X-Git-Url: https://review.openocd.org/gitweb?p=openocd.git;a=blobdiff_plain;f=doc%2Fopenocd.texi;h=a2bcaf8507801886cc26dff1ed3688a5ba42a16a;hp=1518617150094ac37b462ca614d27cd5de3a572b;hb=1f3ca0b5b81d9f9e4565cf177797a17ad37ef2c3;hpb=564a5eb5375aa8117ee4fe48899f07490da8ae8a diff --git a/doc/openocd.texi b/doc/openocd.texi index 1518617150..a2bcaf8507 100644 --- a/doc/openocd.texi +++ b/doc/openocd.texi @@ -321,13 +321,25 @@ Ethernet port needed? RTCK support? Also known as ``adaptive clocking'' @end enumerate -@section Stand alone Systems +@section Stand-alone JTAG Probe + +The ZY1000 from Ultimate Solutions is technically not a dongle but a +stand-alone JTAG probe that unlikemost dongles doesn’t require any drivers +running on the developers host computer. +Once installed on a network using DHCP or a static IP assignment, users can +access the ZY1000 probe locally or remotely from any host with access to the +IP address assigned to the probe. +The ZY1000 provides an intuitive web interface with direct access to the +OpenOCD debugger. +Users may also run a GDBSERVER directly on the ZY1000 to take full advantage +of GCC & GDB to debug any distribution of embedded Linux or NetBSD running on +the target. +The ZY1000 supports RTCK & RCLK or adaptive clocking and has a built-in relay +to power cycle the target remotely. + +For more information, visit: @b{ZY1000} See: @url{http://www.ultsol.com/index.php/component/content/article/8/33-zylin-zy1000-jtag-probe} -Technically, not a dongle, but a standalone box. The ZY1000 has the advantage that it does -not require any drivers installed on the developer PC. It also has -a built in web interface. It supports RTCK/RCLK or adaptive clocking -and has a built in relay to power cycle targets remotely. @section USB FT2232 Based @@ -336,8 +348,10 @@ on a chip from ``Future Technology Devices International'' (FTDI) known as the FTDI FT2232; this is a USB full speed (12 Mbps) chip. See: @url{http://www.ftdichip.com} for more information. In summer 2009, USB high speed (480 Mbps) versions of these FTDI -chips are starting to become available in JTAG adapters. (Adapters -using those high speed FT2232H chips may support adaptive clocking.) +chips are starting to become available in JTAG adapters. Around 2012 a new +variant appeared - FT232H - this is a single-channel version of FT2232H. +(Adapters using those high speed FT2232H or FT232H chips may support adaptive +clocking.) The FT2232 chips are flexible enough to support some other transport options, such as SWD or the SPI variants used to @@ -394,8 +408,14 @@ to be available anymore as of April 2012. @item @b{opendous} @* Link @url{http://code.google.com/p/opendous/wiki/JTAG} FT2232H-based (OpenHardware). -@end itemize +@item @b{JTAG-lock-pick Tiny 2} +@* Link @url{http://www.distortec.com/jtag-lock-pick-tiny-2} FT232H-based + +@item @b{GW16042} +@* Link: @url{http://shop.gateworks.com/index.php?route=product/product&path=70_80&product_id=64} +FT2232H-based +@end itemize @section USB-JTAG / Altera USB-Blaster compatibles These devices also show up as FTDI devices, but are not @@ -518,9 +538,6 @@ produced, PDF schematics are easily found and it is easy to make. @item @b{Amontec - JTAG Accelerator} @* Link: @url{http://www.amontec.com/jtag_accelerator.shtml} -@item @b{GW16402} -@* Link: @url{http://www.gateworks.com/products/avila_accessories/gw16042.php} - @item @b{Wiggler2} @* Link: @url{http://www.ccac.rwth-aachen.de/~michaels/index.php/hardware/armjtag} @@ -558,6 +575,13 @@ produced, PDF schematics are easily found and it is easy to make. @item @b{at91rm9200} @* Like the EP93xx - but an ATMEL AT91RM9200 based solution using the GPIO pins on the chip. +@item @b{bcm2835gpio} +@* A BCM2835-based board (e.g. Raspberry Pi) using the GPIO pins of the expansion header. + +@item @b{jtag_vpi} +@* A JTAG driver acting as a client for the JTAG VPI server interface. +@* Link: @url{http://github.com/fjullien/jtag_vpi} + @end itemize @node About Jim-Tcl @@ -986,7 +1010,7 @@ that the @code{reset-init} event handler does. Likewise, the @command{arm9 vector_catch} command (or @cindex vector_catch its siblings @command{xscale vector_catch} -and @command{cortex_m3 vector_catch}) can be a timesaver +and @command{cortex_m vector_catch}) can be a timesaver during some debug sessions, but don't make everyone use that either. Keep those kinds of debugging aids in your user config file, along with messaging and tracing setup. @@ -1257,31 +1281,52 @@ Use them as-is where you can; or as models for new files. These are for debug adapters. Files that configure JTAG adapters go here. @example -$ ls interface -altera-usb-blaster.cfg hilscher_nxhx50_etm.cfg openrd.cfg -arm-jtag-ew.cfg hilscher_nxhx50_re.cfg osbdm.cfg -arm-usb-ocd.cfg hitex_str9-comstick.cfg parport.cfg -at91rm9200.cfg icebear.cfg parport_dlc5.cfg -axm0432.cfg jlink.cfg redbee-econotag.cfg -busblaster.cfg jtagkey2.cfg redbee-usb.cfg -buspirate.cfg jtagkey2p.cfg rlink.cfg -calao-usb-a9260-c01.cfg jtagkey.cfg sheevaplug.cfg -calao-usb-a9260-c02.cfg jtagkey-tiny.cfg signalyzer.cfg -calao-usb-a9260.cfg kt-link.cfg signalyzer-h2.cfg -chameleon.cfg lisa-l.cfg signalyzer-h4.cfg -cortino.cfg luminary.cfg signalyzer-lite.cfg -digilent-hs1.cfg luminary-icdi.cfg stlink-v1.cfg -dlp-usb1232h.cfg luminary-lm3s811.cfg stlink-v2.cfg -dummy.cfg minimodule.cfg stm32-stick.cfg -estick.cfg neodb.cfg turtelizer2.cfg -flashlink.cfg ngxtech.cfg ulink.cfg -flossjtag.cfg olimex-arm-usb-ocd.cfg usb-jtag.cfg -flossjtag-noeeprom.cfg olimex-arm-usb-ocd-h.cfg usbprog.cfg -flyswatter2.cfg olimex-arm-usb-tiny-h.cfg vpaclink.cfg -flyswatter.cfg olimex-jtag-tiny.cfg vsllink.cfg -hilscher_nxhx10_etm.cfg oocdlink.cfg xds100v2.cfg -hilscher_nxhx500_etm.cfg opendous.cfg -hilscher_nxhx500_re.cfg openocd-usb.cfg +$ ls interface -R +interface/: +altera-usb-blaster.cfg hilscher_nxhx50_re.cfg openocd-usb-hs.cfg +arm-jtag-ew.cfg hitex_str9-comstick.cfg openrd.cfg +at91rm9200.cfg icebear.cfg osbdm.cfg +axm0432.cfg jlink.cfg parport.cfg +busblaster.cfg jtagkey2.cfg parport_dlc5.cfg +buspirate.cfg jtagkey2p.cfg redbee-econotag.cfg +calao-usb-a9260-c01.cfg jtagkey.cfg redbee-usb.cfg +calao-usb-a9260-c02.cfg jtagkey-tiny.cfg rlink.cfg +calao-usb-a9260.cfg jtag-lock-pick_tiny_2.cfg sheevaplug.cfg +chameleon.cfg kt-link.cfg signalyzer.cfg +cortino.cfg lisa-l.cfg signalyzer-h2.cfg +digilent-hs1.cfg luminary.cfg signalyzer-h4.cfg +dlp-usb1232h.cfg luminary-icdi.cfg signalyzer-lite.cfg +dummy.cfg luminary-lm3s811.cfg stlink-v1.cfg +estick.cfg minimodule.cfg stlink-v2.cfg +flashlink.cfg neodb.cfg stm32-stick.cfg +flossjtag.cfg ngxtech.cfg sysfsgpio-raspberrypi.cfg +flossjtag-noeeprom.cfg olimex-arm-usb-ocd.cfg ti-icdi.cfg +flyswatter2.cfg olimex-arm-usb-ocd-h.cfg turtelizer2.cfg +flyswatter.cfg olimex-arm-usb-tiny-h.cfg ulink.cfg +ftdi olimex-jtag-tiny.cfg usb-jtag.cfg +hilscher_nxhx10_etm.cfg oocdlink.cfg usbprog.cfg +hilscher_nxhx500_etm.cfg opendous.cfg vpaclink.cfg +hilscher_nxhx500_re.cfg opendous_ftdi.cfg vsllink.cfg +hilscher_nxhx50_etm.cfg openocd-usb.cfg xds100v2.cfg + +interface/ftdi: +axm0432.cfg hitex_str9-comstick.cfg olimex-jtag-tiny.cfg +calao-usb-a9260-c01.cfg icebear.cfg oocdlink.cfg +calao-usb-a9260-c02.cfg jtagkey2.cfg opendous_ftdi.cfg +cortino.cfg jtagkey2p.cfg openocd-usb.cfg +dlp-usb1232h.cfg jtagkey.cfg openocd-usb-hs.cfg +dp_busblaster.cfg jtag-lock-pick_tiny_2.cfg openrd.cfg +flossjtag.cfg kt-link.cfg redbee-econotag.cfg +flossjtag-noeeprom.cfg lisa-l.cfg redbee-usb.cfg +flyswatter2.cfg luminary.cfg sheevaplug.cfg +flyswatter.cfg luminary-icdi.cfg signalyzer.cfg +gw16042.cfg luminary-lm3s811.cfg signalyzer-lite.cfg +hilscher_nxhx10_etm.cfg minimodule.cfg stm32-stick.cfg +hilscher_nxhx500_etm.cfg neodb.cfg turtelizer2-revB.cfg +hilscher_nxhx500_re.cfg ngxtech.cfg turtelizer2-revC.cfg +hilscher_nxhx50_etm.cfg olimex-arm-usb-ocd.cfg vpaclink.cfg +hilscher_nxhx50_re.cfg olimex-arm-usb-ocd-h.cfg xds100v2.cfg +hitex_lpc1768stick.cfg olimex-arm-usb-tiny-h.cfg $ @end example @item @file{board} ... @@ -1297,72 +1342,77 @@ board file. Boards may also contain multiple targets: two CPUs; or a CPU and an FPGA. @example $ ls board -actux3.cfg logicpd_imx27.cfg -am3517evm.cfg lubbock.cfg -arm_evaluator7t.cfg mcb1700.cfg -at91cap7a-stk-sdram.cfg microchip_explorer16.cfg -at91eb40a.cfg mini2440.cfg -at91rm9200-dk.cfg mini6410.cfg -at91rm9200-ek.cfg olimex_LPC2378STK.cfg -at91sam9261-ek.cfg olimex_lpc_h2148.cfg -at91sam9263-ek.cfg olimex_sam7_ex256.cfg -at91sam9g20-ek.cfg olimex_sam9_l9260.cfg -atmel_at91sam7s-ek.cfg olimex_stm32_h103.cfg -atmel_at91sam9260-ek.cfg olimex_stm32_h107.cfg -atmel_at91sam9rl-ek.cfg olimex_stm32_p107.cfg -atmel_sam3n_ek.cfg omap2420_h4.cfg -atmel_sam3s_ek.cfg open-bldc.cfg -atmel_sam3u_ek.cfg openrd.cfg -atmel_sam3x_ek.cfg osk5912.cfg -atmel_sam4s_ek.cfg phytec_lpc3250.cfg -balloon3-cpu.cfg pic-p32mx.cfg -colibri.cfg propox_mmnet1001.cfg -crossbow_tech_imote2.cfg pxa255_sst.cfg -csb337.cfg redbee.cfg -csb732.cfg rsc-w910.cfg -da850evm.cfg sheevaplug.cfg -digi_connectcore_wi-9c.cfg smdk6410.cfg -diolan_lpc4350-db1.cfg spear300evb.cfg -dm355evm.cfg spear300evb_mod.cfg -dm365evm.cfg spear310evb20.cfg -dm6446evm.cfg spear310evb20_mod.cfg -efikamx.cfg spear320cpu.cfg -eir.cfg spear320cpu_mod.cfg -ek-lm3s1968.cfg steval_pcc010.cfg -ek-lm3s3748.cfg stm320518_eval_stlink.cfg -ek-lm3s6965.cfg stm32100b_eval.cfg -ek-lm3s811.cfg stm3210b_eval.cfg -ek-lm3s811-revb.cfg stm3210c_eval.cfg -ek-lm3s9b9x.cfg stm3210e_eval.cfg +actux3.cfg lpc1850_spifi_generic.cfg +am3517evm.cfg lpc4350_spifi_generic.cfg +arm_evaluator7t.cfg lubbock.cfg +at91cap7a-stk-sdram.cfg mcb1700.cfg +at91eb40a.cfg microchip_explorer16.cfg +at91rm9200-dk.cfg mini2440.cfg +at91rm9200-ek.cfg mini6410.cfg +at91sam9261-ek.cfg netgear-dg834v3.cfg +at91sam9263-ek.cfg olimex_LPC2378STK.cfg +at91sam9g20-ek.cfg olimex_lpc_h2148.cfg +atmel_at91sam7s-ek.cfg olimex_sam7_ex256.cfg +atmel_at91sam9260-ek.cfg olimex_sam9_l9260.cfg +atmel_at91sam9rl-ek.cfg olimex_stm32_h103.cfg +atmel_sam3n_ek.cfg olimex_stm32_h107.cfg +atmel_sam3s_ek.cfg olimex_stm32_p107.cfg +atmel_sam3u_ek.cfg omap2420_h4.cfg +atmel_sam3x_ek.cfg open-bldc.cfg +atmel_sam4s_ek.cfg openrd.cfg +balloon3-cpu.cfg osk5912.cfg +colibri.cfg phone_se_j100i.cfg +crossbow_tech_imote2.cfg phytec_lpc3250.cfg +csb337.cfg pic-p32mx.cfg +csb732.cfg propox_mmnet1001.cfg +da850evm.cfg pxa255_sst.cfg +digi_connectcore_wi-9c.cfg redbee.cfg +diolan_lpc4350-db1.cfg rsc-w910.cfg +dm355evm.cfg sheevaplug.cfg +dm365evm.cfg smdk6410.cfg +dm6446evm.cfg spear300evb.cfg +efikamx.cfg spear300evb_mod.cfg +eir.cfg spear310evb20.cfg +ek-lm3s1968.cfg spear310evb20_mod.cfg +ek-lm3s3748.cfg spear320cpu.cfg +ek-lm3s6965.cfg spear320cpu_mod.cfg +ek-lm3s811.cfg steval_pcc010.cfg +ek-lm3s811-revb.cfg stm320518_eval_stlink.cfg +ek-lm3s8962.cfg stm32100b_eval.cfg +ek-lm3s9b9x.cfg stm3210b_eval.cfg +ek-lm3s9d92.cfg stm3210c_eval.cfg +ek-lm4f120xl.cfg stm3210e_eval.cfg ek-lm4f232.cfg stm3220g_eval.cfg embedded-artists_lpc2478-32.cfg stm3220g_eval_stlink.cfg ethernut3.cfg stm3241g_eval.cfg glyn_tonga2.cfg stm3241g_eval_stlink.cfg hammer.cfg stm32f0discovery.cfg -hilscher_nxdb500sys.cfg stm32f4discovery.cfg -hilscher_nxeb500hmi.cfg stm32ldiscovery.cfg -hilscher_nxhx10.cfg stm32vldiscovery.cfg -hilscher_nxhx500.cfg str910-eval.cfg -hilscher_nxhx50.cfg telo.cfg -hilscher_nxsb100.cfg ti_beagleboard.cfg -hitex_lpc2929.cfg ti_beagleboard_xm.cfg -hitex_stm32-performancestick.cfg ti_beaglebone.cfg -hitex_str9-comstick.cfg ti_blaze.cfg -iar_lpc1768.cfg ti_pandaboard.cfg -iar_str912_sk.cfg ti_pandaboard_es.cfg -icnova_imx53_sodimm.cfg topas910.cfg -icnova_sam9g45_sodimm.cfg topasa900.cfg -imx27ads.cfg twr-k60n512.cfg -imx27lnst.cfg tx25_stk5.cfg -imx28evk.cfg tx27_stk5.cfg -imx31pdk.cfg unknown_at91sam9260.cfg -imx35pdk.cfg uptech_2410.cfg -imx53loco.cfg verdex.cfg -keil_mcb1700.cfg voipac.cfg -keil_mcb2140.cfg voltcraft_dso-3062c.cfg -kwikstik.cfg x300t.cfg -linksys_nslu2.cfg zy1000.cfg -lisa-l.cfg +hilscher_nxdb500sys.cfg stm32f3discovery.cfg +hilscher_nxeb500hmi.cfg stm32f4discovery.cfg +hilscher_nxhx10.cfg stm32ldiscovery.cfg +hilscher_nxhx500.cfg stm32vldiscovery.cfg +hilscher_nxhx50.cfg str910-eval.cfg +hilscher_nxsb100.cfg telo.cfg +hitex_lpc1768stick.cfg ti_am335xevm.cfg +hitex_lpc2929.cfg ti_beagleboard.cfg +hitex_stm32-performancestick.cfg ti_beagleboard_xm.cfg +hitex_str9-comstick.cfg ti_beaglebone.cfg +iar_lpc1768.cfg ti_blaze.cfg +iar_str912_sk.cfg ti_pandaboard.cfg +icnova_imx53_sodimm.cfg ti_pandaboard_es.cfg +icnova_sam9g45_sodimm.cfg topas910.cfg +imx27ads.cfg topasa900.cfg +imx27lnst.cfg twr-k60f120m.cfg +imx28evk.cfg twr-k60n512.cfg +imx31pdk.cfg tx25_stk5.cfg +imx35pdk.cfg tx27_stk5.cfg +imx53loco.cfg unknown_at91sam9260.cfg +keil_mcb1700.cfg uptech_2410.cfg +keil_mcb2140.cfg verdex.cfg +kwikstik.cfg voipac.cfg +linksys_nslu2.cfg voltcraft_dso-3062c.cfg +lisa-l.cfg x300t.cfg +logicpd_imx27.cfg zy1000.cfg $ @end example @item @file{target} ... @@ -1374,71 +1424,83 @@ When a chip has multiple TAPs (maybe it has both ARM and DSP cores), the target config file defines all of them. @example $ ls target -$duc702x.cfg ixp42x.cfg -am335x.cfg k40.cfg -amdm37x.cfg k60.cfg -ar71xx.cfg lpc1768.cfg -at32ap7000.cfg lpc2103.cfg -at91r40008.cfg lpc2124.cfg -at91rm9200.cfg lpc2129.cfg -at91sam3ax_4x.cfg lpc2148.cfg -at91sam3ax_8x.cfg lpc2294.cfg -at91sam3ax_xx.cfg lpc2378.cfg -at91sam3nXX.cfg lpc2460.cfg -at91sam3sXX.cfg lpc2478.cfg -at91sam3u1c.cfg lpc2900.cfg -at91sam3u1e.cfg lpc2xxx.cfg -at91sam3u2c.cfg lpc3131.cfg -at91sam3u2e.cfg lpc3250.cfg -at91sam3u4c.cfg lpc4350.cfg -at91sam3u4e.cfg mc13224v.cfg -at91sam3uxx.cfg nuc910.cfg -at91sam3XXX.cfg omap2420.cfg -at91sam4sXX.cfg omap3530.cfg -at91sam4XXX.cfg omap4430.cfg -at91sam7se512.cfg omap4460.cfg -at91sam7sx.cfg omap5912.cfg -at91sam7x256.cfg omapl138.cfg -at91sam7x512.cfg pic32mx.cfg -at91sam9260.cfg pxa255.cfg -at91sam9260_ext_RAM_ext_flash.cfg pxa270.cfg -at91sam9261.cfg pxa3xx.cfg -at91sam9263.cfg readme.txt -at91sam9.cfg samsung_s3c2410.cfg -at91sam9g10.cfg samsung_s3c2440.cfg -at91sam9g20.cfg samsung_s3c2450.cfg -at91sam9g45.cfg samsung_s3c4510.cfg -at91sam9rl.cfg samsung_s3c6410.cfg -atmega128.cfg sharp_lh79532.cfg -avr32.cfg smp8634.cfg -c100.cfg spear3xx.cfg -c100config.tcl stellaris.cfg -c100helper.tcl stm32.cfg -c100regs.tcl stm32f0x_stlink.cfg -cs351x.cfg stm32f1x.cfg -davinci.cfg stm32f1x_stlink.cfg -dragonite.cfg stm32f2x.cfg -dsp56321.cfg stm32f2x_stlink.cfg -dsp568013.cfg stm32f2xxx.cfg -dsp568037.cfg stm32f4x.cfg -epc9301.cfg stm32f4x_stlink.cfg -faux.cfg stm32l.cfg -feroceon.cfg stm32lx_stlink.cfg -fm3.cfg stm32_stlink.cfg -hilscher_netx10.cfg stm32xl.cfg -hilscher_netx500.cfg str710.cfg -hilscher_netx50.cfg str730.cfg -icepick.cfg str750.cfg -imx21.cfg str912.cfg -imx25.cfg swj-dp.tcl -imx27.cfg test_reset_syntax_error.cfg -imx28.cfg test_syntax_error.cfg -imx31.cfg ti_dm355.cfg -imx35.cfg ti_dm365.cfg -imx51.cfg ti_dm6446.cfg -imx53.cfg tmpa900.cfg -imx.cfg tmpa910.cfg -is5114.cfg u8500.cfg +aduc702x.cfg lpc1763.cfg +am335x.cfg lpc1764.cfg +amdm37x.cfg lpc1765.cfg +ar71xx.cfg lpc1766.cfg +at32ap7000.cfg lpc1767.cfg +at91r40008.cfg lpc1768.cfg +at91rm9200.cfg lpc1769.cfg +at91sam3ax_4x.cfg lpc1788.cfg +at91sam3ax_8x.cfg lpc17xx.cfg +at91sam3ax_xx.cfg lpc1850.cfg +at91sam3nXX.cfg lpc2103.cfg +at91sam3sXX.cfg lpc2124.cfg +at91sam3u1c.cfg lpc2129.cfg +at91sam3u1e.cfg lpc2148.cfg +at91sam3u2c.cfg lpc2294.cfg +at91sam3u2e.cfg lpc2378.cfg +at91sam3u4c.cfg lpc2460.cfg +at91sam3u4e.cfg lpc2478.cfg +at91sam3uxx.cfg lpc2900.cfg +at91sam3XXX.cfg lpc2xxx.cfg +at91sam4sd32x.cfg lpc3131.cfg +at91sam4sXX.cfg lpc3250.cfg +at91sam4XXX.cfg lpc4350.cfg +at91sam7se512.cfg lpc4350.cfg.orig +at91sam7sx.cfg mc13224v.cfg +at91sam7x256.cfg nuc910.cfg +at91sam7x512.cfg omap2420.cfg +at91sam9260.cfg omap3530.cfg +at91sam9260_ext_RAM_ext_flash.cfg omap4430.cfg +at91sam9261.cfg omap4460.cfg +at91sam9263.cfg omap5912.cfg +at91sam9.cfg omapl138.cfg +at91sam9g10.cfg pic32mx.cfg +at91sam9g20.cfg pxa255.cfg +at91sam9g45.cfg pxa270.cfg +at91sam9rl.cfg pxa3xx.cfg +atmega128.cfg readme.txt +avr32.cfg samsung_s3c2410.cfg +c100.cfg samsung_s3c2440.cfg +c100config.tcl samsung_s3c2450.cfg +c100helper.tcl samsung_s3c4510.cfg +c100regs.tcl samsung_s3c6410.cfg +cs351x.cfg sharp_lh79532.cfg +davinci.cfg smp8634.cfg +dragonite.cfg spear3xx.cfg +dsp56321.cfg stellaris.cfg +dsp568013.cfg stellaris_icdi.cfg +dsp568037.cfg stm32f0x_stlink.cfg +efm32_stlink.cfg stm32f1x.cfg +epc9301.cfg stm32f1x_stlink.cfg +faux.cfg stm32f2x.cfg +feroceon.cfg stm32f2x_stlink.cfg +fm3.cfg stm32f3x.cfg +hilscher_netx10.cfg stm32f3x_stlink.cfg +hilscher_netx500.cfg stm32f4x.cfg +hilscher_netx50.cfg stm32f4x_stlink.cfg +icepick.cfg stm32l.cfg +imx21.cfg stm32lx_dual_bank.cfg +imx25.cfg stm32lx_stlink.cfg +imx27.cfg stm32_stlink.cfg +imx28.cfg stm32w108_stlink.cfg +imx31.cfg stm32xl.cfg +imx35.cfg str710.cfg +imx51.cfg str730.cfg +imx53.cfg str750.cfg +imx6.cfg str912.cfg +imx.cfg swj-dp.tcl +is5114.cfg test_reset_syntax_error.cfg +ixp42x.cfg test_syntax_error.cfg +k40.cfg ti-ar7.cfg +k60.cfg ti_calypso.cfg +lpc1751.cfg ti_dm355.cfg +lpc1752.cfg ti_dm365.cfg +lpc1754.cfg ti_dm6446.cfg +lpc1756.cfg tmpa900.cfg +lpc1758.cfg tmpa910.cfg +lpc1759.cfg u8500.cfg @end example @item @emph{more} ... browse for other library files which may be useful. For example, there are various generic and CPU-specific utilities. @@ -1878,14 +1940,14 @@ After setting targets, you can define a list of targets working in SMP. @example set _TARGETNAME_1 $_CHIPNAME.cpu1 set _TARGETNAME_2 $_CHIPNAME.cpu2 -target create $_TARGETNAME_1 cortex_a8 -chain-position $_CHIPNAME.dap \ +target create $_TARGETNAME_1 cortex_a -chain-position $_CHIPNAME.dap \ -coreid 0 -dbgbase $_DAP_DBG1 -target create $_TARGETNAME_2 cortex_a8 -chain-position $_CHIPNAME.dap \ +target create $_TARGETNAME_2 cortex_a -chain-position $_CHIPNAME.dap \ -coreid 1 -dbgbase $_DAP_DBG2 #define 2 targets working in smp. target smp $_CHIPNAME.cpu2 $_CHIPNAME.cpu1 @end example -In the above example on cortex_a8, 2 cpus are working in SMP. +In the above example on cortex_a, 2 cpus are working in SMP. In SMP only one GDB instance is created and : @itemize @bullet @item a set of hardware breakpoint sets the same breakpoint on all targets in the list. @@ -1896,32 +1958,32 @@ In SMP only one GDB instance is created and : displayed by the GDB session @pxref{usingopenocdsmpwithgdb,,Using OpenOCD SMP with GDB}. @end itemize -The SMP behaviour can be disabled/enabled dynamically. On cortex_a8 following +The SMP behaviour can be disabled/enabled dynamically. On cortex_a following command have been implemented. @itemize @bullet -@item cortex_a8 smp_on : enable SMP mode, behaviour is as described above. -@item cortex_a8 smp_off : disable SMP mode, the current target is the one +@item cortex_a smp_on : enable SMP mode, behaviour is as described above. +@item cortex_a smp_off : disable SMP mode, the current target is the one displayed in the GDB session, only this target is now controlled by GDB session. This behaviour is useful during system boot up. -@item cortex_a8 smp_gdb : display/fix the core id displayed in GDB session see +@item cortex_a smp_gdb : display/fix the core id displayed in GDB session see following example. @end itemize @example ->cortex_a8 smp_gdb +>cortex_a smp_gdb gdb coreid 0 -> -1 #0 : coreid 0 is displayed to GDB , #-> -1 : next resume triggers a real resume -> cortex_a8 smp_gdb 1 +> cortex_a smp_gdb 1 gdb coreid 0 -> 1 #0 :coreid 0 is displayed to GDB , #->1 : next resume displays coreid 1 to GDB > resume -> cortex_a8 smp_gdb +> cortex_a smp_gdb gdb coreid 1 -> 1 #1 :coreid 1 is displayed to GDB , #->1 : next resume displays coreid 1 to GDB -> cortex_a8 smp_gdb -1 +> cortex_a smp_gdb -1 gdb coreid 1 -> -1 #1 :coreid 1 is displayed to GDB, #->-1 : next resume triggers a real resume @@ -1948,7 +2010,7 @@ don't want to reset all targets at once. Such a handler might write to chip registers to force a reset, use a JRC to do that (preferable -- the target may be wedged!), or force a watchdog timer to trigger. -(For Cortex-M3 targets, this is not necessary. The target +(For Cortex-M targets, this is not necessary. The target driver knows how to use trigger an NVIC reset when SRST is not available.) @@ -2296,6 +2358,17 @@ The default behaviour is @option{disable}; use @option{enable} see these errors reported. @end deffn +@deffn {Config Command} gdb_target_description (@option{enable}|@option{disable}) +Set to @option{enable} to cause OpenOCD to send the target descriptions to gdb via qXfer:features:read packet. +The default behaviour is @option{disable}. +@end deffn + +@deffn {Command} gdb_save_tdesc +Saves the target descripton file to the local file system. + +The file name is @i{target_name}.xml. +@end deffn + @anchor{eventpolling} @section Event Polling @@ -2970,6 +3043,13 @@ The vendor ID and product ID of the device. @deffn {Config Command} {stlink_api} api_level Manually sets the stlink api used, valid options are 1 or 2. (@b{STLINK Only}). @end deffn + +@deffn {Config Command} {trace} output_file_path source_clock_hz +Enable SWO tracing (if supported), trace data is appended to the specified +output file and the file is created if it does not exist. The source clock +rate for the trace port must be specified, this is typically the CPU clock +rate. +@end deffn @end deffn @deffn {Interface Driver} {opendous} @@ -2994,6 +3074,22 @@ Turn power switch to target on/off. No arguments: print status. @end deffn +@deffn {Interface Driver} {bcm2835gpio} +This SoC is present in Raspberry Pi which is a cheap single-board computer +exposing some GPIOs on its expansion header. + +The driver accesses memory-mapped GPIO peripheral registers directly +for maximum performance, but the only possible race condition is for +the pins' modes/muxing (which is highly unlikely), so it should be +able to coexist nicely with both sysfs bitbanging and various +peripherals' kernel drivers. The driver restores the previous +configuration on exit. + +See @file{interface/raspberrypi-native.cfg} for a sample config and +pinout. + +@end deffn + @section Transport Configuration @cindex Transport As noted earlier, depending on the version of OpenOCD you use, @@ -3008,7 +3104,7 @@ version of OpenOCD. @deffn Command {transport select} transport_name Select which of the supported transports to use in this OpenOCD session. The transport must be supported by the debug adapter hardware and by the -version of OPenOCD you are using (including the adapter's driver). +version of OpenOCD you are using (including the adapter's driver). No arguments: returns name of session's selected transport. @end deffn @@ -3953,7 +4049,7 @@ look like with more than one: TargetName Type Endian TapName State -- ------------------ ---------- ------ ------------------ ------------ 0* at91rm9200.cpu arm920t little at91rm9200.cpu running - 1 MyTarget cortex_m3 little mychip.foo tap-disabled + 1 MyTarget cortex_m little mychip.foo tap-disabled @end verbatim One member of that list is the @dfn{current target}, which @@ -4064,8 +4160,8 @@ At this writing, the supported CPU types and variants are: @item @code{arm9tdmi} -- this is an ARMv4 core @item @code{avr} -- implements Atmel's 8-bit AVR instruction set. (Support for this is preliminary and incomplete.) -@item @code{cortex_a8} -- this is an ARMv7 core with an MMU -@item @code{cortex_m3} -- this is an ARMv7 core, supporting only the +@item @code{cortex_a} -- this is an ARMv7 core with an MMU +@item @code{cortex_m} -- this is an ARMv7 core, supporting only the compact Thumb2 instruction set. @item @code{dragonite} -- resembles arm966e @item @code{dsp563xx} -- implements Freescale's 24-bit DSP. @@ -4083,6 +4179,17 @@ There are several variants defined: @code{pxa26x} ... instruction register length is 5 bits @item @code{pxa3xx} ... instruction register length is 11 bits @end itemize +@item @code{openrisc} -- this is an OpenRISC 1000 core. +The current implementation supports two JTAG TAP cores: +@itemize @minus +@item @code{OpenCores TAP} (See: @emph{http://opencores.org/project,jtag}) +@item @code{Altera Virtual JTAG TAP} (See: @emph{http://www.altera.com/literature/ug/ug_virtualjtag.pdf}) +@end itemize +And two debug interfaces cores: +@itemize @minus +@item @code{Advanced debug interface} (See: @emph{http://opencores.org/project,adv_debug_sys}) +@item @code{SoC Debug Interface} (See: @emph{http://opencores.org/project,dbg_interface}) +@end itemize @end itemize @end deffn @@ -4119,7 +4226,7 @@ to be much more board-specific. The key steps you use might look something like this @example -target create MyTarget cortex_m3 -chain-position mychip.cpu +target create MyTarget cortex_m -chain-position mychip.cpu $MyTarget configure -work-area-phys 0x08000 -work-area-size 8096 $MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @} $MyTarget configure -event reset-init @{ myboard_reinit @} @@ -4226,9 +4333,11 @@ base @var{address} to be used when an MMU is active. The value should normally correspond to a static mapping for the @code{-work-area-phys} address, set up by the current operating system. +@anchor{rtostype} @item @code{-rtos} @var{rtos_type} -- enable rtos support for target, @var{rtos_type} can be one of @option{auto}|@option{eCos}|@option{ThreadX}| -@option{FreeRTOS}|@option{linux}|@option{ChibiOS}. +@option{FreeRTOS}|@option{linux}|@option{ChibiOS}|@option{embKernel} +@xref{gdbrtossupport,,RTOS Support}. @end itemize @end deffn @@ -4753,6 +4862,12 @@ specifies "to the end of the flash bank". The @var{num} parameter is a value shown by @command{flash banks}. @end deffn +@deffn Command {flash padded_value} num value +Sets the default value used for padding any image sections, This should +normally match the flash bank erased value. If not specified by this +comamnd or the flash driver then it defaults to 0xff. +@end deffn + @anchor{program} @deffn Command {program} filename [verify] [reset] [offset] This is a helper script that simplifies using OpenOCD as a standalone @@ -7300,7 +7415,7 @@ cores @emph{except the ARM1176} use the same six bits. @cindex Debug Access Port @cindex DAP These commands are specific to ARM architecture v7 Debug Access Port (DAP), -included on Cortex-M3 and Cortex-A8 systems. +included on Cortex-M and Cortex-A systems. They are available in addition to other core-specific commands that may be available. @deffn Command {dap apid} [num] @@ -7333,10 +7448,10 @@ fix CSW_SPROT from register AP_REG_CSW on selected dap. Defaulting to 0. @end deffn -@subsection Cortex-M3 specific commands -@cindex Cortex-M3 +@subsection Cortex-M specific commands +@cindex Cortex-M -@deffn Command {cortex_m3 maskisr} (@option{auto}|@option{on}|@option{off}) +@deffn Command {cortex_m maskisr} (@option{auto}|@option{on}|@option{off}) Control masking (disabling) interrupts during target step/resume. The @option{auto} option handles interrupts during stepping a way they get @@ -7353,7 +7468,7 @@ with interrupts enabled, i.e. the same way the @option{off} option does. Default is @option{auto}. @end deffn -@deffn Command {cortex_m3 vector_catch} [@option{all}|@option{none}|list] +@deffn Command {cortex_m vector_catch} [@option{all}|@option{none}|list] @cindex vector_catch Vector Catch hardware provides dedicated breakpoints for certain hardware events. @@ -7380,7 +7495,7 @@ must also be explicitly enabled. This finishes by listing the current vector catch configuration. @end deffn -@deffn Command {cortex_m3 reset_config} (@option{srst}|@option{sysresetreq}|@option{vectreset}) +@deffn Command {cortex_m reset_config} (@option{srst}|@option{sysresetreq}|@option{vectreset}) Control reset handling. The default @option{srst} is to use srst if fitted, otherwise fallback to @option{vectreset}. @itemize @minus @@ -7388,13 +7503,58 @@ otherwise fallback to @option{vectreset}. @item @option{sysresetreq} use NVIC SYSRESETREQ to reset system. @item @option{vectreset} use NVIC VECTRESET to reset system. @end itemize -Using @option{vectreset} is a safe option for all current Cortex-M3 cores. +Using @option{vectreset} is a safe option for all current Cortex-M cores. This however has the disadvantage of only resetting the core, all peripherals are uneffected. A solution would be to use a @code{reset-init} event handler to manually reset the peripherals. @xref{targetevents,,Target Events}. @end deffn +@section OpenRISC Architecture + +The OpenRISC CPU is a soft core. It is used in a programmable SoC which can be +configured with any of the TAP / Debug Unit available. + +@subsection TAP and Debug Unit selection commands +@deffn Command {tap_select} (@option{vjtag}|@option{mohor}) +Select between the Altera Virtual JTAG and Mohor TAP. +@end deffn +@deffn Command {du_select} (@option{adv}|@option{mohor}) [option] +Select between the Advanced Debug Interface and the classic one. + +An option can be passed as a second argument to the debug unit. + +When using the Advanced Debug Interface, option = 1 means the RTL core is +configured with ADBG_USE_HISPEED = 1. This configuration skips status checking +between bytes while doing read or write bursts. +@end deffn + +@subsection Registers commands +@deffn Command {addreg} [name] [address] [feature] [reg_group] +Add a new register in the cpu register list. This register will be +included in the generated target descriptor file. + +@strong{[feature]} must be "org.gnu.gdb.or1k.group[0..10]". + +@strong{[reg_group]} can be anything. The default register list defines "system", + "dmmu", "immu", "dcache", "icache", "mac", "debug", "perf", "power", "pic" + and "timer" groups. + +@emph{example:} +@example +addreg rtest 0x1234 org.gnu.gdb.or1k.group0 system +@end example + + +@end deffn +@deffn Command {readgroup} (@option{group}) +Display all registers in @emph{group}. + +@emph{group} can be "system", + "dmmu", "immu", "dcache", "icache", "mac", "debug", "perf", "power", "pic", + "timer" or any new group created with addreg command. +@end deffn + @anchor{softwaredebugmessagesandtracing} @section Software Debug Messages and Tracing @cindex Linux-ARM DCC support @@ -7407,7 +7567,7 @@ The most powerful mechanism is semihosting, but there is also a lighter weight mechanism using only the DCC channel. Currently @command{target_request debugmsgs} -is supported only for @option{arm7_9} and @option{cortex_m3} cores. +is supported only for @option{arm7_9} and @option{cortex_m} cores. These messages are received as part of target polling, so you need to have @command{poll on} active to receive them. They are intrusive in that they will affect program execution @@ -7913,10 +8073,10 @@ and an RTOS until he told GDB to disable the IRQs while stepping: @example define hook-step -mon cortex_m3 maskisr on +mon cortex_m maskisr on end define hookpost-step -mon cortex_m3 maskisr off +mon cortex_m maskisr off end @end example @@ -8016,6 +8176,57 @@ end @end example @end itemize +@section RTOS Support +@cindex RTOS Support +@anchor{gdbrtossupport} + +OpenOCD includes RTOS support, this will however need enabling as it defaults to disabled. +It can be enabled by passing @option{-rtos} arg to the target @xref{rtostype,,RTOS Type}. + +@* An example setup is below: + +@example +$_TARGETNAME configure -rtos auto +@end example + +This will attempt to auto detect the RTOS within your application. + +Currently supported rtos's include: +@itemize @bullet +@item @option{eCos} +@item @option{ThreadX} +@item @option{FreeRTOS} +@item @option{linux} +@item @option{ChibiOS} +@item @option{embKernel} +@end itemize + +@quotation Note +Before an RTOS can be detected it must export certain symbols otherwise it cannot be used by +OpenOCD. Below is a list of the required symbols for each supported RTOS. +@end quotation + +@table @code +@item eCos symbols +Cyg_Thread::thread_list, Cyg_Scheduler_Base::current_thread. +@item ThreadX symbols +_tx_thread_current_ptr, _tx_thread_created_ptr, _tx_thread_created_count. +@item FreeRTOS symbols +pxCurrentTCB, pxReadyTasksLists, xDelayedTaskList1, xDelayedTaskList2, +pxDelayedTaskList, pxOverflowDelayedTaskList, xPendingReadyList, +xTasksWaitingTermination, xSuspendedTaskList, uxCurrentNumberOfTasks, uxTopUsedPriority. +@item linux symbols +init_task. +@item ChibiOS symbols +rlist, ch_debug, chSysInit. +@item embKernel symbols +Rtos::sCurrentTask, Rtos::sListReady, Rtos::sListSleep, +Rtos::sListSuspended, Rtos::sMaxPriorities, Rtos::sCurrentTaskCount. +@end table + +For most RTOS supported the above symbols will be exported by default. However for +some, eg. FreeRTOS @option{xTasksWaitingTermination} is only exported +if @option{INCLUDE_vTaskDelete} is defined during the build. @node Tcl Scripting API @chapter Tcl Scripting API