chip->pflash_sector_size == 0) {
2437 LOG_ERROR("MCU is unsupported, SDID 0x%08" PRIx32, k_chip->sim_sdid);
2438 return ERROR_FLASH_OPER_UNSUPPORTED;
2439 }
2440
2441 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &k_chip->sim_fcfg1);
2442 if (result != ERROR_OK)
2443 return result;
2444
2445 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG2_OFFSET, &k_chip->sim_fcfg2);
2446 if (result != ERROR_OK)
2447 return result;
2448
2449 LOG_DEBUG("SDID: 0x%08" PRIX32 " FCFG1: 0x%08" PRIX32 " FCFG2: 0x%08" PRIX32, k_chip->sim_sdid,
2450 k_chip->sim_fcfg1, k_chip->sim_fcfg2);
2451
2452 fcfg1_nvmsize = (uint8_t)((k_chip->sim_fcfg1 >> 28) & 0x0f);
2453 fcfg1_pfsize = (uint8_t)((k_chip->sim_fcfg1 >> 24) & 0x0f);
2454 fcfg1_eesize = (uint8_t)((k_chip->sim_fcfg1 >> 16) & 0x0f);
2455 fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2456
2457 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2458 k_chip->fcfg2_maxaddr0_shifted = ((k_chip->sim_fcfg2 >> 24) & 0x7f) << maxaddr_shift;
2459 k_chip->fcfg2_maxaddr1_shifted = ((k_chip->sim_fcfg2 >> 16) & 0x7f) << maxaddr_shift;
2460
2461 if (num_blocks == 0)
2462 num_blocks = k_chip->fcfg2_maxaddr1_shifted ? 2 : 1;
2463 else if (k_chip->fcfg2_maxaddr1_shifted == 0 && num_blocks >= 2 && fcfg2_pflsh) {
2464 /* fcfg2_maxaddr1 may be zero due to partitioning whole NVM as EEPROM backup
2465 * Do not adjust block count in this case! */
2466 num_blocks = 1;
2467 LOG_WARNING("MAXADDR1 is zero, number of flash banks adjusted to 1");
2468 } else if (k_chip->fcfg2_maxaddr1_shifted != 0 && num_blocks == 1) {
2469 num_blocks = 2;
2470 LOG_WARNING("MAXADDR1 is non zero, number of flash banks adjusted to 2");
2471 }
2472
2473 /* when the PFLSH bit is set, there is no FlexNVM/FlexRAM */
2474 if (!fcfg2_pflsh) {
2475 switch (fcfg1_nvmsize) {
2476 case 0x03:
2477 case 0x05:
2478 case 0x07:
2479 case 0x09:
2480 case 0x0b:
2481 k_chip->nvm_size = 1 << (14 + (fcfg1_nvmsize >> 1));
2482 break;
2483 case 0x0f:
2484 if (k_chip->pflash_sector_size >= 4<<10)
2485 k_chip->nvm_size = 512<<10;
2486 else
2487 /* K20_100 */
2488 k_chip->nvm_size = 256<<10;
2489 break;
2490 default:
2491 k_chip->nvm_size = 0;
2492 break;
2493 }
2494
2495 switch (fcfg1_eesize) {
2496 case 0x00:
2497 case 0x01:
2498 case 0x02:
2499 case 0x03:
2500 case 0x04:
2501 case 0x05:
2502 case 0x06:
2503 case 0x07:
2504 case 0x08:
2505 case 0x09:
2506 ee_size = (16 << (10 - fcfg1_eesize));
2507 break;
2508 default:
2509 ee_size = 0;
2510 break;
2511 }
2512
2513 switch (fcfg1_depart) {
2514 case 0x01:
2515 case 0x02:
2516 case 0x03:
2517 case 0x04:
2518 case 0x05:
2519 case 0x06:
2520 k_chip->dflash_size = k_chip->nvm_size - (4096 << fcfg1_depart);
2521 break;
2522 case 0x07:
2523 case 0x08:
2524 k_chip->dflash_size = 0;
2525 break;
2526 case 0x09:
2527 case 0x0a:
2528 case 0x0b:
2529 case 0x0c:
2530 case 0x0d:
2531 k_chip->dflash_size = 4096 << (fcfg1_depart & 0x7);
2532 break;
2533 default:
2534 k_chip->dflash_size = k_chip->nvm_size;
2535 break;
2536 }
2537 }
2538
2539 switch (fcfg1_pfsize) {
2540 case 0x00:
2541 k_chip->pflash_size = 8192;
2542 break;
2543 case 0x01:
2544 case 0x03:
2545 case 0x05:
2546 case 0x07:
2547 case 0x09:
2548 case 0x0b:
2549 case 0x0d:
2550 k_chip->pflash_size = 1 << (14 + (fcfg1_pfsize >> 1));
2551 break;
2552 case 0x0f:
2553 /* a peculiar case: Freescale states different sizes for 0xf
2554 * KL03P24M48SF0RM 32 KB .... duplicate of code 0x3
2555 * K02P64M100SFARM 128 KB ... duplicate of code 0x7
2556 * K22P121M120SF8RM 256 KB ... duplicate of code 0x9
2557 * K22P121M120SF7RM 512 KB ... duplicate of code 0xb
2558 * K22P100M120SF5RM 1024 KB ... duplicate of code 0xd
2559 * K26P169M180SF5RM 2048 KB ... the only unique value
2560 * fcfg2_maxaddr0 seems to be the only clue to pflash_size
2561 * Checking fcfg2_maxaddr0 in bank probe is pointless then
2562 */
2563 if (fcfg2_pflsh)
2564 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks;
2565 else
2566 k_chip->pflash_size = k_chip->fcfg2_maxaddr0_shifted * num_blocks / 2;
2567 if (k_chip->pflash_size != 2048<<10)
2568 LOG_WARNING("SIM_FCFG1 PFSIZE = 0xf: please check if pflash is %u KB", k_chip->pflash_size>>10);
2569
2570 break;
2571 default:
2572 k_chip->pflash_size = 0;
2573 break;
2574 }
2575
2576 if (k_chip->flash_support & FS_PROGRAM_SECTOR && k_chip->max_flash_prog_size == 0) {
2577 k_chip->max_flash_prog_size = k_chip->pflash_sector_size;
2578 /* Program section size is equal to sector size by default */
2579 }
2580
2581 if (fcfg2_pflsh) {
2582 k_chip->num_pflash_blocks = num_blocks;
2583 k_chip->num_nvm_blocks = 0;
2584 } else {
2585 k_chip->num_pflash_blocks = (num_blocks + 1) / 2;
2586 k_chip->num_nvm_blocks = num_blocks - k_chip->num_pflash_blocks;
2587 }
2588
2589 if (use_nvm_marking) {
2590 nvm_marking[0] = k_chip->num_nvm_blocks ? 'X' : 'N';
2591 nvm_marking[1] = '\0';
2592 } else
2593 nvm_marking[0] = '\0';
2594
2595 pflash_size_k = k_chip->pflash_size / 1024;
2596 pflash_size_m = pflash_size_k / 1024;
2597 if (pflash_size_m)
2598 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "M0xxx", nvm_marking, pflash_size_m);
2599 else
2600 snprintf(flash_marking, sizeof(flash_marking), "%s%" PRIu32 "xxx", nvm_marking, pflash_size_k);
2601
2602 snprintf(k_chip->name, sizeof(k_chip->name), name, flash_marking);
2603 LOG_INFO("Kinetis %s detected: %u flash blocks", k_chip->name, num_blocks);
2604 LOG_INFO("%u PFlash banks: %" PRIu32 "k total", k_chip->num_pflash_blocks, pflash_size_k);
2605 if (k_chip->num_nvm_blocks) {
2606 nvm_size_k = k_chip->nvm_size / 1024;
2607 dflash_size_k = k_chip->dflash_size / 1024;
2608 LOG_INFO("%u FlexNVM banks: %" PRIu32 "k total, %" PRIu32 "k available as data flash, %" PRIu32 "bytes FlexRAM",
2609 k_chip->num_nvm_blocks, nvm_size_k, dflash_size_k, ee_size);
2610 }
2611
2612 k_chip->probed = true;
2613
2614 if (create_banks)
2615 kinetis_create_missing_banks(k_chip);
2616
2617 return ERROR_OK;
2618 }
2619
2620 static int kinetis_probe(struct flash_bank *bank)
2621 {
2622 int result;
2623 uint8_t fcfg2_maxaddr0, fcfg2_pflsh, fcfg2_maxaddr1;
2624 unsigned num_blocks, first_nvm_bank;
2625 uint32_t size_k;
2626 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2627 struct kinetis_chip *k_chip;
2628
2629 assert(k_bank);
2630 k_chip = k_bank->k_chip;
2631
2632 k_bank->probed = false;
2633
2634 if (!k_chip->probed) {
2635 result = kinetis_probe_chip(k_chip);
2636 if (result != ERROR_OK)
2637 return result;
2638 }
2639
2640 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2641 first_nvm_bank = k_chip->num_pflash_blocks;
2642
2643 if (k_bank->bank_number < k_chip->num_pflash_blocks) {
2644 /* pflash, banks start at address zero */
2645 k_bank->flash_class = FC_PFLASH;
2646 bank->size = (k_chip->pflash_size / k_chip->num_pflash_blocks);
2647 bank->base = k_chip->pflash_base + bank->size * k_bank->bank_number;
2648 k_bank->prog_base = 0x00000000 + bank->size * k_bank->bank_number;
2649 k_bank->sector_size = k_chip->pflash_sector_size;
2650 /* pflash is divided into 32 protection areas for
2651 * parts with more than 32K of PFlash. For parts with
2652 * less the protection unit is set to 1024 bytes */
2653 k_bank->protection_size = MAX(k_chip->pflash_size / 32, 1024);
2654 bank->num_prot_blocks = bank->size / k_bank->protection_size;
2655 k_bank->protection_block = bank->num_prot_blocks * k_bank->bank_number;
2656
2657 size_k = bank->size / 1024;
2658 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k PFlash, FTFx base 0x%08" PRIx32 ", sect %u",
2659 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2660
2661 } else if (k_bank->bank_number < num_blocks) {
2662 /* nvm, banks start at address 0x10000000 */
2663 unsigned nvm_ord = k_bank->bank_number - first_nvm_bank;
2664 uint32_t limit;
2665
2666 k_bank->flash_class = FC_FLEX_NVM;
2667 bank->size = k_chip->nvm_size / k_chip->num_nvm_blocks;
2668 bank->base = k_chip->nvm_base + bank->size * nvm_ord;
2669 k_bank->prog_base = 0x00800000 + bank->size * nvm_ord;
2670 k_bank->sector_size = k_chip->nvm_sector_size;
2671 if (k_chip->dflash_size == 0) {
2672 k_bank->protection_size = 0;
2673 } else {
2674 int i;
2675 for (i = k_chip->dflash_size; ~i & 1; i >>= 1)
2676 ;
2677 if (i == 1)
2678 k_bank->protection_size = k_chip->dflash_size / 8; /* data flash size = 2^^n */
2679 else
2680 k_bank->protection_size = k_chip->nvm_size / 8; /* TODO: verify on SF1, not documented in RM */
2681 }
2682 bank->num_prot_blocks = 8 / k_chip->num_nvm_blocks;
2683 k_bank->protection_block = bank->num_prot_blocks * nvm_ord;
2684
2685 /* EEPROM backup part of FlexNVM is not accessible, use dflash_size as a limit */
2686 if (k_chip->dflash_size > bank->size * nvm_ord)
2687 limit = k_chip->dflash_size - bank->size * nvm_ord;
2688 else
2689 limit = 0;
2690
2691 if (bank->size > limit) {
2692 bank->size = limit;
2693 LOG_DEBUG("FlexNVM bank %u limited to 0x%08" PRIx32 " due to active EEPROM backup",
2694 k_bank->bank_number, limit);
2695 }
2696
2697 size_k = bank->size / 1024;
2698 LOG_DEBUG("Kinetis bank %u: %" PRIu32 "k FlexNVM, FTFx base 0x%08" PRIx32 ", sect %u",
2699 k_bank->bank_number, size_k, k_bank->prog_base, k_bank->sector_size);
2700
2701 } else {
2702 LOG_ERROR("Cannot determine parameters for bank %u, only %u banks on device",
2703 k_bank->bank_number, num_blocks);
2704 return ERROR_FLASH_BANK_INVALID;
2705 }
2706
2707 fcfg2_pflsh = (uint8_t)((k_chip->sim_fcfg2 >> 23) & 0x01);
2708 fcfg2_maxaddr0 = (uint8_t)((k_chip->sim_fcfg2 >> 24) & 0x7f);
2709 fcfg2_maxaddr1 = (uint8_t)((k_chip->sim_fcfg2 >> 16) & 0x7f);
2710
2711 if (k_bank->bank_number == 0 && k_chip->fcfg2_maxaddr0_shifted != bank->size)
2712 LOG_WARNING("MAXADDR0 0x%02" PRIx8 " check failed,"
2713 " please report to OpenOCD mailing list", fcfg2_maxaddr0);
2714
2715 if (fcfg2_pflsh) {
2716 if (k_bank->bank_number == 1 && k_chip->fcfg2_maxaddr1_shifted != bank->size)
2717 LOG_WARNING("MAXADDR1 0x%02" PRIx8 " check failed,"
2718 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2719 } else {
2720 if (k_bank->bank_number == first_nvm_bank
2721 && k_chip->fcfg2_maxaddr1_shifted != k_chip->dflash_size)
2722 LOG_WARNING("FlexNVM MAXADDR1 0x%02" PRIx8 " check failed,"
2723 " please report to OpenOCD mailing list", fcfg2_maxaddr1);
2724 }
2725
2726 if (bank->sectors) {
2727 free(bank->sectors);
2728 bank->sectors = NULL;
2729 }
2730 if (bank->prot_blocks) {
2731 free(bank->prot_blocks);
2732 bank->prot_blocks = NULL;
2733 }
2734
2735 if (k_bank->sector_size == 0) {
2736 LOG_ERROR("Unknown sector size for bank %u", bank->bank_number);
2737 return ERROR_FLASH_BANK_INVALID;
2738 }
2739
2740 bank->num_sectors = bank->size / k_bank->sector_size;
2741
2742 if (bank->num_sectors > 0) {
2743 /* FlexNVM bank can be used for EEPROM backup therefore zero sized */
2744 bank->sectors = alloc_block_array(0, k_bank->sector_size, bank->num_sectors);
2745 if (!bank->sectors)
2746 return ERROR_FAIL;
2747
2748 bank->prot_blocks = alloc_block_array(0, k_bank->protection_size, bank->num_prot_blocks);
2749 if (!bank->prot_blocks)
2750 return ERROR_FAIL;
2751
2752 } else {
2753 bank->num_prot_blocks = 0;
2754 }
2755
2756 k_bank->probed = true;
2757
2758 return ERROR_OK;
2759 }
2760
2761 static int kinetis_auto_probe(struct flash_bank *bank)
2762 {
2763 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2764
2765 if (k_bank && k_bank->probed)
2766 return ERROR_OK;
2767
2768 return kinetis_probe(bank);
2769 }
2770
2771 static int kinetis_info(struct flash_bank *bank, char *buf, int buf_size)
2772 {
2773 const char *bank_class_names[] = {
2774 "(ANY)", "PFlash", "FlexNVM", "FlexRAM"
2775 };
2776
2777 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2778 struct kinetis_chip *k_chip = k_bank->k_chip;
2779 uint32_t size_k = bank->size / 1024;
2780
2781 snprintf(buf, buf_size,
2782 "%s %s: %" PRIu32 "k %s bank %s at " TARGET_ADDR_FMT,
2783 bank->driver->name, k_chip->name,
2784 size_k, bank_class_names[k_bank->flash_class],
2785 bank->name, bank->base);
2786
2787 return ERROR_OK;
2788 }
2789
2790 static int kinetis_blank_check(struct flash_bank *bank)
2791 {
2792 struct kinetis_flash_bank *k_bank = bank->driver_priv;
2793 struct kinetis_chip *k_chip = k_bank->k_chip;
2794 int result;
2795
2796 /* suprisingly blank check does not work in VLPR and HSRUN modes */
2797 result = kinetis_check_run_mode(k_chip);
2798 if (result != ERROR_OK)
2799 return result;
2800
2801 /* reset error flags */
2802 result = kinetis_ftfx_prepare(bank->target);
2803 if (result != ERROR_OK)
2804 return result;
2805
2806 if (k_bank->flash_class == FC_PFLASH || k_bank->flash_class == FC_FLEX_NVM) {
2807 bool block_dirty = true;
2808 bool use_block_cmd = !(k_chip->flash_support & FS_NO_CMD_BLOCKSTAT);
2809 uint8_t ftfx_fstat;
2810
2811 if (use_block_cmd && k_bank->flash_class == FC_FLEX_NVM) {
2812 uint8_t fcfg1_depart = (uint8_t)((k_chip->sim_fcfg1 >> 8) & 0x0f);
2813 /* block operation cannot be used on FlexNVM when EEPROM backup partition is set */
2814 if (fcfg1_depart != 0xf && fcfg1_depart != 0)
2815 use_block_cmd = false;
2816 }
2817
2818 if (use_block_cmd) {
2819 /* check if whole bank is blank */
2820 result = kinetis_ftfx_command(bank->target, FTFx_CMD_BLOCKSTAT, k_bank->prog_base,
2821 0, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2822
2823 if (result != ERROR_OK)
2824 kinetis_ftfx_clear_error(bank->target);
2825 else if ((ftfx_fstat & 0x01) == 0)
2826 block_dirty = false;
2827 }
2828
2829 if (block_dirty) {
2830 /* the whole bank is not erased, check sector-by-sector */
2831 for (unsigned int i = 0; i < bank->num_sectors; i++) {
2832 /* normal margin */
2833 result = kinetis_ftfx_command(bank->target, FTFx_CMD_SECTSTAT,
2834 k_bank->prog_base + bank->sectors[i].offset,
2835 1, 0, 0, 0, 0, 0, 0, 0, &ftfx_fstat);
2836
2837 if (result == ERROR_OK) {
2838 bank->sectors[i].is_erased = !(ftfx_fstat & 0x01);
2839 } else {
2840 LOG_DEBUG("Ignoring errored PFlash sector blank-check");
2841 kinetis_ftfx_clear_error(bank->target);
2842 bank->sectors[i].is_erased = -1;
2843 }
2844 }
2845 } else {
2846 /* the whole bank is erased, update all sectors */
2847 for (unsigned int i = 0; i < bank->num_sectors; i++)
2848 bank->sectors[i].is_erased = 1;
2849 }
2850 } else {
2851 LOG_WARNING("kinetis_blank_check not supported yet for FlexRAM");
2852 return ERROR_FLASH_OPERATION_FAILED;
2853 }
2854
2855 return ERROR_OK;
2856 }
2857
2858
2859 COMMAND_HANDLER(kinetis_nvm_partition)
2860 {
2861 int result;
2862 unsigned bank_idx;
2863 unsigned num_blocks, first_nvm_bank;
2864 unsigned long par, log2 = 0, ee1 = 0, ee2 = 0;
2865 enum { SHOW_INFO, DF_SIZE, EEBKP_SIZE } sz_type = SHOW_INFO;
2866 bool enable;
2867 uint8_t load_flex_ram = 1;
2868 uint8_t ee_size_code = 0x3f;
2869 uint8_t flex_nvm_partition_code = 0;
2870 uint8_t ee_split = 3;
2871 struct target *target = get_current_target(CMD_CTX);
2872 struct kinetis_chip *k_chip;
2873 uint32_t sim_fcfg1;
2874
2875 k_chip = kinetis_get_chip(target);
2876
2877 if (CMD_ARGC >= 2) {
2878 if (strcmp(CMD_ARGV[0], "dataflash") == 0)
2879 sz_type = DF_SIZE;
2880 else if (strcmp(CMD_ARGV[0], "eebkp") == 0)
2881 sz_type = EEBKP_SIZE;
2882
2883 par = strtoul(CMD_ARGV[1], NULL, 10);
2884 while (par >> (log2 + 3))
2885 log2++;
2886 }
2887 switch (sz_type) {
2888 case SHOW_INFO:
2889 if (k_chip == NULL) {
2890 LOG_ERROR("Chip not probed.");
2891 return ERROR_FAIL;
2892 }
2893 result = target_read_u32(target, k_chip->sim_base + SIM_FCFG1_OFFSET, &sim_fcfg1);
2894 if (result != ERROR_OK)
2895 return result;
2896
2897 flex_nvm_partition_code = (uint8_t)((sim_fcfg1 >> 8) & 0x0f);
2898 switch (flex_nvm_partition_code) {
2899 case 0:
2900 command_print(CMD, "No EEPROM backup, data flash only");
2901 break;
2902 case 1:
2903 case 2:
2904 case 3:
2905 case 4:
2906 case 5:
2907 case 6:
2908 command_print(CMD, "EEPROM backup %d KB", 4 << flex_nvm_partition_code);
2909 break;
2910 case 8:
2911 command_print(CMD, "No data flash, EEPROM backup only");
2912 break;
2913 case 0x9:
2914 case 0xA:
2915 case 0xB:
2916 case 0xC:
2917 case 0xD:
2918 case 0xE:
2919 command_print(CMD, "data flash %d KB", 4 << (flex_nvm_partition_code & 7));
2920 break;
2921 case 0xf:
2922 command_print(CMD, "No EEPROM backup, data flash only (DEPART not set)");
2923 break;
2924 default:
2925 command_print(CMD, "Unsupported EEPROM backup size code 0x%02" PRIx8, flex_nvm_partition_code);
2926 }
2927 return ERROR_OK;
2928
2929 case DF_SIZE:
2930 flex_nvm_partition_code = 0x8 | log2;
2931 break;
2932
2933 case EEBKP_SIZE:
2934 flex_nvm_partition_code = log2;
2935 break;
2936 }
2937
2938 if (CMD_ARGC == 3)
2939 ee1 = ee2 = strtoul(CMD_ARGV[2], NULL, 10) / 2;
2940 else if (CMD_ARGC >= 4) {
2941 ee1 = strtoul(CMD_ARGV[2], NULL, 10);
2942 ee2 = strtoul(CMD_ARGV[3], NULL, 10);
2943 }
2944
2945 enable = ee1 + ee2 > 0;
2946 if (enable) {
2947 for (log2 = 2; ; log2++) {
2948 if (ee1 + ee2 == (16u << 10) >> log2)
2949 break;
2950 if (ee1 + ee2 > (16u << 10) >> log2 || log2 >= 9) {
2951 LOG_ERROR("Unsupported EEPROM size");
2952 return ERROR_FLASH_OPERATION_FAILED;
2953 }
2954 }
2955
2956 if (ee1 * 3 == ee2)
2957 ee_split = 1;
2958 else if (ee1 * 7 == ee2)
2959 ee_split = 0;
2960 else if (ee1 != ee2) {
2961 LOG_ERROR("Unsupported EEPROM sizes ratio");
2962 return ERROR_FLASH_OPERATION_FAILED;
2963 }
2964
2965 ee_size_code = log2 | ee_split << 4;
2966 }
2967
2968 if (CMD_ARGC >= 5)
2969 COMMAND_PARSE_ON_OFF(CMD_ARGV[4], enable);
2970 if (enable)
2971 load_flex_ram = 0;
2972
2973 LOG_INFO("DEPART 0x%" PRIx8 ", EEPROM size code 0x%" PRIx8,
2974 flex_nvm_partition_code, ee_size_code);
2975
2976 result = kinetis_check_run_mode(k_chip);
2977 if (result != ERROR_OK)
2978 return result;
2979
2980 /* reset error flags */
2981 result = kinetis_ftfx_prepare(target);
2982 if (result != ERROR_OK)
2983 return result;
2984
2985 result = kinetis_ftfx_command(target, FTFx_CMD_PGMPART, load_flex_ram,
2986 ee_size_code, flex_nvm_partition_code, 0, 0,
2987 0, 0, 0, 0, NULL);
2988 if (result != ERROR_OK)
2989 return result;
2990
2991 command_print(CMD, "FlexNVM partition set. Please reset MCU.");
2992
2993 if (k_chip) {
2994 first_nvm_bank = k_chip->num_pflash_blocks;
2995 num_blocks = k_chip->num_pflash_blocks + k_chip->num_nvm_blocks;
2996 for (bank_idx = first_nvm_bank; bank_idx < num_blocks; bank_idx++)
2997 k_chip->banks[bank_idx].probed = false; /* re-probe before next use */
2998 k_chip->probed = false;
2999 }
3000
3001 command_print(CMD, "FlexNVM banks will be re-probed to set new data flash size.");
3002 return ERROR_OK;
3003 }
3004
3005 COMMAND_HANDLER(kinetis_fcf_source_handler)
3006 {
3007 if (CMD_ARGC > 1)
3008 return ERROR_COMMAND_SYNTAX_ERROR;
3009
3010 if (CMD_ARGC == 1) {
3011 if (strcmp(CMD_ARGV[0], "write") == 0)
3012 allow_fcf_writes = true;
3013 else if (strcmp(CMD_ARGV[0], "protection") == 0)
3014 allow_fcf_writes = false;
3015 else
3016 return ERROR_COMMAND_SYNTAX_ERROR;
3017 }
3018
3019 if (allow_fcf_writes) {
3020 command_print(CMD, "Arbitrary Flash Configuration Field writes enabled.");
3021 command_print(CMD, "Protection info writes to FCF disabled.");
3022 LOG_WARNING("BEWARE: incorrect flash configuration may permanently lock the device.");
3023 } else {
3024 command_print(CMD, "Protection info writes to Flash Configuration Field enabled.");
3025 command_print(CMD, "Arbitrary FCF writes disabled. Mode safe from unwanted locking of the device.");
3026 }
3027
3028 return ERROR_OK;
3029 }
3030
3031 COMMAND_HANDLER(kinetis_fopt_handler)
3032 {
3033 if (CMD_ARGC > 1)
3034 return ERROR_COMMAND_SYNTAX_ERROR;
3035
3036 if (CMD_ARGC == 1) {
3037 fcf_fopt = (uint8_t)strtoul(CMD_ARGV[0], NULL, 0);
3038 fcf_fopt_configured = true;
3039 } else {
3040 command_print(CMD, "FCF_FOPT 0x%02" PRIx8, fcf_fopt);
3041 }
3042
3043 return ERROR_OK;
3044 }
3045
3046 COMMAND_HANDLER(kinetis_create_banks_handler)
3047 {
3048 if (CMD_ARGC > 0)
3049 return ERROR_COMMAND_SYNTAX_ERROR;
3050
3051 create_banks = true;
3052
3053 return ERROR_OK;
3054 }
3055
3056
3057 static const struct command_registration kinetis_security_command_handlers[] = {
3058 {
3059 .name = "check_security",
3060 .mode = COMMAND_EXEC,
3061 .help = "Check status of device security lock",
3062 .usage = "",
3063 .handler = kinetis_check_flash_security_status,
3064 },
3065 {
3066 .name = "halt",
3067 .mode = COMMAND_EXEC,
3068 .help = "Issue a halt via the MDM-AP",
3069 .usage = "",
3070 .handler = kinetis_mdm_halt,
3071 },
3072 {
3073 .name = "mass_erase",
3074 .mode = COMMAND_EXEC,
3075 .help = "Issue a complete flash erase via the MDM-AP",
3076 .usage = "",
3077 .handler = kinetis_mdm_mass_erase,
3078 },
3079 {
3080 .name = "reset",
3081 .mode = COMMAND_EXEC,
3082 .help = "Issue a reset via the MDM-AP",
3083 .usage = "",
3084 .handler = kinetis_mdm_reset,
3085 },
3086 COMMAND_REGISTRATION_DONE
3087 };
3088
3089 static const struct command_registration kinetis_exec_command_handlers[] = {
3090 {
3091 .name = "mdm",
3092 .mode = COMMAND_ANY,
3093 .help = "MDM-AP command group",
3094 .usage = "",
3095 .chain = kinetis_security_command_handlers,
3096 },
3097 {
3098 .name = "disable_wdog",
3099 .mode = COMMAND_EXEC,
3100 .help = "Disable the watchdog timer",
3101 .usage = "",
3102 .handler = kinetis_disable_wdog_handler,
3103 },
3104 {
3105 .name = "nvm_partition",
3106 .mode = COMMAND_EXEC,
3107 .help = "Show/set data flash or EEPROM backup size in kilobytes,"
3108 " set two EEPROM sizes in bytes and FlexRAM loading during reset",
3109 .usage = "('info'|'dataflash' size|'eebkp' size) [eesize1 eesize2] ['on'|'off']",
3110 .handler = kinetis_nvm_partition,
3111 },
3112 {
3113 .name = "fcf_source",
3114 .mode = COMMAND_EXEC,
3115 .help = "Use protection as a source for Flash Configuration Field or allow writing arbitrary values to the FCF"
3116 " Mode 'protection' is safe from unwanted locking of the device.",
3117 .usage = "['protection'|'write']",
3118 .handler = kinetis_fcf_source_handler,
3119 },
3120 {
3121 .name = "fopt",
3122 .mode = COMMAND_EXEC,
3123 .help = "FCF_FOPT value source in 'kinetis fcf_source protection' mode",
3124 .usage = "[num]",
3125 .handler = kinetis_fopt_handler,
3126 },
3127 {
3128 .name = "create_banks",
3129 .mode = COMMAND_CONFIG,
3130 .help = "Driver creates additional banks if device with two/four flash blocks is probed",
3131 .handler = kinetis_create_banks_handler,
3132 .usage = "",
3133 },
3134 COMMAND_REGISTRATION_DONE
3135 };
3136
3137 static const struct command_registration kinetis_command_handler[] = {
3138 {
3139 .name = "kinetis",
3140 .mode = COMMAND_ANY,
3141 .help = "Kinetis flash controller commands",
3142 .usage = "",
3143 .chain = kinetis_exec_command_handlers,
3144 },
3145 COMMAND_REGISTRATION_DONE
3146 };
3147
3148
3149
3150 const struct flash_driver kinetis_flash = {
3151 .name = "kinetis",
3152 .commands = kinetis_command_handler,
3153 .flash_bank_command = kinetis_flash_bank_command,
3154 .erase = kinetis_erase,
3155 .protect = kinetis_protect,
3156 .write = kinetis_write,
3157 .read = default_flash_read,
3158 .probe = kinetis_probe,
3159 .auto_probe = kinetis_auto_probe,
3160 .erase_check = kinetis_blank_check,
3161 .protect_check = kinetis_protect_check,
3162 .info = kinetis_info,
3163 .free_driver_priv = kinetis_free_driver_priv,
3164 };

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)