8c8be2596d99d0b815b4d0ad164c91fffb0c57bf
[openocd.git] / doc / openocd.texi
1 \input texinfo @c -*-texinfo-*-
2 @c %**start of header
3 @setfilename openocd.info
4 @settitle Open On-Chip Debugger (OpenOCD)
5 @dircategory Development
6 @direntry
7 * OpenOCD: (openocd). Open On-Chip Debugger.
8 @end direntry
9 @c %**end of header
10
11 @include version.texi
12
13 @copying
14 Copyright @copyright{} 2007-2008 Spen @email{spen@@spen-soft.co.uk}@*
15 Copyright @copyright{} 2008 Oyvind Harboe @email{oyvind.harboe@@zylin.com}
16 @quotation
17 Permission is granted to copy, distribute and/or modify this document
18 under the terms of the GNU Free Documentation License, Version 1.2 or
19 any later version published by the Free Software Foundation; with no
20 Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
21 Texts. A copy of the license is included in the section entitled ``GNU
22 Free Documentation License''.
23 @end quotation
24 @end copying
25
26 @titlepage
27 @title Open On-Chip Debugger (OpenOCD)
28 @subtitle Edition @value{EDITION} for OpenOCD version @value{VERSION}
29 @subtitle @value{UPDATED}
30 @page
31 @vskip 0pt plus 1filll
32 @insertcopying
33 @end titlepage
34
35 @contents
36
37 @node Top, About, , (dir)
38 @top OpenOCD
39
40 This manual documents edition @value{EDITION} of the Open On-Chip Debugger
41 (OpenOCD) version @value{VERSION}, @value{UPDATED}.
42
43 @insertcopying
44
45 @menu
46 * About:: About OpenOCD.
47 * Developers:: OpenOCD developers
48 * Building:: Building OpenOCD
49 * Running:: Running OpenOCD
50 * Configuration:: OpenOCD Configuration.
51 * Target library:: Target library
52 * Commands:: OpenOCD Commands
53 * Sample Scripts:: Sample Target Scripts
54 * GDB and OpenOCD:: Using GDB and OpenOCD
55 * TCL and OpenOCD:: Using TCL and OpenOCD
56 * TCL scripting API:: Tcl scripting API
57 * Upgrading:: Deprecated/Removed Commands
58 * FAQ:: Frequently Asked Questions
59 * License:: GNU Free Documentation License
60 * Index:: Main index.
61 @end menu
62
63 @node About
64 @unnumbered About
65 @cindex about
66
67 The Open On-Chip Debugger (OpenOCD) aims to provide debugging, in-system programming
68 and boundary-scan testing for embedded target devices. The targets are interfaced
69 using JTAG (IEEE 1149.1) compliant hardware, but this may be extended to other
70 connection types in the future.
71
72 OpenOCD currently supports Wiggler (clones), FTDI FT2232 based JTAG interfaces, the
73 Amontec JTAG Accelerator, and the Gateworks GW1602. It allows ARM7 (ARM7TDMI and ARM720t),
74 ARM9 (ARM920t, ARM922t, ARM926ej--s, ARM966e--s), XScale (PXA25x, IXP42x) and
75 Cortex-M3 (Luminary Stellaris LM3 and ST STM32) based cores to be debugged.
76
77 Flash writing is supported for external CFI compatible flashes (Intel and AMD/Spansion
78 command set) and several internal flashes (LPC2000, AT91SAM7, STR7x, STR9x, LM3
79 and STM32x). Preliminary support for using the LPC3180's NAND flash controller is included.
80
81 @node Developers
82 @chapter Developers
83 @cindex developers
84
85 OpenOCD was created by Dominic Rath as part of a diploma thesis written at the
86 University of Applied Sciences Augsburg (@uref{http://www.fh-augsburg.de}).
87 Others interested in improving the state of free and open debug and testing technology
88 are welcome to participate.
89
90 Other developers have contributed support for additional targets and flashes as well
91 as numerous bugfixes and enhancements. See the AUTHORS file for regular contributors.
92
93 The main OpenOCD web site is available at @uref{http://openocd.berlios.de/web/}
94
95 @node Building
96 @chapter Building
97 @cindex building OpenOCD
98
99 If you are interested in getting actual work done rather than building
100 OpenOCD, then check if your interface supplier provides binaries for
101 you. Chances are that that binary is from some SVN version that is more
102 stable than SVN trunk where bleeding edge development takes place.
103
104
105 You can download the current SVN version with SVN client of your choice from the
106 following repositories:
107
108 (@uref{svn://svn.berlios.de/openocd/trunk})
109
110 or
111
112 (@uref{http://svn.berlios.de/svnroot/repos/openocd/trunk})
113
114 Using the SVN command line client, you can use the following command to fetch the
115 latest version (make sure there is no (non-svn) directory called "openocd" in the
116 current directory):
117
118 @smallexample
119 svn checkout svn://svn.berlios.de/openocd/trunk openocd
120 @end smallexample
121
122 Building OpenOCD requires a recent version of the GNU autotools.
123 On my build system, I'm using autoconf 2.13 and automake 1.9. For building on Windows,
124 you have to use Cygwin. Make sure that your @env{PATH} environment variable contains no
125 other locations with Unix utils (like UnxUtils) - these can't handle the Cygwin
126 paths, resulting in obscure dependency errors (This is an observation I've gathered
127 from the logs of one user - correct me if I'm wrong).
128
129 You further need the appropriate driver files, if you want to build support for
130 a FTDI FT2232 based interface:
131 @itemize @bullet
132 @item @b{ftdi2232} libftdi (@uref{http://www.intra2net.com/opensource/ftdi/})
133 @item @b{ftd2xx} libftd2xx (@uref{http://www.ftdichip.com/Drivers/D2XX.htm})
134 @item When using the Amontec JTAGkey, you have to get the drivers from the Amontec
135 homepage (@uref{www.amontec.com}), as the JTAGkey uses a non-standard VID/PID.
136 @end itemize
137
138 libftdi is supported under windows. Versions earlier than 0.13 will require patching.
139 see contrib/libftdi for more details.
140
141 In general, the D2XX driver provides superior performance (several times as fast),
142 but has the draw-back of being binary-only - though that isn't that bad, as it isn't
143 a kernel module, only a user space library.
144
145 To build OpenOCD (on both Linux and Cygwin), use the following commands:
146 @smallexample
147 ./bootstrap
148 @end smallexample
149 Bootstrap generates the configure script, and prepares building on your system.
150 @smallexample
151 ./configure
152 @end smallexample
153 Configure generates the Makefiles used to build OpenOCD.
154 @smallexample
155 make
156 @end smallexample
157 Make builds OpenOCD, and places the final executable in ./src/.
158
159 The configure script takes several options, specifying which JTAG interfaces
160 should be included:
161
162 @itemize @bullet
163 @item
164 @option{--enable-parport}
165 @item
166 @option{--enable-parport_ppdev}
167 @item
168 @option{--enable-parport_giveio}
169 @item
170 @option{--enable-amtjtagaccel}
171 @item
172 @option{--enable-ft2232_ftd2xx}
173 @footnote{Using the latest D2XX drivers from FTDI and following their installation
174 instructions, I had to use @option{--enable-ft2232_libftd2xx} for OpenOCD to
175 build properly.}
176 @item
177 @option{--enable-ft2232_libftdi}
178 @item
179 @option{--with-ftd2xx=/path/to/d2xx/}
180 @item
181 @option{--enable-gw16012}
182 @item
183 @option{--enable-usbprog}
184 @item
185 @option{--enable-presto_libftdi}
186 @item
187 @option{--enable-presto_ftd2xx}
188 @item
189 @option{--enable-jlink}
190 @end itemize
191
192 If you want to access the parallel port using the PPDEV interface you have to specify
193 both the @option{--enable-parport} AND the @option{--enable-parport_ppdev} option since
194 the @option{--enable-parport_ppdev} option actually is an option to the parport driver
195 (see @uref{http://forum.sparkfun.com/viewtopic.php?t=3795} for more info).
196
197 Cygwin users have to specify the location of the FTDI D2XX package. This should be an
198 absolute path containing no spaces.
199
200 Linux users should copy the various parts of the D2XX package to the appropriate
201 locations, i.e. /usr/include, /usr/lib.
202
203 Miscellaneous configure options
204
205 @itemize @bullet
206 @item
207 @option{--enable-gccwarnings} - enable extra gcc warnings during build
208 @end itemize
209
210 @node Running
211 @chapter Running
212 @cindex running OpenOCD
213 @cindex --configfile
214 @cindex --debug_level
215 @cindex --logfile
216 @cindex --search
217 OpenOCD runs as a daemon, waiting for connections from clients (Telnet, GDB, Other).
218 Run with @option{--help} or @option{-h} to view the available command line switches.
219
220 It reads its configuration by default from the file openocd.cfg located in the current
221 working directory. This may be overwritten with the @option{-f <configfile>} command line
222 switch. The @option{-f} command line switch can be specified multiple times, in which case the config files
223 are executed in order.
224
225 Also it is possible to interleave commands w/config scripts using the @option{-c} command line switch.
226
227 To enable debug output (when reporting problems or working on OpenOCD itself), use
228 the @option{-d} command line switch. This sets the @option{debug_level} to "3", outputting
229 the most information, including debug messages. The default setting is "2", outputting
230 only informational messages, warnings and errors. You can also change this setting
231 from within a telnet or gdb session using @option{debug_level <n>} @xref{debug_level}.
232
233 You can redirect all output from the daemon to a file using the @option{-l <logfile>} switch.
234
235 Search paths for config/script files can be added to OpenOCD by using
236 the @option{-s <search>} switch. The current directory and the OpenOCD target library
237 is in the search path by default.
238
239 Note! OpenOCD will launch the GDB & telnet server even if it can not establish a connection
240 with the target. In general, it is possible for the JTAG controller to be unresponsive until
241 the target is set up correctly via e.g. GDB monitor commands in a GDB init script.
242
243 @node Configuration
244 @chapter Configuration
245 @cindex configuration
246 OpenOCD runs as a daemon, and reads it current configuration
247 by default from the file openocd.cfg in the current directory. A different configuration
248 file can be specified with the @option{-f <conf.file>} command line switch specified when starting OpenOCD.
249
250 The configuration file is used to specify on which ports the daemon listens for new
251 connections, the JTAG interface used to connect to the target, the layout of the JTAG
252 chain, the targets that should be debugged, and connected flashes.
253
254 @section Daemon configuration
255
256 @itemize @bullet
257 @item @b{init}
258 @*This command terminates the configuration stage and enters the normal
259 command mode. This can be useful to add commands to the startup scripts and commands
260 such as resetting the target, programming flash, etc. To reset the CPU upon startup,
261 add "init" and "reset" at the end of the config script or at the end of the
262 OpenOCD command line using the @option{-c} command line switch.
263 @cindex init
264 @item @b{telnet_port} <@var{number}>
265 @cindex telnet_port
266 @*Port on which to listen for incoming telnet connections
267 @item @b{tcl_port} <@var{number}>
268 @cindex tcl_port
269 @*Port on which to listen for incoming TCL syntax. This port is intended as
270 a simplified RPC connection that can be used by clients to issue commands
271 and get the output from the TCL engine.
272 @item @b{gdb_port} <@var{number}>
273 @cindex gdb_port
274 @*First port on which to listen for incoming GDB connections. The GDB port for the
275 first target will be gdb_port, the second target will listen on gdb_port + 1, and so on.
276 @item @b{gdb_breakpoint_override} <@var{hard|soft|disabled}>
277 @cindex gdb_breakpoint_override
278 @*Force breakpoint type for gdb 'break' commands.
279 The raison d'etre for this option is to support GDB GUI's without
280 a hard/soft breakpoint concept where the default OpenOCD and
281 GDB behaviour is not sufficient. Note that GDB will use hardware
282 breakpoints if the memory map has been set up for flash regions.
283
284 This option replaces older arm7_9 target commands that addressed
285 the same issue.
286 @item @b{gdb_detach} <@var{resume|reset|halt|nothing}>
287 @cindex gdb_detach
288 @*Configures what OpenOCD will do when gdb detaches from the daeman.
289 Default behaviour is <@var{resume}>
290 @item @b{gdb_memory_map} <@var{enable|disable}>
291 @cindex gdb_memory_map
292 @*Set to <@var{enable}> to cause OpenOCD to send the memory configuration to gdb when
293 requested. gdb will then know when to set hardware breakpoints, and program flash
294 using the gdb load command. @option{gdb_flash_program enable} (@xref{gdb_flash_program})
295 will also need enabling for flash programming to work.
296 Default behaviour is <@var{enable}>
297 @item @b{gdb_flash_program} <@var{enable|disable}>
298 @cindex gdb_flash_program
299 @anchor{gdb_flash_program}
300 @*Set to <@var{enable}> to cause OpenOCD to program the flash memory when a
301 vFlash packet is received.
302 Default behaviour is <@var{enable}>
303 @end itemize
304
305 @section JTAG interface configuration
306
307 @itemize @bullet
308 @item @b{interface} <@var{name}>
309 @cindex interface
310 @*Use the interface driver <@var{name}> to connect to the target. Currently supported
311 interfaces are
312 @itemize @minus
313 @item @b{parport}
314 PC parallel port bit-banging (Wigglers, PLD download cable, ...)
315 @end itemize
316 @itemize @minus
317 @item @b{amt_jtagaccel}
318 Amontec Chameleon in its JTAG Accelerator configuration connected to a PC's EPP
319 mode parallel port
320 @end itemize
321 @itemize @minus
322 @item @b{ft2232}
323 FTDI FT2232 based devices using either the open-source libftdi or the binary only
324 FTD2XX driver. The FTD2XX is superior in performance, but not available on every
325 platform. The libftdi uses libusb, and should be portable to all systems that provide
326 libusb.
327 @end itemize
328 @itemize @minus
329 @item @b{ep93xx}
330 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
331 @end itemize
332 @itemize @minus
333 @item @b{presto}
334 ASIX PRESTO USB JTAG programmer.
335 @end itemize
336 @itemize @minus
337 @item @b{usbprog}
338 usbprog is a freely programmable USB adapter.
339 @end itemize
340 @itemize @minus
341 @item @b{gw16012}
342 Gateworks GW16012 JTAG programmer.
343 @end itemize
344 @itemize @minus
345 @item @b{jlink}
346 Segger jlink usb adapter
347 @end itemize
348 @end itemize
349
350 @itemize @bullet
351 @item @b{jtag_speed} <@var{reset speed}>
352 @cindex jtag_speed
353 @*Limit the maximum speed of the JTAG interface. Usually, a value of zero means maximum
354 speed. The actual effect of this option depends on the JTAG interface used.
355
356 The speed used during reset can be adjusted using setting jtag_speed during
357 pre_reset and post_reset events.
358 @itemize @minus
359
360 @item wiggler: maximum speed / @var{number}
361 @item ft2232: 6MHz / (@var{number}+1)
362 @item amt jtagaccel: 8 / 2**@var{number}
363 @item jlink: maximum speed in kHz (0-12000), 0 will use RTCK
364 @end itemize
365
366 Note: Make sure the jtag clock is no more than @math{1/6th × CPU-Clock}. This is
367 especially true for synthesized cores (-S).
368
369 @item @b{jtag_khz} <@var{reset speed kHz}>
370 @cindex jtag_khz
371 @*Same as jtag_speed, except that the speed is specified in maximum kHz. If
372 the device can not support the rate asked for, or can not translate from
373 kHz to jtag_speed, then an error is returned. 0 means RTCK. If RTCK
374 is not supported, then an error is reported.
375
376 @item @b{reset_config} <@var{signals}> [@var{combination}] [@var{trst_type}] [@var{srst_type}]
377 @cindex reset_config
378 @*The configuration of the reset signals available on the JTAG interface AND the target.
379 If the JTAG interface provides SRST, but the target doesn't connect that signal properly,
380 then OpenOCD can't use it. <@var{signals}> can be @option{none}, @option{trst_only},
381 @option{srst_only} or @option{trst_and_srst}.
382
383 [@var{combination}] is an optional value specifying broken reset signal implementations.
384 @option{srst_pulls_trst} states that the testlogic is reset together with the reset of
385 the system (e.g. Philips LPC2000, "broken" board layout), @option{trst_pulls_srst} says
386 that the system is reset together with the test logic (only hypothetical, I haven't
387 seen hardware with such a bug, and can be worked around).
388 @option{combined} imples both @option{srst_pulls_trst} and @option{trst_pulls_srst}.
389 The default behaviour if no option given is @option{separate}.
390
391 The [@var{trst_type}] and [@var{srst_type}] parameters allow the driver type of the
392 reset lines to be specified. Possible values are @option{trst_push_pull} (default)
393 and @option{trst_open_drain} for the test reset signal, and @option{srst_open_drain}
394 (default) and @option{srst_push_pull} for the system reset. These values only affect
395 JTAG interfaces with support for different drivers, like the Amontec JTAGkey and JTAGAccelerator.
396
397 @item @b{jtag_device} <@var{IR length}> <@var{IR capture}> <@var{IR mask}> <@var{IDCODE instruction}>
398 @cindex jtag_device
399 @*Describes the devices that form the JTAG daisy chain, with the first device being
400 the one closest to TDO. The parameters are the length of the instruction register
401 (4 for all ARM7/9s), the value captured during Capture-IR (0x1 for ARM7/9), and a mask
402 of bits that should be validated when doing IR scans (all four bits (0xf) for ARM7/9).
403 The IDCODE instruction will in future be used to query devices for their JTAG
404 identification code. This line is the same for all ARM7 and ARM9 devices.
405 Other devices, like CPLDs, require different parameters. An example configuration
406 line for a Xilinx XC9500 CPLD would look like this:
407 @smallexample
408 jtag_device 8 0x01 0x0e3 0xfe
409 @end smallexample
410 The instruction register (IR) is 8 bits long, during Capture-IR 0x01 is loaded into
411 the IR, but only bits 0-1 and 5-7 should be checked, the others (2-4) might vary.
412 The IDCODE instruction is 0xfe.
413
414 @item @b{jtag_nsrst_delay} <@var{ms}>
415 @cindex jtag_nsrst_delay
416 @*How long (in milliseconds) OpenOCD should wait after deasserting nSRST before
417 starting new JTAG operations.
418 @item @b{jtag_ntrst_delay} <@var{ms}>
419 @cindex jtag_ntrst_delay
420 @*Same @b{jtag_nsrst_delay}, but for nTRST
421
422 The jtag_n[st]rst_delay options are useful if reset circuitry (like a reset supervisor,
423 or on-chip features) keep a reset line asserted for some time after the external reset
424 got deasserted.
425 @end itemize
426
427 @section parport options
428
429 @itemize @bullet
430 @item @b{parport_port} <@var{number}>
431 @cindex parport_port
432 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of
433 the @file{/dev/parport} device
434
435 When using PPDEV to access the parallel port, use the number of the parallel port:
436 @option{parport_port 0} (the default). If @option{parport_port 0x378} is specified
437 you may encounter a problem.
438 @item @b{parport_cable} <@var{name}>
439 @cindex parport_cable
440 @*The layout of the parallel port cable used to connect to the target.
441 Currently supported cables are
442 @itemize @minus
443 @item @b{wiggler}
444 @cindex wiggler
445 The original Wiggler layout, also supported by several clones, such
446 as the Olimex ARM-JTAG
447 @item @b{wiggler2}
448 @cindex wiggler2
449 Same as original wiggler except an led is fitted on D5.
450 @item @b{wiggler_ntrst_inverted}
451 @cindex wiggler_ntrst_inverted
452 Same as original wiggler except TRST is inverted.
453 @item @b{old_amt_wiggler}
454 @cindex old_amt_wiggler
455 The Wiggler configuration that comes with Amontec's Chameleon Programmer. The new
456 version available from the website uses the original Wiggler layout ('@var{wiggler}')
457 @item @b{chameleon}
458 @cindex chameleon
459 The Amontec Chameleon's CPLD when operated in configuration mode. This is only used to
460 program the Chameleon itself, not a connected target.
461 @item @b{dlc5}
462 @cindex dlc5
463 The Xilinx Parallel cable III.
464 @item @b{triton}
465 @cindex triton
466 The parallel port adapter found on the 'Karo Triton 1 Development Board'.
467 This is also the layout used by the HollyGates design
468 (see @uref{http://www.lartmaker.nl/projects/jtag/}).
469 @item @b{flashlink}
470 @cindex flashlink
471 The ST Parallel cable.
472 @item @b{arm-jtag}
473 @cindex arm-jtag
474 Same as original wiggler except SRST and TRST connections reversed and
475 TRST is also inverted.
476 @item @b{altium}
477 @cindex altium
478 Altium Universal JTAG cable.
479 @end itemize
480 @item @b{parport_write_on_exit} <@var{on|off}>
481 @cindex parport_write_on_exit
482 @*This will configure the parallel driver to write a known value to the parallel
483 interface on exiting OpenOCD
484 @end itemize
485
486 @section amt_jtagaccel options
487 @itemize @bullet
488 @item @b{parport_port} <@var{number}>
489 @cindex parport_port
490 @*Either the address of the I/O port (default: 0x378 for LPT1) or the number of the
491 @file{/dev/parport} device
492 @end itemize
493 @section ft2232 options
494
495 @itemize @bullet
496 @item @b{ft2232_device_desc} <@var{description}>
497 @cindex ft2232_device_desc
498 @*The USB device description of the FTDI FT2232 device. If not specified, the FTDI
499 default value is used. This setting is only valid if compiled with FTD2XX support.
500 @item @b{ft2232_layout} <@var{name}>
501 @cindex ft2232_layout
502 @*The layout of the FT2232 GPIO signals used to control output-enables and reset
503 signals. Valid layouts are
504 @itemize @minus
505 @item @b{usbjtag}
506 "USBJTAG-1" layout described in the original OpenOCD diploma thesis
507 @item @b{jtagkey}
508 Amontec JTAGkey and JTAGkey-tiny
509 @item @b{signalyzer}
510 Signalyzer
511 @item @b{olimex-jtag}
512 Olimex ARM-USB-OCD
513 @item @b{m5960}
514 American Microsystems M5960
515 @item @b{evb_lm3s811}
516 Luminary Micro EVB_LM3S811 as a JTAG interface (not onboard processor), no TRST or
517 SRST signals on external connector
518 @item @b{comstick}
519 Hitex STR9 comstick
520 @item @b{stm32stick}
521 Hitex STM32 Performance Stick
522 @item @b{flyswatter}
523 Tin Can Tools Flyswatter
524 @item @b{turtelizer2}
525 egnite Software turtelizer2
526 @item @b{oocdlink}
527 OOCDLink
528 @end itemize
529
530 @item @b{ft2232_vid_pid} <@var{vid}> <@var{pid}>
531 @*The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
532 default values are used. Multiple <@var{vid}>, <@var{pid}> pairs may be given, eg.
533 @smallexample
534 ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
535 @end smallexample
536 @item @b{ft2232_latency} <@var{ms}>
537 @*On some systems using ft2232 based JTAG interfaces the FT_Read function call in
538 ft2232_read() fails to return the expected number of bytes. This can be caused by
539 USB communication delays and has proved hard to reproduce and debug. Setting the
540 FT2232 latency timer to a larger value increases delays for short USB packages but it
541 also reduces the risk of timeouts before receiving the expected number of bytes.
542 The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
543 @end itemize
544
545 @section ep93xx options
546 @cindex ep93xx options
547 Currently, there are no options available for the ep93xx interface.
548
549 @page
550 @section Target configuration
551
552 @itemize @bullet
553 @item @b{target} <@var{type}> <@var{endianess}> <@var{JTAG pos}>
554 <@var{variant}>
555 @cindex target
556 @*Defines a target that should be debugged. Currently supported types are:
557 @itemize @minus
558 @item @b{arm7tdmi}
559 @item @b{arm720t}
560 @item @b{arm9tdmi}
561 @item @b{arm920t}
562 @item @b{arm922t}
563 @item @b{arm926ejs}
564 @item @b{arm966e}
565 @item @b{cortex_m3}
566 @item @b{feroceon}
567 @item @b{xscale}
568 @item @b{mips_m4k}
569 @end itemize
570
571 If you want to use a target board that is not on this list, see Adding a new
572 target board
573
574 Endianess may be @option{little} or @option{big}.
575
576 @item @b{target_script} <@var{target#}> <@var{event}> <@var{script_file}>
577 @cindex target_script
578 @*Event is one of the following:
579 @option{pre_reset}, @option{reset}, @option{post_reset}, @option{post_halt},
580 @option{pre_resume} or @option{gdb_program_config}.
581 @option{post_reset} and @option{reset} will produce the same results.
582
583 @item @b{working_area} <@var{target#}> <@var{address}> <@var{size}>
584 <@var{backup}|@var{nobackup}>
585 @cindex working_area
586 @*Specifies a working area for the debugger to use. This may be used to speed-up
587 downloads to target memory and flash operations, or to perform otherwise unavailable
588 operations (some coprocessor operations on ARM7/9 systems, for example). The last
589 parameter decides whether the memory should be preserved (<@var{backup}>) or can simply be overwritten (<@var{nobackup}>). If possible, use
590 a working_area that doesn't need to be backed up, as performing a backup slows down operation.
591 @end itemize
592
593 @subsection arm7tdmi options
594 @cindex arm7tdmi options
595 target arm7tdmi <@var{endianess}> <@var{jtag#}>
596 @*The arm7tdmi target definition requires at least one additional argument, specifying
597 the position of the target in the JTAG daisy-chain. The first JTAG device is number 0.
598 The optional [@var{variant}] parameter has been removed in recent versions.
599 The correct feature set is determined at runtime.
600
601 @subsection arm720t options
602 @cindex arm720t options
603 ARM720t options are similar to ARM7TDMI options.
604
605 @subsection arm9tdmi options
606 @cindex arm9tdmi options
607 ARM9TDMI options are similar to ARM7TDMI options. Supported variants are
608 @option{arm920t}, @option{arm922t} and @option{arm940t}.
609 This enables the hardware single-stepping support found on these cores.
610
611 @subsection arm920t options
612 @cindex arm920t options
613 ARM920t options are similar to ARM9TDMI options.
614
615 @subsection arm966e options
616 @cindex arm966e options
617 ARM966e options are similar to ARM9TDMI options.
618
619 @subsection cortex_m3 options
620 @cindex cortex_m3 options
621 use variant <@var{variant}> @option{lm3s} when debugging luminary lm3s targets. This will cause
622 openocd to use a software reset rather than asserting SRST to avoid a issue with clearing
623 the debug registers. This is fixed in Fury Rev B, DustDevil Rev B, Tempest, these revisions will
624 be detected and the normal reset behaviour used.
625
626 @subsection xscale options
627 @cindex xscale options
628 Supported variants are @option{ixp42x}, @option{ixp45x}, @option{ixp46x},
629 @option{pxa250}, @option{pxa255}, @option{pxa26x}.
630
631 @section Flash configuration
632 @cindex Flash configuration
633
634 @itemize @bullet
635 @item @b{flash bank} <@var{driver}> <@var{base}> <@var{size}> <@var{chip_width}>
636 <@var{bus_width}> <@var{target#}> [@var{driver_options ...}]
637 @cindex flash bank
638 @*Configures a flash bank at <@var{base}> of <@var{size}> bytes and <@var{chip_width}>
639 and <@var{bus_width}> bytes using the selected flash <driver>.
640 @end itemize
641
642 @subsection lpc2000 options
643 @cindex lpc2000 options
644
645 @b{flash bank lpc2000} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
646 <@var{clock}> [@var{calc_checksum}]
647 @*LPC flashes don't require the chip and bus width to be specified. Additional
648 parameters are the <@var{variant}>, which may be @var{lpc2000_v1} (older LPC21xx and LPC22xx)
649 or @var{lpc2000_v2} (LPC213x, LPC214x, LPC210[123], LPC23xx and LPC24xx), the number
650 of the target this flash belongs to (first is 0), the frequency at which the core
651 is currently running (in kHz - must be an integral number), and the optional keyword
652 @var{calc_checksum}, telling the driver to calculate a valid checksum for the exception
653 vector table.
654
655 @subsection cfi options
656 @cindex cfi options
657
658 @b{flash bank cfi} <@var{base}> <@var{size}> <@var{chip_width}> <@var{bus_width}>
659 <@var{target#}> [@var{jedec_probe}|@var{x16_as_x8}]
660 @*CFI flashes require the number of the target they're connected to as an additional
661 argument. The CFI driver makes use of a working area (specified for the target)
662 to significantly speed up operation.
663
664 @var{chip_width} and @var{bus_width} are specified in bytes.
665
666 The @var{jedec_probe} option is used to detect certain non-CFI flash roms, like AM29LV010 and similar types.
667
668 @var{x16_as_x8} ???
669
670 @subsection at91sam7 options
671 @cindex at91sam7 options
672
673 @b{flash bank at91sam7} 0 0 0 0 <@var{target#}>
674 @*AT91SAM7 flashes only require the @var{target#}, all other values are looked up after
675 reading the chip-id and type.
676
677 @subsection str7 options
678 @cindex str7 options
679
680 @b{flash bank str7x} <@var{base}> <@var{size}> 0 0 <@var{target#}> <@var{variant}>
681 @*variant can be either STR71x, STR73x or STR75x.
682
683 @subsection str9 options
684 @cindex str9 options
685
686 @b{flash bank str9x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
687 @*The str9 needs the flash controller to be configured prior to Flash programming, eg.
688 @smallexample
689 str9x flash_config 0 4 2 0 0x80000
690 @end smallexample
691 This will setup the BBSR, NBBSR, BBADR and NBBADR registers respectively.
692
693 @subsection str9 options (str9xpec driver)
694
695 @b{flash bank str9xpec} <@var{base}> <@var{size}> 0 0 <@var{target#}>
696 @*Before using the flash commands the turbo mode will need enabling using str9xpec
697 @option{enable_turbo} <@var{num>.}
698
699 Only use this driver for locking/unlocking the device or configuring the option bytes.
700 Use the standard str9 driver for programming.
701
702 @subsection stellaris (LM3Sxxx) options
703 @cindex stellaris (LM3Sxxx) options
704
705 @b{flash bank stellaris} <@var{base}> <@var{size}> 0 0 <@var{target#}>
706 @*stellaris flash plugin only require the @var{target#}.
707
708 @subsection stm32x options
709 @cindex stm32x options
710
711 @b{flash bank stm32x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
712 @*stm32x flash plugin only require the @var{target#}.
713
714 @subsection aduc702x options
715 @cindex aduc702x options
716
717 @b{flash bank aduc702x} <@var{base}> <@var{size}> 0 0 <@var{target#}>
718 @*aduc702x flash plugin require the flash @var{base}, @var{size} and @var{target#}.
719
720 @section mFlash configuration
721 @cindex mFlash configuration
722
723 @itemize @bullet
724 @item @b{mflash bank} <@var{soc}> <@var{base}> <@var{chip_width}> <@var{bus_width}>
725 <@var{RST pin}> <@var{WP pin}> <@var{DPD pin}> <@var{target #}>
726 @cindex mflash bank
727 Configures a mflash for <@var{soc}> host bank at <@var{base}>. <@var{chip_width}> and
728 <@var{bus_width}> are bytes order. Pin number format is dependent on host GPIO calling convention.
729 If WP or DPD pin was not used, write -1. Currently, mflash bank support s3c2440 and pxa270.
730 @end itemize
731 (ex. of s3c2440) mflash <@var{RST pin}> is GPIO B1, <@var{WP pin}> and <@var{DPD pin}> are not used.
732 @smallexample
733 mflash bank s3c2440 0x10000000 2 2 1b -1 -1 0
734 @end smallexample
735 (ex. of pxa270) mflash <@var{RST pin}> is GPIO 43, <@var{DPD pin}> is not used and <@var{DPD pin}> is GPIO 51.
736 @smallexample
737 mflash bank pxa270 0x08000000 2 2 43 -1 51 0
738 @end smallexample
739
740 @node Target library
741 @chapter Target library
742 @cindex Target library
743
744 OpenOCD comes with a target configuration script library. These scripts can be
745 used as-is or serve as a starting point.
746
747 The target library is published together with the openocd executable and
748 the path to the target library is in the OpenOCD script search path.
749 Similarly there are example scripts for configuring the JTAG interface.
750
751 The command line below uses the example parport configuration scripts
752 that ship with OpenOCD, then configures the str710.cfg target and
753 finally issues the init and reset command. The communication speed
754 is set to 10kHz for reset and 8MHz for post reset.
755
756
757 @smallexample
758 openocd -f interface/parport.cfg -f target/str710.cfg -c "init" -c "reset"
759 @end smallexample
760
761
762 To list the target scripts available:
763
764 @smallexample
765 $ ls /usr/local/lib/openocd/target
766
767 arm7_fast.cfg lm3s6965.cfg pxa255.cfg stm32.cfg xba_revA3.cfg
768 at91eb40a.cfg lpc2148.cfg pxa255_sst.cfg str710.cfg zy1000.cfg
769 at91r40008.cfg lpc2294.cfg sam7s256.cfg str912.cfg
770 at91sam9260.cfg nslu2.cfg sam7x256.cfg wi-9c.cfg
771 @end smallexample
772
773
774 @node Commands
775 @chapter Commands
776 @cindex commands
777
778 OpenOCD allows user interaction through a GDB server (default: port 3333),
779 a telnet interface (default: port 4444), and a TCL interface (default: port 5555). The command line interpreter
780 is available from both the telnet interface and a GDB session. To issue commands to the
781 interpreter from within a GDB session, use the @option{monitor} command, e.g. use
782 @option{monitor poll} to issue the @option{poll} command. All output is relayed through the
783 GDB session.
784
785 The TCL interface is used as a simplified RPC mechanism that feeds all the
786 input into the TCL interpreter and returns the output from the evaluation of
787 the commands.
788
789 @section Daemon
790
791 @itemize @bullet
792 @item @b{sleep} <@var{msec}>
793 @cindex sleep
794 @*Wait for n milliseconds before resuming. Useful in connection with script files
795 (@var{script} command and @var{target_script} configuration).
796
797 @item @b{shutdown}
798 @cindex shutdown
799 @*Close the OpenOCD daemon, disconnecting all clients (GDB, Telnet, Other).
800
801 @item @b{debug_level} [@var{n}]
802 @cindex debug_level
803 @anchor{debug_level}
804 @*Display or adjust debug level to n<0-3>
805
806 @item @b{fast} [@var{enable|disable}]
807 @cindex fast
808 @*Default disabled. Set default behaviour of OpenOCD to be "fast and dangerous". For instance ARM7/9 DCC memory
809 downloads and fast memory access will work if the JTAG interface isn't too fast and
810 the core doesn't run at a too low frequency. Note that this option only changes the default
811 and that the indvidual options, like DCC memory downloads, can be enabled and disabled
812 individually.
813
814 The target specific "dangerous" optimisation tweaking options may come and go
815 as more robust and user friendly ways are found to ensure maximum throughput
816 and robustness with a minimum of configuration.
817
818 Typically the "fast enable" is specified first on the command line:
819
820 @smallexample
821 openocd -c "fast enable" -c "interface dummy" -f target/str710.cfg
822 @end smallexample
823
824 @item @b{log_output} <@var{file}>
825 @cindex log_output
826 @*Redirect logging to <file> (default: stderr)
827
828 @item @b{script} <@var{file}>
829 @cindex script
830 @*Execute commands from <file>
831
832 @end itemize
833
834 @subsection Target state handling
835 @itemize @bullet
836 @item @b{poll} [@option{on}|@option{off}]
837 @cindex poll
838 @*Poll the target for its current state. If the target is in debug mode, architecture
839 specific information about the current state is printed. An optional parameter
840 allows continuous polling to be enabled and disabled.
841
842 @item @b{halt} [@option{ms}]
843 @cindex halt
844 @*Send a halt request to the target and wait for it to halt for up to [@option{ms}] milliseconds.
845 Default [@option{ms}] is 5 seconds if no arg given.
846 Optional arg @option{ms} is a timeout in milliseconds. Using 0 as the [@option{ms}]
847 will stop OpenOCD from waiting.
848
849 @item @b{wait_halt} [@option{ms}]
850 @cindex wait_halt
851 @*Wait for the target to enter debug mode. Optional [@option{ms}] is
852 a timeout in milliseconds. Default [@option{ms}] is 5 seconds if no
853 arg given.
854
855 @item @b{resume} [@var{address}]
856 @cindex resume
857 @*Resume the target at its current code position, or at an optional address.
858 OpenOCD will wait 5 seconds for the target to resume.
859
860 @item @b{step} [@var{address}]
861 @cindex step
862 @*Single-step the target at its current code position, or at an optional address.
863
864 @item @b{reset} [@option{run}|@option{halt}|@option{init}]
865 @cindex reset
866 @*Perform a hard-reset. The optional parameter specifies what should happen after the reset.
867
868 With no arguments a "reset run" is executed
869 @itemize @minus
870 @item @b{run}
871 @cindex reset run
872 @*Let the target run.
873 @item @b{halt}
874 @cindex reset halt
875 @*Immediately halt the target (works only with certain configurations).
876 @item @b{init}
877 @cindex reset init
878 @*Immediately halt the target, and execute the reset script (works only with certain
879 configurations)
880 @end itemize
881 @end itemize
882
883 @subsection Memory access commands
884 These commands allow accesses of a specific size to the memory system:
885 @itemize @bullet
886 @item @b{mdw} <@var{addr}> [@var{count}]
887 @cindex mdw
888 @*display memory words
889 @item @b{mdh} <@var{addr}> [@var{count}]
890 @cindex mdh
891 @*display memory half-words
892 @item @b{mdb} <@var{addr}> [@var{count}]
893 @cindex mdb
894 @*display memory bytes
895 @item @b{mww} <@var{addr}> <@var{value}>
896 @cindex mww
897 @*write memory word
898 @item @b{mwh} <@var{addr}> <@var{value}>
899 @cindex mwh
900 @*write memory half-word
901 @item @b{mwb} <@var{addr}> <@var{value}>
902 @cindex mwb
903 @*write memory byte
904
905 @item @b{load_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
906 @cindex load_image
907 @*Load image <@var{file}> to target memory at <@var{address}>
908 @item @b{dump_image} <@var{file}> <@var{address}> <@var{size}>
909 @cindex dump_image
910 @*Dump <@var{size}> bytes of target memory starting at <@var{address}> to a
911 (binary) <@var{file}>.
912 @item @b{verify_image} <@var{file}> <@var{address}> [@option{bin}|@option{ihex}|@option{elf}]
913 @cindex verify_image
914 @*Verify <@var{file}> against target memory starting at <@var{address}>.
915 This will first attempt comparison using a crc checksum, if this fails it will try a binary compare.
916 @end itemize
917
918 @subsection Flash commands
919 @cindex Flash commands
920 @itemize @bullet
921 @item @b{flash banks}
922 @cindex flash banks
923 @*List configured flash banks
924 @item @b{flash info} <@var{num}>
925 @cindex flash info
926 @*Print info about flash bank <@option{num}>
927 @item @b{flash probe} <@var{num}>
928 @cindex flash probe
929 @*Identify the flash, or validate the parameters of the configured flash. Operation
930 depends on the flash type.
931 @item @b{flash erase_check} <@var{num}>
932 @cindex flash erase_check
933 @*Check erase state of sectors in flash bank <@var{num}>. This is the only operation that
934 updates the erase state information displayed by @option{flash info}. That means you have
935 to issue an @option{erase_check} command after erasing or programming the device to get
936 updated information.
937 @item @b{flash protect_check} <@var{num}>
938 @cindex flash protect_check
939 @*Check protection state of sectors in flash bank <num>.
940 @option{flash erase_sector} using the same syntax.
941 @item @b{flash erase_sector} <@var{num}> <@var{first}> <@var{last}>
942 @cindex flash erase_sector
943 @*Erase sectors at bank <@var{num}>, starting at sector <@var{first}> up to and including
944 <@var{last}>. Sector numbering starts at 0. Depending on the flash type, erasing may
945 require the protection to be disabled first (e.g. Intel Advanced Bootblock flash using
946 the CFI driver).
947 @item @b{flash erase_address} <@var{address}> <@var{length}>
948 @cindex flash erase_address
949 @*Erase sectors starting at <@var{address}> for <@var{length}> bytes
950 @item @b{flash write_bank} <@var{num}> <@var{file}> <@var{offset}>
951 @cindex flash write_bank
952 @*Write the binary <@var{file}> to flash bank <@var{num}>, starting at
953 <@option{offset}> bytes from the beginning of the bank.
954 @item @b{flash write_image} [@var{erase}] <@var{file}> [@var{offset}] [@var{type}]
955 @cindex flash write_image
956 @*Write the image <@var{file}> to the current target's flash bank(s). A relocation
957 [@var{offset}] can be specified and the file [@var{type}] can be specified
958 explicitly as @option{bin} (binary), @option{ihex} (Intel hex), @option{elf}
959 (ELF file) or @option{s19} (Motorola s19). Flash memory will be erased prior to programming
960 if the @option{erase} parameter is given.
961 @item @b{flash protect} <@var{num}> <@var{first}> <@var{last}> <@option{on}|@option{off}>
962 @cindex flash protect
963 @*Enable (@var{on}) or disable (@var{off}) protection of flash sectors <@var{first}> to
964 <@var{last}> of @option{flash bank} <@var{num}>.
965 @end itemize
966
967 @subsection mFlash commands
968 @cindex mFlash commands
969 @itemize @bullet
970 @item @b{mflash probe}
971 @cindex mflash probe
972 Probe mflash.
973 @item @b{mflash write} <@var{num}> <@var{file}> <@var{offset}>
974 @cindex mflash write
975 Write the binary <@var{file}> to mflash bank <@var{num}>, starting at
976 <@var{offset}> bytes from the beginning of the bank.
977 @item @b{mflash dump} <@var{num}> <@var{file}> <@var{offset}> <@var{size}>
978 @cindex mflash dump
979 Dump <size> bytes, starting at <@var{offset}> bytes from the beginning of the <@var{num}> bank
980 to a <@var{file}>.
981 @end itemize
982
983 @page
984 @section Target Commands
985 @cindex Target Commands
986
987 @subsection Overview
988 @cindex Overview
989 Pre "TCL" - many commands in OpenOCD where implemented as C functions. Post "TCL"
990 (Jim-Tcl to be more exact, June 2008) TCL became a bigger part of OpenOCD.
991
992 One of the biggest changes is the introduction of 'target specific'
993 commands. When every time you create a target, a special command name is
994 created specifically for that target.
995 For example - in TCL/TK - if you create a button (or any other screen object) you
996 can specify various "button configuration parameters". One of those parameters is
997 the "object cmd/name" [ In TK - this is referred to as the object path ]. Later
998 you can use that 'path' as a command to modify the button, for example to make it
999 "grey", or change the color. In effect, the "path" function is an 'object
1000 oriented command'. The TCL change in OpenOCD follows the same principle, you create
1001 a target, and a specific "targetname" command is created.
1002
1003 There are two methods of creating a target:
1004
1005 @enumerate
1006 @item
1007 Using the old syntax (deprecated). Target names are autogenerated as:
1008 "target0", "target1", etc.;
1009 @cindex old syntax
1010 @item
1011 Using the new syntax, you can specify the name of the target.
1012 @cindex new syntax
1013 @end enumerate
1014
1015 As most users will have a single JTAG target, and by default the command name will
1016 probably default to "target0", thus for reasons of simplicity the instructions below
1017 use the name "target0".
1018
1019 @subsection Commands
1020 @cindex Commands
1021 OpenOCD has the following 'target' or 'target-like' commands:
1022
1023 @enumerate
1024 @item
1025 @b{targets (plural)} - lists all known targets and a little bit of information about each
1026 target, most importantly the target *COMMAND*NAME* (it also lists the target number);
1027 @cindex targets
1028 @item
1029 @b{target (singular)} - used to create, configure list, etc the targets;
1030 @cindex target
1031 @item
1032 @b{target0} - the command object for the first target. Unless you specified another name.
1033 @cindex target0
1034 @end enumerate
1035
1036 @subsubsection Targets Command
1037 @cindex Targets Command
1038 The "targets" command has 2 functions:
1039
1040 @itemize
1041 @item
1042 With a parameter, you can change the current command line target.
1043
1044 NOTE: "with a parameter" is really only useful with 'multiple JTAG targets' not something
1045 you normally encounter (ie: If you had 2 arm chips - sharing the same JTAG chain).
1046 @verbatim
1047 # using a target name.
1048 (gdb) mon targets target0
1049 # or a target by number.
1050 (gdb) mon targets 3
1051 @end verbatim
1052 @cindex with a parameter
1053 @item
1054 Plain, without any parameter lists targets, for example:
1055
1056 @verbatim
1057 (gdb) mon targets
1058 CmdName Type Endian ChainPos State
1059 -- ---------- ---------- ---------- -------- ----------
1060 0: target0 arm7tdmi little 0 halted
1061 @end verbatim
1062
1063 This shows:
1064 @enumerate a
1065 @item
1066 in this example, a single target;
1067 @item
1068 target number 0 (1st column);
1069 @item
1070 the 'object name' is target0 (the default name);
1071 @item
1072 it is an arm7tdmi;
1073 @item
1074 little endian;
1075 @item
1076 the position in the JTAG chain;
1077 @item
1078 and is currently halted.
1079 @end enumerate
1080 @cindex without any parameter
1081 @end itemize
1082
1083 @subsubsection Target Command
1084 @cindex Target Command
1085
1086 The "target" command has the following options:
1087 @itemize
1088 @item
1089 target create
1090
1091 @verbatim
1092 target create CMDNAME TYPE ... config options ...
1093 argv[0] = 'target'
1094 argv[1] = 'create'
1095 argv[2] = the 'object command'
1096 (normally, target0, see (3) above)
1097 argv[3] = the target type, ie: arm7tdmi
1098 argv[4..N] = configuration parameters
1099 @end verbatim
1100 @item
1101 target types
1102
1103 Lists all supported target types; ie: arm7tdmi, xscale, fericon, cortex-m3.
1104 The result TCL list of all known target types (and is human readable).
1105 @item
1106 target names
1107
1108 Returns a TCL list of all known target commands (and is human readable).
1109
1110 Example:
1111 @verbatim
1112 foreach t [target names] {
1113 puts [format "Target: %s\n" $t]
1114 }
1115 @end verbatim
1116 @item
1117 target current
1118
1119 Returns the TCL command name of the current target.
1120
1121 Example:
1122 @verbatim
1123 set ct [target current]
1124 set t [$ct cget -type]
1125
1126 puts "Current target name is: $ct, and is a: $t"
1127 @end verbatim
1128 @item
1129 target number <VALUE>
1130
1131 Returns the TCL command name of the specified target.
1132
1133 Example
1134 @verbatim
1135 set thename [target number $x]
1136 puts [format "Target %d is: %s\n" $x $thename]
1137 @end verbatim
1138 For instance, assuming the defaults
1139 @verbatim
1140 target number 0
1141 @end verbatim
1142 Would return 'target0' (or whatever you called it)
1143 @item
1144 target count
1145
1146 Returns the larget+1 target number.
1147
1148 Example:
1149 @verbatim
1150 set c [target count]
1151 for { set x 0 } { $x < $c } { incr x } {
1152 # Assuming you have this function..
1153 print_target_details $x
1154 }
1155 @end verbatim
1156 @end itemize
1157
1158 @subsubsection Target0 Command
1159 @cindex Target0 Command
1160 The "target0" command (the "Target Object" command):
1161
1162 Once a target is 'created' a command object by that targets name is created, for example
1163 @verbatim
1164 target create BiGRed arm7tdmi -endian little -chain-position 3
1165 @end verbatim
1166
1167 Would create a [case sensitive] "command" BiGRed
1168
1169 If you use the old [deprecated] syntax, the name is automatically
1170 generated and is in the form:
1171 @verbatim
1172 target0, target1, target2, target3, ... etc.
1173 @end verbatim
1174
1175 @subsubsection Target CREATE, CONFIGURE and CGET Options Command
1176 @cindex Target CREATE, CONFIGURE and CGET Options Command
1177 The commands:
1178 @verbatim
1179 target create CMDNAME TYPE [configure-options]
1180 CMDNAME configure [configure-options]
1181 CMDNAME cget [configure-options]
1182 @end verbatim
1183 @itemize
1184 @item
1185 In the 'create' case, one is creating the target and can specify any
1186 number of configuration parameters.
1187 @item
1188 In the 'CMDNAME configure' case, one can change the setting [Not all things can, or should be changed].
1189 @item
1190 In the 'CMDNAME cget' case, the goal is to query the target for a
1191 specific configuration option.
1192 @end itemize
1193
1194 In the above, the "default" name target0 is 'target0'.
1195
1196 Example:
1197
1198 From the (gdb) prompt, one can type this:
1199
1200 @verbatim
1201 (gdb) mon target0 configure -endian big
1202 @end verbatim
1203
1204 And change target0 to 'big-endian'. This is a contrived example,
1205 specifically for this document - don't expect changing endian
1206 'mid-operation' to work you should set the endian at creation.
1207
1208 Known options [30/august/2008] are:
1209 @itemize
1210 @item
1211 [Mandatory 'create' Options]
1212 @itemize
1213 @item
1214 type arm7tdmi|arm720|etc ...
1215 @item
1216 chain-position NUMBER
1217 @item
1218 endian ENDIAN
1219 @end itemize
1220 @item
1221 Optional
1222 @itemize
1223 @item
1224 event EVENTNAME "tcl-action"
1225 @item
1226 reset RESETACTION
1227 @item
1228 work-area-virt ADDR
1229 @item
1230 work-area-phys ADDR
1231 @item
1232 work-area-size ADDR
1233 @item
1234 work-area-backup BOOLEAN
1235 @end itemize
1236 @end itemize
1237 Hint: To get a list of available options, try this:
1238 @verbatim
1239 (gdb) mon target0 cget -BLAHBLAHBLAH
1240 @end verbatim
1241
1242 the above causes an error - and a helpful list of valid options.
1243
1244 One can query any of the above options at run time, for example:
1245 @verbatim
1246 (gdb) mon target0 cget -OPTION [param]
1247 @end verbatim
1248
1249 Example TCL script
1250
1251 @verbatim
1252 # For all targets...
1253 set c [target count]
1254 for { set x 0 } { $x < $c } { incr x ] {
1255 set n [target number $x]
1256 set t [$n cget -type]
1257 set e [$n cget -endian]
1258 puts [format "%d: %s, %s, endian: %s\n" $x $n $t $n]
1259 }
1260 @end verbatim
1261
1262 Might produce:
1263
1264 @verbatim
1265 0: pic32chip, mips_m4k, endain: little
1266 1: arm7, arm7tdmi, endian: big
1267 2: blackfin, bf534, endian: little
1268 @end verbatim
1269
1270 Notice the above example is not target0, target1, target2 Why? Because in this contrived multi-target example -
1271 more human understandable target names might be helpful.
1272
1273 For example these two are the same:
1274
1275 @verbatim
1276 (gdb) mon blackfin configure -event FOO {puts "Hi mom"}
1277 @end verbatim
1278
1279 or:
1280
1281 @verbatim
1282 (gdb) mon [target number 2] configure -event FOO {puts "Hi mom"}
1283 @end verbatim
1284
1285 In the second case, we use [] to get the command name of target #2, in this contrived example - it is "blackfin".
1286
1287 Two important configuration options are:
1288
1289 "-event" and "-reset"
1290
1291 The "-reset" option specifies what should happen when the chip is reset, for example should it 'halt', 're-init',
1292 or what.
1293
1294 The "-event" option less you specify a TCL command to occur when a specific event occurs.
1295
1296 @subsection Target Events
1297 @cindex Target Events
1298
1299 @subsubsection Overview
1300 @cindex Overview
1301 At various points in time - certain 'target' events happen. You can create a custom event action to occur at that time.
1302 For example - after reset, the PLLs and CLOCKs may need to be reconfigured, or perhaps the SDRAM needs to be re-initialized.
1303 Often the easiest way to do that is to create a simple script file containing the series of (mww [poke memory]) commands
1304 you would type by hand, to reconfigure the target clocks. You could specify the "event action" like this:
1305
1306 @verbatim
1307 (gdb) mon target0 configure -event reset-init "script cfg.clocks"
1308 @end verbatim
1309
1310 In the above example, when the event "reset-init" occurs, the "action-string" will be evaluated as if you typed it at the
1311 console:
1312 @itemize
1313 @item @b{Option1} - The simple approach (above) is to create a script file with lots of "mww" (memory write word) commands
1314 to configure your targets clocks and/or external memory;
1315 @item @b{Option2} - You can instead create a fancy TCL procedure and invoke that procedure instead of sourcing a file [In fact,
1316 "script" is a TCL procedure that loads a file].
1317 @end itemize
1318
1319 @subsubsection Details
1320 @cindex Details
1321 There are many events one could use, to get a current list of events type the following invalid command, you'll get a helpful
1322 "runtime error" message, see below [list valid as of 30/august/2008]:
1323
1324 @verbatim
1325 (gdb) mon target0 cget -event FAFA
1326 Runtime error, file "../../../openocd23/src/helper/command.c", line 433:
1327 -event: Unknown: FAFA, try one of: old-pre_reset,
1328 old-gdb_program_config, old-post_reset, halted,
1329 resumed, resume-start, resume-end, reset-start,
1330 reset-assert-pre, reset-assert-post,
1331 reset-deassert-pre, reset-deassert-post,
1332 reset-halt-pre, reset-halt-post, reset-wait-pre,
1333 reset-wait-post, reset-init, reset-end,
1334 examine-start, examine-end, debug-halted,
1335 debug-resumed, gdb-attach, gdb-detach,
1336 gdb-flash-write-start, gdb-flash-write-end,
1337 gdb-flash-erase-start, gdb-flash-erase-end,
1338 resume-start, resume-ok, or resume-end
1339 @end verbatim
1340
1341 NOTE: The event-names "old-*" are deprecated and exist only to help old scripts continue to function, and the old "target_script"
1342 command to work. Please do not rely on them.
1343
1344 These are some other important names:
1345 @itemize
1346 @item gdb-flash-erase-start
1347 @item gdb-flash-erase-end
1348 @item gdb-flash-write-start
1349 @item gdb-flash-write-end
1350 @end itemize
1351
1352 These occur when GDB/OpenOCD attempts to erase & program the FLASH chip via GDB. For example - some PCBs may have a simple GPIO
1353 pin that acts like a "flash write protect" you might need to write a script that disables "write protect".
1354
1355 To get a list of current 'event actions', type the following command:
1356
1357 @verbatim
1358 (gdb) mon target0 eventlist
1359
1360 Event actions for target (0) target0
1361
1362 Event | Body
1363 ------------------------- | ----------------------------------------
1364 old-post_reset | script event/sam7x256_reset.script
1365 @end verbatim
1366
1367 Here is a simple example for all targets:
1368
1369 @verbatim
1370 (gdb) mon foreach x [target names] { $x eventlist }
1371 @end verbatim
1372
1373 The above uses some TCL tricks:
1374 @enumerate a
1375 @item foreach VARIABLE LIST BODY
1376 @item to generate the list, we use [target names]
1377 @item the BODY, contains $x - the loop variable and expands to the target specific name
1378 @end enumerate
1379
1380 Recalling the earlier discussion - the "object command" there are other things you can
1381 do besides "configure" the target.
1382
1383 Note: Many of these commands exist as "global" commands, and they also exist as target
1384 specific commands. For example, the "mww" (memory write word) operates on the current
1385 target if you have more then 1 target, you must switch. In contrast to the normal
1386 commands, these commands operate on the specific target. For example, the command "mww"
1387 writes data to the *current* command line target.
1388
1389 Often, you have only a single target - but if you have multiple targets (ie: a PIC32
1390 and an at91sam7 - your reset-init scripts might get a bit more complicated, ie: you must
1391 specify which of the two chips you want to write to. Writing 'pic32' clock configuration
1392 to an at91sam7 does not work).
1393
1394 The commands are [as of 30/august/2008]:
1395 @verbatim
1396 TNAME mww ADDRESS VALUE
1397 TNAME mwh ADDRESS VALUE
1398 TNAME mwb ADDRESS VALUE
1399 Write(poke): 32, 16, 8bit values to memory.
1400
1401 TNAME mdw ADDRESS VALUE
1402 TNAME mdh ADDRESS VALUE
1403 TNAME mdb ADDRESS VALUE
1404 Human 'hexdump' with ascii 32, 16, 8bit values
1405
1406 TNAME mem2array [see mem2array command]
1407 TNAME array2mem [see array2mem command]
1408
1409 TNAME curstate
1410 Returns the current state of the target.
1411
1412 TNAME examine
1413 See 'advanced target reset'
1414 TNAME poll
1415 See 'advanced target reset'
1416 TNAME reset assert
1417 See 'advanced target reset'
1418 TNAME reset deassert
1419 See 'advanced target reset'
1420 TNAME halt
1421 See 'advanced target reset'
1422 TNAME waitstate STATENAME
1423 See 'advanced target reset'
1424 @end verbatim
1425
1426 @page
1427 @section Target Specific Commands
1428 @cindex Target Specific Commands
1429
1430 @subsection AT91SAM7 specific commands
1431 @cindex AT91SAM7 specific commands
1432 The flash configuration is deduced from the chip identification register. The flash
1433 controller handles erases automatically on a page (128/265 byte) basis so erase is
1434 not necessary for flash programming. AT91SAM7 processors with less than 512K flash
1435 only have a single flash bank embedded on chip. AT91SAM7xx512 have two flash planes
1436 that can be erased separatly. Only an EraseAll command is supported by the controller
1437 for each flash plane and this is called with
1438 @itemize @bullet
1439 @item @b{flash erase} <@var{num}> @var{first_plane} @var{last_plane}
1440 @*bulk erase flash planes first_plane to last_plane.
1441 @item @b{at91sam7 gpnvm} <@var{num}> <@var{bit}> <@option{set}|@option{clear}>
1442 @cindex at91sam7 gpnvm
1443 @*set or clear a gpnvm bit for the processor
1444 @end itemize
1445
1446 @subsection STR9 specific commands
1447 @cindex STR9 specific commands
1448 These are flash specific commands when using the str9xpec driver.
1449 @itemize @bullet
1450 @item @b{str9xpec enable_turbo} <@var{num}>
1451 @cindex str9xpec enable_turbo
1452 @*enable turbo mode, simply this will remove the str9 from the chain and talk
1453 directly to the embedded flash controller.
1454 @item @b{str9xpec disable_turbo} <@var{num}>
1455 @cindex str9xpec disable_turbo
1456 @*restore the str9 into jtag chain.
1457 @item @b{str9xpec lock} <@var{num}>
1458 @cindex str9xpec lock
1459 @*lock str9 device. The str9 will only respond to an unlock command that will
1460 erase the device.
1461 @item @b{str9xpec unlock} <@var{num}>
1462 @cindex str9xpec unlock
1463 @*unlock str9 device.
1464 @item @b{str9xpec options_read} <@var{num}>
1465 @cindex str9xpec options_read
1466 @*read str9 option bytes.
1467 @item @b{str9xpec options_write} <@var{num}>
1468 @cindex str9xpec options_write
1469 @*write str9 option bytes.
1470 @end itemize
1471
1472 @subsection STR9 configuration
1473 @cindex STR9 configuration
1474 @itemize @bullet
1475 @item @b{str9x flash_config} <@var{bank}> <@var{BBSR}> <@var{NBBSR}>
1476 <@var{BBADR}> <@var{NBBADR}>
1477 @cindex str9x flash_config
1478 @*Configure str9 flash controller.
1479 @smallexample
1480 eg. str9x flash_config 0 4 2 0 0x80000
1481 This will setup
1482 BBSR - Boot Bank Size register
1483 NBBSR - Non Boot Bank Size register
1484 BBADR - Boot Bank Start Address register
1485 NBBADR - Boot Bank Start Address register
1486 @end smallexample
1487 @end itemize
1488
1489 @subsection STR9 option byte configuration
1490 @cindex STR9 option byte configuration
1491 @itemize @bullet
1492 @item @b{str9xpec options_cmap} <@var{num}> <@option{bank0}|@option{bank1}>
1493 @cindex str9xpec options_cmap
1494 @*configure str9 boot bank.
1495 @item @b{str9xpec options_lvdthd} <@var{num}> <@option{2.4v}|@option{2.7v}>
1496 @cindex str9xpec options_lvdthd
1497 @*configure str9 lvd threshold.
1498 @item @b{str9xpec options_lvdsel} <@var{num}> <@option{vdd}|@option{vdd_vddq}>
1499 @cindex str9xpec options_lvdsel
1500 @*configure str9 lvd source.
1501 @item @b{str9xpec options_lvdwarn} <@var{bank}> <@option{vdd}|@option{vdd_vddq}>
1502 @cindex str9xpec options_lvdwarn
1503 @*configure str9 lvd reset warning source.
1504 @end itemize
1505
1506 @subsection STM32x specific commands
1507 @cindex STM32x specific commands
1508
1509 These are flash specific commands when using the stm32x driver.
1510 @itemize @bullet
1511 @item @b{stm32x lock} <@var{num}>
1512 @cindex stm32x lock
1513 @*lock stm32 device.
1514 @item @b{stm32x unlock} <@var{num}>
1515 @cindex stm32x unlock
1516 @*unlock stm32 device.
1517 @item @b{stm32x options_read} <@var{num}>
1518 @cindex stm32x options_read
1519 @*read stm32 option bytes.
1520 @item @b{stm32x options_write} <@var{num}> <@option{SWWDG}|@option{HWWDG}>
1521 <@option{RSTSTNDBY}|@option{NORSTSTNDBY}> <@option{RSTSTOP}|@option{NORSTSTOP}>
1522 @cindex stm32x options_write
1523 @*write stm32 option bytes.
1524 @item @b{stm32x mass_erase} <@var{num}>
1525 @cindex stm32x mass_erase
1526 @*mass erase flash memory.
1527 @end itemize
1528
1529 @subsection Stellaris specific commands
1530 @cindex Stellaris specific commands
1531
1532 These are flash specific commands when using the Stellaris driver.
1533 @itemize @bullet
1534 @item @b{stellaris mass_erase} <@var{num}>
1535 @cindex stellaris mass_erase
1536 @*mass erase flash memory.
1537 @end itemize
1538
1539 @page
1540 @section Architecture Specific Commands
1541 @cindex Architecture Specific Commands
1542
1543 @subsection ARMV4/5 specific commands
1544 @cindex ARMV4/5 specific commands
1545
1546 These commands are specific to ARM architecture v4 and v5, like all ARM7/9 systems
1547 or Intel XScale (XScale isn't supported yet).
1548 @itemize @bullet
1549 @item @b{armv4_5 reg}
1550 @cindex armv4_5 reg
1551 @*Display a list of all banked core registers, fetching the current value from every
1552 core mode if necessary. OpenOCD versions before rev. 60 didn't fetch the current
1553 register value.
1554 @item @b{armv4_5 core_mode} [@var{arm}|@var{thumb}]
1555 @cindex armv4_5 core_mode
1556 @*Displays the core_mode, optionally changing it to either ARM or Thumb mode.
1557 The target is resumed in the currently set @option{core_mode}.
1558 @end itemize
1559
1560 @subsection ARM7/9 specific commands
1561 @cindex ARM7/9 specific commands
1562
1563 These commands are specific to ARM7 and ARM9 targets, like ARM7TDMI, ARM720t,
1564 ARM920t or ARM926EJ-S.
1565 @itemize @bullet
1566 @item @b{arm7_9 dbgrq} <@var{enable}|@var{disable}>
1567 @cindex arm7_9 dbgrq
1568 @*Enable use of the DBGRQ bit to force entry into debug mode. This should be
1569 safe for all but ARM7TDMI--S cores (like Philips LPC).
1570 @item @b{arm7_9 fast_memory_access} <@var{enable}|@var{disable}>
1571 @cindex arm7_9 fast_memory_access
1572 @*Allow OpenOCD to read and write memory without checking completion of
1573 the operation. This provides a huge speed increase, especially with USB JTAG
1574 cables (FT2232), but might be unsafe if used with targets running at a very low
1575 speed, like the 32kHz startup clock of an AT91RM9200.
1576 @item @b{arm7_9 dcc_downloads} <@var{enable}|@var{disable}>
1577 @cindex arm7_9 dcc_downloads
1578 @*Enable the use of the debug communications channel (DCC) to write larger (>128 byte)
1579 amounts of memory. DCC downloads offer a huge speed increase, but might be potentially
1580 unsafe, especially with targets running at a very low speed. This command was introduced
1581 with OpenOCD rev. 60.
1582 @end itemize
1583
1584 @subsection ARM720T specific commands
1585 @cindex ARM720T specific commands
1586
1587 @itemize @bullet
1588 @item @b{arm720t cp15} <@var{num}> [@var{value}]
1589 @cindex arm720t cp15
1590 @*display/modify cp15 register <@option{num}> [@option{value}].
1591 @item @b{arm720t md<bhw>_phys} <@var{addr}> [@var{count}]
1592 @cindex arm720t md<bhw>_phys
1593 @*Display memory at physical address addr.
1594 @item @b{arm720t mw<bhw>_phys} <@var{addr}> <@var{value}>
1595 @cindex arm720t mw<bhw>_phys
1596 @*Write memory at physical address addr.
1597 @item @b{arm720t virt2phys} <@var{va}>
1598 @cindex arm720t virt2phys
1599 @*Translate a virtual address to a physical address.
1600 @end itemize
1601
1602 @subsection ARM9TDMI specific commands
1603 @cindex ARM9TDMI specific commands
1604
1605 @itemize @bullet
1606 @item @b{arm9tdmi vector_catch} <@var{all}|@var{none}>
1607 @cindex arm9tdmi vector_catch
1608 @*Catch arm9 interrupt vectors, can be @option{all} @option{none} or any of the following:
1609 @option{reset} @option{undef} @option{swi} @option{pabt} @option{dabt} @option{reserved}
1610 @option{irq} @option{fiq}.
1611
1612 Can also be used on other arm9 based cores, arm966, arm920t and arm926ejs.
1613 @end itemize
1614
1615 @subsection ARM966E specific commands
1616 @cindex ARM966E specific commands
1617
1618 @itemize @bullet
1619 @item @b{arm966e cp15} <@var{num}> [@var{value}]
1620 @cindex arm966e cp15
1621 @*display/modify cp15 register <@option{num}> [@option{value}].
1622 @end itemize
1623
1624 @subsection ARM920T specific commands
1625 @cindex ARM920T specific commands
1626
1627 @itemize @bullet
1628 @item @b{arm920t cp15} <@var{num}> [@var{value}]
1629 @cindex arm920t cp15
1630 @*display/modify cp15 register <@option{num}> [@option{value}].
1631 @item @b{arm920t cp15i} <@var{num}> [@var{value}] [@var{address}]
1632 @cindex arm920t cp15i
1633 @*display/modify cp15 (interpreted access) <@option{opcode}> [@option{value}] [@option{address}]
1634 @item @b{arm920t cache_info}
1635 @cindex arm920t cache_info
1636 @*Print information about the caches found. This allows you to see if your target
1637 is a ARM920T (2x16kByte cache) or ARM922T (2x8kByte cache).
1638 @item @b{arm920t md<bhw>_phys} <@var{addr}> [@var{count}]
1639 @cindex arm920t md<bhw>_phys
1640 @*Display memory at physical address addr.
1641 @item @b{arm920t mw<bhw>_phys} <@var{addr}> <@var{value}>
1642 @cindex arm920t mw<bhw>_phys
1643 @*Write memory at physical address addr.
1644 @item @b{arm920t read_cache} <@var{filename}>
1645 @cindex arm920t read_cache
1646 @*Dump the content of ICache and DCache to a file.
1647 @item @b{arm920t read_mmu} <@var{filename}>
1648 @cindex arm920t read_mmu
1649 @*Dump the content of the ITLB and DTLB to a file.
1650 @item @b{arm920t virt2phys} <@var{va}>
1651 @cindex arm920t virt2phys
1652 @*Translate a virtual address to a physical address.
1653 @end itemize
1654
1655 @subsection ARM926EJS specific commands
1656 @cindex ARM926EJS specific commands
1657
1658 @itemize @bullet
1659 @item @b{arm926ejs cp15} <@var{num}> [@var{value}]
1660 @cindex arm926ejs cp15
1661 @*display/modify cp15 register <@option{num}> [@option{value}].
1662 @item @b{arm926ejs cache_info}
1663 @cindex arm926ejs cache_info
1664 @*Print information about the caches found.
1665 @item @b{arm926ejs md<bhw>_phys} <@var{addr}> [@var{count}]
1666 @cindex arm926ejs md<bhw>_phys
1667 @*Display memory at physical address addr.
1668 @item @b{arm926ejs mw<bhw>_phys} <@var{addr}> <@var{value}>
1669 @cindex arm926ejs mw<bhw>_phys
1670 @*Write memory at physical address addr.
1671 @item @b{arm926ejs virt2phys} <@var{va}>
1672 @cindex arm926ejs virt2phys
1673 @*Translate a virtual address to a physical address.
1674 @end itemize
1675
1676 @page
1677 @section Debug commands
1678 @cindex Debug commands
1679 The following commands give direct access to the core, and are most likely
1680 only useful while debugging OpenOCD.
1681 @itemize @bullet
1682 @item @b{arm7_9 write_xpsr} <@var{32-bit value}> <@option{0=cpsr}, @option{1=spsr}>
1683 @cindex arm7_9 write_xpsr
1684 @*Immediately write either the current program status register (CPSR) or the saved
1685 program status register (SPSR), without changing the register cache (as displayed
1686 by the @option{reg} and @option{armv4_5 reg} commands).
1687 @item @b{arm7_9 write_xpsr_im8} <@var{8-bit value}> <@var{rotate 4-bit}>
1688 <@var{0=cpsr},@var{1=spsr}>
1689 @cindex arm7_9 write_xpsr_im8
1690 @*Write the 8-bit value rotated right by 2*rotate bits, using an immediate write
1691 operation (similar to @option{write_xpsr}).
1692 @item @b{arm7_9 write_core_reg} <@var{num}> <@var{mode}> <@var{value}>
1693 @cindex arm7_9 write_core_reg
1694 @*Write a core register, without changing the register cache (as displayed by the
1695 @option{reg} and @option{armv4_5 reg} commands). The <@var{mode}> argument takes the
1696 encoding of the [M4:M0] bits of the PSR.
1697 @end itemize
1698
1699 @page
1700 @section JTAG commands
1701 @cindex JTAG commands
1702 @itemize @bullet
1703 @item @b{scan_chain}
1704 @cindex scan_chain
1705 @*Print current scan chain configuration.
1706 @item @b{jtag_reset} <@var{trst}> <@var{srst}>
1707 @cindex jtag_reset
1708 @*Toggle reset lines.
1709 @item @b{endstate} <@var{tap_state}>
1710 @cindex endstate
1711 @*Finish JTAG operations in <@var{tap_state}>.
1712 @item @b{runtest} <@var{num_cycles}>
1713 @cindex runtest
1714 @*Move to Run-Test/Idle, and execute <@var{num_cycles}>
1715 @item @b{statemove} [@var{tap_state}]
1716 @cindex statemove
1717 @*Move to current endstate or [@var{tap_state}]
1718 @item @b{irscan} <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1719 @cindex irscan
1720 @*Execute IR scan <@var{device}> <@var{instr}> [@var{dev2}] [@var{instr2}] ...
1721 @item @b{drscan} <@var{device}> [@var{dev2}] [@var{var2}] ...
1722 @cindex drscan
1723 @*Execute DR scan <@var{device}> [@var{dev2}] [@var{var2}] ...
1724 @item @b{verify_ircapture} <@option{enable}|@option{disable}>
1725 @cindex verify_ircapture
1726 @*Verify value captured during Capture-IR. Default is enabled.
1727 @item @b{var} <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1728 @cindex var
1729 @*Allocate, display or delete variable <@var{name}> [@var{num_fields}|@var{del}] [@var{size1}] ...
1730 @item @b{field} <@var{var}> <@var{field}> [@var{value}|@var{flip}]
1731 @cindex field
1732 Display/modify variable field <@var{var}> <@var{field}> [@var{value}|@var{flip}].
1733 @end itemize
1734
1735 @page
1736 @section Target Requests
1737 @cindex Target Requests
1738 OpenOCD can handle certain target requests, currently debugmsg are only supported for arm7_9 and cortex_m3.
1739 See libdcc in the contrib dir for more details.
1740 @itemize @bullet
1741 @item @b{target_request debugmsgs} <@var{enable}|@var{disable}>
1742 @cindex target_request debugmsgs
1743 @*Enable/disable target debugmsgs requests. debugmsgs enable messages to be sent to the debugger while the target is running.
1744 @end itemize
1745
1746 @node Sample Scripts
1747 @chapter Sample Scripts
1748 @cindex scripts
1749
1750 This page shows how to use the target library.
1751
1752 The configuration script can be divided in the following section:
1753 @itemize @bullet
1754 @item daemon configuration
1755 @item interface
1756 @item jtag scan chain
1757 @item target configuration
1758 @item flash configuration
1759 @end itemize
1760
1761 Detailed information about each section can be found at OpenOCD configuration.
1762
1763 @section AT91R40008 example
1764 @cindex AT91R40008 example
1765 To start OpenOCD with a target script for the AT91R40008 CPU and reset
1766 the CPU upon startup of the OpenOCD daemon.
1767 @smallexample
1768 openocd -f interface/parport.cfg -f target/at91r40008.cfg -c init -c reset
1769 @end smallexample
1770
1771
1772 @node GDB and OpenOCD
1773 @chapter GDB and OpenOCD
1774 @cindex GDB and OpenOCD
1775 OpenOCD complies with the remote gdbserver protocol, and as such can be used
1776 to debug remote targets.
1777
1778 @section Connecting to gdb
1779 @cindex Connecting to gdb
1780 Use GDB 6.7 or newer with OpenOCD if you run into trouble. For instance 6.3 has a
1781 known bug where it produces bogus memory access errors, which has since
1782 been fixed: look up 1836 in http://sourceware.org/cgi-bin/gnatsweb.pl?database=gdb
1783
1784
1785 A connection is typically started as follows:
1786 @smallexample
1787 target remote localhost:3333
1788 @end smallexample
1789 This would cause gdb to connect to the gdbserver on the local pc using port 3333.
1790
1791 To see a list of available OpenOCD commands type @option{monitor help} on the
1792 gdb commandline.
1793
1794 OpenOCD supports the gdb @option{qSupported} packet, this enables information
1795 to be sent by the gdb server (openocd) to gdb. Typical information includes
1796 packet size and device memory map.
1797
1798 Previous versions of OpenOCD required the following gdb options to increase
1799 the packet size and speed up gdb communication.
1800 @smallexample
1801 set remote memory-write-packet-size 1024
1802 set remote memory-write-packet-size fixed
1803 set remote memory-read-packet-size 1024
1804 set remote memory-read-packet-size fixed
1805 @end smallexample
1806 This is now handled in the @option{qSupported} PacketSize.
1807
1808 @section Programming using gdb
1809 @cindex Programming using gdb
1810
1811 By default the target memory map is sent to gdb, this can be disabled by
1812 the following OpenOCD config option:
1813 @smallexample
1814 gdb_memory_map disable
1815 @end smallexample
1816 For this to function correctly a valid flash config must also be configured
1817 in OpenOCD. For faster performance you should also configure a valid
1818 working area.
1819
1820 Informing gdb of the memory map of the target will enable gdb to protect any
1821 flash area of the target and use hardware breakpoints by default. This means
1822 that the OpenOCD option @option{gdb_breakpoint_override} is not required when
1823 using a memory map.
1824
1825 To view the configured memory map in gdb, use the gdb command @option{info mem}
1826 All other unasigned addresses within gdb are treated as RAM.
1827
1828 GDB 6.8 and higher set any memory area not in the memory map as inaccessible,
1829 this can be changed to the old behaviour by using the following gdb command.
1830 @smallexample
1831 set mem inaccessible-by-default off
1832 @end smallexample
1833
1834 If @option{gdb_flash_program enable} is also used, gdb will be able to
1835 program any flash memory using the vFlash interface.
1836
1837 gdb will look at the target memory map when a load command is given, if any
1838 areas to be programmed lie within the target flash area the vFlash packets
1839 will be used.
1840
1841 If the target needs configuring before gdb programming, a script can be executed.
1842 @smallexample
1843 target_script 0 gdb_program_config config.script
1844 @end smallexample
1845
1846 To verify any flash programming the gdb command @option{compare-sections}
1847 can be used.
1848
1849 @node TCL and OpenOCD
1850 @chapter TCL and OpenOCD
1851 @cindex TCL and OpenOCD
1852 OpenOCD embeds a TCL interpreter (see JIM) for command parsing and scripting
1853 support.
1854
1855 The TCL interpreter can be invoked from the interactive command line, files, and a network port.
1856
1857 The command and file interfaces are fairly straightforward, while the network
1858 port is geared toward intergration with external clients. A small example
1859 of an external TCL script that can connect to openocd is shown below.
1860
1861 @verbatim
1862 # Simple tcl client to connect to openocd
1863 puts "Use empty line to exit"
1864 set fo [socket 127.0.0.1 6666]
1865 puts -nonewline stdout "> "
1866 flush stdout
1867 while {[gets stdin line] >= 0} {
1868 if {$line eq {}} break
1869 puts $fo $line
1870 flush $fo
1871 gets $fo line
1872 puts $line
1873 puts -nonewline stdout "> "
1874 flush stdout
1875 }
1876 close $fo
1877 @end verbatim
1878
1879 This script can easily be modified to front various GUIs or be a sub
1880 component of a larger framework for control and interaction.
1881
1882
1883 @node TCL scripting API
1884 @chapter TCL scripting API
1885 @cindex TCL scripting API
1886 API rules
1887
1888 The commands are stateless. E.g. the telnet command line has a concept
1889 of currently active target, the Tcl API proc's take this sort of state
1890 information as an argument to each proc.
1891
1892 There are three main types of return values: single value, name value
1893 pair list and lists.
1894
1895 Name value pair. The proc 'foo' below returns a name/value pair
1896 list.
1897
1898 @verbatim
1899
1900 > set foo(me) Duane
1901 > set foo(you) Oyvind
1902 > set foo(mouse) Micky
1903 > set foo(duck) Donald
1904
1905 If one does this:
1906
1907 > set foo
1908
1909 The result is:
1910
1911 me Duane you Oyvind mouse Micky duck Donald
1912
1913 Thus, to get the names of the associative array is easy:
1914
1915 foreach { name value } [set foo] {
1916 puts "Name: $name, Value: $value"
1917 }
1918 @end verbatim
1919
1920 Lists returned must be relatively small. Otherwise a range
1921 should be passed in to the proc in question.
1922
1923 Low level commands are prefixed with "openocd_", e.g. openocd_flash_banks
1924 is the low level API upon which "flash banks" is implemented.
1925
1926 OpenOCD commands can consist of two words, e.g. "flash banks". The
1927 startup.tcl "unknown" proc will translate this into a tcl proc
1928 called "flash_banks".
1929
1930
1931 @node Upgrading
1932 @chapter Deprecated/Removed Commands
1933 @cindex Deprecated/Removed Commands
1934 Certain OpenOCD commands have been deprecated/removed during the various revisions.
1935
1936 @itemize @bullet
1937 @item @b{load_binary}
1938 @cindex load_binary
1939 @*use @option{load_image} command with same args
1940 @item @b{target}
1941 @cindex target
1942 @*@option{target} no longer take the reset_init, reset_run, run_and_halt, run_and_init. The @option{reset} command
1943 always does a @option{reset run} when passed no arguments.
1944 @item @b{dump_binary}
1945 @cindex dump_binary
1946 @*use @option{dump_image} command with same args
1947 @item @b{flash erase}
1948 @cindex flash erase
1949 @*use @option{flash erase_sector} command with same args
1950 @item @b{flash write}
1951 @cindex flash write
1952 @*use @option{flash write_bank} command with same args
1953 @item @b{flash write_binary}
1954 @cindex flash write_binary
1955 @*use @option{flash write_bank} command with same args
1956 @item @b{arm7_9 fast_writes}
1957 @cindex arm7_9 fast_writes
1958 @*use @option{arm7_9 fast_memory_access} command with same args
1959 @item @b{flash auto_erase}
1960 @cindex flash auto_erase
1961 @*use @option{flash write_image} command passing @option{erase} as the first parameter.
1962 @item @b{daemon_startup}
1963 @cindex daemon_startup
1964 @*this config option has been removed, simply adding @option{init} and @option{reset halt} to
1965 the end of your config script will give the same behaviour as using @option{daemon_startup reset}
1966 and @option{target cortex_m3 little reset_halt 0}.
1967 @item @b{arm7_9 sw_bkpts}
1968 @cindex arm7_9 sw_bkpts
1969 @*On by default. See also @option{gdb_breakpoint_override}.
1970 @item @b{arm7_9 force_hw_bkpts}
1971 @cindex arm7_9 force_hw_bkpts
1972 @*Use @option{gdb_breakpoint_override} instead. Note that GDB will use hardware breakpoints
1973 for flash if the gdb memory map has been set up(default when flash is declared in
1974 target configuration).
1975 @item @b{run_and_halt_time}
1976 @cindex run_and_halt_time
1977 @*This command has been removed for simpler reset behaviour, it can be simulated with the
1978 following commands:
1979 @smallexample
1980 reset run
1981 sleep 100
1982 halt
1983 @end smallexample
1984 @end itemize
1985
1986 @node FAQ
1987 @chapter FAQ
1988 @cindex faq
1989 @enumerate
1990 @item OpenOCD complains about a missing cygwin1.dll.
1991
1992 Make sure you have Cygwin installed, or at least a version of OpenOCD that
1993 claims to come with all the necessary dlls. When using Cygwin, try launching
1994 OpenOCD from the Cygwin shell.
1995
1996 @item I'm trying to set a breakpoint using GDB (or a frontend like Insight or
1997 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
1998 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
1999
2000 GDB issues software breakpoints when a normal breakpoint is requested, or to implement
2001 source-line single-stepping. On ARMv4T systems, like ARM7TDMI, ARM720t or ARM920t,
2002 software breakpoints consume one of the two available hardware breakpoints.
2003
2004 @item When erasing or writing LPC2000 on-chip flash, the operation fails sometimes
2005 and works sometimes fine.
2006
2007 Make sure the core frequency specified in the @option{flash lpc2000} line matches the
2008 clock at the time you're programming the flash. If you've specified the crystal's
2009 frequency, make sure the PLL is disabled, if you've specified the full core speed
2010 (e.g. 60MHz), make sure the PLL is enabled.
2011
2012 @item When debugging using an Amontec Chameleon in its JTAG Accelerator configuration,
2013 I keep getting "Error: amt_jtagaccel.c:184 amt_wait_scan_busy(): amt_jtagaccel timed
2014 out while waiting for end of scan, rtck was disabled".
2015
2016 Make sure your PC's parallel port operates in EPP mode. You might have to try several
2017 settings in your PC BIOS (ECP, EPP, and different versions of those).
2018
2019 @item When debugging with OpenOCD and GDB (plain GDB, Insight, or Eclipse),
2020 I get lots of "Error: arm7_9_common.c:1771 arm7_9_read_memory():
2021 memory read caused data abort".
2022
2023 The errors are non-fatal, and are the result of GDB trying to trace stack frames
2024 beyond the last valid frame. It might be possible to prevent this by setting up
2025 a proper "initial" stack frame, if you happen to know what exactly has to
2026 be done, feel free to add this here.
2027
2028 @item I get the following message in the OpenOCD console (or log file):
2029 "Warning: arm7_9_common.c:679 arm7_9_assert_reset(): srst resets test logic, too".
2030
2031 This warning doesn't indicate any serious problem, as long as you don't want to
2032 debug your core right out of reset. Your .cfg file specified @option{jtag_reset
2033 trst_and_srst srst_pulls_trst} to tell OpenOCD that either your board,
2034 your debugger or your target uC (e.g. LPC2000) can't assert the two reset signals
2035 independently. With this setup, it's not possible to halt the core right out of
2036 reset, everything else should work fine.
2037
2038 @item When using OpenOCD in conjunction with Amontec JTAGkey and the Yagarto
2039 Toolchain (Eclipse, arm-elf-gcc, arm-elf-gdb), the debugging seems to be
2040 unstable. When single-stepping over large blocks of code, GDB and OpenOCD
2041 quit with an error message. Is there a stability issue with OpenOCD?
2042
2043 No, this is not a stability issue concerning OpenOCD. Most users have solved
2044 this issue by simply using a self-powered USB hub, which they connect their
2045 Amontec JTAGkey to. Apparently, some computers do not provide a USB power
2046 supply stable enough for the Amontec JTAGkey to be operated.
2047
2048 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
2049 following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
2050 4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
2051 What does that mean and what might be the reason for this?
2052
2053 First of all, the reason might be the USB power supply. Try using a self-powered
2054 hub instead of a direct connection to your computer. Secondly, the error code 4
2055 corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
2056 chip ran into some sort of error - this points us to a USB problem.
2057
2058 @item When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
2059 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
2060 What does that mean and what might be the reason for this?
2061
2062 Error code 10054 corresponds to WSAECONNRESET, which means that the debugger (GDB)
2063 has closed the connection to OpenOCD. This might be a GDB issue.
2064
2065 @item In the configuration file in the section where flash device configurations
2066 are described, there is a parameter for specifying the clock frequency for
2067 LPC2000 internal flash devices (e.g.
2068 @option{flash bank lpc2000 0x0 0x40000 0 0 0 lpc2000_v1 14746 calc_checksum}),
2069 which must be specified in kilohertz. However, I do have a quartz crystal of a
2070 frequency that contains fractions of kilohertz (e.g. 14,745,600 Hz, i.e. 14,745.600 kHz).
2071 Is it possible to specify real numbers for the clock frequency?
2072
2073 No. The clock frequency specified here must be given as an integral number.
2074 However, this clock frequency is used by the In-Application-Programming (IAP)
2075 routines of the LPC2000 family only, which seems to be very tolerant concerning
2076 the given clock frequency, so a slight difference between the specified clock
2077 frequency and the actual clock frequency will not cause any trouble.
2078
2079 @item Do I have to keep a specific order for the commands in the configuration file?
2080
2081 Well, yes and no. Commands can be given in arbitrary order, yet the devices
2082 listed for the JTAG scan chain must be given in the right order (jtag_device),
2083 with the device closest to the TDO-Pin being listed first. In general,
2084 whenever objects of the same type exist which require an index number, then
2085 these objects must be given in the right order (jtag_devices, targets and flash
2086 banks - a target references a jtag_device and a flash bank references a target).
2087
2088 @item Sometimes my debugging session terminates with an error. When I look into the
2089 log file, I can see these error messages: Error: arm7_9_common.c:561
2090 arm7_9_execute_sys_speed(): timeout waiting for SYSCOMP
2091
2092 TODO.
2093
2094 @end enumerate
2095
2096 @include fdl.texi
2097
2098 @node Index
2099 @unnumbered Index
2100
2101 @printindex cp
2102
2103 @bye

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)