fix checksum memory. By failing the fallback code will handle checksum calculation
[openocd.git] / src / jtag / jtag.h
1 /***************************************************************************
2 * Copyright (C) 2005 by Dominic Rath *
3 * Dominic.Rath@gmx.de *
4 * *
5 * Copyright (C) 2007,2008 Øyvind Harboe *
6 * oyvind.harboe@zylin.com *
7 * *
8 * This program is free software; you can redistribute it and/or modify *
9 * it under the terms of the GNU General Public License as published by *
10 * the Free Software Foundation; either version 2 of the License, or *
11 * (at your option) any later version. *
12 * *
13 * This program is distributed in the hope that it will be useful, *
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
16 * GNU General Public License for more details. *
17 * *
18 * You should have received a copy of the GNU General Public License *
19 * along with this program; if not, write to the *
20 * Free Software Foundation, Inc., *
21 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
22 ***************************************************************************/
23 #ifndef JTAG_H
24 #define JTAG_H
25
26 #include "types.h"
27 #include "binarybuffer.h"
28 #include "log.h"
29
30 #include "command.h"
31
32
33 #ifdef _DEBUG_JTAG_IO_
34 #define DEBUG_JTAG_IO(expr ...) LOG_DEBUG(expr)
35 #else
36 #define DEBUG_JTAG_IO(expr ...)
37 #endif
38
39 #ifndef DEBUG_JTAG_IOZ
40 #define DEBUG_JTAG_IOZ 64
41 #endif
42
43 /*-----<Macros>--------------------------------------------------*/
44
45 /** When given an array, compute its DIMension, i.e. number of elements in the array */
46 #define DIM(x) (sizeof(x)/sizeof((x)[0]))
47
48 /** Calculate the number of bytes required to hold @a n TAP scan bits */
49 #define TAP_SCAN_BYTES(n) CEIL(n, 8)
50
51 /*-----</Macros>-------------------------------------------------*/
52
53
54
55 /*
56 * Tap states from ARM7TDMI-S Technical reference manual.
57 * Also, validated against several other ARM core technical manuals.
58 *
59 * N.B. tap_get_tms_path() was changed to reflect this corrected
60 * numbering and ordering of the TAP states.
61 *
62 * DANGER!!!! some interfaces care about the actual numbers used
63 * as they are handed off directly to hardware implementations.
64 */
65
66 typedef enum tap_state
67 {
68 #if BUILD_ECOSBOARD
69 /* These are the old numbers. Leave as-is for now... */
70 TAP_RESET = 0, TAP_IDLE = 8,
71 TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
72 TAP_DRPAUSE = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
73 TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
74 TAP_IRPAUSE = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,
75
76 TAP_NUM_STATES = 16, TAP_INVALID = -1,
77 #else
78 /* Proper ARM recommended numbers */
79 TAP_DREXIT2 = 0x0,
80 TAP_DREXIT1 = 0x1,
81 TAP_DRSHIFT = 0x2,
82 TAP_DRPAUSE = 0x3,
83 TAP_IRSELECT = 0x4,
84 TAP_DRUPDATE = 0x5,
85 TAP_DRCAPTURE = 0x6,
86 TAP_DRSELECT = 0x7,
87 TAP_IREXIT2 = 0x8,
88 TAP_IREXIT1 = 0x9,
89 TAP_IRSHIFT = 0xa,
90 TAP_IRPAUSE = 0xb,
91 TAP_IDLE = 0xc,
92 TAP_IRUPDATE = 0xd,
93 TAP_IRCAPTURE = 0xe,
94 TAP_RESET = 0x0f,
95
96 TAP_NUM_STATES = 0x10,
97
98 TAP_INVALID = -1,
99 #endif
100 } tap_state_t;
101
102 typedef struct tap_transition_s
103 {
104 tap_state_t high;
105 tap_state_t low;
106 } tap_transition_t;
107
108 //extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */
109
110
111 /*-----<Cable Helper API>-------------------------------------------*/
112
113 /* The "Cable Helper API" is what the cable drivers can use to help implement
114 * their "Cable API". So a Cable Helper API is a set of helper functions used by
115 * cable drivers, and this is different from a Cable API. A "Cable API" is what
116 * higher level code used to talk to a cable.
117 */
118
119
120 /** implementation of wrapper function tap_set_state() */
121 void tap_set_state_impl(tap_state_t new_state);
122
123 /**
124 * Function tap_set_state
125 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
126 * cable. The state follower is hopefully always in the same state as the actual
127 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
128 * cable driver. All the cable drivers call this function to indicate the state they think
129 * the TAPs attached to their cables are in. Because this function can also log transitions,
130 * it will be helpful to call this function with every transition that the TAPs being manipulated
131 * are expected to traverse, not just end points of a multi-step state path.
132 * @param new_state is the state we think the TAPs are currently in or are about to enter.
133 */
134 #if defined(_DEBUG_JTAG_IO_)
135 #define tap_set_state(new_state) \
136 do { \
137 LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
138 tap_set_state_impl(new_state); \
139 } while (0)
140 #else
141 static inline void tap_set_state(tap_state_t new_state)
142 {
143 tap_set_state_impl(new_state);
144 }
145
146 #endif
147
148 /**
149 * Function tap_get_state
150 * gets the state of the "state follower" which tracks the state of the TAPs connected to
151 * the cable.
152 * @see tap_set_state
153 * @return tap_state_t - The state the TAPs are in now.
154 */
155 tap_state_t tap_get_state(void);
156
157 /**
158 * Function tap_set_end_state
159 * sets the state of an "end state follower" which tracks the state that any cable driver
160 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation. At completion
161 * of that TAP operation this value is copied into the state follower via tap_set_state().
162 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
163 */
164 void tap_set_end_state(tap_state_t new_end_state);
165
166 /**
167 * Function tap_get_end_state
168 * @see tap_set_end_state
169 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
170 */
171 tap_state_t tap_get_end_state(void);
172
173 /**
174 * Function tap_get_tms_path
175 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
176 * during a sequence of seven TAP clock cycles in order to get from
177 * state \a "from" to state \a "to".
178 * @param from is the starting state
179 * @param to is the resultant or final state
180 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
181 */
182 int tap_get_tms_path(tap_state_t from, tap_state_t to);
183
184 /**
185 * Function tap_move_ndx
186 * when given a stable state, returns an index from 0-5. The index corresponds to a
187 * sequence of stable states which are given in this order: <p>
188 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
189 * <p>
190 * This sequence corresponds to look up tables which are used in some of the
191 * cable drivers.
192 * @param astate is the stable state to find in the sequence. If a non stable
193 * state is passed, this may cause the program to output an error message
194 * and terminate.
195 * @return int - the array (or sequence) index as described above
196 */
197 int tap_move_ndx(tap_state_t astate);
198
199 /**
200 * Function tap_is_state_stable
201 * returns true if the \a astate is stable.
202 */
203 bool tap_is_state_stable(tap_state_t astate);
204
205 /**
206 * Function tap_state_transition
207 * takes a current TAP state and returns the next state according to the tms value.
208 * @param current_state is the state of a TAP currently.
209 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
210 * @return tap_state_t - the next state a TAP would enter.
211 */
212 tap_state_t tap_state_transition(tap_state_t current_state, bool tms);
213
214 /**
215 * Function tap_state_name
216 * Returns a string suitable for display representing the JTAG tap_state
217 */
218 const char* tap_state_name(tap_state_t state);
219
220 #ifdef _DEBUG_JTAG_IO_
221 /**
222 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
223 * @param tms_buf must points to a buffer containing the TMS bitstream.
224 * @param tdi_buf must points to a buffer containing the TDI bitstream.
225 * @param tap_len must specify the length of the TMS/TDI bitstreams.
226 * @param start_tap_state must specify the current TAP state.
227 * @returns the final TAP state; pass as @a start_tap_state in following call.
228 */
229 tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
230 unsigned tap_len, tap_state_t start_tap_state);
231 #else
232 static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
233 const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
234 {
235 return start_tap_state;
236 }
237 #endif // _DEBUG_JTAG_IO_
238
239 /*-----</Cable Helper API>------------------------------------------*/
240
241
242 extern tap_state_t cmd_queue_end_state; /* finish DR scans in dr_end_state */
243 extern tap_state_t cmd_queue_cur_state; /* current TAP state */
244
245 typedef void* error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */
246
247 struct scan_field_s;
248 typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);
249
250 typedef struct scan_field_s
251 {
252 jtag_tap_t* tap; /* tap pointer this instruction refers to */
253 int num_bits; /* number of bits this field specifies (up to 32) */
254 u8* out_value; /* value to be scanned into the device */
255 u8* out_mask; /* only masked bits care */
256 u8* in_value; /* pointer to a 32-bit memory location to take data scanned out */
257 /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */
258 u8* in_check_value; /* used to validate scan results */
259 u8* in_check_mask; /* check specified bits against check_value */
260 in_handler_t in_handler; /* process received buffer using this handler */
261 void* in_handler_priv; /* additional information for the in_handler */
262 } scan_field_t;
263
264 enum scan_type {
265 /* IN: from device to host, OUT: from host to device */
266 SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
267 };
268
269 typedef struct scan_command_s
270 {
271 int ir_scan; /* instruction/not data scan */
272 int num_fields; /* number of fields in *fields array */
273 scan_field_t* fields; /* pointer to an array of data scan fields */
274 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
275 } scan_command_t;
276
277 typedef struct statemove_command_s
278 {
279 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
280 } statemove_command_t;
281
282 typedef struct pathmove_command_s
283 {
284 int num_states; /* number of states in *path */
285 tap_state_t* path; /* states that have to be passed */
286 } pathmove_command_t;
287
288 typedef struct runtest_command_s
289 {
290 int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */
291 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
292 } runtest_command_t;
293
294
295 typedef struct stableclocks_command_s
296 {
297 int num_cycles; /* number of clock cycles that should be sent */
298 } stableclocks_command_t;
299
300
301 typedef struct reset_command_s
302 {
303 int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */
304 int srst;
305 } reset_command_t;
306
307 typedef struct end_state_command_s
308 {
309 tap_state_t end_state; /* TAP state in which JTAG commands should finish */
310 } end_state_command_t;
311
312 typedef struct sleep_command_s
313 {
314 u32 us; /* number of microseconds to sleep */
315 } sleep_command_t;
316
317 typedef union jtag_command_container_u
318 {
319 scan_command_t* scan;
320 statemove_command_t* statemove;
321 pathmove_command_t* pathmove;
322 runtest_command_t* runtest;
323 stableclocks_command_t* stableclocks;
324 reset_command_t* reset;
325 end_state_command_t* end_state;
326 sleep_command_t* sleep;
327 } jtag_command_container_t;
328
329 enum jtag_command_type {
330 JTAG_SCAN = 1,
331 JTAG_STATEMOVE = 2,
332 JTAG_RUNTEST = 3,
333 JTAG_RESET = 4,
334 JTAG_END_STATE = 5,
335 JTAG_PATHMOVE = 6,
336 JTAG_SLEEP = 7,
337 JTAG_STABLECLOCKS = 8
338 };
339
340 typedef struct jtag_command_s
341 {
342 jtag_command_container_t cmd;
343 enum jtag_command_type type;
344 struct jtag_command_s* next;
345 } jtag_command_t;
346
347 extern jtag_command_t* jtag_command_queue;
348
349 /* forward declaration */
350 typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;
351
352 /* this is really: typedef jtag_tap_t */
353 /* But - the typedef is done in "types.h" */
354 /* due to "forward decloration reasons" */
355 struct jtag_tap_s
356 {
357 const char* chip;
358 const char* tapname;
359 const char* dotted_name;
360 int abs_chain_position;
361 int enabled;
362 int ir_length; /* size of instruction register */
363 u32 ir_capture_value;
364 u8* expected; /* Capture-IR expected value */
365 u32 ir_capture_mask;
366 u8* expected_mask; /* Capture-IR expected mask */
367 u32 idcode; /* device identification code */
368 u32* expected_ids; /* Array of expected identification codes */
369 u8 expected_ids_cnt; /* Number of expected identification codes */
370 u8* cur_instr; /* current instruction */
371 int bypass; /* bypass register selected */
372
373 jtag_tap_event_action_t* event_action;
374
375 jtag_tap_t* next_tap;
376 };
377 extern jtag_tap_t* jtag_AllTaps(void);
378 extern jtag_tap_t* jtag_TapByPosition(int n);
379 extern jtag_tap_t* jtag_TapByPosition(int n);
380 extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
381 extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
382 extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
383 extern int jtag_NumEnabledTaps(void);
384 extern int jtag_NumTotalTaps(void);
385
386 static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
387 {
388 if (p == NULL)
389 {
390 /* start at the head of list */
391 p = jtag_AllTaps();
392 }
393 else
394 {
395 /* start *after* this one */
396 p = p->next_tap;
397 }
398 while (p)
399 {
400 if (p->enabled)
401 {
402 break;
403 }
404 else
405 {
406 p = p->next_tap;
407 }
408 }
409
410 return p;
411 }
412
413
414 enum reset_line_mode {
415 LINE_OPEN_DRAIN = 0x0,
416 LINE_PUSH_PULL = 0x1,
417 };
418
419 typedef struct jtag_interface_s
420 {
421 char* name;
422
423 /* queued command execution
424 */
425 int (*execute_queue)(void);
426
427 /* interface initalization
428 */
429 int (*speed)(int speed);
430 int (*register_commands)(struct command_context_s* cmd_ctx);
431 int (*init)(void);
432 int (*quit)(void);
433
434 /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
435 * a failure if it can't support the KHz/RTCK.
436 *
437 * WARNING!!!! if RTCK is *slow* then think carefully about
438 * whether you actually want to support this in the driver.
439 * Many target scripts are written to handle the absence of RTCK
440 * and use a fallback kHz TCK.
441 */
442 int (*khz)(int khz, int* jtag_speed);
443
444 /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
445 * a failure if it can't support the KHz/RTCK. */
446 int (*speed_div)(int speed, int* khz);
447
448 /* Read and clear the power dropout flag. Note that a power dropout
449 * can be transitionary, easily much less than a ms.
450 *
451 * So to find out if the power is *currently* on, you must invoke
452 * this method twice. Once to clear the power dropout flag and a
453 * second time to read the current state.
454 *
455 * Currently the default implementation is never to detect power dropout.
456 */
457 int (*power_dropout)(int* power_dropout);
458
459 /* Read and clear the srst asserted detection flag.
460 *
461 * NB!!!! like power_dropout this does *not* read the current
462 * state. srst assertion is transitionary and *can* be much
463 * less than 1ms.
464 */
465 int (*srst_asserted)(int* srst_asserted);
466 } jtag_interface_t;
467
468 enum jtag_event {
469 JTAG_TRST_ASSERTED
470 };
471
472 extern char* jtag_event_strings[];
473
474 enum jtag_tap_event {
475 JTAG_TAP_EVENT_ENABLE,
476 JTAG_TAP_EVENT_DISABLE
477 };
478
479 extern const Jim_Nvp nvp_jtag_tap_event[];
480
481 struct jtag_tap_event_action_s
482 {
483 enum jtag_tap_event event;
484 Jim_Obj* body;
485 jtag_tap_event_action_t* next;
486 };
487
488 extern int jtag_trst;
489 extern int jtag_srst;
490
491 typedef struct jtag_event_callback_s
492 {
493 int (*callback)(enum jtag_event event, void* priv);
494 void* priv;
495 struct jtag_event_callback_s* next;
496 } jtag_event_callback_t;
497
498 extern jtag_event_callback_t* jtag_event_callbacks;
499
500 extern jtag_interface_t* jtag; /* global pointer to configured JTAG interface */
501
502 extern int jtag_speed;
503 extern int jtag_speed_post_reset;
504
505 enum reset_types {
506 RESET_NONE = 0x0,
507 RESET_HAS_TRST = 0x1,
508 RESET_HAS_SRST = 0x2,
509 RESET_TRST_AND_SRST = 0x3,
510 RESET_SRST_PULLS_TRST = 0x4,
511 RESET_TRST_PULLS_SRST = 0x8,
512 RESET_TRST_OPEN_DRAIN = 0x10,
513 RESET_SRST_PUSH_PULL = 0x20,
514 };
515
516 extern enum reset_types jtag_reset_config;
517
518 /* initialize interface upon startup. A successful no-op
519 * upon subsequent invocations
520 */
521 extern int jtag_interface_init(struct command_context_s* cmd_ctx);
522
523 /* initialize JTAG chain using only a RESET reset. If init fails,
524 * try reset + init.
525 */
526 extern int jtag_init(struct command_context_s* cmd_ctx);
527
528 /* reset, then initialize JTAG chain */
529 extern int jtag_init_reset(struct command_context_s* cmd_ctx);
530 extern int jtag_register_commands(struct command_context_s* cmd_ctx);
531
532 /* JTAG interface, can be implemented with a software or hardware fifo
533 *
534 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
535 * can be emulated by using a larger scan.
536 *
537 * Code that is relatively insensitive to the path(as long
538 * as it is JTAG compliant) taken through state machine can use
539 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
540 * specified as end state and a subsequent jtag_add_pathmove() must
541 * be issued.
542 *
543 */
544 extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
545 extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
546 extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
547 extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
548 extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
549 extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
550 extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
551 extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
552
553 /* run a TAP_RESET reset. End state is TAP_RESET, regardless
554 * of start state.
555 */
556 extern void jtag_add_tlr(void);
557 extern int interface_jtag_add_tlr(void);
558
559 /* Do not use jtag_add_pathmove() unless you need to, but do use it
560 * if you have to.
561 *
562 * DANGER! If the target is dependent upon a particular sequence
563 * of transitions for things to work correctly(e.g. as a workaround
564 * for an errata that contradicts the JTAG standard), then pathmove
565 * must be used, even if some jtag interfaces happen to use the
566 * desired path. Worse, the jtag interface used for testing a
567 * particular implementation, could happen to use the "desired"
568 * path when transitioning to/from end
569 * state.
570 *
571 * A list of unambigious single clock state transitions, not
572 * all drivers can support this, but it is required for e.g.
573 * XScale and Xilinx support
574 *
575 * Note! TAP_RESET must not be used in the path!
576 *
577 * Note that the first on the list must be reachable
578 * via a single transition from the current state.
579 *
580 * All drivers are required to implement jtag_add_pathmove().
581 * However, if the pathmove sequence can not be precisely
582 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
583 * must return an error. It is legal, but not recommended, that
584 * a driver returns an error in all cases for a pathmove if it
585 * can only implement a few transitions and therefore
586 * a partial implementation of pathmove would have little practical
587 * application.
588 */
589 extern void jtag_add_pathmove(int num_states, tap_state_t* path);
590 extern int interface_jtag_add_pathmove(int num_states, tap_state_t* path);
591
592 /* go to TAP_IDLE, if we're not already there and cycle
593 * precisely num_cycles in the TAP_IDLE after which move
594 * to the end state, if it is != TAP_IDLE
595 *
596 * nb! num_cycles can be 0, in which case the fn will navigate
597 * to endstate via TAP_IDLE
598 */
599 extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
600 extern int interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);
601
602 /* A reset of the TAP state machine can be requested.
603 *
604 * Whether tms or trst reset is used depends on the capabilities of
605 * the target and jtag interface(reset_config command configures this).
606 *
607 * srst can driver a reset of the TAP state machine and vice
608 * versa
609 *
610 * Application code may need to examine value of jtag_reset_config
611 * to determine the proper codepath
612 *
613 * DANGER! Even though srst drives trst, trst might not be connected to
614 * the interface, and it might actually be *harmful* to assert trst in this case.
615 *
616 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
617 * are supported.
618 *
619 * only req_tlr_or_trst and srst can have a transition for a
620 * call as the effects of transitioning both at the "same time"
621 * are undefined, but when srst_pulls_trst or vice versa,
622 * then trst & srst *must* be asserted together.
623 */
624 extern void jtag_add_reset(int req_tlr_or_trst, int srst);
625
626 /* this drives the actual srst and trst pins. srst will always be 0
627 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
628 * trst.
629 *
630 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
631 * approperiate
632 */
633 extern int interface_jtag_add_reset(int trst, int srst);
634 extern void jtag_add_end_state(tap_state_t endstate);
635 extern int interface_jtag_add_end_state(tap_state_t endstate);
636 extern void jtag_add_sleep(u32 us);
637 extern int interface_jtag_add_sleep(u32 us);
638
639
640 /**
641 * Function jtag_add_stable_clocks
642 * first checks that the state in which the clocks are to be issued is
643 * stable, then queues up clock_count clocks for transmission.
644 */
645 void jtag_add_clocks(int num_cycles);
646 int interface_jtag_add_clocks(int num_cycles);
647
648
649 /*
650 * For software FIFO implementations, the queued commands can be executed
651 * during this call or earlier. A sw queue might decide to push out
652 * some of the jtag_add_xxx() operations once the queue is "big enough".
653 *
654 * This fn will return an error code if any of the prior jtag_add_xxx()
655 * calls caused a failure, e.g. check failure. Note that it does not
656 * matter if the operation was executed *before* jtag_execute_queue(),
657 * jtag_execute_queue() will still return an error code.
658 *
659 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
660 * executed when this fn returns, but if what has been queued only
661 * clocks data out, without reading anything back, then JTAG could
662 * be running *after* jtag_execute_queue() returns. The API does
663 * not define a way to flush a hw FIFO that runs *after*
664 * jtag_execute_queue() returns.
665 *
666 * jtag_add_xxx() commands can either be executed immediately or
667 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
668 */
669 extern int jtag_execute_queue(void);
670
671 /* can be implemented by hw+sw */
672 extern int interface_jtag_execute_queue(void);
673 extern int jtag_power_dropout(int* dropout);
674 extern int jtag_srst_asserted(int* srst_asserted);
675
676 /* JTAG support functions */
677 extern void jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
678 extern enum scan_type jtag_scan_type(scan_command_t* cmd);
679 extern int jtag_scan_size(scan_command_t* cmd);
680 extern int jtag_read_buffer(u8* buffer, scan_command_t* cmd);
681 extern int jtag_build_buffer(scan_command_t* cmd, u8** buffer);
682
683 extern void jtag_sleep(u32 us);
684 extern int jtag_call_event_callbacks(enum jtag_event event);
685 extern int jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);
686
687 extern int jtag_verify_capture_ir;
688
689 void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);
690
691 /* error codes
692 * JTAG subsystem uses codes between -100 and -199 */
693
694 #define ERROR_JTAG_INIT_FAILED (-100)
695 #define ERROR_JTAG_INVALID_INTERFACE (-101)
696 #define ERROR_JTAG_NOT_IMPLEMENTED (-102)
697 #define ERROR_JTAG_TRST_ASSERTED (-103)
698 #define ERROR_JTAG_QUEUE_FAILED (-104)
699 #define ERROR_JTAG_NOT_STABLE_STATE (-105)
700 #define ERROR_JTAG_DEVICE_ERROR (-107)
701
702
703 /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
704 #ifdef HAVE_JTAG_MINIDRIVER_H
705 /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
706 #include "jtag_minidriver.h"
707 #define MINIDRIVER(a) notused ## a
708 #else
709 #define MINIDRIVER(a) a
710
711 /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
712 *
713 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
714 *
715 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
716 *
717 * If the device is in bypass, then that is an error condition in
718 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
719 * does detect it. Similarly if the device is not in bypass, data must
720 * be passed to it.
721 *
722 * If anything fails, then jtag_error will be set and jtag_execute() will
723 * return an error. There is no way to determine if there was a failure
724 * during this function call.
725 *
726 * Note that this jtag_add_dr_out can be defined as an inline function.
727 */
728 extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
729 tap_state_t end_state);
730
731 #endif
732
733 static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
734 tap_state_t end_state)
735 {
736 if (end_state != TAP_INVALID)
737 cmd_queue_end_state = end_state;
738 cmd_queue_cur_state = cmd_queue_end_state;
739 interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
740 }
741
742
743 #endif /* JTAG_H */

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)