- incorrect url in last commit for usbjtag
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 @paragraphindent 0
8 * OpenOCD: (openocd). Open On-Chip Debugger.
9 @end direntry
10 @c %**end of header
11
12 @include version.texi
13
14 @copying
15
16 @itemize @bullet
17 @item Copyright @copyright{} 2008 The OpenOCD Project
18 @item Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}
19 @item Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
20 @item Copyright @copyright{} 2008 Duane Ellis @email{openocd@@duaneellis.com}
21 @end itemize
22
23 @quotation
24 Permission is granted to copy, distribute and/or modify this document
25 under the terms of the GNU Free Documentation License, Version 1.2 or
26 any later version published by the Free Software Foundation; with no
27 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
28 Texts. A copy of the license is included in the section entitled ``GNU
29 Free Documentation License''.
30 @end quotation
31 @end copying
32
33 @titlepage
34 @title Open On-Chip Debugger (OpenOCD)
35 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
36 @subtitle @value{UPDATED}
37 @page
38 @vskip 0pt plus 1filll
39 @insertcopying
40 @end titlepage
41
42 @summarycontents
43 @contents
44
45 @node Top, About, , (dir)
46 @top OpenOCD
47
48 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
49 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
50
51 @insertcopying
52
53 @menu
54 * About:: About OpenOCD.
55 * Developers:: OpenOCD developers
56 * Building:: Building OpenOCD
57 * JTAG Hardware Dongles:: JTAG Hardware Dongles
58 * Running:: Running OpenOCD
59 * Simple Configuration Files:: Simple Configuration Files
60 * Config File Guidelines:: Config File Guidelines
61 * About JIM-Tcl:: About JIM-Tcl
62 * Daemon Configuration:: Daemon Configuration
63 * Interface - Dongle Configuration:: Interface - Dongle Configuration
64 * Reset Configuration:: Reset Configuration
65 * Tap Creation:: Tap Creation
66 * Target Configuration:: Target Configuration
67 * Flash Configuration:: Flash Configuration
68 * General Commands:: General Commands
69 * JTAG Commands:: JTAG Commands
70 * Sample Scripts:: Sample Target Scripts
71 * TFTP:: TFTP
72 * GDB and OpenOCD:: Using GDB and OpenOCD
73 * TCL scripting API:: Tcl scripting API
74 * Upgrading:: Deprecated/Removed Commands
75 * Target library:: Target library
76 * FAQ:: Frequently Asked Questions
77 * TCL Crash Course:: TCL Crash Course
78 * License:: GNU Free Documentation License
79 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
80 @comment case issue with ``Index.html'' and ``index.html''
81 @comment Occurs when creating ``--html --no-split'' output
82 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
83 * OpenOCD Index:: Main index.
84 @end menu
85
86 @node About
87 @unnumbered About
88 @cindex about
89
90 The Open On-Chip Debugger (OpenOCD) aims to provide debugging,
91 in-system programming and boundary-scan testing for embedded target
92 devices.
93
94 @b{JTAG:} OpenOCD uses a ``hardware interface dongle'' to communicate
95 with the JTAG (IEEE 1149.1) complient taps on your target board.
96
97 @b{Dongles:} OpenOCD currently many types of hardware dongles: USB
98 Based, Parallel Port Based, and other standalone boxes that run
99 OpenOCD internally. See the section titled: @xref{JTAG Hardware
100 Dongles}.
101
102 @b{GDB Debug:} It allows ARM7 (ARM7TDMI and ARM720t), ARM9 (ARM920t,
103 ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
104 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be
105 debugged via the GDB Protocol.
106
107 @b{Flash Programing:} Flash writing is supported for external CFI
108 compatible flashes (Intel and AMD/Spansion command set) and several
109 internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3 and
110 STM32x). Preliminary support for using the LPC3180's NAND flash
111 controller is included.
112
113 @node Developers
114 @chapter Developers
115 @cindex developers
116
117 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
118 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
119 Others interested in improving the state of free and open debug and testing technology
120 are welcome to participate.
121
122 Other developers have contributed support for additional targets and flashes as well
123 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
124
125 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
126
127 @node Building
128 @chapter Building
129 @cindex building OpenOCD
130
131 If you are interested in getting actual work done rather than building
132 OpenOCD, then check if your interface supplier provides binaries for
133 you. Chances are that that binary is from some SVN version that is more
134 stable than SVN trunk where bleeding edge development takes place.
135
136
137 You can download the current SVN version with SVN client of your choice from the
138 following repositories:
139
140 (@uref{svn://svn.berlios.de/openocd/trunk})
141
142 or
143
144 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
145
146 Using the SVN command line client, you can use the following command to fetch the
147 latest version (make sure there is no (non-svn) directory called "openocd" in the
148 current directory):
149
150 @example
151 svn checkout svn://svn.berlios.de/openocd/trunk openocd
152 @end example
153
154 Building OpenOCD requires a recent version of the GNU autotools.
155 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
156 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
157 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
158 paths, resulting in obscure dependency errors (This is an observation I've gathered
159 from the logs of one user - correct me if I'm wrong).
160
161 You further need the appropriate driver files, if you want to build support for
162 a FTDI FT2232 based interface:
163 @itemize @bullet
164 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
165 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
166 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
167 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
168 @end itemize
169
170 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
171 see contrib/libftdi for more details.
172
173 In general, the D2XX driver provides superior performance (several times as fast),
174 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
175 a kernel module, only a user space library.
176
177 To build OpenOCD (on both Linux and Cygwin), use the following commands:
178 @example
179 ./bootstrap
180 @end example
181 Bootstrap generates the configure script, and prepares building on your system.
182 @example
183 ./configure
184 @end example
185 Configure generates the Makefiles used to build OpenOCD.
186 @example
187 make
188 @end example
189 Make builds OpenOCD, and places the final executable in ./src/.
190
191 The configure script takes several options, specifying which JTAG interfaces
192 should be included:
193
194 @itemize @bullet
195 @item
196 @option{--enable-parport}
197 @item
198 @option{--enable-parport_ppdev}
199 @item
200 @option{--enable-parport_giveio}
201 @item
202 @option{--enable-amtjtagaccel}
203 @item
204 @option{--enable-ft2232_ftd2xx}
205 @footnote{Using the latest D2XX drivers from FTDI and following their installation
206 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
207 build properly.}
208 @item
209 @option{--enable-ft2232_libftdi}
210 @item
211 @option{--with-ftd2xx=/path/to/d2xx/}
212 @item
213 @option{--enable-gw16012}
214 @item
215 @option{--enable-usbprog}
216 @item
217 @option{--enable-presto_libftdi}
218 @item
219 @option{--enable-presto_ftd2xx}
220 @item
221 @option{--enable-jlink}
222 @end itemize
223
224 If you want to access the parallel port using the PPDEV interface you have to specify
225 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
226 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
227 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
228
229 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
230 absolute path containing no spaces.
231
232 Linux users should copy the various parts of the D2XX package to the appropriate
233 locations, i.e. /usr/include, /usr/lib.
234
235 Miscellaneous configure options
236
237 @itemize @bullet
238 @item
239 @option{--enable-gccwarnings} - enable extra gcc warnings during build
240 @end itemize
241
242 @node JTAG Hardware Dongles
243 @chapter JTAG Hardware Dongles
244 @cindex dongles
245 @cindex ftdi
246 @cindex wiggler
247 @cindex zy1000
248 @cindex printer port
249 @cindex usb adapter
250 @cindex rtck
251
252 Defined: @b{dongle}: A small device that plugins into a computer and serves as
253 an adapter .... [snip]
254
255 In the OpenOCD case, this generally refers to @b{a small adapater} one
256 attaches to your computer via USB or the Parallel Printer Port. The
257 execption being the Zylin ZY1000 which is a small box you attach via
258 an ethernet cable.
259
260
261 @section Choosing a Dongle
262
263 There are three things you should keep in mind when choosing a dongle.
264
265 @enumerate
266 @item @b{Voltage} What voltage is your target? 1.8, 2.8, 3.3, or 5V? Does your dongle support it?
267 @item @b{Connection} Printer Ports - Does your computer have one?
268 @item @b{Connection} Is that long printer bit-bang cable practical?
269 @item @b{RTCK} Do you require RTCK? Also known as ``adaptive clocking''
270 @end enumerate
271
272 @section Stand alone Systems
273
274 @b{ZY1000} See: @url{http://www.zylin.com/zy1000.html} Technically, not a
275 dongle, but a standalone box.
276
277 @section USB FT2232 Based
278
279 There are many USB jtag dongles on the market, many of them are based
280 on a chip from ``Future Technology Devices International'' (FTDI)
281 known as the FTDI FT2232.
282
283 See: @url{http://www.ftdichip.com} or @url{http://www.ftdichip.com/Products/FT2232H.htm}
284
285 As of 28/Nov/2008, the following are supported:
286
287 @itemize @bullet
288 @item @b{usbjtag}
289 @* Link @url{http://www.hs-augsburg.de/~hhoegl/proj/usbjtag/usbjtag.html}
290 @item @b{jtagkey}
291 @* See: @url{http://www.amontec.com/jtagkey.shtml}
292 @item @b{oocdlink}
293 @* See: @url{http://www.oocdlink.com} By Joern Kaipf
294 @item @b{signalyzer}
295 @* See: @url{http://www.signalyzer.com}
296 @item @b{evb_lm3s811}
297 @* See: @url{http://www.luminarymicro.com} - The Luminary Micro Stellaris LM3S811 eval board has an FTD2232C chip built in.
298 @item @b{olimex-jtag}
299 @* See: @url{http://www.olimex.com}
300 @item @b{flyswatter}
301 @* See: @url{http://www.tincantools.com}
302 @item @b{turtelizer2}
303 @* See: @url{http://www.ethernut.de}, or @url{http://www.ethernut.de/en/hardware/turtelizer/index.html}
304 @item @b{comstick}
305 @* Link: @url{http://www.hitex.com/index.php?id=383}
306 @item @b{stm32stick}
307 @* Link @url{http://www.hitex.com/stm32-stick}
308 @item @b{axm0432_jtag}
309 @* Axiom AXM-0432 Link @url{http://www.axman.com}
310 @end itemize
311
312 @section USB JLINK based
313 There are several OEM versions of the Segger @b{JLINK} adapter. It is
314 an example of a micro controller based JTAG adapter, it uses an
315 AT91SAM764 internally.
316
317 @itemize @bullet
318 @item @b{ATMEL SAMICE} Only works with ATMEL chips!
319 @* Link: @url{http://www.atmel.com/dyn/products/tools_card.asp?tool_id=3892}
320 @item @b{SEGGER JLINK}
321 @* Link: @url{http://www.segger.com/jlink.html}
322 @item @b{IAR J-Link}
323 @* Link: @url{http://www.iar.com/website1/1.0.1.0/369/1/index.php}
324 @end itemize
325
326 @section USB Other
327 @itemize @bullet
328 @item @b{USBprog}
329 @* Link: @url{http://www.embedded-projects.net/usbprog} - which uses an Atmel MEGA32 and a UBN9604
330
331 @item @b{USB - Presto}
332 @* Link: @url{http://tools.asix.net/prg_presto.htm}
333 @end itemize
334
335 @section IBM PC Parallel Printer Port Based
336
337 The two well known ``JTAG Parallel Ports'' cables are the Xilnx DLC5
338 and the MacGraigor Wiggler. There are many clones and variations of
339 these on the market.
340
341 @itemize @bullet
342
343 @item @b{Wiggler} - There are many clones of this.
344 @* Link: @url{http://www.macraigor.com/wiggler.htm}
345
346 @item @b{DLC5} - From XILINX - There are many clones of this
347 @* Link: Search the web for: ``XILINX DLC5'' - it is no longer
348 produced, PDF schematics are easily found and it is easy to make.
349
350 @item @b{Amontec - JTAG Accelerator}
351 @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml}
352
353 @item @b{GW16402}
354 @* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php}
355
356 @item @b{Wiggler2}
357 @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag}
358
359 @item @b{Wiggler_ntrst_inverted}
360 @* Yet another variation - See the source code, src/jtag/parport.c
361
362 @item @b{old_amt_wiggler}
363 @* Unknown - probably not on the market today
364
365 @item @b{arm-jtag}
366 @* Link: Most likely @url{http://www.olimex.com/dev/arm-jtag.html} [another wiggler clone]
367
368 @item @b{chameleon}
369 @* Link: @url{http://www.amontec.com/chameleon.shtml}
370
371 @item @b{Triton}
372 @* Unknown.
373
374 @item @b{Lattice}
375 @* ispDownload from Lattice Semiconductor @url{http://www.latticesemi.com/lit/docs/devtools/dlcable.pdf}
376
377 @item @b{flashlink}
378 @* From ST Microsystems, link:
379 @url{http://www.st.com/stonline/products/literature/um/7889.pdf}
380 Title: FlashLINK JTAG programing cable for PSD and uPSD
381
382 @end itemize
383
384 @section Other...
385 @itemize @bullet
386
387 @item @b{ep93xx}
388 @* An EP93xx based linux machine using the GPIO pins directly.
389
390 @item @b{at91rm9200}
391 @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip.
392
393 @end itemize
394
395 @node Running
396 @chapter Running
397 @cindex running OpenOCD
398 @cindex --configfile
399 @cindex --debug_level
400 @cindex --logfile
401 @cindex --search
402
403 The @option{--help} option shows:
404 @verbatim
405 bash$ openocd --help
406
407 --help | -h display this help
408 --version | -v display OpenOCD version
409 --file | -f use configuration file <name>
410 --search | -s dir to search for config files and scripts
411 --debug | -d set debug level <0-3>
412 --log_output | -l redirect log output to file <name>
413 --command | -c run <command>
414 @end verbatim
415
416 By default openocd reads the file configuration file ``openocd.cfg''
417 in the current directory. To specify a different (or multiple)
418 configuration file, you can use the ``-f'' option. For example:
419
420 @example
421 openocd -f config1.cfg -f config2.cfg -f config3.cfg
422 @end example
423
424 Once started, OpenOCD runs as a daemon, waiting for connections from
425 clients (Telnet, GDB, Other).
426
427 If you are having problems, you can enable internal debug messages via
428 the ``-d'' option.
429
430 Also it is possible to interleave commands w/config scripts using the
431 @option{-c} command line switch.
432
433 To enable debug output (when reporting problems or working on OpenOCD
434 itself), use the @option{-d} command line switch. This sets the
435 @option{debug_level} to "3", outputting the most information,
436 including debug messages. The default setting is "2", outputting only
437 informational messages, warnings and errors. You can also change this
438 setting from within a telnet or gdb session using @option{debug_level
439 <n>} @xref{debug_level}.
440
441 You can redirect all output from the daemon to a file using the
442 @option{-l <logfile>} switch.
443
444 Search paths for config/script files can be added to OpenOCD by using
445 the @option{-s <search>} switch. The current directory and the OpenOCD
446 target library is in the search path by default.
447
448 Note! OpenOCD will launch the GDB & telnet server even if it can not
449 establish a connection with the target. In general, it is possible for
450 the JTAG controller to be unresponsive until the target is set up
451 correctly via e.g. GDB monitor commands in a GDB init script.
452
453 @node Simple Configuration Files
454 @chapter Simple Configuration Files
455 @cindex configuration
456
457 @section Outline
458 There are 4 basic ways of ``configurating'' openocd to run, they are:
459
460 @enumerate
461 @item A small openocd.cfg file which ``sources'' other configuration files
462 @item A monolithic openocd.cfg file
463 @item Many -f filename options on the command line
464 @item Your Mixed Solution
465 @end enumerate
466
467 @section Small configuration file method
468
469 This is the prefered method, it is simple and is works well for many
470 people. The developers of OpenOCD would encourage you to use this
471 method. If you create a new configuration please email new
472 configurations to the development list.
473
474 Here is an example of an openocd.cfg file for an ATMEL at91sam7x256
475
476 @example
477 source [find interface/signalyzer.cfg]
478
479 # Change the default telnet port...
480 telnet_port 4444
481 # GDB connects here
482 gdb_port 3333
483 # GDB can also flash my flash!
484 gdb_memory_map enable
485 gdb_flash_program enable
486
487 source [find target/sam7x256.cfg]
488 @end example
489
490 There are many example configuration scripts you can work with. You
491 should look in the directory: @t{$(INSTALLDIR)/lib/openocd}. You
492 should find:
493
494 @enumerate
495 @item @b{board} - eval board level configurations
496 @item @b{interface} - specific dongle configurations
497 @item @b{target} - the target chips
498 @item @b{tcl} - helper scripts
499 @item @b{xscale} - things specific to the xscale.
500 @end enumerate
501
502 Look first in the ``boards'' area, then the ``targets'' area. Often a board
503 configuration is a good example to work from.
504
505 @section Many -f filename options
506 Some believe this is a wonderful solution, others find it painful.
507
508 You can use a series of ``-f filename'' options on the command line,
509 OpenOCD will read each filename in sequence, for example:
510
511 @example
512 openocd -f file1.cfg -f file2.cfg -f file2.cfg
513 @end example
514
515 You can also intermix various commands with the ``-c'' command line
516 option.
517
518 @section Monolithic file
519 The ``Monolithic File'' dispenses with all ``source'' statements and
520 puts everything in one self contained (monolithic) file. This is not
521 encouraged.
522
523 Please try to ``source'' various files or use the multiple -f
524 technique.
525
526 @section Advice for you
527 Often, one uses a ``mixed approach''. Where possible, please try to
528 ``source'' common things, and if needed cut/paste parts of the
529 standard distribution configuration files as needed.
530
531 @b{REMEMBER:} The ``important parts'' of your configuration file are:
532
533 @enumerate
534 @item @b{Interface} - Defines the dongle
535 @item @b{Taps} - Defines the JTAG Taps
536 @item @b{GDB Targets} - What GDB talks to
537 @item @b{Flash Programing} - Very Helpful
538 @end enumerate
539
540 Some key things you should look at and understand are:
541
542 @enumerate
543 @item The RESET configuration of your debug environment as a hole
544 @item Is there a ``work area'' that that OpenOCD can use?
545 @* For ARM - work areas mean up to 10x faster downloads.
546 @item For MMU/MPU based ARM chips (ie: ARM9 and later) will that work area still be available?
547 @item For complex targets (multiple chips) the JTAG SPEED becomes an issue.
548 @end enumerate
549
550
551
552 @node Config File Guidelines
553 @chapter Config File Guidelines
554
555 This section/chapter is aimed at developers and integrators of
556 OpenOCD. These are guidelines for creating new boards and new target
557 configurations as of 28/Nov/2008.
558
559 However, you the user of OpenOCD should be some what familiar with
560 this section as it should help explain some of the internals of what
561 you might be looking at.
562
563 The user should find under @t{$(INSTALLDIR)/lib/openocd} the
564 following directories:
565
566 @itemize @bullet
567 @item @b{interface}
568 @*Think JTAG Dongle. Files that configure the jtag dongle go here.
569 @item @b{board}
570 @* Thing Circuit Board, PWA, PCB, they go by many names. Board files
571 contain initialization items that are specific to a board - for
572 example: The SDRAM initialization sequence for the board, or the type
573 of external flash and what address it is found at. Any initialization
574 sequence to enable that external flash or sdram should be found in the
575 board file. Boards may also contain multiple targets, ie: Two cpus, or
576 a CPU and an FPGA or CPLD.
577 @item @b{target}
578 @* Think CHIP. The ``target'' directory represents a jtag tap (or
579 chip) OpenOCD should control, not a board. Two common types of targets
580 are ARM chips and FPGA or CPLD chips.
581 @end itemize
582
583 @b{If needed...} The user in their ``openocd.cfg'' file or the board
584 file might override a specific feature in any of the above files by
585 setting a variable or two before sourcing the target file. Or adding
586 various commands specific to their situation.
587
588 @section Interface Config Files
589
590 The user should be able to source one of these files via a command like this:
591
592 @example
593 source [find interface/FOOBAR.cfg]
594 Or:
595 openocd -f interface/FOOBAR.cfg
596 @end example
597
598 A preconfigured interface file should exist for every interface in use
599 today, that said, perhaps some interfaces have only been used by the
600 sole developer who created it.
601
602 @b{FIXME/NOTE:} We need to add support for a variable like TCL variable
603 tcl_platform(platform), it should be called jim_platform (because it
604 is jim, not real tcl) and it should contain 1 of 3 words: ``linux'',
605 ``cygwin'' or ``mingw''
606
607 Interface files should be found in @t{$(INSTALLDIR)/lib/openocd/interface}
608
609 @section Board Config Files
610
611 @b{Note: BOARD directory NEW as of 28/nov/2008}
612
613 The user should be able to source one of these files via a command like this:
614
615 @example
616 source [find board/FOOBAR.cfg]
617 Or:
618 openocd -f board/FOOBAR.cfg
619 @end example
620
621
622 The board file should contain one or more @t{source [find
623 target/FOO.cfg]} statements along with any board specific things.
624
625 In summery the board files should contain (if present)
626
627 @enumerate
628 @item External flash configuration (ie: the flash on CS0)
629 @item SDRAM configuration (size, speed, etc)
630 @item Board specific IO configuration (ie: GPIO pins might disable a 2nd flash)
631 @item Multiple TARGET source statements
632 @item All things that are not ``inside a chip''
633 @item Things inside a chip go in a 'target' file
634 @end enumerate
635
636 @section Target Config Files
637
638 The user should be able to source one of these files via a command like this:
639
640 @example
641 source [find target/FOOBAR.cfg]
642 Or:
643 openocd -f target/FOOBAR.cfg
644 @end example
645
646 In summery the target files should contain
647
648 @enumerate
649 @item Set Defaults
650 @item Create Taps
651 @item Reset Configuration
652 @item Work Areas
653 @item CPU/Chip/CPU-Core Specific features
654 @item OnChip Flash
655 @end enumerate
656
657 @subsection Important variable names
658
659 By default, the end user should never need to set these
660 variables. However, if the user needs to override a setting they only
661 need to set the variable in a simple way.
662
663 @itemize @bullet
664 @item @b{CHIPNAME}
665 @* This gives a name to the overall chip, and is used as part of the
666 tap identifier dotted name.
667 @item @b{ENDIAN}
668 @* By default little - unless the chip or board is not normally used that way.
669 @item @b{CPUTAPID}
670 @* When OpenOCD examines the JTAG chain, it will attempt to identify
671 every chip. If the @t{-expected-id} is nonzero, OpenOCD attempts
672 to verify the tap id number verses configuration file and may issue an
673 error or warning like this. The hope is this will help pin point
674 problem openocd configurations.
675
676 @example
677 Info: JTAG tap: sam7x256.cpu tap/device found: 0x3f0f0f0f (Manufacturer: 0x787, Part: 0xf0f0, Version: 0x3)
678 Error: ERROR: Tap: sam7x256.cpu - Expected id: 0x12345678, Got: 0x3f0f0f0f
679 Error: ERROR: expected: mfg: 0x33c, part: 0x2345, ver: 0x1
680 Error: ERROR: got: mfg: 0x787, part: 0xf0f0, ver: 0x3
681 @end example
682
683 @item @b{_TARGETNAME}
684 @* By convention, this variable is created by the target configuration
685 script. The board configuration file may make use of this variable to
686 configure things like a ``reset init'' script, or other things
687 specific to that board and that target.
688
689 If the chip has 2 targets, use the names @b{_TARGETNAME0},
690 @b{_TARGETNAME1}, ... etc.
691
692 @b{Remember:} The ``board file'' may include multiple targets.
693
694 At no time should the name ``target0'' (the default target name if
695 none was specified) be used. The name ``target0'' is a hard coded name
696 - the next target on the board will be some other number.
697
698 The user (or board file) should reasonably be able to:
699
700 @example
701 source [find target/FOO.cfg]
702 $_TARGETNAME configure ... FOO specific parameters
703
704 source [find target/BAR.cfg]
705 $_TARGETNAME configure ... BAR specific parameters
706 @end example
707
708 @end itemize
709
710 @subsection TCL Variables Guide Line
711 The Full Tcl/Tk language supports ``namespaces'' - JIM-Tcl does not.
712
713 Thus the rule we follow in OpenOCD is this: Variables that begin with
714 a leading underscore are temporal in nature, and can be modified and
715 used at will within a ?TARGET? configuration file
716
717 @b{EXAMPLE:} The user should be able to do this:
718
719 @example
720 # Board has 3 chips,
721 # PXA270 #1 network side, big endian
722 # PXA270 #2 video side, little endian
723 # Xilinx Glue logic
724 set CHIPNAME network
725 set ENDIAN big
726 source [find target/pxa270.cfg]
727 # variable: _TARGETNAME = network.cpu
728 # other commands can refer to the "network.cpu" tap.
729 $_TARGETNAME configure .... params for this cpu..
730
731 set ENDIAN little
732 set CHIPNAME video
733 source [find target/pxa270.cfg]
734 # variable: _TARGETNAME = video.cpu
735 # other commands can refer to the "video.cpu" tap.
736 $_TARGETNAME configure .... params for this cpu..
737
738 unset ENDIAN
739 set CHIPNAME xilinx
740 source [find target/spartan3.cfg]
741
742 # Since $_TARGETNAME is temporal..
743 # these names still work!
744 network.cpu configure ... params
745 video.cpu configure ... params
746
747 @end example
748
749 @subsection Default Value Boiler Plate Code
750
751 All target configuration files should start with this (or a modified form)
752
753 @example
754 # SIMPLE example
755 if @{ [info exists CHIPNAME] @} @{
756 set _CHIPNAME $CHIPNAME
757 @} else @{
758 set _CHIPNAME sam7x256
759 @}
760
761 if @{ [info exists ENDIAN] @} @{
762 set _ENDIAN $ENDIAN
763 @} else @{
764 set _ENDIAN little
765 @}
766
767 if @{ [info exists CPUTAPID ] @} @{
768 set _CPUTAPID $CPUTAPID
769 @} else @{
770 set _CPUTAPID 0x3f0f0f0f
771 @}
772
773 @end example
774
775 @subsection Creating Taps
776 After the ``defaults'' are choosen, [see above], the taps are created.
777
778 @b{SIMPLE example:} such as an Atmel AT91SAM7X256
779
780 @example
781 # for an ARM7TDMI.
782 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
783 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID
784 @end example
785
786 @b{COMPLEX example:}
787
788 This is an SNIP/example for an STR912 - which has 3 internal taps. Key features shown:
789
790 @enumerate
791 @item @b{Unform tap names} - See: Tap Naming Convention
792 @item @b{_TARGETNAME} is created at the end where used.
793 @end enumerate
794
795 @example
796 if @{ [info exists FLASHTAPID ] @} @{
797 set _FLASHTAPID $FLASHTAPID
798 @} else @{
799 set _FLASHTAPID 0x25966041
800 @}
801 jtag newtap $_CHIPNAME flash -irlen 8 -ircapture 0x1 -irmask 0x1 -expected-id $_FLASHTAPID
802
803 if @{ [info exists CPUTAPID ] @} @{
804 set _CPUTAPID $CPUTAPID
805 @} else @{
806 set _CPUTAPID 0x25966041
807 @}
808 jtag newtap $_CHIPNAME cpu -irlen 4 -ircapture 0xf -irmask 0xe -expected-id $_CPUTAPID
809
810
811 if @{ [info exists BSTAPID ] @} @{
812 set _BSTAPID $BSTAPID
813 @} else @{
814 set _BSTAPID 0x1457f041
815 @}
816 jtag newtap $_CHIPNAME bs -irlen 5 -ircapture 0x1 -irmask 0x1 -expected-id $_BSTAPID
817
818 set _TARGETNAME [format "%s.cpu" $_CHIPNAME]
819 @end example
820
821 @b{Tap Naming Convention}
822
823 See the command ``jtag newtap'' for detail, but in breif the names you should use are:
824
825 @itemize @bullet
826 @item @b{tap}
827 @item @b{cpu}
828 @item @b{flash}
829 @item @b{bs}
830 @item @b{jrc}
831 @item @b{unknownN} - it happens :-(
832 @end itemize
833
834 @subsection Reset Configuration
835
836 Some chips have specific ways the TRST and SRST signals are
837 managed. If these are @b{CHIP SPECIFIC} they go here, if they are
838 @b{BOARD SPECIFIC} they go in the board file.
839
840 @subsection Work Areas
841
842 Work areas are small RAM areas used by OpenOCD to speed up downloads,
843 and to download small snippits of code to program flash chips.
844
845 If the chip includes an form of ``on-chip-ram'' - and many do - define
846 a reasonable work area and use the ``backup'' option.
847
848 @b{PROBLEMS:} On more complex chips, this ``work area'' may become
849 inaccessable if/when the application code enables or disables the MMU.
850
851 @subsection ARM Core Specific Hacks
852
853 If the chip has a DCC, enable it. If the chip is an arm9 with some
854 special high speed download - enable it.
855
856 If the chip has an ARM ``vector catch'' feature - by defeault enable
857 it for Undefined Instructions, Data Abort, and Prefetch Abort, if the
858 user is really writing a handler for those situations - they can
859 easily disable it. Experiance has shown the ``vector catch'' is
860 helpful - for common programing errors.
861
862 If present, the MMU, the MPU and the CACHE should be disabled.
863
864 @subsection Internal Flash Configuration
865
866 This applies @b{ONLY TO MICROCONTROLLERS} that have flash built in.
867
868 @b{Never ever} in the ``target configuration file'' define any type of
869 flash that is external to the chip. (For example the BOOT flash on
870 Chip Select 0). The BOOT flash information goes in a board file - not
871 the TARGET (chip) file.
872
873 Examples:
874 @itemize @bullet
875 @item at91sam7x256 - has 256K flash YES enable it.
876 @item str912 - has flash internal YES enable it.
877 @item imx27 - uses boot flash on CS0 - it goes in the board file.
878 @item pxa270 - again - CS0 flash - it goes in the board file.
879 @end itemize
880
881 @node About JIM-Tcl
882 @chapter About JIM-Tcl
883 @cindex JIM Tcl
884 @cindex tcl
885
886 OpenOCD includes a small ``TCL Interpreter'' known as JIM-TCL. You can
887 learn more about JIM here: @url{http://jim.berlios.de}
888
889 @itemize @bullet
890 @item @b{JIM vrs TCL}
891 @* JIM-TCL is a stripped down version of the well known Tcl language,
892 which can be found here: @url{http://www.tcl.tk}. JIM-Tcl has far
893 fewer features. JIM-Tcl is a single .C file and a single .H file and
894 impliments the basic TCL command set along. In contrast: Tcl 8.6 is a
895 4.2MEG zip file containing 1540 files.
896
897 @item @b{Missing Features}
898 @* Our practice has been: Add/clone the Real TCL feature if/when
899 needed. We welcome JIM Tcl improvements, not bloat.
900
901 @item @b{Scripts}
902 @* OpenOCD configuration scripts are JIM Tcl Scripts. OpenOCD's
903 command interpretor today (28/nov/2008) is a mixture of (newer)
904 JIM-Tcl commands, and (older) the orginal command interpretor.
905
906 @item @b{Commands}
907 @* At the openocd telnet command line (or via the GDB mon command) one
908 can type a Tcl for() loop, set variables, etc.
909
910 @item @b{Historical Note}
911 @* JIM-Tcl was introduced to OpenOCD in Spring 2008.
912
913 @item @b{Need a Crash Course In TCL?}
914 @* See: @xref{TCL Crash Course}.
915 @end itemize
916
917
918 @node Daemon Configuration
919 @chapter Daemon Configuration
920 The commands here are commonly found inthe openocd.cfg file and are
921 used to specify what TCP/IP ports are used, and how GDB should be
922 supported.
923 @section init
924 @cindex init
925 This command terminates the configuration stage and
926 enters the normal command mode. This can be useful to add commands to
927 the startup scripts and commands such as resetting the target,
928 programming flash, etc. To reset the CPU upon startup, add "init" and
929 "reset" at the end of the config script or at the end of the OpenOCD
930 command line using the @option{-c} command line switch.
931
932 If this command does not appear in any startup/configuration file
933 OpenOCD executes the command for you after processing all
934 configuration files and/or command line options.
935
936 @b{NOTE:} This command normally occurs at or near the end of your
937 openocd.cfg file to force OpenOCD to ``initialize'' and make the
938 targets ready. For example: If your openocd.cfg file needs to
939 read/write memory on your target - the init command must occur before
940 the memory read/write commands.
941
942 @section TCP/IP Ports
943 @itemize @bullet
944 @item @b{telnet_port} <@var{number}>
945 @cindex telnet_port
946 @*Intended for a human. Port on which to listen for incoming telnet connections.
947
948 @item @b{tcl_port} <@var{number}>
949 @cindex tcl_port
950 @*Intended as a machine interface. Port on which to listen for
951 incoming TCL syntax. This port is intended as a simplified RPC
952 connection that can be used by clients to issue commands and get the
953 output from the TCL engine.
954
955 @item @b{gdb_port} <@var{number}>
956 @cindex gdb_port
957 @*First port on which to listen for incoming GDB connections. The GDB port for the
958 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
959 @end itemize
960
961 @section GDB Items
962 @itemize @bullet
963 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
964 @cindex gdb_breakpoint_override
965 @anchor{gdb_breakpoint_override}
966 @*Force breakpoint type for gdb 'break' commands.
967 The raison d'etre for this option is to support GDB GUI's without
968 a hard/soft breakpoint concept where the default OpenOCD and
969 GDB behaviour is not sufficient. Note that GDB will use hardware
970 breakpoints if the memory map has been set up for flash regions.
971
972 This option replaces older arm7_9 target commands that addressed
973 the same issue.
974
975 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
976 @cindex gdb_detach
977 @*Configures what OpenOCD will do when gdb detaches from the daeman.
978 Default behaviour is <@var{resume}>
979
980 @item @b{gdb_memory_map} <@var{enable|disable}>
981 @cindex gdb_memory_map
982 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
983 requested. gdb will then know when to set hardware breakpoints, and program flash
984 using the gdb load command. @option{gdb_flash_program enable} will also need enabling
985 for flash programming to work.
986 Default behaviour is <@var{enable}>
987 @xref{gdb_flash_program}.
988
989 @item @b{gdb_flash_program} <@var{enable|disable}>
990 @cindex gdb_flash_program
991 @anchor{gdb_flash_program}
992 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
993 vFlash packet is received.
994 Default behaviour is <@var{enable}>
995 @comment END GDB Items
996 @end itemize
997
998 @node Interface - Dongle Configuration
999 @chapter Interface - Dongle Configuration
1000 Interface commands are normally found in an interface configuration
1001 file which is sourced by your openocd.cfg file. These commands tell
1002 OpenOCD what type of JTAG dongle you have and how to talk to it.
1003 @section Simple Complete Interface Examples
1004 @b{A Turtelizer FT2232 Based JTAG Dongle}
1005 @verbatim
1006 #interface
1007 interface ft2232
1008 ft2232_device_desc "Turtelizer JTAG/RS232 Adapter A"
1009 ft2232_layout turtelizer2
1010 ft2232_vid_pid 0x0403 0xbdc8
1011 @end verbatim
1012 @b{A SEGGER Jlink}
1013 @verbatim
1014 # jlink interface
1015 interface jlink
1016 @end verbatim
1017 @b{Parallel Port}
1018 @verbatim
1019 interface parport
1020 parport_port 0xc8b8
1021 parport_cable wiggler
1022 jtag_speed 0
1023 @end verbatim
1024 @section Interface Conmmand
1025
1026 The interface command tells OpenOCD what type of jtag dongle you are
1027 using. Depending upon the type of dongle, you may need to have one or
1028 more additional commands.
1029
1030 @itemize @bullet
1031
1032 @item @b{interface} <@var{name}>
1033 @cindex interface
1034 @*Use the interface driver <@var{name}> to connect to the
1035 target. Currently supported interfaces are
1036
1037 @itemize @minus
1038
1039 @item @b{parport}
1040 @* PC parallel port bit-banging (Wigglers, PLD download cable, ...)
1041
1042 @item @b{amt_jtagaccel}
1043 @* Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
1044 mode parallel port
1045
1046 @item @b{ft2232}
1047 @* FTDI FT2232 (USB) based devices using either the open-source libftdi or the binary only
1048 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
1049 platform. The libftdi uses libusb, and should be portable to all systems that provide
1050 libusb.
1051
1052 @item @b{ep93xx}
1053 @*Cirrus Logic EP93xx based single-board computer bit-banging (in development)
1054
1055 @item @b{presto}
1056 @* ASIX PRESTO USB JTAG programmer.
1057
1058 @item @b{usbprog}
1059 @* usbprog is a freely programmable USB adapter.
1060
1061 @item @b{gw16012}
1062 @* Gateworks GW16012 JTAG programmer.
1063
1064 @item @b{jlink}
1065 @* Segger jlink usb adapter
1066 @comment - End parameters
1067 @end itemize
1068 @comment - End Interface
1069 @end itemize
1070 @subsection parport options
1071
1072 @itemize @bullet
1073 @item @b{parport_port} <@var{number}>
1074 @cindex parport_port
1075 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
1076 the @file{/dev/parport} device
1077
1078 When using PPDEV to access the parallel port, use the number of the parallel port:
1079 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
1080 you may encounter a problem.
1081 @item @b{parport_cable} <@var{name}>
1082 @cindex parport_cable
1083 @*The layout of the parallel port cable used to connect to the target.
1084 Currently supported cables are
1085 @itemize @minus
1086 @item @b{wiggler}
1087 @cindex wiggler
1088 The original Wiggler layout, also supported by several clones, such
1089 as the Olimex ARM-JTAG
1090 @item @b{wiggler2}
1091 @cindex wiggler2
1092 Same as original wiggler except an led is fitted on D5.
1093 @item @b{wiggler_ntrst_inverted}
1094 @cindex wiggler_ntrst_inverted
1095 Same as original wiggler except TRST is inverted.
1096 @item @b{old_amt_wiggler}
1097 @cindex old_amt_wiggler
1098 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
1099 version available from the website uses the original Wiggler layout ('@var{wiggler}')
1100 @item @b{chameleon}
1101 @cindex chameleon
1102 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
1103 program the Chameleon itself, not a connected target.
1104 @item @b{dlc5}
1105 @cindex dlc5
1106 The Xilinx Parallel cable III.
1107 @item @b{triton}
1108 @cindex triton
1109 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
1110 This is also the layout used by the HollyGates design
1111 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
1112 @item @b{flashlink}
1113 @cindex flashlink
1114 The ST Parallel cable.
1115 @item @b{arm-jtag}
1116 @cindex arm-jtag
1117 Same as original wiggler except SRST and TRST connections reversed and
1118 TRST is also inverted.
1119 @item @b{altium}
1120 @cindex altium
1121 Altium Universal JTAG cable.
1122 @end itemize
1123 @item @b{parport_write_on_exit} <@var{on}|@var{off}>
1124 @cindex parport_write_on_exit
1125 @*This will configure the parallel driver to write a known value to the parallel
1126 interface on exiting OpenOCD
1127 @end itemize
1128
1129 @subsection amt_jtagaccel options
1130 @itemize @bullet
1131 @item @b{parport_port} <@var{number}>
1132 @cindex parport_port
1133 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
1134 @file{/dev/parport} device
1135 @end itemize
1136 @subsection ft2232 options
1137
1138 @itemize @bullet
1139 @item @b{ft2232_device_desc} <@var{description}>
1140 @cindex ft2232_device_desc
1141 @*The USB device description of the FTDI FT2232 device. If not
1142 specified, the FTDI default value is used. This setting is only valid
1143 if compiled with FTD2XX support.
1144
1145 @b{TODO:} Confirm the following: On windows the name needs to end with
1146 a ``space A''? Or not? It has to do with the FTD2xx driver. When must
1147 this be added and when must it not be added? Why can't the code in the
1148 interface or in openocd automatically add this if needed? -- Duane.
1149
1150 @item @b{ft2232_serial} <@var{serial-number}>
1151 @cindex ft2232_serial
1152 @*The serial number of the FTDI FT2232 device. If not specified, the FTDI default
1153 values are used.
1154 @item @b{ft2232_layout} <@var{name}>
1155 @cindex ft2232_layout
1156 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
1157 signals. Valid layouts are
1158 @itemize @minus
1159 @item @b{usbjtag}
1160 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
1161 @item @b{jtagkey}
1162 Amontec JTAGkey and JTAGkey-tiny
1163 @item @b{signalyzer}
1164 Signalyzer
1165 @item @b{olimex-jtag}
1166 Olimex ARM-USB-OCD
1167 @item @b{m5960}
1168 American Microsystems M5960
1169 @item @b{evb_lm3s811}
1170 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
1171 SRST signals on external connector
1172 @item @b{comstick}
1173 Hitex STR9 comstick
1174 @item @b{stm32stick}
1175 Hitex STM32 Performance Stick
1176 @item @b{flyswatter}
1177 Tin Can Tools Flyswatter
1178 @item @b{turtelizer2}
1179 egnite Software turtelizer2
1180 @item @b{oocdlink}
1181 OOCDLink
1182 @item @b{axm0432_jtag}
1183 Axiom AXM-0432
1184 @end itemize
1185
1186 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
1187 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
1188 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
1189 @example
1190 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
1191 @end example
1192 @item @b{ft2232_latency} <@var{ms}>
1193 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
1194 ft2232_read() fails to return the expected number of bytes. This can be caused by
1195 USB communication delays and has proved hard to reproduce and debug. Setting the
1196 FT2232 latency timer to a larger value increases delays for short USB packages but it
1197 also reduces the risk of timeouts before receiving the expected number of bytes.
1198 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
1199 @end itemize
1200
1201 @subsection ep93xx options
1202 @cindex ep93xx options
1203 Currently, there are no options available for the ep93xx interface.
1204
1205 @section JTAG Speed
1206 @itemize @bullet
1207 @item @b{jtag_khz} <@var{reset speed kHz}>
1208 @cindex jtag_khz
1209
1210 It is debatable if this command belongs here - or in a board
1211 configuration file. In fact, in some situations the jtag speed is
1212 changed during the target initialization process (ie: (1) slow at
1213 reset, (2) program the cpu clocks, (3) run fast)
1214
1215 Speed 0 (khz) selects RTCK method. A non-zero speed is in KHZ. Hence: 3000 is 3mhz.
1216
1217 Not all interfaces support ``rtck''. If the interface device can not
1218 support the rate asked for, or can not translate from kHz to
1219 jtag_speed, then an error is returned.
1220
1221 Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
1222 especially true for synthesized cores (-S). Also see RTCK.
1223
1224 @b{NOTE: Script writers} If the target chip requires/uses RTCK -
1225 please use the command: 'jtag_rclk FREQ'. This TCL proc (in
1226 startup.tcl) attempts to enable RTCK, if that fails it falls back to
1227 the specified frequency.
1228
1229 @example
1230 # Fall back to 3mhz if RCLK is not supported
1231 jtag_rclk 3000
1232 @end example
1233
1234 @item @b{DEPRICATED} @b{jtag_speed} - please use jtag_khz above.
1235 @cindex jtag_speed
1236 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
1237 speed. The actual effect of this option depends on the JTAG interface used.
1238
1239 The speed used during reset can be adjusted using setting jtag_speed during
1240 pre_reset and post_reset events.
1241 @itemize @minus
1242
1243 @item wiggler: maximum speed / @var{number}
1244 @item ft2232: 6MHz / (@var{number}+1)
1245 @item amt jtagaccel: 8 / 2**@var{number}
1246 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
1247 @comment end speed list.
1248 @end itemize
1249
1250 @comment END command list
1251 @end itemize
1252
1253 @node Reset Configuration
1254 @chapter Reset Configuration
1255 @cindex reset configuration
1256
1257 Every system configuration may require a different reset
1258 configuration. This can also be quite confusing. Please see the
1259 various board files for example.
1260
1261 @section jtag_nsrst_delay <@var{ms}>
1262 @cindex jtag_nsrst_delay
1263 @*How long (in milliseconds) OpenOCD should wait after deasserting
1264 nSRST before starting new JTAG operations.
1265
1266 @section jtag_ntrst_delay <@var{ms}>
1267 @cindex jtag_ntrst_delay
1268 @*Same @b{jtag_nsrst_delay}, but for nTRST
1269
1270 The jtag_n[st]rst_delay options are useful if reset circuitry (like a
1271 big resistor/capacitor, reset supervisor, or on-chip features). This
1272 keeps the signal asserted for some time after the external reset got
1273 deasserted.
1274
1275 @section reset_config
1276
1277 @b{Note:} To maintainer types and integrators. Where exactly the
1278 ``reset configuration'' goes is a good question. It touches several
1279 things at once. In the end, if you have a board file - the board file
1280 should define it and assume 100% that the DONGLE supports
1281 anything. However, that does not mean the target should not also make
1282 not of something the silicon vendor has done inside the
1283 chip. @i{Grr.... nothing is every pretty.}
1284
1285 @* @b{Problems:}
1286 @enumerate
1287 @item Every JTAG Dongle is slightly different, some dongles impliment reset differently.
1288 @item Every board is also slightly different; some boards tie TRST and SRST together.
1289 @item Every chip is slightly different; some chips internally tie the two signals together.
1290 @item Some may not impliment all of the signals the same way.
1291 @item Some signals might be push-pull, others open-drain/collector.
1292 @end enumerate
1293 @b{Best Case:} OpenOCD can hold the SRST (push-button-reset), then
1294 reset the TAP via TRST and send commands through the JTAG tap to halt
1295 the CPU at the reset vector before the 1st instruction is executed,
1296 and finally release the SRST signal.
1297 @*Depending upon your board vendor, your chip vendor, etc, these
1298 signals may have slightly different names.
1299
1300 OpenOCD defines these signals in these terms:
1301 @itemize @bullet
1302 @item @b{TRST} - is Tap Reset - and should reset only the TAP.
1303 @item @b{SRST} - is System Reset - typically equal to a reset push button.
1304 @end itemize
1305
1306 The Command:
1307
1308 @itemize @bullet
1309 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
1310 @cindex reset_config
1311 @* The @t{reset_config} command tells OpenOCD the reset configuration
1312 of your combination of Dongle, Board, and Chips.
1313 If the JTAG interface provides SRST, but the target doesn't connect
1314 that signal properly, then OpenOCD can't use it. <@var{signals}> can
1315 be @option{none}, @option{trst_only}, @option{srst_only} or
1316 @option{trst_and_srst}.
1317
1318 [@var{combination}] is an optional value specifying broken reset
1319 signal implementations. @option{srst_pulls_trst} states that the
1320 testlogic is reset together with the reset of the system (e.g. Philips
1321 LPC2000, "broken" board layout), @option{trst_pulls_srst} says that
1322 the system is reset together with the test logic (only hypothetical, I
1323 haven't seen hardware with such a bug, and can be worked around).
1324 @option{combined} imples both @option{srst_pulls_trst} and
1325 @option{trst_pulls_srst}. The default behaviour if no option given is
1326 @option{separate}.
1327
1328 The [@var{trst_type}] and [@var{srst_type}] parameters allow the
1329 driver type of the reset lines to be specified. Possible values are
1330 @option{trst_push_pull} (default) and @option{trst_open_drain} for the
1331 test reset signal, and @option{srst_open_drain} (default) and
1332 @option{srst_push_pull} for the system reset. These values only affect
1333 JTAG interfaces with support for different drivers, like the Amontec
1334 JTAGkey and JTAGAccelerator.
1335
1336 @comment - end command
1337 @end itemize
1338
1339
1340
1341 @node Tap Creation
1342 @chapter Tap Creation
1343 @cindex tap creation
1344 @cindex tap configuration
1345
1346 In order for OpenOCD to control a target, a JTAG tap must be
1347 defined/created.
1348
1349 Commands to create taps are normally found in a configuration file and
1350 are not normally typed by a human.
1351
1352 When a tap is created a @b{dotted.name} is created for the tap. Other
1353 commands use that dotted.name to manipulate or refer to the tap.
1354
1355 Tap Uses:
1356 @itemize @bullet
1357 @item @b{Debug Target} A tap can be used by a GDB debug target
1358 @item @b{Flash Programing} Some chips program the flash via JTAG
1359 @item @b{Boundry Scan} Some chips support boundry scan.
1360 @end itemize
1361
1362
1363 @section jtag newtap
1364 @b{@t{jtag newtap CHIPNAME TAPNAME configparams ....}}
1365 @cindex jtag_device
1366 @cindex jtag newtap
1367 @cindex tap
1368 @cindex tap order
1369 @cindex tap geometry
1370
1371 @comment START options
1372 @itemize @bullet
1373 @item @b{CHIPNAME}
1374 @* is a symbolic name of the chip.
1375 @item @b{TAPNAME}
1376 @* is a symbol name of a tap present on the chip.
1377 @item @b{Required configparams}
1378 @* Every tap has 3 required configparams, and several ``optional
1379 parameters'', the required parameters are:
1380 @comment START REQUIRED
1381 @itemize @bullet
1382 @item @b{-irlen NUMBER} - the length in bits of the instruction register
1383 @item @b{-ircapture NUMBER} - the ID code capture command.
1384 @item @b{-irmask NUMBER} - the corrisponding mask for the ir register.
1385 @comment END REQUIRED
1386 @end itemize
1387 An example of a FOOBAR Tap
1388 @example
1389 jtag newtap foobar tap -irlen 7 -ircapture 0x42 -irmask 0x55
1390 @end example
1391 Creates the tap ``foobar.tap'' with the instruction register (IR) is 7
1392 bits long, during Capture-IR 0x42 is loaded into the IR, and bits
1393 [6,4,2,0] are checked.
1394
1395 FIXME: The IDCODE - this was not used in the old code, it should be?
1396 Right? -Duane.
1397 @item @b{Optional configparams}
1398 @comment START Optional
1399 @itemize @bullet
1400 @item @b{-expected-id NUMBER}
1401 @* By default it is zero. If non-zero represents the
1402 expected tap ID used when the Jtag Chain is examined. See below.
1403 @item @b{-disable}
1404 @item @b{-enable}
1405 @* By default not specified the tap is enabled. Some chips have a
1406 jtag route controller (JRC) that is used to enable and/or disable
1407 specific jtag taps. You can later enable or disable any JTAG tap via
1408 the command @b{jtag tapenable DOTTED.NAME} or @b{jtag tapdisable
1409 DOTTED.NAME}
1410 @comment END Optional
1411 @end itemize
1412
1413 @comment END OPTIONS
1414 @end itemize
1415 @b{Notes:}
1416 @comment START NOTES
1417 @itemize @bullet
1418 @item @b{Technically}
1419 @* newtap is a sub command of the ``jtag'' command
1420 @item @b{Big Picture Background}
1421 @*GDB Talks to OpenOCD using the GDB protocol via
1422 tcpip. OpenOCD then uses the JTAG interface (the dongle) to
1423 control the JTAG chain on your board. Your board has one or more chips
1424 in a @i{daisy chain configuration}. Each chip may have one or more
1425 jtag taps. GDB ends up talking via OpenOCD to one of the taps.
1426 @item @b{NAME Rules}
1427 @*Names follow ``C'' symbol name rules (start with alpha ...)
1428 @item @b{TAPNAME - Conventions}
1429 @itemize @bullet
1430 @item @b{tap} - should be used only FPGA or CPLD like devices with a single tap.
1431 @item @b{cpu} - the main cpu of the chip, alternatively @b{foo.arm} and @b{foo.dsp}
1432 @item @b{flash} - if the chip has a flash tap, example: str912.flash
1433 @item @b{bs} - for boundary scan if this is a seperate tap.
1434 @item @b{jrc} - for jtag route controller (example: OMAP3530 found on Beagleboards)
1435 @item @b{unknownN} - where N is a number if you have no idea what the tap is for
1436 @item @b{Other names} - Freescale IMX31 has a SDMA (smart dma) with a JTAG tap, that tap should be called the ``sdma'' tap.
1437 @item @b{When in doubt} - use the chip makers name in their data sheet.
1438 @end itemize
1439 @item @b{DOTTED.NAME}
1440 @* @b{CHIPNAME}.@b{TAPNAME} creates the tap name, aka: the
1441 @b{Dotted.Name} is the @b{CHIPNAME} and @b{TAPNAME} combined with a
1442 dot (period); for example: @b{xilinx.tap}, @b{str912.flash},
1443 @b{omap3530.jrc}, or @b{stm32.cpu} The @b{dotted.name} is used in
1444 numerous other places to refer to various taps.
1445 @item @b{ORDER}
1446 @* The order this command appears via the config files is
1447 important.
1448 @item @b{Multi Tap Example}
1449 @* This example is based on the ST Microsystems STR912. See the ST
1450 document titled: @b{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
1451 28/102, Figure 3: Jtag chaining inside the STR91xFA}.
1452
1453 @url{http://eu.st.com/stonline/products/literature/ds/13495.pdf}
1454 @*@b{checked: 28/nov/2008}
1455
1456 The diagram shows the TDO pin connects to the flash tap, flash TDI
1457 connects to the CPU debug tap, CPU TDI connects to the boundary scan
1458 tap which then connects to the TDI pin.
1459
1460 @example
1461 # The order is...
1462 # create tap: 'str912.flash'
1463 jtag newtap str912 flash ... params ...
1464 # create tap: 'str912.cpu'
1465 jtag newtap str912 cpu ... params ...
1466 # create tap: 'str912.bs'
1467 jtag newtap str912 bs ... params ...
1468 @end example
1469
1470 @item @b{Note: Deprecated} - Index Numbers
1471 @* Prior to 28/nov/2008, JTAG taps where numbered from 0..N this
1472 feature is still present, however its use is highly discouraged and
1473 should not be counted upon.
1474 @item @b{Multiple chips}
1475 @* If your board has multiple chips, you should be
1476 able to @b{source} two configuration files, in the proper order, and
1477 have the taps created in the proper order.
1478 @comment END NOTES
1479 @end itemize
1480 @comment at command level
1481 @comment DOCUMENT old command
1482 @section jtag_device - REMOVED
1483 @example
1484 @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
1485 @end example
1486 @cindex jtag_device
1487
1488 @* @b{Removed: 28/nov/2008} This command has been removed and replaced
1489 by the ``jtag newtap'' command. The documentation remains here so that
1490 one can easily convert the old syntax to the new syntax. About the old
1491 syntax: The old syntax is positional, ie: The 4th parameter is the
1492 ``irmask'' The new syntax requires named prefixes, and supports
1493 additional options, for example ``-irmask 4'' Please refer to the
1494 @b{jtag newtap} command for deails.
1495 @example
1496 OLD: jtag_device 8 0x01 0x0e3 0xfe
1497 NEW: jtag newtap CHIPNAME TAPNAME -irlen 8 -ircapture 0xe3 -irmask 0xfe
1498 @end example
1499
1500 @section Enable/Disable Taps
1501 @b{Note:} These commands are intended to be used as a machine/script
1502 interface. Humans might find the ``scan_chain'' command more helpful
1503 when querying the state of the JTAG taps.
1504
1505 @b{By default, all taps are enabled}
1506
1507 @itemize @bullet
1508 @item @b{jtag tapenable} @var{DOTTED.NAME}
1509 @item @b{jtag tapdisable} @var{DOTTED.NAME}
1510 @item @b{jtag tapisenabled} @var{DOTTED.NAME}
1511 @end itemize
1512 @cindex tap enable
1513 @cindex tap disable
1514 @cindex JRC
1515 @cindex route controller
1516
1517 These commands are used when your target has a JTAG Route controller
1518 that effectively adds or removes a tap from the jtag chain in a
1519 non-standard way.
1520
1521 The ``standard way'' to remove a tap would be to place the tap in
1522 bypass mode. But with the advent of modern chips, this is not always a
1523 good solution. Some taps operate slowly, others operate fast, and
1524 there are other JTAG clock syncronization problems one must face. To
1525 solve that problem, the JTAG Route controller was introduced. Rather
1526 then ``bypass'' the tap, the tap is completely removed from the
1527 circuit and skipped.
1528
1529
1530 From OpenOCDs view point, a JTAG TAP is in one of 3 states:
1531
1532 @itemize @bullet
1533 @item @b{Enabled - Not In ByPass} and has a variable bit length
1534 @item @b{Enabled - In ByPass} and has a length of exactly 1 bit.
1535 @item @b{Disabled} and has a length of ZERO and is removed from the circuit.
1536 @end itemize
1537
1538 The IEEE JTAG definition has no concept of a ``disabled'' tap.
1539 @b{Historical note:} this feature was added 28/nov/2008
1540
1541 @b{jtag tapisenabled DOTTED.NAME}
1542
1543 This command return 1 if the named tap is currently enabled, 0 if not.
1544 This command exists so that scripts that manipulate a JRC (like the
1545 Omap3530 has) can determine if OpenOCD thinks a tap is presently
1546 enabled, or disabled.
1547
1548 @page
1549 @node Target Configuration
1550 @chapter Target Configuration
1551
1552 This chapter discusses how to create a GDB Debug Target. Before
1553 creating a ``target'' a JTAG Tap DOTTED.NAME must exist first.
1554
1555 @section targets [NAME]
1556 @b{Note:} This command name is PLURAL - not singular.
1557
1558 With NO parameter, this pural @b{targets} command lists all known
1559 targets in a human friendly form.
1560
1561 With a parameter, this pural @b{targets} command sets the current
1562 target to the given name. (ie: If there are multiple debug targets)
1563
1564 Example:
1565 @verbatim
1566 (gdb) mon targets
1567 CmdName Type Endian ChainPos State
1568 -- ---------- ---------- ---------- -------- ----------
1569 0: target0 arm7tdmi little 0 halted
1570 @end verbatim
1571
1572 @section target COMMANDS
1573 @b{Note:} This command name is SINGULAR - not plural. It is used to
1574 manipulate specific targets, to create targets and other things.
1575
1576 Once a target is created, a TARGETNAME (object) command is created;
1577 see below for details.
1578
1579 The TARGET command accepts these sub-commands:
1580 @itemize @bullet
1581 @item @b{create} .. parameters ..
1582 @* creates a new target, See below for details.
1583 @item @b{types}
1584 @* Lists all supported target types (perhaps some are not yet in this document).
1585 @item @b{names}
1586 @* Lists all current debug target names, for example: 'str912.cpu' or 'pxa27.cpu' example usage:
1587 @verbatim
1588 foreach t [target names] {
1589 puts [format "Target: %s\n" $t]
1590 }
1591 @end verbatim
1592 @item @b{current}
1593 @* Returns the current target. OpenOCD always has, or refers to the ``current target'' in some way.
1594 By default, commands like: ``mww'' (used to write memory) operate on the current target.
1595 @item @b{number} @b{NUMBER}
1596 @* Internally OpenOCD maintains a list of targets - in numerical index
1597 (0..N-1) this command returns the name of the target at index N.
1598 Example usage:
1599 @verbatim
1600 set thename [target number $x]
1601 puts [format "Target %d is: %s\n" $x $thename]
1602 @end verbatim
1603 @item @b{count}
1604 @* Returns the number of targets known to OpenOCD (see number above)
1605 Example:
1606 @verbatim
1607 set c [target count]
1608 for { set x 0 } { $x < $c } { incr x } {
1609 # Assuming you have created this function
1610 print_target_details $x
1611 }
1612 @end verbatim
1613
1614 @end itemize
1615
1616 @section TARGETNAME (object) commands
1617 @b{Use:} Once a target is created, an ``object name'' that represents the
1618 target is created. By convention, the target name is identical to the
1619 tap name. In a multiple target system, one can preceed many common
1620 commands with a specific target name and effect only that target.
1621 @example
1622 str912.cpu mww 0x1234 0x42
1623 omap3530.cpu mww 0x5555 123
1624 @end example
1625
1626 @b{Model:} The Tcl/Tk language has the concept of object commands. A
1627 good example is a on screen button, once a button is created a button
1628 has a name (a path in TK terms) and that name is useable as a 1st
1629 class command. For example in TK, one can create a button and later
1630 configure it like this:
1631
1632 @example
1633 # Create
1634 button .foobar -background red -command @{ foo @}
1635 # Modify
1636 .foobar configure -foreground blue
1637 # Query
1638 set x [.foobar cget -background]
1639 # Report
1640 puts [format "The button is %s" $x]
1641 @end example
1642
1643 In OpenOCDs terms, the ``target'' is an object just like a Tcl/Tk
1644 button. Commands avaialble as a ``target object'' are:
1645
1646 @comment START targetobj commands.
1647 @itemize @bullet
1648 @item @b{configure} - configure the target; see Target Config/Cget Options below
1649 @item @b{cget} - query the target configuration; see Target Config/Cget Options below
1650 @item @b{curstate} - current target state (running, halt, etc)
1651 @item @b{eventlist}
1652 @* Intended for a human to see/read the currently configure target events.
1653 @item @b{Various Memory Commands} See the ``mww'' command elsewhere.
1654 @comment start memory
1655 @itemize @bullet
1656 @item @b{mww} ...
1657 @item @b{mwh} ...
1658 @item @b{mwb} ...
1659 @item @b{mdw} ...
1660 @item @b{mdh} ...
1661 @item @b{mdb} ...
1662 @comment end memory
1663 @end itemize
1664 @item @b{Memory To Array, Array To Memory}
1665 @* These are aimed at a machine interface to memory
1666 @itemize @bullet
1667 @item @b{mem2array ARRAYNAME WIDTH ADDRESS COUNT}
1668 @item @b{array2mem ARRAYNAME WIDTH ADDRESS COUNT}
1669 @* Where:
1670 @* @b{ARRAYNAME} is the name of an array variable
1671 @* @b{WIDTH} is 8/16/32 - indicating the memory access size
1672 @* @b{ADDRESS} is the target memory address
1673 @* @b{COUNT} is the number of elements to process
1674 @end itemize
1675 @item @b{Used during ``reset''}
1676 @* These commands are used internally by the OpenOCD scripts to deal
1677 with odd reset situations and are not documented here.
1678 @itemize @bullet
1679 @item @b{arp_examine}
1680 @item @b{arp_poll}
1681 @item @b{arp_reset}
1682 @item @b{arp_halt}
1683 @item @b{arp_waitstate}
1684 @end itemize
1685 @item @b{invoke-event} @b{EVENT-NAME}
1686 @* Invokes the specific event manually for the target
1687 @end itemize
1688
1689 @section Target Events
1690 At various times, certian things happen, or you want to happen.
1691
1692 Examples:
1693 @itemize @bullet
1694 @item What should happen when GDB connects? Should your target reset?
1695 @item When GDB tries to flash the target, do you need to enable the flash via a special command?
1696 @item During reset, do you need to write to certian memory locations to reconfigure the SDRAM?
1697 @end itemize
1698
1699 All of the above items are handled by target events.
1700
1701 To specify an event action, either during target creation, or later
1702 via ``$_TARGETNAME configure'' see this example.
1703
1704 Syntactially, the option is: ``-event NAME BODY'' where NAME is a
1705 target event name, and BODY is a tcl procedure or string of commands
1706 to execute.
1707
1708 The programers model is the: ``-command'' option used in Tcl/Tk
1709 buttons and events. Below are two identical examples, the first
1710 creates and invokes small procedure. The second inlines the procedure.
1711
1712 @example
1713 proc my_attach_proc @{ @} @{
1714 puts "RESET...."
1715 reset halt
1716 @}
1717 mychip.cpu configure -event gdb-attach my_attach_proc
1718 mychip.cpu configure -event gdb-attach @{ puts "Reset..." ; reset halt @}
1719 @end example
1720
1721 Current Events
1722
1723 @itemize @bullet
1724 @item @b{debug-halted}
1725 @* The target has halted for debug reasons (ie: breakpoint)
1726 @item @b{debug-resumed}
1727 @* The target has resumed (ie: gdb said run)
1728 @item @b{early-halted}
1729 @* Occurs early in the halt process
1730 @item @b{examine-end}
1731 @* Currently not used (goal: when JTAG examine completes)
1732 @item @b{examine-start}
1733 @* Currently not used (goal: when JTAG examine starts)
1734 @item @b{gdb-attach}
1735 @* When GDB connects
1736 @item @b{gdb-detach}
1737 @* When GDB disconnects
1738 @item @b{gdb-end}
1739 @* When the taret has halted and GDB is not doing anything (see early halt)
1740 @item @b{gdb-flash-erase-start}
1741 @* Before the GDB flash process tries to erase the flash
1742 @item @b{gdb-flash-erase-end}
1743 @* After the GDB flash process has finished erasing the flash
1744 @item @b{gdb-flash-write-start}
1745 @* Before GDB writes to the flash
1746 @item @b{gdb-flash-write-end}
1747 @* After GDB writes to the flash
1748 @item @b{gdb-start}
1749 @* Before the taret steps, gdb is trying to start/resume the tarfget
1750 @item @b{halted}
1751 @* The target has halted
1752 @item @b{old-gdb_program_config}
1753 @* DO NOT USE THIS: Used internally
1754 @item @b{old-pre_resume}
1755 @* DO NOT USE THIS: Used internally
1756 @item @b{reset-assert-pre}
1757 @* Before reset is asserted on the tap.
1758 @item @b{reset-assert-post}
1759 @* Reset is now asserted on the tap.
1760 @item @b{reset-deassert-pre}
1761 @* Reset is about to be released on the tap
1762 @item @b{reset-deassert-post}
1763 @* Reset has been released on the tap
1764 @item @b{reset-end}
1765 @* Currently not used.
1766 @item @b{reset-halt-post}
1767 @* Currently not usd
1768 @item @b{reset-halt-pre}
1769 @* Currently not used
1770 @item @b{reset-init}
1771 @* Currently not used
1772 @item @b{reset-start}
1773 @* Currently not used
1774 @item @b{reset-wait-pos}
1775 @* Currently not used
1776 @item @b{reset-wait-pre}
1777 @* Currently not used
1778 @item @b{resume-start}
1779 @* Before any target is resumed
1780 @item @b{resume-end}
1781 @* After all targets have resumed
1782 @item @b{resume-ok}
1783 @* Success
1784 @item @b{resumed}
1785 @* Target has resumed
1786 @end itemize
1787
1788
1789 @section target create
1790 @cindex target
1791 @cindex target creation
1792
1793 @example
1794 @b{target} @b{create} <@var{NAME}> <@var{TYPE}> <@var{PARAMS ...}>
1795 @end example
1796 @*This command creates a GDB debug target that refers to a specific JTAG tap.
1797 @comment START params
1798 @itemize @bullet
1799 @item @b{NAME}
1800 @* Is the name of the debug target. By convention it should be the tap
1801 DOTTED.NAME, this name is also used to create the target object
1802 command.
1803 @item @b{TYPE}
1804 @* Specifies the target type, ie: arm7tdmi, or cortexM3. Currently supported targes are:
1805 @comment START types
1806 @itemize @minus
1807 @item @b{arm7tdmi}
1808 @item @b{arm720t}
1809 @item @b{arm9tdmi}
1810 @item @b{arm920t}
1811 @item @b{arm922t}
1812 @item @b{arm926ejs}
1813 @item @b{arm966e}
1814 @item @b{cortex_m3}
1815 @item @b{feroceon}
1816 @item @b{xscale}
1817 @item @b{arm11}
1818 @item @b{mips_m4k}
1819 @comment end TYPES
1820 @end itemize
1821 @item @b{PARAMS}
1822 @*PARAMs are various target configure parameters, the following are manditory
1823 at configuration.
1824 @comment START manditory
1825 @itemize @bullet
1826 @item @b{-endian big|little}
1827 @item @b{-chain-position DOTTED.NAME}
1828 @comment end MANDITORY
1829 @end itemize
1830 @comment END params
1831 @end itemize
1832
1833 @section Target Config/Cget Options
1834 These options can be specified when the target is created, or later
1835 via the configure option or to query the target via cget.
1836 @itemize @bullet
1837 @item @b{-type} - returns the target type
1838 @item @b{-event NAME BODY} see Target events
1839 @item @b{-work-area-virt [ADDRESS]} specify/set the work area
1840 @item @b{-work-area-phys [ADDRESS]} specify/set the work area
1841 @item @b{-work-area-size [ADDRESS]} specify/set the work area
1842 @item @b{-work-area-backup [0|1]} does the work area get backed up
1843 @item @b{-endian [big|little]}
1844 @item @b{-variant [NAME]} some chips have varients openocd needs to know about
1845 @item @b{-chain-position DOTTED.NAME} the tap name this target refers to.
1846 @end itemize
1847 Example:
1848 @example
1849 for @{ set x 0 @} @{ $x < [target count] @} @{ incr x @} @{
1850 set name [target number $x]
1851 set y [$name cget -endian]
1852 set z [$name cget -type]
1853 puts [format "Chip %d is %s, Endian: %s, type: %s" $x $y $z]
1854 @}
1855 @end example
1856
1857 @section Target Varients
1858 @itemize @bullet
1859 @item @b{arm7tdmi}
1860 @* Unknown (please write me)
1861 @item @b{arm720t}
1862 @* Unknown (please write me) (simular to arm7tdmi)
1863 @item @b{arm9tdmi}
1864 @* Varients: @option{arm920t}, @option{arm922t} and @option{arm940t}
1865 This enables the hardware single-stepping support found on these
1866 cores.
1867 @item @b{arm920t}
1868 @* None.
1869 @item @b{arm966e}
1870 @* None (this is also used as the ARM946)
1871 @item @b{cortex_m3}
1872 @* use variant <@var{-variant lm3s}> when debugging luminary lm3s targets. This will cause
1873 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
1874 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
1875 be detected and the normal reset behaviour used.
1876 @item @b{xscale}
1877 @* Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},@option{pxa250}, @option{pxa255}, @option{pxa26x}.
1878 @item @b{arm11}
1879 @* Supported variants are @option{arm1136}, @option{arm1156}, @option{arm1176}
1880 @item @b{mips_m4k}
1881 @* Use variant @option{ejtag_srst} when debugging targets that do not
1882 provide a functional SRST line on the EJTAG connector. This causes
1883 openocd to instead use an EJTAG software reset command to reset the
1884 processor. You still need to enable @option{srst} on the reset
1885 configuration command to enable openocd hardware reset functionality.
1886 @comment END varients
1887 @end itemize
1888 @section working_area - Command Removed
1889 @cindex working_area
1890 @*@b{Please use the ``$_TARGETNAME configure -work-area-... parameters instead}
1891 @* This documentation remains because there are existing scripts that
1892 still use this that need to be converted.
1893 @example
1894 working_area target# address size backup| [virtualaddress]
1895 @end example
1896 @* The target# is a the 0 based target numerical index.
1897
1898 This command specifies a working area for the debugger to use. This
1899 may be used to speed-up downloads to target memory and flash
1900 operations, or to perform otherwise unavailable operations (some
1901 coprocessor operations on ARM7/9 systems, for example). The last
1902 parameter decides whether the memory should be preserved
1903 (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If
1904 possible, use a working_area that doesn't need to be backed up, as
1905 performing a backup slows down operation.
1906
1907 @node Flash Configuration
1908 @chapter Flash Programing
1909 @cindex Flash Configuration
1910
1911 @b{Note:} As of 28/nov/2008 OpenOCD does not know how to program a SPI
1912 flash that a micro may boot from. Perhaps you the reader would like to
1913 contribute support for this.
1914
1915 Flash Steps:
1916 @enumerate
1917 @item Configure via the command @b{flash bank}
1918 @* Normally this is done in a configuration file.
1919 @item Operate on the flash via @b{flash SOMECOMMAND}
1920 @* Often commands to manipulate the flash are typed by a human, or run
1921 via a script in some automated way. For example: To program the boot
1922 flash on your board.
1923 @item GDB Flashing
1924 @* Flashing via GDB requires the flash be configured via ``flash
1925 bank'', and the GDB flash features be enabled. See the Daemon
1926 configuration section for more details.
1927 @end enumerate
1928
1929 @section Flash commands
1930 @cindex Flash commands
1931 @subsection flash banks
1932 @b{flash banks}
1933 @cindex flash banks
1934 @*List configured flash banks
1935 @*@b{NOTE:} the singular form: 'flash bank' is used to configure the flash banks.
1936 @subsection flash info
1937 @b{flash info} <@var{num}>
1938 @cindex flash info
1939 @*Print info about flash bank <@option{num}>
1940 @subsection flash probe
1941 @b{flash probe} <@var{num}>
1942 @cindex flash probe
1943 @*Identify the flash, or validate the parameters of the configured flash. Operation
1944 depends on the flash type.
1945 @subsection flash erase_check
1946 @b{flash erase_check} <@var{num}>
1947 @cindex flash erase_check
1948 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
1949 updates the erase state information displayed by @option{flash info}. That means you have
1950 to issue an @option{erase_check} command after erasing or programming the device to get
1951 updated information.
1952 @subsection flash protect_check
1953 @b{flash protect_check} <@var{num}>
1954 @cindex flash protect_check
1955 @*Check protection state of sectors in flash bank <num>.
1956 @option{flash erase_sector} using the same syntax.
1957 @subsection flash erase_sector
1958 @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
1959 @cindex flash erase_sector
1960 @anchor{flash erase_sector}
1961 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
1962 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
1963 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
1964 the CFI driver).
1965 @subsection flash erase_address
1966 @b{flash erase_address} <@var{address}> <@var{length}>
1967 @cindex flash erase_address
1968 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
1969 @subsection flash write_bank
1970 @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
1971 @cindex flash write_bank
1972 @anchor{flash write_bank}
1973 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
1974 <@option{offset}> bytes from the beginning of the bank.
1975 @subsection flash write_image
1976 @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
1977 @cindex flash write_image
1978 @anchor{flash write_image}
1979 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
1980 [@var{offset}] can be specified and the file [@var{type}] can be specified
1981 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
1982 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
1983 if the @option{erase} parameter is given.
1984 @subsection flash protect
1985 @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
1986 @cindex flash protect
1987 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
1988 <@var{last}> of @option{flash bank} <@var{num}>.
1989
1990 @subsection mFlash commands
1991 @cindex mFlash commands
1992 @itemize @bullet
1993 @item @b{mflash probe}
1994 @cindex mflash probe
1995 Probe mflash.
1996 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
1997 @cindex mflash write
1998 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
1999 <@var{offset}> bytes from the beginning of the bank.
2000 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
2001 @cindex mflash dump
2002 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
2003 to a <@var{file}>.
2004 @end itemize
2005
2006 @section flash bank command
2007 The @b{flash bank} command is used to configure one or more flash chips (or banks in openocd terms)
2008
2009 @example
2010 @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
2011 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
2012 @end example
2013 @cindex flash bank
2014 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
2015 and <@var{bus_width}> bytes using the selected flash <driver>.
2016
2017 @subsection External Flash - cfi options
2018 @cindex cfi options
2019 CFI flash are external flash chips - often they are connected to a
2020 specific chip select on the micro. By default at hard reset most
2021 micros have the ablity to ``boot'' from some flash chip - typically
2022 attached to the chips CS0 pin.
2023
2024 For other chip selects: OpenOCD does not know how to configure, or
2025 access a specific chip select. Instead you the human might need to via
2026 other commands (like: mww) configure additional chip selects, or
2027 perhaps configure a GPIO pin that controls the ``write protect'' pin
2028 on the FLASH chip.
2029
2030 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
2031 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
2032 @*CFI flashes require the number of the target they're connected to as an additional
2033 argument. The CFI driver makes use of a working area (specified for the target)
2034 to significantly speed up operation.
2035
2036 @var{chip_width} and @var{bus_width} are specified in bytes.
2037
2038 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
2039
2040 @var{x16_as_x8} ???
2041
2042 @subsection Internal Flash (Micro Controllers)
2043 @subsubsection lpc2000 options
2044 @cindex lpc2000 options
2045
2046 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2047 <@var{clock}> [@var{calc_checksum}]
2048 @*LPC flashes don't require the chip and bus width to be specified. Additional
2049 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
2050 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
2051 of the target this flash belongs to (first is 0), the frequency at which the core
2052 is currently running (in kHz - must be an integral number), and the optional keyword
2053 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
2054 vector table.
2055
2056
2057 @subsubsection at91sam7 options
2058 @cindex at91sam7 options
2059
2060 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
2061 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
2062 reading the chip-id and type.
2063
2064 @subsubsection str7 options
2065 @cindex str7 options
2066
2067 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
2068 @*variant can be either STR71x, STR73x or STR75x.
2069
2070 @subsubsection str9 options
2071 @cindex str9 options
2072
2073 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2074 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
2075 @example
2076 str9x flash_config 0 4 2 0 0x80000
2077 @end example
2078 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
2079
2080 @subsubsection str9 options (str9xpec driver)
2081
2082 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2083 @*Before using the flash commands the turbo mode will need enabling using str9xpec
2084 @option{enable_turbo} <@var{num>.}
2085
2086 Only use this driver for locking/unlocking the device or configuring the option bytes.
2087 Use the standard str9 driver for programming. @xref{STR9 specific commands}.
2088
2089 @subsubsection stellaris (LM3Sxxx) options
2090 @cindex stellaris (LM3Sxxx) options
2091
2092 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2093 @*stellaris flash plugin only require the @var{target#}.
2094
2095 @subsubsection stm32x options
2096 @cindex stm32x options
2097
2098 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2099 @*stm32x flash plugin only require the @var{target#}.
2100
2101 @subsubsection aduc702x options
2102 @cindex aduc702x options
2103
2104 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
2105 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
2106
2107 @subsection mFlash configuration
2108 @cindex mFlash configuration
2109 @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
2110 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
2111 @cindex mflash bank
2112 @*Configures a mflash for <@var{soc}> host bank at
2113 <@var{base}>. <@var{chip_width}> and <@var{bus_width}> are bytes
2114 order. Pin number format is dependent on host GPIO calling convention.
2115 If WP or DPD pin was not used, write -1. Currently, mflash bank
2116 support s3c2440 and pxa270.
2117
2118 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
2119 @example
2120 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
2121 @end example
2122 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
2123 @example
2124 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
2125 @end example
2126
2127 @section Micro Controller Specific Flash Commands
2128
2129 @subsection AT91SAM7 specific commands
2130 @cindex AT91SAM7 specific commands
2131 The flash configuration is deduced from the chip identification register. The flash
2132 controller handles erases automatically on a page (128/265 byte) basis so erase is
2133 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
2134 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
2135 that can be erased separatly. Only an EraseAll command is supported by the controller
2136 for each flash plane and this is called with
2137 @itemize @bullet
2138 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
2139 @*bulk erase flash planes first_plane to last_plane.
2140 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
2141 @cindex at91sam7 gpnvm
2142 @*set or clear a gpnvm bit for the processor
2143 @end itemize
2144
2145 @subsection STR9 specific commands
2146 @cindex STR9 specific commands
2147 @anchor{STR9 specific commands}
2148 These are flash specific commands when using the str9xpec driver.
2149 @itemize @bullet
2150 @item @b{str9xpec enable_turbo} <@var{num}>
2151 @cindex str9xpec enable_turbo
2152 @*enable turbo mode, simply this will remove the str9 from the chain and talk
2153 directly to the embedded flash controller.
2154 @item @b{str9xpec disable_turbo} <@var{num}>
2155 @cindex str9xpec disable_turbo
2156 @*restore the str9 into jtag chain.
2157 @item @b{str9xpec lock} <@var{num}>
2158 @cindex str9xpec lock
2159 @*lock str9 device. The str9 will only respond to an unlock command that will
2160 erase the device.
2161 @item @b{str9xpec unlock} <@var{num}>
2162 @cindex str9xpec unlock
2163 @*unlock str9 device.
2164 @item @b{str9xpec options_read} <@var{num}>
2165 @cindex str9xpec options_read
2166 @*read str9 option bytes.
2167 @item @b{str9xpec options_write} <@var{num}>
2168 @cindex str9xpec options_write
2169 @*write str9 option bytes.
2170 @end itemize
2171
2172 Note: Before using the str9xpec driver here is some background info to help
2173 you better understand how the drivers works. Openocd has two flash drivers for
2174 the str9.
2175 @enumerate
2176 @item
2177 Standard driver @option{str9x} programmed via the str9 core. Normally used for
2178 flash programming as it is faster than the @option{str9xpec} driver.
2179 @item
2180 Direct programming @option{str9xpec} using the flash controller, this is
2181 ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
2182 core does not need to be running to program using this flash driver. Typical use
2183 for this driver is locking/unlocking the target and programming the option bytes.
2184 @end enumerate
2185
2186 Before we run any cmds using the @option{str9xpec} driver we must first disable
2187 the str9 core. This example assumes the @option{str9xpec} driver has been
2188 configured for flash bank 0.
2189 @example
2190 # assert srst, we do not want core running
2191 # while accessing str9xpec flash driver
2192 jtag_reset 0 1
2193 # turn off target polling
2194 poll off
2195 # disable str9 core
2196 str9xpec enable_turbo 0
2197 # read option bytes
2198 str9xpec options_read 0
2199 # re-enable str9 core
2200 str9xpec disable_turbo 0
2201 poll on
2202 reset halt
2203 @end example
2204 The above example will read the str9 option bytes.
2205 When performing a unlock remember that you will not be able to halt the str9 - it
2206 has been locked. Halting the core is not required for the @option{str9xpec} driver
2207 as mentioned above, just issue the cmds above manually or from a telnet prompt.
2208
2209 @subsection STR9 configuration
2210 @cindex STR9 configuration
2211 @itemize @bullet
2212 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
2213 <@var{BBADR}> <@var{NBBADR}>
2214 @cindex str9x flash_config
2215 @*Configure str9 flash controller.
2216 @example
2217 eg. str9x flash_config 0 4 2 0 0x80000
2218 This will setup
2219 BBSR - Boot Bank Size register
2220 NBBSR - Non Boot Bank Size register
2221 BBADR - Boot Bank Start Address register
2222 NBBADR - Boot Bank Start Address register
2223 @end example
2224 @end itemize
2225
2226 @subsection STR9 option byte configuration
2227 @cindex STR9 option byte configuration
2228 @itemize @bullet
2229 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
2230 @cindex str9xpec options_cmap
2231 @*configure str9 boot bank.
2232 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
2233 @cindex str9xpec options_lvdthd
2234 @*configure str9 lvd threshold.
2235 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
2236 @cindex str9xpec options_lvdsel
2237 @*configure str9 lvd source.
2238 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
2239 @cindex str9xpec options_lvdwarn
2240 @*configure str9 lvd reset warning source.
2241 @end itemize
2242
2243 @subsection STM32x specific commands
2244 @cindex STM32x specific commands
2245
2246 These are flash specific commands when using the stm32x driver.
2247 @itemize @bullet
2248 @item @b{stm32x lock} <@var{num}>
2249 @cindex stm32x lock
2250 @*lock stm32 device.
2251 @item @b{stm32x unlock} <@var{num}>
2252 @cindex stm32x unlock
2253 @*unlock stm32 device.
2254 @item @b{stm32x options_read} <@var{num}>
2255 @cindex stm32x options_read
2256 @*read stm32 option bytes.
2257 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
2258 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
2259 @cindex stm32x options_write
2260 @*write stm32 option bytes.
2261 @item @b{stm32x mass_erase} <@var{num}>
2262 @cindex stm32x mass_erase
2263 @*mass erase flash memory.
2264 @end itemize
2265
2266 @subsection Stellaris specific commands
2267 @cindex Stellaris specific commands
2268
2269 These are flash specific commands when using the Stellaris driver.
2270 @itemize @bullet
2271 @item @b{stellaris mass_erase} <@var{num}>
2272 @cindex stellaris mass_erase
2273 @*mass erase flash memory.
2274 @end itemize
2275
2276
2277 @node General Commands
2278 @chapter General Commands
2279 @cindex commands
2280
2281 The commands documented in this chapter here are common commands that
2282 you a human may want to type and see the output of. Configuration type
2283 commands are documented elsewhere.
2284
2285 Intent:
2286 @itemize @bullet
2287 @item @b{Source Of Commands}
2288 @* OpenOCD commands can occur in a configuration script (discussed
2289 elsewhere) or typed manually by a human or supplied programatically,
2290 or via one of several Tcp/Ip Ports.
2291
2292 @item @b{From the human}
2293 @* A human should interact with the Telnet interface (default port: 4444,
2294 or via GDB, default port 3333)
2295
2296 To issue commands from within a GDB session, use the @option{monitor}
2297 command, e.g. use @option{monitor poll} to issue the @option{poll}
2298 command. All output is relayed through the GDB session.
2299
2300 @item @b{Machine Interface}
2301 The TCL interface intent is to be a machine interface. The default TCL
2302 port is 5555.
2303 @end itemize
2304
2305
2306 @section Daemon Commands
2307
2308 @subsection sleep
2309 @b{sleep} <@var{msec}>
2310 @cindex sleep
2311 @*Wait for n milliseconds before resuming. Useful in connection with script files
2312 (@var{script} command and @var{target_script} configuration).
2313
2314 @subsection sleep
2315 @b{shutdown}
2316 @cindex shutdown
2317 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
2318
2319 @subsection debug_level [@var{n}]
2320 @cindex debug_level
2321 @anchor{debug_level}
2322 @*Display or adjust debug level to n<0-3>
2323
2324 @subsection fast [@var{enable|disable}]
2325 @cindex fast
2326 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
2327 downloads and fast memory access will work if the JTAG interface isn't too fast and
2328 the core doesn't run at a too low frequency. Note that this option only changes the default
2329 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
2330 individually.
2331
2332 The target specific "dangerous" optimisation tweaking options may come and go
2333 as more robust and user friendly ways are found to ensure maximum throughput
2334 and robustness with a minimum of configuration.
2335
2336 Typically the "fast enable" is specified first on the command line:
2337
2338 @example
2339 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
2340 @end example
2341
2342 @subsection log_output <@var{file}>
2343 @cindex log_output
2344 @*Redirect logging to <file> (default: stderr)
2345
2346 @subsection script <@var{file}>
2347 @cindex script
2348 @*Execute commands from <file>
2349 Also see: ``source [find FILENAME]''
2350
2351 @section Target state handling
2352 @subsection power <@var{on}|@var{off}>
2353 @cindex reg
2354 @*Turn power switch to target on/off.
2355 No arguments: print status.
2356 Not all interfaces support this.
2357
2358 @subsection reg [@option{#}|@option{name}] [value]
2359 @cindex reg
2360 @*Access a single register by its number[@option{#}] or by its [@option{name}].
2361 No arguments: list all available registers for the current target.
2362 Number or name argument: display a register
2363 Number or name and value arguments: set register value
2364
2365 @subsection poll [@option{on}|@option{off}]
2366 @cindex poll
2367 @*Poll the target for its current state. If the target is in debug mode, architecture
2368 specific information about the current state is printed. An optional parameter
2369 allows continuous polling to be enabled and disabled.
2370
2371 @subsection halt [@option{ms}]
2372 @cindex halt
2373 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
2374 Default [@option{ms}] is 5 seconds if no arg given.
2375 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
2376 will stop OpenOCD from waiting.
2377
2378 @subsection wait_halt [@option{ms}]
2379 @cindex wait_halt
2380 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
2381 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
2382 arg given.
2383
2384 @subsection resume [@var{address}]
2385 @cindex resume
2386 @*Resume the target at its current code position, or at an optional address.
2387 OpenOCD will wait 5 seconds for the target to resume.
2388
2389 @subsection step [@var{address}]
2390 @cindex step
2391 @*Single-step the target at its current code position, or at an optional address.
2392
2393 @subsection reset [@option{run}|@option{halt}|@option{init}]
2394 @cindex reset
2395 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
2396
2397 With no arguments a "reset run" is executed
2398 @itemize @minus
2399 @item @b{run}
2400 @cindex reset run
2401 @*Let the target run.
2402 @item @b{halt}
2403 @cindex reset halt
2404 @*Immediately halt the target (works only with certain configurations).
2405 @item @b{init}
2406 @cindex reset init
2407 @*Immediately halt the target, and execute the reset script (works only with certain
2408 configurations)
2409 @end itemize
2410
2411 @subsection soft_reset_halt
2412 @cindex reset
2413 @*Requesting target halt and executing a soft reset. This often used
2414 when a target cannot be reset and halted. The target, after reset is
2415 released begins to execute code. OpenOCD attempts to stop the CPU and
2416 then sets the Program counter back at the reset vector. Unfortunatlly
2417 that code that was executed may have left hardware in an unknown
2418 state.
2419
2420
2421 @section Memory access commands
2422 @subsection meminfo
2423 display available ram memory.
2424 @subsection Memory Peek/Poke type commands
2425 These commands allow accesses of a specific size to the memory
2426 system. Often these are used to configure the current target in some
2427 special way. For example - one may need to write certian values to the
2428 SDRAM controller to enable SDRAM.
2429
2430 @enumerate
2431 @item To change the current target see the ``targets'' (plural) command
2432 @item In system level scripts these commands are depricated, please use the TARGET object versions.
2433 @end enumerate
2434
2435 @itemize @bullet
2436 @item @b{mdw} <@var{addr}> [@var{count}]
2437 @cindex mdw
2438 @*display memory words (32bit)
2439 @item @b{mdh} <@var{addr}> [@var{count}]
2440 @cindex mdh
2441 @*display memory half-words (16bit)
2442 @item @b{mdb} <@var{addr}> [@var{count}]
2443 @cindex mdb
2444 @*display memory bytes (8bit)
2445 @item @b{mww} <@var{addr}> <@var{value}>
2446 @cindex mww
2447 @*write memory word (32bit)
2448 @item @b{mwh} <@var{addr}> <@var{value}>
2449 @cindex mwh
2450 @*write memory half-word (16bit)
2451 @item @b{mwb} <@var{addr}> <@var{value}>
2452 @cindex mwb
2453 @*write memory byte (8bit)
2454 @end itemize
2455
2456 @section Image Loading Commands
2457 @subsection load_image
2458 @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2459 @cindex load_image
2460 @anchor{load_image}
2461 @*Load image <@var{file}> to target memory at <@var{address}>
2462 @subsection fast_load_image
2463 @b{fast_load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2464 @cindex fast_load_image
2465 @anchor{fast_load_image}
2466 @*Normally you should be using @b{load_image} or GDB load. However, for
2467 testing purposes or when IO overhead is significant(OpenOCD running on embedded
2468 host), then storing the image in memory and uploading the image to the target
2469 can be a way to upload e.g. multiple debug sessions when the binary does not change.
2470 Arguments as @b{load_image}, but image is stored in OpenOCD host
2471 memory, i.e. does not affect target. This approach is also useful when profiling
2472 target programming performance as IO and target programming can easily be profiled
2473 seperately.
2474 @subsection fast_load
2475 @b{fast_load}
2476 @cindex fast_image
2477 @anchor{fast_image}
2478 @*Loads image stored in memory by @b{fast_load_image} to current target. Must be preceeded by fast_load_image.
2479 @subsection dump_image
2480 @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
2481 @cindex dump_image
2482 @anchor{dump_image}
2483 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
2484 (binary) <@var{file}>.
2485 @subsection verify_image
2486 @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
2487 @cindex verify_image
2488 @*Verify <@var{file}> against target memory starting at <@var{address}>.
2489 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
2490
2491
2492 @section Breakpoint commands
2493 @cindex Breakpoint commands
2494 @itemize @bullet
2495 @item @b{bp} <@var{addr}> <@var{len}> [@var{hw}]
2496 @cindex bp
2497 @*set breakpoint <address> <length> [hw]
2498 @item @b{rbp} <@var{addr}>
2499 @cindex rbp
2500 @*remove breakpoint <adress>
2501 @item @b{wp} <@var{addr}> <@var{len}> <@var{r}|@var{w}|@var{a}> [@var{value}] [@var{mask}]
2502 @cindex wp
2503 @*set watchpoint <address> <length> <r/w/a> [value] [mask]
2504 @item @b{rwp} <@var{addr}>
2505 @cindex rwp
2506 @*remove watchpoint <adress>
2507 @end itemize
2508
2509 @section Misc Commands
2510 @cindex Other Target Commands
2511 @itemize
2512 @item @b{profile} <@var{seconds}> <@var{gmon.out}>
2513
2514 Profiling samples the CPU PC as quickly as OpenOCD is able, which will be used as a random sampling of PC.
2515 @end itemize
2516
2517 @section Target Specific Commands
2518 @cindex Target Specific Commands
2519
2520
2521 @page
2522 @section Architecture Specific Commands
2523 @cindex Architecture Specific Commands
2524
2525 @subsection ARMV4/5 specific commands
2526 @cindex ARMV4/5 specific commands
2527
2528 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
2529 or Intel XScale (XScale isn't supported yet).
2530 @itemize @bullet
2531 @item @b{armv4_5 reg}
2532 @cindex armv4_5 reg
2533 @*Display a list of all banked core registers, fetching the current value from every
2534 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
2535 register value.
2536 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
2537 @cindex armv4_5 core_mode
2538 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
2539 The target is resumed in the currently set @option{core_mode}.
2540 @end itemize
2541
2542 @subsection ARM7/9 specific commands
2543 @cindex ARM7/9 specific commands
2544
2545 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
2546 ARM920t or ARM926EJ-S.
2547 @itemize @bullet
2548 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
2549 @cindex arm7_9 dbgrq
2550 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
2551 safe for all but ARM7TDMI--S cores (like Philips LPC).
2552 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
2553 @cindex arm7_9 fast_memory_access
2554 @anchor{arm7_9 fast_memory_access}
2555 @*Allow OpenOCD to read and write memory without checking completion of
2556 the operation. This provides a huge speed increase, especially with USB JTAG
2557 cables (FT2232), but might be unsafe if used with targets running at a very low
2558 speed, like the 32kHz startup clock of an AT91RM9200.
2559 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
2560 @cindex arm7_9 dcc_downloads
2561 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
2562 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
2563 unsafe, especially with targets running at a very low speed. This command was introduced
2564 with OpenOCD rev. 60.
2565 @end itemize
2566
2567 @subsection ARM720T specific commands
2568 @cindex ARM720T specific commands
2569
2570 @itemize @bullet
2571 @item @b{arm720t cp15} <@var{num}> [@var{value}]
2572 @cindex arm720t cp15
2573 @*display/modify cp15 register <@option{num}> [@option{value}].
2574 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
2575 @cindex arm720t md<bhw>_phys
2576 @*Display memory at physical address addr.
2577 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
2578 @cindex arm720t mw<bhw>_phys
2579 @*Write memory at physical address addr.
2580 @item @b{arm720t virt2phys} <@var{va}>
2581 @cindex arm720t virt2phys
2582 @*Translate a virtual address to a physical address.
2583 @end itemize
2584
2585 @subsection ARM9TDMI specific commands
2586 @cindex ARM9TDMI specific commands
2587
2588 @itemize @bullet
2589 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
2590 @cindex arm9tdmi vector_catch
2591 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
2592 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
2593 @option{irq} @option{fiq}.
2594
2595 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
2596 @end itemize
2597
2598 @subsection ARM966E specific commands
2599 @cindex ARM966E specific commands
2600
2601 @itemize @bullet
2602 @item @b{arm966e cp15} <@var{num}> [@var{value}]
2603 @cindex arm966e cp15
2604 @*display/modify cp15 register <@option{num}> [@option{value}].
2605 @end itemize
2606
2607 @subsection ARM920T specific commands
2608 @cindex ARM920T specific commands
2609
2610 @itemize @bullet
2611 @item @b{arm920t cp15} <@var{num}> [@var{value}]
2612 @cindex arm920t cp15
2613 @*display/modify cp15 register <@option{num}> [@option{value}].
2614 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
2615 @cindex arm920t cp15i
2616 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
2617 @item @b{arm920t cache_info}
2618 @cindex arm920t cache_info
2619 @*Print information about the caches found. This allows you to see if your target
2620 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
2621 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
2622 @cindex arm920t md<bhw>_phys
2623 @*Display memory at physical address addr.
2624 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
2625 @cindex arm920t mw<bhw>_phys
2626 @*Write memory at physical address addr.
2627 @item @b{arm920t read_cache} <@var{filename}>
2628 @cindex arm920t read_cache
2629 @*Dump the content of ICache and DCache to a file.
2630 @item @b{arm920t read_mmu} <@var{filename}>
2631 @cindex arm920t read_mmu
2632 @*Dump the content of the ITLB and DTLB to a file.
2633 @item @b{arm920t virt2phys} <@var{va}>
2634 @cindex arm920t virt2phys
2635 @*Translate a virtual address to a physical address.
2636 @end itemize
2637
2638 @subsection ARM926EJS specific commands
2639 @cindex ARM926EJS specific commands
2640
2641 @itemize @bullet
2642 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
2643 @cindex arm926ejs cp15
2644 @*display/modify cp15 register <@option{num}> [@option{value}].
2645 @item @b{arm926ejs cache_info}
2646 @cindex arm926ejs cache_info
2647 @*Print information about the caches found.
2648 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
2649 @cindex arm926ejs md<bhw>_phys
2650 @*Display memory at physical address addr.
2651 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
2652 @cindex arm926ejs mw<bhw>_phys
2653 @*Write memory at physical address addr.
2654 @item @b{arm926ejs virt2phys} <@var{va}>
2655 @cindex arm926ejs virt2phys
2656 @*Translate a virtual address to a physical address.
2657 @end itemize
2658
2659 @subsection CORTEX_M3 specific commands
2660 @cindex CORTEX_M3 specific commands
2661
2662 @itemize @bullet
2663 @item @b{cortex_m3 maskisr} <@var{on}|@var{off}>
2664 @cindex cortex_m3 maskisr
2665 @*Enable masking (disabling) interrupts during target step/resume.
2666 @end itemize
2667
2668 @page
2669 @section Debug commands
2670 @cindex Debug commands
2671 The following commands give direct access to the core, and are most likely
2672 only useful while debugging OpenOCD.
2673 @itemize @bullet
2674 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
2675 @cindex arm7_9 write_xpsr
2676 @*Immediately write either the current program status register (CPSR) or the saved
2677 program status register (SPSR), without changing the register cache (as displayed
2678 by the @option{reg} and @option{armv4_5 reg} commands).
2679 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
2680 <@var{0=cpsr},@var{1=spsr}>
2681 @cindex arm7_9 write_xpsr_im8
2682 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
2683 operation (similar to @option{write_xpsr}).
2684 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
2685 @cindex arm7_9 write_core_reg
2686 @*Write a core register, without changing the register cache (as displayed by the
2687 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
2688 encoding of the [M4:M0] bits of the PSR.
2689 @end itemize
2690
2691 @section Target Requests
2692 @cindex Target Requests
2693 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
2694 See libdcc in the contrib dir for more details.
2695 @itemize @bullet
2696 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
2697 @cindex target_request debugmsgs
2698 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
2699 @end itemize
2700
2701 @node JTAG Commands
2702 @chapter JTAG Commands
2703 @cindex JTAG commands
2704 Generally most people will not use the bulk of these commands. They
2705 are mostly used by the OpenOCD developers or those who need to
2706 directly manipulate the JTAG taps.
2707
2708 In general these commands control JTAG taps at a very low level. For
2709 example if you need to control a JTAG Route Controller (ie: the
2710 OMAP3530 on the Beagle Board has one) you might use these commands in
2711 a script or an event procedure.
2712
2713 @itemize @bullet
2714 @item @b{scan_chain}
2715 @cindex scan_chain
2716 @*Print current scan chain configuration.
2717 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
2718 @cindex jtag_reset
2719 @*Toggle reset lines.
2720 @item @b{endstate} <@var{tap_state}>
2721 @cindex endstate
2722 @*Finish JTAG operations in <@var{tap_state}>.
2723 @item @b{runtest} <@var{num_cycles}>
2724 @cindex runtest
2725 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
2726 @item @b{statemove} [@var{tap_state}]
2727 @cindex statemove
2728 @*Move to current endstate or [@var{tap_state}]
2729 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2730 @cindex irscan
2731 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
2732 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
2733 @cindex drscan
2734 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
2735 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
2736 @cindex verify_ircapture
2737 @*Verify value captured during Capture-IR. Default is enabled.
2738 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2739 @cindex var
2740 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
2741 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
2742 @cindex field
2743 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
2744 @end itemize
2745
2746
2747 @node TFTP
2748 @chapter TFTP
2749 @cindex TFTP
2750 If OpenOCD runs on an embedded host(as ZY1000 does), then tftp can
2751 be used to access files on PCs(either developer PC or some other PC).
2752
2753 The way this works on the ZY1000 is to prefix a filename by
2754 "/tftp/ip/" and append the tftp path on the tftp
2755 server(tftpd). E.g. "load_image /tftp/10.0.0.96/c:\temp\abc.elf" will
2756 load c:\temp\abc.elf from the developer pc (10.0.0.96) into memory as
2757 if the file was hosted on the embedded host.
2758
2759 In order to achieve decent performance, you must choose a tftp server
2760 that supports a packet size bigger than the default packet size(512 bytes). There
2761 are numerous tftp servers out there(free and commercial) and you will have to do
2762 a bit of googling to find something that fits your requirements.
2763
2764 @node Sample Scripts
2765 @chapter Sample Scripts
2766 @cindex scripts
2767
2768 This page shows how to use the target library.
2769
2770 The configuration script can be divided in the following section:
2771 @itemize @bullet
2772 @item daemon configuration
2773 @item interface
2774 @item jtag scan chain
2775 @item target configuration
2776 @item flash configuration
2777 @end itemize
2778
2779 Detailed information about each section can be found at OpenOCD configuration.
2780
2781 @section AT91R40008 example
2782 @cindex AT91R40008 example
2783 To start OpenOCD with a target script for the AT91R40008 CPU and reset
2784 the CPU upon startup of the OpenOCD daemon.
2785 @example
2786 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
2787 @end example
2788
2789
2790 @node GDB and OpenOCD
2791 @chapter GDB and OpenOCD
2792 @cindex GDB and OpenOCD
2793 OpenOCD complies with the remote gdbserver protocol, and as such can be used
2794 to debug remote targets.
2795
2796 @section Connecting to gdb
2797 @cindex Connecting to gdb
2798 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For
2799 instance 6.3 has a known bug where it produces bogus memory access
2800 errors, which has since been fixed: look up 1836 in
2801 @url{http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb}
2802
2803
2804 A connection is typically started as follows:
2805 @example
2806 target remote localhost:3333
2807 @end example
2808 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
2809
2810 To see a list of available OpenOCD commands type @option{monitor help} on the
2811 gdb commandline.
2812
2813 OpenOCD supports the gdb @option{qSupported} packet, this enables information
2814 to be sent by the gdb server (openocd) to gdb. Typical information includes
2815 packet size and device memory map.
2816
2817 Previous versions of OpenOCD required the following gdb options to increase
2818 the packet size and speed up gdb communication.
2819 @example
2820 set remote memory-write-packet-size 1024
2821 set remote memory-write-packet-size fixed
2822 set remote memory-read-packet-size 1024
2823 set remote memory-read-packet-size fixed
2824 @end example
2825 This is now handled in the @option{qSupported} PacketSize.
2826
2827 @section Programming using gdb
2828 @cindex Programming using gdb
2829
2830 By default the target memory map is sent to gdb, this can be disabled by
2831 the following OpenOCD config option:
2832 @example
2833 gdb_memory_map disable
2834 @end example
2835 For this to function correctly a valid flash config must also be configured
2836 in OpenOCD. For faster performance you should also configure a valid
2837 working area.
2838
2839 Informing gdb of the memory map of the target will enable gdb to protect any
2840 flash area of the target and use hardware breakpoints by default. This means
2841 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
2842 using a memory map. @xref{gdb_breakpoint_override}.
2843
2844 To view the configured memory map in gdb, use the gdb command @option{info mem}
2845 All other unasigned addresses within gdb are treated as RAM.
2846
2847 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
2848 this can be changed to the old behaviour by using the following gdb command.
2849 @example
2850 set mem inaccessible-by-default off
2851 @end example
2852
2853 If @option{gdb_flash_program enable} is also used, gdb will be able to
2854 program any flash memory using the vFlash interface.
2855
2856 gdb will look at the target memory map when a load command is given, if any
2857 areas to be programmed lie within the target flash area the vFlash packets
2858 will be used.
2859
2860 If the target needs configuring before gdb programming, an event
2861 script can be executed.
2862 @example
2863 $_TARGETNAME configure -event EVENTNAME BODY
2864 @end example
2865
2866 To verify any flash programming the gdb command @option{compare-sections}
2867 can be used.
2868
2869 @node TCL scripting API
2870 @chapter TCL scripting API
2871 @cindex TCL scripting API
2872 API rules
2873
2874 The commands are stateless. E.g. the telnet command line has a concept
2875 of currently active target, the Tcl API proc's take this sort of state
2876 information as an argument to each proc.
2877
2878 There are three main types of return values: single value, name value
2879 pair list and lists.
2880
2881 Name value pair. The proc 'foo' below returns a name/value pair
2882 list.
2883
2884 @verbatim
2885
2886 > set foo(me) Duane
2887 > set foo(you) Oyvind
2888 > set foo(mouse) Micky
2889 > set foo(duck) Donald
2890
2891 If one does this:
2892
2893 > set foo
2894
2895 The result is:
2896
2897 me Duane you Oyvind mouse Micky duck Donald
2898
2899 Thus, to get the names of the associative array is easy:
2900
2901 foreach { name value } [set foo] {
2902 puts "Name: $name, Value: $value"
2903 }
2904 @end verbatim
2905
2906 Lists returned must be relatively small. Otherwise a range
2907 should be passed in to the proc in question.
2908
2909 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
2910 is the low level API upon which "flash banks" is implemented.
2911
2912 @itemize @bullet
2913 @item @b{ocd_mem2array} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2914
2915 Read memory and return as a TCL array for script processing
2916 @item @b{ocd_array2mem} <@var{varname}> <@var{width}> <@var{addr}> <@var{nelems}>
2917
2918 Convert a TCL array to memory locations and write the values
2919 @item @b{ocd_flash_banks} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}> <@var{target}> [@option{driver options} ...]
2920
2921 Return information about the flash banks
2922 @end itemize
2923
2924 OpenOCD commands can consist of two words, e.g. "flash banks". The
2925 startup.tcl "unknown" proc will translate this into a tcl proc
2926 called "flash_banks".
2927
2928
2929 @node Upgrading
2930 @chapter Deprecated/Removed Commands
2931 @cindex Deprecated/Removed Commands
2932 Certain OpenOCD commands have been deprecated/removed during the various revisions.
2933
2934 @itemize @bullet
2935 @item @b{arm7_9 fast_writes}
2936 @cindex arm7_9 fast_writes
2937 @*use @option{arm7_9 fast_memory_access} command with same args. @xref{arm7_9 fast_memory_access}.
2938 @item @b{arm7_9 force_hw_bkpts}
2939 @cindex arm7_9 force_hw_bkpts
2940 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
2941 for flash if the gdb memory map has been set up(default when flash is declared in
2942 target configuration). @xref{gdb_breakpoint_override}.
2943 @item @b{arm7_9 sw_bkpts}
2944 @cindex arm7_9 sw_bkpts
2945 @*On by default. See also @option{gdb_breakpoint_override}. @xref{gdb_breakpoint_override}.
2946 @item @b{daemon_startup}
2947 @cindex daemon_startup
2948 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
2949 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
2950 and @option{target cortex_m3 little reset_halt 0}.
2951 @item @b{dump_binary}
2952 @cindex dump_binary
2953 @*use @option{dump_image} command with same args. @xref{dump_image}.
2954 @item @b{flash erase}
2955 @cindex flash erase
2956 @*use @option{flash erase_sector} command with same args. @xref{flash erase_sector}.
2957 @item @b{flash write}
2958 @cindex flash write
2959 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
2960 @item @b{flash write_binary}
2961 @cindex flash write_binary
2962 @*use @option{flash write_bank} command with same args. @xref{flash write_bank}.
2963 @item @b{flash auto_erase}
2964 @cindex flash auto_erase
2965 @*use @option{flash write_image} command passing @option{erase} as the first parameter. @xref{flash write_image}.
2966 @item @b{load_binary}
2967 @cindex load_binary
2968 @*use @option{load_image} command with same args. @xref{load_image}.
2969 @item @b{run_and_halt_time}
2970 @cindex run_and_halt_time
2971 @*This command has been removed for simpler reset behaviour, it can be simulated with the
2972 following commands:
2973 @smallexample
2974 reset run
2975 sleep 100
2976 halt
2977 @end smallexample
2978 @item @b{target} <@var{type}> <@var{endian}> <@var{jtag-position}>
2979 @cindex target
2980 @*use the create subcommand of @option{target}.
2981 @item @b{target_script} <@var{target#}> <@var{eventname}> <@var{scriptname}>
2982 @cindex target_script
2983 @*use <@var{target_name}> configure -event <@var{eventname}> "script <@var{scriptname}>"
2984 @item @b{working_area}
2985 @cindex working_area
2986 @*use the @option{configure} subcommand of @option{target} to set the work-area-virt, work-area-phy, work-area-size, and work-area-backup properties of the target.
2987 @end itemize
2988
2989 @node FAQ
2990 @chapter FAQ
2991 @cindex faq
2992 @enumerate
2993 @item @b{RTCK, also known as: Adaptive Clocking - What is it?}
2994 @cindex RTCK
2995 @cindex adaptive clocking
2996 @*
2997
2998 In digital circuit design it is often refered to as ``clock
2999 syncronization'' the JTAG interface uses one clock (TCK or TCLK)
3000 operating at some speed, your target is operating at another. The two
3001 clocks are not syncronized, they are ``asynchronous''
3002
3003 In order for the two to work together they must syncronize. Otherwise
3004 the two systems will get out of sync with each other and nothing will
3005 work. There are 2 basic options. @b{1.} use a special circuit or
3006 @b{2.} one clock must be some multile slower the the other.
3007
3008 @b{Does this really matter?} For some chips and some situations, this
3009 is a non-issue (ie: A 500mhz ARM926) but for others - for example some
3010 ATMEL SAM7 and SAM9 chips start operation from reset at 32khz -
3011 program/enable the oscillators and eventually the main clock. It is in
3012 those critical times you must slow the jtag clock to sometimes 1 to
3013 4khz.
3014
3015 Imagine debugging that 500mhz arm926 hand held battery powered device
3016 that ``deep sleeps'' at 32khz between every keystroke. It can be
3017 painful.
3018
3019 @b{Solution #1 - A special circuit}
3020
3021 In order to make use of this your jtag dongle must support the RTCK
3022 feature. Not all dongles support this - keep reading!
3023
3024 The RTCK signal often found in some ARM chips is used to help with
3025 this problem. ARM has a good description of the problem described at
3026 this link: @url{http://www.arm.com/support/faqdev/4170.html} [checked
3027 28/nov/2008]. Link title: ``How does the jtag synchronisation logic
3028 work? / how does adaptive clocking working?''.
3029
3030 The nice thing about adaptive clocking is that ``battery powered hand
3031 held device example'' - the adaptiveness works perfectly all the
3032 time. One can set a break point or halt the system in the deep power
3033 down code, slow step out until the system speeds up.
3034
3035 @b{Solution #2 - Always works - but is slower}
3036
3037 Often this is a perfectly acceptable solution.
3038
3039 In the most simple terms: Often the JTAG clock must be 1/10 to 1/12 of
3040 the target clock speed. But what is that ``magic division'' it varies
3041 depending upon the chips on your board. @b{ARM Rule of thumb} Most ARM
3042 based systems require an 8:1 division. @b{Xilinx Rule of thumb} is
3043 1/12 the clock speed.
3044
3045 Note: Many FTDI2232C based JTAG dongles are limited to 6mhz.
3046
3047 You can still debug the 'lower power' situations - you just need to
3048 manually adjust the clock speed at every step. While painful and
3049 teadious, it is not always practical.
3050
3051 It is however easy to ``code your way around it'' - ie: Cheat a little
3052 have a special debug mode in your application that does a ``high power
3053 sleep''. If you are careful - 98% of your problems can be debugged
3054 this way.
3055
3056 To set the JTAG frequency use the command:
3057
3058 @example
3059 # Example: 1.234mhz
3060 jtag_khz 1234
3061 @end example
3062
3063
3064 @item @b{Win32 Pathnames} Why does not backslashes in paths under Windows doesn't work?
3065
3066 OpenOCD uses Tcl and a backslash is an escape char. Use @{ and @}
3067 around Windows filenames.
3068
3069 @example
3070 > echo \a
3071
3072 > echo @{\a@}
3073 \a
3074 > echo "\a"
3075
3076 >
3077 @end example
3078
3079
3080 @item @b{Missing: cygwin1.dll} OpenOCD complains about a missing cygwin1.dll.
3081
3082 Make sure you have Cygwin installed, or at least a version of OpenOCD that
3083 claims to come with all the necessary dlls. When using Cygwin, try launching
3084 OpenOCD from the Cygwin shell.
3085
3086 @item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
3087 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
3088 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
3089
3090 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
3091 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
3092 software breakpoints consume one of the two available hardware breakpoints.
3093
3094 @item @b{LPC2000 Flash} When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
3095 and works sometimes fine.
3096
3097 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
3098 clock at the time you're programming the flash. If you've specified the crystal's
3099 frequency, make sure the PLL is disabled, if you've specified the full core speed
3100 (e.g. 60MHz), make sure the PLL is enabled.
3101
3102 @item @b{Amontec Chameleon} When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
3103 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
3104 out while waiting for end of scan, rtck was disabled".
3105
3106 Make sure your PC's parallel port operates in EPP mode. You might have to try several
3107 settings in your PC BIOS (ECP, EPP, and different versions of those).
3108
3109 @item @b{Data Aborts} When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
3110 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
3111 memory read caused data abort".
3112
3113 The errors are non-fatal, and are the result of GDB trying to trace stack frames
3114 beyond the last valid frame. It might be possible to prevent this by setting up
3115 a proper "initial" stack frame, if you happen to know what exactly has to
3116 be done, feel free to add this here.
3117
3118 @b{Simple:} In your startup code - push 8 registers of ZEROs onto the
3119 stack before calling main(). What GDB is doing is ``climbing'' the run
3120 time stack by reading various values on the stack using the standard
3121 call frame for the target. GDB keeps going - until one of 2 things
3122 happen @b{#1} an invalid frame is found, or @b{#2} some huge number of
3123 stackframes have been processed. By pushing ZEROs on the stack, GDB
3124 gracefully stops.
3125
3126 @b{Debugging Interrupt Service Routines} - In your ISR before you call
3127 your C code, do the same, artifically push some zeros on to the stack,
3128 remember to pop them off when the ISR is done.
3129
3130 @b{Also note:} If you have a multi-threaded operating system, they
3131 often do not @b{in the intrest of saving memory} waste these few
3132 bytes. Painful...
3133
3134
3135 @item @b{JTAG Reset Config} I get the following message in the OpenOCD console (or log file):
3136 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
3137
3138 This warning doesn't indicate any serious problem, as long as you don't want to
3139 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
3140 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
3141 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
3142 independently. With this setup, it's not possible to halt the core right out of
3143 reset, everything else should work fine.
3144
3145 @item @b{USB Power} When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
3146 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
3147 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
3148 quit with an error message. Is there a stability issue with OpenOCD?
3149
3150 No, this is not a stability issue concerning OpenOCD. Most users have solved
3151 this issue by simply using a self-powered USB hub, which they connect their
3152 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
3153 supply stable enough for the Amontec JTAGkey to be operated.
3154
3155 @b{Laptops running on battery have this problem too...}
3156
3157 @item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
3158 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
3159 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
3160 What does that mean and what might be the reason for this?
3161
3162 First of all, the reason might be the USB power supply. Try using a self-powered
3163 hub instead of a direct connection to your computer. Secondly, the error code 4
3164 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
3165 chip ran into some sort of error - this points us to a USB problem.
3166
3167 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
3168 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
3169 What does that mean and what might be the reason for this?
3170
3171 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
3172 has closed the connection to OpenOCD. This might be a GDB issue.
3173
3174 @item @b{LPC2000 Flash} In the configuration file in the section where flash device configurations
3175 are described, there is a parameter for specifying the clock frequency
3176 for LPC2000 internal flash devices (e.g. @option{flash bank lpc2000
3177 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}), which must be
3178 specified in kilohertz. However, I do have a quartz crystal of a
3179 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz,
3180 i.e. 14,745.600 kHz). Is it possible to specify real numbers for the
3181 clock frequency?
3182
3183 No. The clock frequency specified here must be given as an integral number.
3184 However, this clock frequency is used by the In-Application-Programming (IAP)
3185 routines of the LPC2000 family only, which seems to be very tolerant concerning
3186 the given clock frequency, so a slight difference between the specified clock
3187 frequency and the actual clock frequency will not cause any trouble.
3188
3189 @item @b{Command Order} Do I have to keep a specific order for the commands in the configuration file?
3190
3191 Well, yes and no. Commands can be given in arbitrary order, yet the
3192 devices listed for the JTAG scan chain must be given in the right
3193 order (jtag newdevice), with the device closest to the TDO-Pin being
3194 listed first. In general, whenever objects of the same type exist
3195 which require an index number, then these objects must be given in the
3196 right order (jtag newtap, targets and flash banks - a target
3197 references a jtag newtap and a flash bank references a target).
3198
3199 You can use the ``scan_chain'' command to verify and display the tap order.
3200
3201 @item @b{JTAG Tap Order} JTAG Tap Order - Command Order
3202
3203 Many newer devices have multiple JTAG taps. For example: ST
3204 Microsystems STM32 chips have two taps, a ``boundary scan tap'' and
3205 ``cortexM3'' tap. Example: The STM32 reference manual, Document ID:
3206 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
3207 connected to the Boundary Scan Tap, which then connects to the
3208 CortexM3 Tap, which then connects to the TDO pin.
3209
3210 Thus, the proper order for the STM32 chip is: (1) The CortexM3, then
3211 (2) The Boundary Scan Tap. If your board includes an additional JTAG
3212 chip in the scan chain (for example a Xilinx CPLD or FPGA) you could
3213 place it before or after the stm32 chip in the chain. For example:
3214
3215 @itemize @bullet
3216 @item OpenOCD_TDI(output) -> STM32 TDI Pin (BS Input)
3217 @item STM32 BS TDO (output) -> STM32 CortexM3 TDI (input)
3218 @item STM32 CortexM3 TDO (output) -> SM32 TDO Pin
3219 @item STM32 TDO Pin (output) -> Xilinx TDI Pin (input)
3220 @item Xilinx TDO Pin -> OpenOCD TDO (input)
3221 @end itemize
3222
3223 The ``jtag device'' commands would thus be in the order shown below. Note
3224
3225 @itemize @bullet
3226 @item jtag newtap Xilinx tap -irlen ...
3227 @item jtag newtap stm32 cpu -irlen ...
3228 @item jtag newtap stm32 bs -irlen ...
3229 @item # Create the debug target and say where it is
3230 @item target create stm32.cpu -chain-position stm32.cpu ...
3231 @end itemize
3232
3233
3234 @item @b{SYSCOMP} Sometimes my debugging session terminates with an error. When I look into the
3235 log file, I can see these error messages: Error: arm7_9_common.c:561
3236 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
3237
3238 TODO.
3239
3240 @end enumerate
3241
3242 @node TCL Crash Course
3243 @chapter TCL Crash Course
3244 @cindex TCL
3245
3246 Not everyone knows TCL - this is not intended to be a replacement for
3247 learning TCL, the intent of this chapter is to give you some idea of
3248 how the TCL Scripts work.
3249
3250 This chapter is written with two audiences in mind. (1) OpenOCD users
3251 who need to understand a bit more of how JIM-Tcl works so they can do
3252 something useful, and (2) those that want to add a new command to
3253 OpenOCD.
3254
3255 @section TCL Rule #1
3256 There is a famous joke, it goes like this:
3257 @enumerate
3258 @item Rule #1: The wife is aways correct
3259 @item Rule #2: If you think otherwise, See Rule #1
3260 @end enumerate
3261
3262 The TCL equal is this:
3263
3264 @enumerate
3265 @item Rule #1: Everything is a string
3266 @item Rule #2: If you think otherwise, See Rule #1
3267 @end enumerate
3268
3269 As in the famous joke, the consiquences of Rule #1 are profound. Once
3270 you understand Rule #1, you will understand TCL.
3271
3272 @section TCL Rule #1b
3273 There is a second pair of rules.
3274 @enumerate
3275 @item Rule #1: Control flow does not exist. Only commands
3276 @* For example: the classic FOR loop or IF statement is not a control
3277 flow item, they are commands, there is no such thing as control flow
3278 in TCL.
3279 @item Rule #2: If you think otherwise, See Rule #1
3280 @* Actually what happens is this: There are commands that by
3281 convention, act like control flow key words in other languages. One of
3282 those commands is the word ``for'', another command is ``if''.
3283 @end enumerate
3284
3285 @section Per Rule #1 - All Results are strings
3286 Every TCL command results in a string. The word ``result'' is used
3287 deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
3288 Everything is a string}
3289
3290 @section TCL Quoting Operators
3291 In life of a TCL script, there are two important periods of time, the
3292 difference is subtle.
3293 @enumerate
3294 @item Parse Time
3295 @item Evaluation Time
3296 @end enumerate
3297
3298 The two key items here are how ``quoted things'' work in TCL. TCL has
3299 three primary quoting constructs, the [square-brackets] the
3300 @{curly-braces@} and ``double-quotes''
3301
3302 By now you should know $VARIABLES always start with a $DOLLAR
3303 sign. BTW, to set a variable, you actually use the command ``set'', as
3304 in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
3305 = 1'' statement, but without the equal sign.
3306
3307 @itemize @bullet
3308 @item @b{[square-brackets]}
3309 @* @b{[square-brackets]} are command subsitution. It operates much
3310 like Unix Shell `back-ticks`. The result of a [square-bracket]
3311 operation is exactly 1 string. @i{Remember Rule #1 - Everything is a
3312 string}. These two statments are roughly identical.
3313 @example
3314 # bash example
3315 X=`date`
3316 echo "The Date is: $X"
3317 # TCL example
3318 set X [date]
3319 puts "The Date is: $X"
3320 @end example
3321 @item @b{``double-quoted-things''}
3322 @* @b{``double-quoted-things''} are just simply quoted
3323 text. $VARIABLES and [square-brackets] are expanded in place - the
3324 result however is exactly 1 string. @i{Remember Rule #1 - Everything
3325 is a string}
3326 @example
3327 set x "Dinner"
3328 puts "It is now \"[date]\", $x is in 1 hour"
3329 @end example
3330 @item @b{@{Curly-Braces@}}
3331 @*@b{@{Curly-Braces@}} are magic: $VARIABLES and [square-brackets] are
3332 parsed, but are NOT expanded or executed. @{Curly-Braces@} are like
3333 'single-quote' operators in BASH shell scripts, with the added
3334 feature: @{curly-braces@} nest, single quotes can not. @{@{@{this is
3335 nested 3 times@}@}@} NOTE: [date] is perhaps a bad example, as of
3336 28/nov/2008, Jim/OpenOCD does not have a date command.
3337 @end itemize
3338
3339 @section Consiquences of Rule 1/2/3/4
3340
3341 The consiquences of Rule 1 is profound.
3342
3343 @subsection Tokenizing & Execution.
3344
3345 Of course, whitespace, blank lines and #comment lines are handled in
3346 the normal way.
3347
3348 As a script is parsed, each (multi) line in the script file is
3349 tokenized and according to the quoting rules. After tokenizing, that
3350 line is immedatly executed.
3351
3352 Multi line statements end with one or more ``still-open''
3353 @{curly-braces@} which - eventually - a few lines later closes.
3354
3355 @subsection Command Execution
3356
3357 Remember earlier: There is no such thing as ``control flow''
3358 statements in TCL. Instead there are COMMANDS that simpily act like
3359 control flow operators.
3360
3361 Commands are executed like this:
3362
3363 @enumerate
3364 @item Parse the next line into (argc) and (argv[]).
3365 @item Look up (argv[0]) in a table and call its function.
3366 @item Repeat until End Of File.
3367 @end enumerate
3368
3369 It sort of works like this:
3370 @example
3371 for(;;)@{
3372 ReadAndParse( &argc, &argv );
3373
3374 cmdPtr = LookupCommand( argv[0] );
3375
3376 (*cmdPtr->Execute)( argc, argv );
3377 @}
3378 @end example
3379
3380 When the command ``proc'' is parsed (which creates a procedure
3381 function) it gets 3 parameters on the command line. @b{1} the name of
3382 the proc (function), @b{2} the list of parameters, and @b{3} the body
3383 of the function. Not the choice of words: LIST and BODY. The PROC
3384 command stores these items in a table somewhere so it can be found by
3385 ``LookupCommand()''
3386
3387 @subsection The FOR Command
3388
3389 The most interesting command to look at is the FOR command. In TCL,
3390 the FOR command is normally implimented in C. Remember, FOR is a
3391 command just like any other command.
3392
3393 When the ascii text containing the FOR command is parsed, the parser
3394 produces 5 parameter strings, @i{(If in doubt: Refer to Rule #1)} they
3395 are:
3396
3397 @enumerate 0
3398 @item The ascii text 'for'
3399 @item The start text
3400 @item The test expression
3401 @item The next text
3402 @item The body text
3403 @end enumerate
3404
3405 Sort of reminds you of ``main( int argc, char **argv )'' does it not?
3406 Remember @i{Rule #1 - Everything is a string.} The key point is this:
3407 Often many of those parameters are in @{curly-braces@} - thus the
3408 variables inside are not expanded or replaced until later.
3409
3410 Remember that every TCL command looks like the classic ``main( argc,
3411 argv )'' function in C. In JimTCL - they actually look like this:
3412
3413 @example
3414 int
3415 MyCommand( Jim_Interp *interp,
3416 int *argc,
3417 Jim_Obj * const *argvs );
3418 @end example
3419
3420 Real TCL is nearly identical. Although the newer versions have
3421 introduced a byte-code parser and intepreter, but at the core, it
3422 still operates in the same basic way.
3423
3424 @subsection FOR Command Implimentation
3425
3426 To understand TCL it is perhaps most helpful to see the FOR
3427 command. Remember, it is a COMMAND not a control flow structure.
3428
3429 In TCL there are two underying C helper functions.
3430
3431 Remember Rule #1 - You are a string.
3432
3433 The @b{first} helper parses and executes commands found in an ascii
3434 string. Commands can be seperated by semi-colons, or newlines. While
3435 parsing, variables are expanded per the quoting rules
3436
3437 The @b{second} helper evaluates an ascii string as a numerical
3438 expression and returns a value.
3439
3440 Here is an example of how the @b{FOR} command could be
3441 implimented. The pseudo code below does not show error handling.
3442 @example
3443 void Execute_AsciiString( void *interp, const char *string );
3444
3445 int Evaluate_AsciiExpression( void *interp, const char *string );
3446
3447 int
3448 MyForCommand( void *interp,
3449 int argc,
3450 char **argv )
3451 @{
3452 if( argc != 5 )@{
3453 SetResult( interp, "WRONG number of parameters");
3454 return ERROR;
3455 @}
3456
3457 // argv[0] = the ascii string just like C
3458
3459 // Execute the start statement.
3460 Execute_AsciiString( interp, argv[1] );
3461
3462 // Top of loop test
3463 for(;;)@{
3464 i = Evaluate_AsciiExpression(interp, argv[2]);
3465 if( i == 0 )
3466 break;
3467
3468 // Execute the body
3469 Execute_AsciiString( interp, argv[3] );
3470
3471 // Execute the LOOP part
3472 Execute_AsciiString( interp, argv[4] );
3473 @}
3474
3475 // Return no error
3476 SetResult( interp, "" );
3477 return SUCCESS;
3478 @}
3479 @end example
3480
3481 Every other command IF, WHILE, FORMAT, PUTS, EXPR, everything works
3482 in the same basic way.
3483
3484 @section OpenOCD TCL Usage
3485
3486 @subsection source and find commands
3487 @b{Where:} In many configuration files
3488 @* Example: @b{ source [find FILENAME] }
3489 @*Remember the parsing rules
3490 @enumerate
3491 @item The FIND command is in square brackets.
3492 @* The FIND command is executed with the parameter FILENAME. It should
3493 find the full path to the named file. The RESULT is a string, which is
3494 subsituted on the orginal command line.
3495 @item The command source is executed with the resulting filename.
3496 @* SOURCE reads a file and executes as a script.
3497 @end enumerate
3498 @subsection format command
3499 @b{Where:} Generally occurs in numerous places.
3500 @* TCL no command like @b{printf()}, intead it has @b{format}, which is really more like
3501 @b{sprintf()}.
3502 @b{Example}
3503 @example
3504 set x 6
3505 set y 7
3506 puts [format "The answer: %d" [expr $x * $y]]
3507 @end example
3508 @enumerate
3509 @item The SET command creates 2 variables, X and Y.
3510 @item The double [nested] EXPR command performs math
3511 @* The EXPR command produces numerical result as a string.
3512 @* Refer to Rule #1
3513 @item The format command is executed, producing a single string
3514 @* Refer to Rule #1.
3515 @item The PUTS command outputs the text.
3516 @end enumerate
3517 @subsection Body Or Inlined Text
3518 @b{Where:} Various TARGET scripts.
3519 @example
3520 #1 Good
3521 proc someproc @{@} @{
3522 ... multiple lines of stuff ...
3523 @}
3524 $_TARGETNAME configure -event FOO someproc
3525 #2 Good - no variables
3526 $_TARGETNAME confgure -event foo "this ; that;"
3527 #3 Good Curly Braces
3528 $_TARGETNAME configure -event FOO @{
3529 puts "Time: [date]"
3530 @}
3531 #4 DANGER DANGER DANGER
3532 $_TARGETNAME configure -event foo "puts \"Time: [date]\""
3533 @end example
3534 @enumerate
3535 @item The $_TARGETNAME is an OpenOCD variable convention.
3536 @*@b{$_TARGETNAME} represents the last target created, the value changes
3537 each time a new target is created. Remember the parsing rules. When
3538 the ascii text is parsed, the @b{$_TARGETNAME} becomes a simple string,
3539 the name of the target which happens to be a TARGET (object)
3540 command.
3541 @item The 2nd parameter to the @option{-event} parameter is a TCBODY
3542 @*There are 4 examples:
3543 @enumerate
3544 @item The TCLBODY is a simple string that happens to be a proc name
3545 @item The TCLBODY is several simple commands semi-colon seperated
3546 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
3547 @item The TCLBODY is a string with variables that get expanded.
3548 @end enumerate
3549
3550 In the end, when the target event FOO occurs the TCLBODY is
3551 evaluated. Method @b{#1} and @b{#2} are functionally identical. For
3552 Method @b{#3} and @b{#4} it is more interesting. What is the TCLBODY?
3553
3554 Remember the parsing rules. In case #3, @{curly-braces@} mean the
3555 $VARS and [square-brackets] are expanded later, when the EVENT occurs,
3556 and the text is evaluated. In case #4, they are replaced before the
3557 ``Target Object Command'' is executed. This occurs at the same time
3558 $_TARGETNAME is replaced. In case #4 the date will never
3559 change. @{BTW: [date] is perhaps a bad example, as of 28/nov/2008,
3560 Jim/OpenOCD does not have a date command@}
3561 @end enumerate
3562 @subsection Global Variables
3563 @b{Where:} You might discover this when writing your own procs @* In
3564 simple terms: Inside a PROC, if you need to access a global variable
3565 you must say so. Also see ``upvar''. Example:
3566 @example
3567 proc myproc @{ @} @{
3568 set y 0 #Local variable Y
3569 global x #Global variable X
3570 puts [format "X=%d, Y=%d" $x $y]
3571 @}
3572 @end example
3573 @section Other Tcl Hacks
3574 @b{Dynamic Variable Creation}
3575 @example
3576 # Dynamically create a bunch of variables.
3577 for @{ set x 0 @} @{ $x < 32 @} @{ set x [expr $x + 1]@} @{
3578 # Create var name
3579 set vn [format "BIT%d" $x]
3580 # Make it a global
3581 global $vn
3582 # Set it.
3583 set $vn [expr (1 << $x)]
3584 @}
3585 @end example
3586 @b{Dynamic Proc/Command Creation}
3587 @example
3588 # One "X" function - 5 uart functions.
3589 foreach who @{A B C D E@}
3590 proc [format "show_uart%c" $who] @{ @} "show_UARTx $who"
3591 @}
3592 @end example
3593
3594 @node Target library
3595 @chapter Target library
3596 @cindex Target library
3597
3598 OpenOCD comes with a target configuration script library. These scripts can be
3599 used as-is or serve as a starting point.
3600
3601 The target library is published together with the openocd executable and
3602 the path to the target library is in the OpenOCD script search path.
3603 Similarly there are example scripts for configuring the JTAG interface.
3604
3605 The command line below uses the example parport configuration scripts
3606 that ship with OpenOCD, then configures the str710.cfg target and
3607 finally issues the init and reset command. The communication speed
3608 is set to 10kHz for reset and 8MHz for post reset.
3609
3610
3611 @example
3612 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
3613 @end example
3614
3615
3616 To list the target scripts available:
3617
3618 @example
3619 $ ls /usr/local/lib/openocd/target
3620
3621 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
3622 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
3623 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
3624 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
3625 @end example
3626
3627
3628
3629 @include fdl.texi
3630
3631 @node OpenOCD Index
3632 @comment DO NOT use the plain word ``Index'', reason: CYGWIN filename
3633 @comment case issue with ``Index.html'' and ``index.html''
3634 @comment Occurs when creating ``--html --no-split'' output
3635 @comment This fix is based on: http://sourceware.org/ml/binutils/2006-05/msg00215.html
3636 @unnumbered OpenOCD Index
3637
3638 @printindex cp
3639
3640 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)