X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=src%2Fflash%2Fnor%2Fstm32f1x.c;h=9a3d459b592dabf5c011c5477170d1e8f8356888;hp=8e0fda7e8a43118b494141d2b4f1f4eb6be117a9;hb=9cc733ae312dd79471f4cc5116f675116d5176b3;hpb=a1f6b6612ba66da25161bcf6856e84a8e5453dc0 diff --git a/src/flash/nor/stm32f1x.c b/src/flash/nor/stm32f1x.c index 8e0fda7e8a..9a3d459b59 100644 --- a/src/flash/nor/stm32f1x.c +++ b/src/flash/nor/stm32f1x.c @@ -23,6 +23,7 @@ * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ + #ifdef HAVE_CONFIG_H #include "config.h" #endif @@ -101,15 +102,13 @@ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB -struct stm32x_options -{ +struct stm32x_options { uint16_t RDP; uint16_t user_options; uint16_t protection[4]; }; -struct stm32x_flash_bank -{ +struct stm32x_flash_bank { struct stm32x_options option_bytes; struct working_area *write_algorithm; int ppage_size; @@ -121,6 +120,7 @@ struct stm32x_flash_bank }; static int stm32x_mass_erase(struct flash_bank *bank); +static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id); /* flash bank stm32x 0 0 */ @@ -129,14 +129,11 @@ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) struct stm32x_flash_bank *stm32x_info; if (CMD_ARGC < 6) - { - LOG_WARNING("incomplete flash_bank stm32x configuration"); - return ERROR_FLASH_BANK_INVALID; - } + return ERROR_COMMAND_SYNTAX_ERROR; stm32x_info = malloc(sizeof(struct stm32x_flash_bank)); - bank->driver_priv = stm32x_info; + bank->driver_priv = stm32x_info; stm32x_info->write_algorithm = NULL; stm32x_info->probed = 0; stm32x_info->has_dual_banks = false; @@ -164,37 +161,32 @@ static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) int retval = ERROR_OK; /* wait for busy to clear */ - for (;;) - { + for (;;) { retval = stm32x_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; - if (timeout-- <= 0) - { + if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } - if (status & FLASH_WRPRTERR) - { + if (status & FLASH_WRPRTERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FAIL; } - if (status & FLASH_PGERR) - { + if (status & FLASH_PGERR) { LOG_ERROR("stm32x device programming failed"); retval = ERROR_FAIL; } /* Clear but report errors */ - if (status & (FLASH_WRPRTERR | FLASH_PGERR)) - { + if (status & (FLASH_WRPRTERR | FLASH_PGERR)) { /* If this operation fails, we ignore it and report the original * retval */ @@ -210,8 +202,7 @@ int stm32x_check_operation_supported(struct flash_bank *bank) /* if we have a dual flash bank device then * we need to perform option byte stuff on bank0 only */ - if (stm32x_info->register_base != FLASH_REG_BASE_B0) - { + if (stm32x_info->register_base != FLASH_REG_BASE_B0) { LOG_ERROR("Option Byte Operation's must use bank0"); return ERROR_FLASH_OPERATION_FAILED; } @@ -396,8 +387,7 @@ static int stm32x_protect_check(struct flash_bank *bank) int num_bits; int set; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -416,8 +406,7 @@ static int stm32x_protect_check(struct flash_bank *bank) * high density - each protection bit is for 2 * 2K pages */ num_bits = (bank->num_sectors / stm32x_info->ppage_size); - if (stm32x_info->ppage_size == 2) - { + if (stm32x_info->ppage_size == 2) { /* high density flash/connectivity line protection */ set = 1; @@ -428,15 +417,12 @@ static int stm32x_protect_check(struct flash_bank *bank) /* bit 31 controls sector 62 - 255 protection for high density * bit 31 controls sector 62 - 127 protection for connectivity line */ for (s = 62; s < bank->num_sectors; s++) - { bank->sectors[s].is_protected = set; - } if (bank->num_sectors > 61) num_bits = 31; - for (i = 0; i < num_bits; i++) - { + for (i = 0; i < num_bits; i++) { set = 1; if (protection & (1 << i)) @@ -445,12 +431,9 @@ static int stm32x_protect_check(struct flash_bank *bank) for (s = 0; s < stm32x_info->ppage_size; s++) bank->sectors[(i * stm32x_info->ppage_size) + s].is_protected = set; } - } - else - { + } else { /* low/medium density flash protection */ - for (i = 0; i < num_bits; i++) - { + for (i = 0; i < num_bits; i++) { set = 1; if (protection & (1 << i)) @@ -469,16 +452,13 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last) struct target *target = bank->target; int i; - if (bank->target->state != TARGET_HALTED) - { + if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first == 0) && (last == (bank->num_sectors - 1))) - { return stm32x_mass_erase(bank); - } /* unlock flash registers */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_KEYR), KEY1); @@ -488,8 +468,7 @@ static int stm32x_erase(struct flash_bank *bank, int first, int last) if (retval != ERROR_OK) return retval; - for (i = first; i <= last; i++) - { + for (i = first; i <= last; i++) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_PER); if (retval != ERROR_OK) return retval; @@ -527,8 +506,7 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) stm32x_info = bank->driver_priv; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -537,14 +515,12 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) if (ERROR_OK != retval) return retval; - if ((first % stm32x_info->ppage_size) != 0) - { + if ((first % stm32x_info->ppage_size) != 0) { LOG_WARNING("aligned start protect sector to a %d sector boundary", stm32x_info->ppage_size); first = first - (first % stm32x_info->ppage_size); } - if (((last + 1) % stm32x_info->ppage_size) != 0) - { + if (((last + 1) % stm32x_info->ppage_size) != 0) { LOG_WARNING("aligned end protect sector to a %d sector boundary", stm32x_info->ppage_size); last++; @@ -563,13 +539,11 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) prot_reg[2] = (uint16_t)(protection >> 16); prot_reg[3] = (uint16_t)(protection >> 24); - if (stm32x_info->ppage_size == 2) - { + if (stm32x_info->ppage_size == 2) { /* high density flash */ /* bit 7 controls sector 62 - 255 protection */ - if (last > 61) - { + if (last > 61) { if (set) prot_reg[3] &= ~(1 << 7); else @@ -581,8 +555,7 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) if (last > 61) last = 61; - for (i = first; i <= last; i++) - { + for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); @@ -591,12 +564,9 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) else prot_reg[reg] |= (1 << bit); } - } - else - { + } else { /* medium density flash */ - for (i = first; i <= last; i++) - { + for (i = first; i <= last; i++) { reg = (i / stm32x_info->ppage_size) / 8; bit = (i / stm32x_info->ppage_size) - (reg * 8); @@ -607,7 +577,8 @@ static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) } } - if ((status = stm32x_erase_options(bank)) != ERROR_OK) + status = stm32x_erase_options(bank); + if (status != ERROR_OK) return status; stm32x_info->option_bytes.protection[0] = prot_reg[0]; @@ -636,57 +607,61 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, /* #define STM32_FLASH_CR_OFFSET 0x10 */ /* #define STM32_FLASH_SR_OFFSET 0x0C */ /* wait_fifo: */ - 0x16, 0x68, /* ldr r6, [r2, #0] */ - 0x00, 0x2e, /* cmp r6, #0 */ - 0x1a, 0xd0, /* beq exit */ - 0x55, 0x68, /* ldr r5, [r2, #4] */ - 0xb5, 0x42, /* cmp r5, r6 */ - 0xf9, 0xd0, /* beq wait_fifo */ - 0x01, 0x26, /* movs r6, #1 */ - 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */ - 0x35, 0xf8, 0x02, 0x6b, /* ldrh r6, [r5], #2 */ - 0x24, 0xf8, 0x02, 0x6b, /* strh r6, [r4], #2 */ + 0x16, 0x68, /* ldr r6, [r2, #0] */ + 0x00, 0x2e, /* cmp r6, #0 */ + 0x1a, 0xd0, /* beq exit */ + 0x55, 0x68, /* ldr r5, [r2, #4] */ + 0xb5, 0x42, /* cmp r5, r6 */ + 0xf9, 0xd0, /* beq wait_fifo */ + 0x01, 0x26, /* movs r6, #1 */ + 0x06, 0x61, /* str r6, [r0, #STM32_FLASH_CR_OFFSET] */ + 0x2e, 0x88, /* ldrh r6, [r5, #0] */ + 0x26, 0x80, /* strh r6, [r4, #0] */ + 0x02, 0x35, /* adds r5, #2 */ + 0x02, 0x34, /* adds r4, #2 */ /* busy: */ - 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */ - 0x16, 0xf0, 0x01, 0x0f, /* tst r6, #1 */ - 0xfb, 0xd1, /* bne busy */ - 0x16, 0xf0, 0x14, 0x0f, /* tst r6, #0x14 */ - 0x07, 0xd1, /* bne error */ - 0x9d, 0x42, /* cmp r5, r3 */ - 0x28, 0xbf, /* it cs */ - 0x02, 0xf1, 0x08, 0x05, /* addcs r5, r2, #8 */ - 0x55, 0x60, /* str r5, [r2, #4] */ - 0x01, 0x39, /* subs r1, r1, #1 */ - 0x19, 0xb1, /* cbz r1, exit */ - 0xe4, 0xe7, /* b wait_fifo */ + 0xc6, 0x68, /* ldr r6, [r0, #STM32_FLASH_SR_OFFSET] */ + 0x01, 0x27, /* movs r7, #1 */ + 0x3e, 0x42, /* tst r6, r7 */ + 0xfb, 0xd1, /* bne busy */ + 0x14, 0x27, /* movs r7, #0x14 */ + 0x3e, 0x42, /* tst r6, r7 */ + 0x08, 0xd1, /* bne error */ + 0x9d, 0x42, /* cmp r5, r3 */ + 0x01, 0xd3, /* bcc no_wrap */ + 0x15, 0x46, /* mov r5, r2 */ + 0x08, 0x35, /* adds r5, #8 */ + /* no_wrap: */ + 0x55, 0x60, /* str r5, [r2, #4] */ + 0x01, 0x39, /* subs r1, r1, #1 */ + 0x00, 0x29, /* cmp r1, #0 */ + 0x02, 0xd0, /* beq exit */ + 0xe3, 0xe7, /* b wait_fifo */ /* error: */ - 0x00, 0x20, /* movs r0, #0 */ - 0xc2, 0xf8, 0x02, 0x00, /* str r0, [r2, #2] */ + 0x00, 0x20, /* movs r0, #0 */ + 0x50, 0x60, /* str r0, [r2, #4] */ /* exit: */ - 0x30, 0x46, /* mov r0, r6 */ - 0x00, 0xbe, /* bkpt #0 */ + 0x30, 0x46, /* mov r0, r6 */ + 0x00, 0xbe, /* bkpt #0 */ }; /* flash write code */ if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), - &stm32x_info->write_algorithm) != ERROR_OK) - { + &stm32x_info->write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; }; - if ((retval = target_write_buffer(target, stm32x_info->write_algorithm->address, - sizeof(stm32x_flash_write_code), - (uint8_t*)stm32x_flash_write_code)) != ERROR_OK) + retval = target_write_buffer(target, stm32x_info->write_algorithm->address, + sizeof(stm32x_flash_write_code), (uint8_t *)stm32x_flash_write_code); + if (retval != ERROR_OK) return retval; /* memory buffer */ - while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) - { + while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; - buffer_size &= ~3UL; // Make sure it's 4 byte aligned - if (buffer_size <= 256) - { + buffer_size &= ~3UL; /* Make sure it's 4 byte aligned */ + if (buffer_size <= 256) { /* if we already allocated the writing code, but failed to get a * buffer, free the algorithm */ if (stm32x_info->write_algorithm) @@ -697,23 +672,6 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, } }; - /* Set up working area. First word is write pointer, second word is read pointer, - * rest is fifo data area. */ - uint32_t wp_addr = source->address; - uint32_t rp_addr = source->address + 4; - uint32_t fifo_start_addr = source->address + 8; - uint32_t fifo_end_addr = source->address + source->size; - - uint32_t wp = fifo_start_addr; - uint32_t rp = fifo_start_addr; - - retval = target_write_u32(target, wp_addr, wp); - if (retval != ERROR_OK) - return retval; - retval = target_write_u32(target, rp_addr, rp); - if (retval != ERROR_OK) - return retval; - init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* flash base (in), status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* count (halfword-16bit) */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* buffer start */ @@ -729,120 +687,30 @@ static int stm32x_write_block(struct flash_bank *bank, uint8_t *buffer, armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARMV7M_MODE_ANY; - /* Start up algorithm on target and let it idle while writing the first chunk */ - if ((retval = target_start_algorithm(target, 0, NULL, 5, reg_params, - stm32x_info->write_algorithm->address, - 0, - &armv7m_info)) != ERROR_OK) - { - LOG_ERROR("error starting stm32x flash write algorithm"); - goto cleanup; - } - - while (count > 0) - { - retval = target_read_u32(target, rp_addr, &rp); - if (retval != ERROR_OK) - { - LOG_ERROR("failed to get read pointer"); - break; - } + retval = target_run_flash_async_algorithm(target, buffer, count, 2, + 0, NULL, + 5, reg_params, + source->address, source->size, + stm32x_info->write_algorithm->address, 0, + &armv7m_info); - LOG_DEBUG("count 0x%"PRIx32" wp 0x%"PRIx32" rp 0x%"PRIx32, count, wp, rp); - - if (rp == 0) - { - LOG_ERROR("flash write algorithm aborted by target"); - retval = ERROR_FLASH_OPERATION_FAILED; - break; - } - - if ((rp & 1) || rp < fifo_start_addr || rp >= fifo_end_addr) - { - LOG_ERROR("corrupted fifo read pointer 0x%"PRIx32, rp); - break; - } - - /* Count the number of bytes available in the fifo without - * crossing the wrap around. Make sure to not fill it completely, - * because that would make wp == rp and that's the empty condition. */ - uint32_t thisrun_bytes; - if (rp > wp) - thisrun_bytes = rp - wp - 2; - else if (rp > fifo_start_addr) - thisrun_bytes = fifo_end_addr - wp; - else - thisrun_bytes = fifo_end_addr - wp - 2; - - if (thisrun_bytes == 0) - { - /* Throttle polling a bit if transfer is (much) faster than flash - * programming. The exact delay shouldn't matter as long as it's - * less than buffer size / flash speed. This is very unlikely to - * run when using high latency connections such as USB. */ - alive_sleep(10); - continue; - } - - /* Limit to the amount of data we actually want to write */ - if (thisrun_bytes > count * 2) - thisrun_bytes = count * 2; - - /* Write data to fifo */ - retval = target_write_buffer(target, wp, thisrun_bytes, buffer); - if (retval != ERROR_OK) - break; - - /* Update counters and wrap write pointer */ - buffer += thisrun_bytes; - count -= thisrun_bytes / 2; - wp += thisrun_bytes; - if (wp >= fifo_end_addr) - wp = fifo_start_addr; - - /* Store updated write pointer to target */ - retval = target_write_u32(target, wp_addr, wp); - if (retval != ERROR_OK) - break; - } - - if (retval != ERROR_OK) - { - /* abort flash write algorithm on target */ - target_write_u32(target, wp_addr, 0); - } - - int retval2; - if ((retval2 = target_wait_algorithm(target, 0, NULL, 5, reg_params, - 0, - 10000, - &armv7m_info)) != ERROR_OK) - { - LOG_ERROR("error waiting for stm32x flash write algorithm"); - retval = retval2; - } - - if (retval == ERROR_FLASH_OPERATION_FAILED) - { + if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("flash write failed at address 0x%"PRIx32, buf_get_u32(reg_params[4].value, 0, 32)); - if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) - { + if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_PGERR) { LOG_ERROR("flash memory not erased before writing"); /* Clear but report errors */ - target_write_u32(target, STM32_FLASH_SR_B0, FLASH_PGERR); + target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_PGERR); } - if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) - { + if (buf_get_u32(reg_params[0].value, 0, 32) & FLASH_WRPRTERR) { LOG_ERROR("flash memory write protected"); /* Clear but report errors */ - target_write_u32(target, STM32_FLASH_SR_B0, FLASH_WRPRTERR); + target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_SR), FLASH_WRPRTERR); } } -cleanup: target_free_working_area(target, source); target_free_working_area(target, stm32x_info->write_algorithm); @@ -865,14 +733,12 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, uint32_t bytes_written = 0; int retval; - if (bank->target->state != TARGET_HALTED) - { + if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } - if (offset & 0x1) - { + if (offset & 0x1) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 2-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } @@ -886,20 +752,16 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, return retval; /* multiple half words (2-byte) to be programmed? */ - if (words_remaining > 0) - { + if (words_remaining > 0) { /* try using a block write */ - if ((retval = stm32x_write_block(bank, buffer, offset, words_remaining)) != ERROR_OK) - { - if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) - { + retval = stm32x_write_block(bank, buffer, offset, words_remaining); + if (retval != ERROR_OK) { + if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) single dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } - } - else - { + } else { buffer += words_remaining * 2; address += words_remaining * 2; words_remaining = 0; @@ -909,8 +771,7 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)) return retval; - while (words_remaining > 0) - { + while (words_remaining > 0) { uint16_t value; memcpy(&value, buffer + bytes_written, sizeof(uint16_t)); @@ -930,8 +791,7 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, address += 2; } - if (bytes_remaining) - { + if (bytes_remaining) { uint16_t value = 0xffff; memcpy(&value, buffer + bytes_written, bytes_remaining); @@ -947,7 +807,40 @@ static int stm32x_write(struct flash_bank *bank, uint8_t *buffer, return retval; } - return target_write_u32(target, STM32_FLASH_CR_B0, FLASH_LOCK); + return target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); +} + +static int stm32x_get_device_id(struct flash_bank *bank, uint32_t *device_id) +{ + /* This check the device CPUID core register to detect + * the M0 from the M3 devices. */ + + struct target *target = bank->target; + uint32_t cpuid, device_id_register = 0; + + /* Get the CPUID from the ARM Core + * http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p0_trm.pdf 4.2.1 */ + int retval = target_read_u32(target, 0xE000ED00, &cpuid); + if (retval != ERROR_OK) + return retval; + + if (((cpuid >> 4) & 0xFFF) == 0xC20) { + /* 0xC20 is M0 devices */ + device_id_register = 0x40015800; + } else if (((cpuid >> 4) & 0xFFF) == 0xC23) { + /* 0xC23 is M3 devices */ + device_id_register = 0xE0042000; + } else { + LOG_ERROR("Cannot identify target as a stm32x"); + return ERROR_FAIL; + } + + /* read stm32 device id register */ + retval = target_read_u32(target, device_id_register, device_id); + if (retval != ERROR_OK) + return retval; + + return retval; } static int stm32x_probe(struct flash_bank *bank) @@ -960,117 +853,98 @@ static int stm32x_probe(struct flash_bank *bank) int page_size; uint32_t base_address = 0x08000000; + stm32x_info->probed = 0; stm32x_info->register_base = FLASH_REG_BASE_B0; /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + int retval = stm32x_get_device_id(bank, &device_id); if (retval != ERROR_OK) return retval; + LOG_INFO("device id = 0x%08" PRIx32 "", device_id); /* get flash size from target. */ retval = target_read_u16(target, 0x1FFFF7E0, &flash_size_in_kb); - if (retval != ERROR_OK) - { + if (retval != ERROR_OK) { LOG_WARNING("failed reading flash size, default to max target family"); /* failed reading flash size, default to max target family */ flash_size_in_kb = 0xffff; } - if ((device_id & 0x7ff) == 0x410) - { + if ((device_id & 0xfff) == 0x410) { /* medium density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revA */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } - } - else if ((device_id & 0x7ff) == 0x412) - { + } else if ((device_id & 0xfff) == 0x412) { /* low density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revA */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 32k flash"); flash_size_in_kb = 32; } - } - else if ((device_id & 0x7ff) == 0x414) - { + } else if ((device_id & 0xfff) == 0x414) { /* high density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revZ */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 512k flash"); flash_size_in_kb = 512; } - } - else if ((device_id & 0x7ff) == 0x418) - { + } else if ((device_id & 0xfff) == 0x418) { /* connectivity line density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 2; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors incorrect on revZ */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 256k flash"); flash_size_in_kb = 256; } - } - else if ((device_id & 0x7ff) == 0x420) - { + } else if ((device_id & 0xfff) == 0x420) { /* value line density - we have 1k pages * 4 pages for a protection area */ page_size = 1024; stm32x_info->ppage_size = 4; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } - } - else if ((device_id & 0x7ff) == 0x428) - { + } else if ((device_id & 0xfff) == 0x428) { /* value line High density - we have 2k pages * 4 pages for a protection area */ page_size = 2048; stm32x_info->ppage_size = 4; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 128k flash"); flash_size_in_kb = 128; } - } - - else if ((device_id & 0x7ff) == 0x430) - { + } else if ((device_id & 0xfff) == 0x430) { /* xl line density - we have 2k pages * 2 pages for a protection area */ page_size = 2048; @@ -1078,29 +952,35 @@ static int stm32x_probe(struct flash_bank *bank) stm32x_info->has_dual_banks = true; /* check for early silicon */ - if (flash_size_in_kb == 0xffff) - { + if (flash_size_in_kb == 0xffff) { /* number of sectors may be incorrrect on early silicon */ LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 1024k flash"); flash_size_in_kb = 1024; } /* split reported size into matching bank */ - if (bank->base != 0x08080000) - { + if (bank->base != 0x08080000) { /* bank 0 will be fixed 512k */ flash_size_in_kb = 512; - } - else - { + } else { flash_size_in_kb -= 512; /* bank1 also uses a register offset */ stm32x_info->register_base = FLASH_REG_BASE_B1; base_address = 0x08080000; } - } - else - { + } else if ((device_id & 0xfff) == 0x440) { + /* stm32f0x - we have 1k pages + * 4 pages for a protection area */ + page_size = 1024; + stm32x_info->ppage_size = 4; + + /* check for early silicon */ + if (flash_size_in_kb == 0xffff) { + /* number of sectors incorrect on revZ */ + LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming 64k flash"); + flash_size_in_kb = 64; + } + } else { LOG_WARNING("Cannot identify target as a STM32 family."); return ERROR_FAIL; } @@ -1116,8 +996,7 @@ static int stm32x_probe(struct flash_bank *bank) /* check that calculation result makes sense */ assert(num_pages > 0); - if (bank->sectors) - { + if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } @@ -1127,8 +1006,7 @@ static int stm32x_probe(struct flash_bank *bank) bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); - for (i = 0; i < num_pages; i++) - { + for (i = 0; i < num_pages; i++) { bank->sectors[i].offset = i * page_size; bank->sectors[i].size = page_size; bank->sectors[i].is_erased = -1; @@ -1157,23 +1035,20 @@ COMMAND_HANDLER(stm32x_handle_part_id_command) static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) { - struct target *target = bank->target; uint32_t device_id; int printed; - /* read stm32 device id register */ - int retval = target_read_u32(target, 0xE0042000, &device_id); + /* read stm32 device id register */ + int retval = stm32x_get_device_id(bank, &device_id); if (retval != ERROR_OK) return retval; - if ((device_id & 0x7ff) == 0x410) - { + if ((device_id & 0xfff) == 0x410) { printed = snprintf(buf, buf_size, "stm32x (Medium Density) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x0000: snprintf(buf, buf_size, "A"); break; @@ -1194,15 +1069,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x412) - { + } else if ((device_id & 0xfff) == 0x412) { printed = snprintf(buf, buf_size, "stm32x (Low Density) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1211,15 +1083,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x414) - { + } else if ((device_id & 0xfff) == 0x414) { printed = snprintf(buf, buf_size, "stm32x (High Density) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1232,15 +1101,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x418) - { + } else if ((device_id & 0xfff) == 0x418) { printed = snprintf(buf, buf_size, "stm32x (Connectivity) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1253,15 +1119,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x420) - { + } else if ((device_id & 0xfff) == 0x420) { printed = snprintf(buf, buf_size, "stm32x (Value) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1274,15 +1137,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x428) - { + } else if ((device_id & 0xfff) == 0x428) { printed = snprintf(buf, buf_size, "stm32x (Value HD) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1295,15 +1155,12 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else if ((device_id & 0x7ff) == 0x430) - { + } else if ((device_id & 0xfff) == 0x430) { printed = snprintf(buf, buf_size, "stm32x (XL) - Rev: "); buf += printed; buf_size -= printed; - switch (device_id >> 16) - { + switch (device_id >> 16) { case 0x1000: snprintf(buf, buf_size, "A"); break; @@ -1312,9 +1169,25 @@ static int get_stm32x_info(struct flash_bank *bank, char *buf, int buf_size) snprintf(buf, buf_size, "unknown"); break; } - } - else - { + } else if ((device_id & 0xfff) == 0x440) { + printed = snprintf(buf, buf_size, "stm32f0x - Rev: "); + buf += printed; + buf_size -= printed; + + switch (device_id >> 16) { + case 0x1000: + snprintf(buf, buf_size, "1.0"); + break; + + case 0x2000: + snprintf(buf, buf_size, "2.0"); + break; + + default: + snprintf(buf, buf_size, "unknown"); + break; + } + } else { snprintf(buf, buf_size, "Cannot identify target as a stm32x\n"); return ERROR_FAIL; } @@ -1328,10 +1201,7 @@ COMMAND_HANDLER(stm32x_handle_lock_command) struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) - { - command_print(CMD_CTX, "stm32x lock "); - return ERROR_OK; - } + return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); @@ -1342,8 +1212,7 @@ COMMAND_HANDLER(stm32x_handle_lock_command) target = bank->target; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -1352,8 +1221,7 @@ COMMAND_HANDLER(stm32x_handle_lock_command) if (ERROR_OK != retval) return retval; - if (stm32x_erase_options(bank) != ERROR_OK) - { + if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to erase options"); return ERROR_OK; } @@ -1361,8 +1229,7 @@ COMMAND_HANDLER(stm32x_handle_lock_command) /* set readout protection */ stm32x_info->option_bytes.RDP = 0; - if (stm32x_write_options(bank) != ERROR_OK) - { + if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to lock device"); return ERROR_OK; } @@ -1377,10 +1244,7 @@ COMMAND_HANDLER(stm32x_handle_unlock_command) struct target *target = NULL; if (CMD_ARGC < 1) - { - command_print(CMD_CTX, "stm32x unlock "); - return ERROR_OK; - } + return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); @@ -1389,8 +1253,7 @@ COMMAND_HANDLER(stm32x_handle_unlock_command) target = bank->target; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -1399,14 +1262,12 @@ COMMAND_HANDLER(stm32x_handle_unlock_command) if (ERROR_OK != retval) return retval; - if (stm32x_erase_options(bank) != ERROR_OK) - { + if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to unlock device"); return ERROR_OK; } - if (stm32x_write_options(bank) != ERROR_OK) - { + if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to lock device"); return ERROR_OK; } @@ -1425,10 +1286,7 @@ COMMAND_HANDLER(stm32x_handle_options_read_command) struct stm32x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) - { - command_print(CMD_CTX, "stm32x options_read "); - return ERROR_OK; - } + return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); @@ -1439,8 +1297,7 @@ COMMAND_HANDLER(stm32x_handle_options_read_command) target = bank->target; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -1454,32 +1311,31 @@ COMMAND_HANDLER(stm32x_handle_options_read_command) return retval; command_print(CMD_CTX, "Option Byte: 0x%" PRIx32 "", optionbyte); - if (buf_get_u32((uint8_t*)&optionbyte, OPT_ERROR, 1)) + if (buf_get_u32((uint8_t *)&optionbyte, OPT_ERROR, 1)) command_print(CMD_CTX, "Option Byte Complement Error"); - if (buf_get_u32((uint8_t*)&optionbyte, OPT_READOUT, 1)) + if (buf_get_u32((uint8_t *)&optionbyte, OPT_READOUT, 1)) command_print(CMD_CTX, "Readout Protection On"); else command_print(CMD_CTX, "Readout Protection Off"); - if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDWDGSW, 1)) + if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDWDGSW, 1)) command_print(CMD_CTX, "Software Watchdog"); else command_print(CMD_CTX, "Hardware Watchdog"); - if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTOP, 1)) + if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTOP, 1)) command_print(CMD_CTX, "Stop: No reset generated"); else command_print(CMD_CTX, "Stop: Reset generated"); - if (buf_get_u32((uint8_t*)&optionbyte, OPT_RDRSTSTDBY, 1)) + if (buf_get_u32((uint8_t *)&optionbyte, OPT_RDRSTSTDBY, 1)) command_print(CMD_CTX, "Standby: No reset generated"); else command_print(CMD_CTX, "Standby: Reset generated"); - if (stm32x_info->has_dual_banks) - { - if (buf_get_u32((uint8_t*)&optionbyte, OPT_BFB2, 1)) + if (stm32x_info->has_dual_banks) { + if (buf_get_u32((uint8_t *)&optionbyte, OPT_BFB2, 1)) command_print(CMD_CTX, "Boot: Bank 0"); else command_print(CMD_CTX, "Boot: Bank 1"); @@ -1495,11 +1351,7 @@ COMMAND_HANDLER(stm32x_handle_options_write_command) uint16_t optionbyte = 0xF8; if (CMD_ARGC < 4) - { - command_print(CMD_CTX, "stm32x options_write " - " "); - return ERROR_OK; - } + return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); @@ -1510,8 +1362,7 @@ COMMAND_HANDLER(stm32x_handle_options_write_command) target = bank->target; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -1526,57 +1377,38 @@ COMMAND_HANDLER(stm32x_handle_options_write_command) /* OPT_RDWDGSW */ if (strcmp(CMD_ARGV[1], "SWWDG") == 0) - { optionbyte |= (1 << 0); - } else /* REVISIT must be "HWWDG" then ... */ - { optionbyte &= ~(1 << 0); - } /* OPT_RDRSTSTOP */ if (strcmp(CMD_ARGV[2], "NORSTSTOP") == 0) - { optionbyte |= (1 << 1); - } else /* REVISIT must be "RSTSTNDBY" then ... */ - { optionbyte &= ~(1 << 1); - } /* OPT_RDRSTSTDBY */ if (strcmp(CMD_ARGV[3], "NORSTSTNDBY") == 0) - { optionbyte |= (1 << 2); - } else /* REVISIT must be "RSTSTOP" then ... */ - { optionbyte &= ~(1 << 2); - } - if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) - { + if (CMD_ARGC > 4 && stm32x_info->has_dual_banks) { /* OPT_BFB2 */ if (strcmp(CMD_ARGV[4], "BOOT0") == 0) - { optionbyte |= (1 << 3); - } else - { optionbyte &= ~(1 << 3); - } } - if (stm32x_erase_options(bank) != ERROR_OK) - { + if (stm32x_erase_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to erase options"); return ERROR_OK; } stm32x_info->option_bytes.user_options = optionbyte; - if (stm32x_write_options(bank) != ERROR_OK) - { + if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "stm32x failed to write options"); return ERROR_OK; } @@ -1592,8 +1424,7 @@ static int stm32x_mass_erase(struct flash_bank *bank) { struct target *target = bank->target; - if (target->state != TARGET_HALTED) - { + if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } @@ -1610,7 +1441,8 @@ static int stm32x_mass_erase(struct flash_bank *bank) retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER); if (retval != ERROR_OK) return retval; - retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), FLASH_MER | FLASH_STRT); + retval = target_write_u32(target, stm32x_get_flash_reg(bank, STM32_FLASH_CR), + FLASH_MER | FLASH_STRT); if (retval != ERROR_OK) return retval; @@ -1630,10 +1462,7 @@ COMMAND_HANDLER(stm32x_handle_mass_erase_command) int i; if (CMD_ARGC < 1) - { - command_print(CMD_CTX, "stm32x mass_erase "); - return ERROR_OK; - } + return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); @@ -1641,20 +1470,14 @@ COMMAND_HANDLER(stm32x_handle_mass_erase_command) return retval; retval = stm32x_mass_erase(bank); - if (retval == ERROR_OK) - { + if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) - { bank->sectors[i].is_erased = 1; - } command_print(CMD_CTX, "stm32x mass erase complete"); - } - else - { + } else command_print(CMD_CTX, "stm32x mass erase failed"); - } return retval; } @@ -1705,6 +1528,7 @@ static const struct command_registration stm32x_command_handlers[] = { .name = "stm32f1x", .mode = COMMAND_ANY, .help = "stm32f1x flash command group", + .usage = "", .chain = stm32x_exec_command_handlers, }, COMMAND_REGISTRATION_DONE