armv7a: ARMv7-A MMU tools
[openocd.git] / doc / openocd.texi
index cef1cae08175874735c9a9bbb9df033730bf97b0..e7d0c67c56fec1d3cf95718ec671efaaa11ffc33 100644 (file)
@@ -66,7 +66,7 @@ Free Documentation License''.
 * Running::                          Running OpenOCD
 * OpenOCD Project Setup::            OpenOCD Project Setup
 * Config File Guidelines::           Config File Guidelines
-* Daemon Configuration::             Daemon Configuration
+* Server Configuration::             Server Configuration
 * Debug Adapter Configuration::      Debug Adapter Configuration
 * Reset Configuration::              Reset Configuration
 * TAP Declaration::                  TAP Declaration
@@ -531,6 +531,12 @@ debuggers to ARM Cortex based targets @url{http://www.keil.com/support/man/docs/
 
 @item @b{Keil ULINK v1}
 @* Link: @url{http://www.keil.com/ulink1/}
+
+@item @b{TI XDS110 Debug Probe}
+@* The XDS110 is included as the embedded debug probe on many Texas Instruments
+LaunchPad evaluation boards.
+@* Link: @url{http://processors.wiki.ti.com/index.php/XDS110}
+@* Link: @url{http://processors.wiki.ti.com/index.php/XDS_Emulation_Software_Package#XDS110_Support_Utilities}
 @end itemize
 
 @section IBM PC Parallel Printer Port Based
@@ -578,7 +584,7 @@ produced, PDF schematics are easily found and it is easy to make.
 @url{http://www.latticesemi.com/lit/docs/@/devtools/dlcable.pdf}
 
 @item @b{flashlink}
-@* From ST Microsystems;
+@* From STMicroelectronics;
 @* Link: @url{http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATA_BRIEF/DM00039500.pdf}
 
 @end itemize
@@ -595,6 +601,9 @@ produced, PDF schematics are easily found and it is easy to make.
 @item @b{bcm2835gpio}
 @* A BCM2835-based board (e.g. Raspberry Pi) using the GPIO pins of the expansion header.
 
+@item @b{imx_gpio}
+@* A NXP i.MX-based board (e.g. Wandboard) using the GPIO pins (should work on any i.MX processor).
+
 @item @b{jtag_vpi}
 @* A JTAG driver acting as a client for the JTAG VPI server interface.
 @* Link: @url{http://github.com/fjullien/jtag_vpi}
@@ -679,7 +688,8 @@ bash$ openocd --help
 --version    | -v       display OpenOCD version
 --file       | -f       use configuration file <name>
 --search     | -s       dir to search for config files and scripts
---debug      | -d       set debug level <0-3>
+--debug      | -d       set debug level to 3
+             | -d<n>    set debug level to <level>
 --log_output | -l       redirect log output to file <name>
 --command    | -c       run <command>
 @end verbatim
@@ -752,13 +762,13 @@ on the command line or, if there were no @option{-c command} or
 At the end of the configuration stage it verifies the JTAG scan
 chain defined using those commands; your configuration should
 ensure that this always succeeds.
-Normally, OpenOCD then starts running as a daemon.
+Normally, OpenOCD then starts running as a server.
 Alternatively, commands may be used to terminate the configuration
 stage early, perform work (such as updating some flash memory),
-and then shut down without acting as a daemon.
+and then shut down without acting as a server.
 
-Once OpenOCD starts running as a daemon, it waits for connections from
-clients (Telnet, GDB, Other) and processes the commands issued through
+Once OpenOCD starts running as a server, it waits for connections from
+clients (Telnet, GDB, RPC) and processes the commands issued through
 those channels.
 
 If you are having problems, you can enable internal debug messages via
@@ -775,7 +785,7 @@ informational messages, warnings and errors. You can also change this
 setting from within a telnet or gdb session using @command{debug_level<n>}
 (@pxref{debuglevel,,debug_level}).
 
-You can redirect all output from the daemon to a file using the
+You can redirect all output from the server to a file using the
 @option{-l <logfile>} switch.
 
 Note! OpenOCD will launch the GDB & telnet server even if it can not
@@ -898,7 +908,7 @@ using a Signalyzer FT2232-based JTAG adapter to talk to
 a board with an Atmel AT91SAM7X256 microcontroller:
 
 @example
-source [find interface/signalyzer.cfg]
+source [find interface/ftdi/signalyzer.cfg]
 
 # GDB can also flash my flash!
 gdb_memory_map enable
@@ -910,7 +920,7 @@ source [find target/sam7x256.cfg]
 Here is the command line equivalent of that configuration:
 
 @example
-openocd -f interface/signalyzer.cfg \
+openocd -f interface/ftdi/signalyzer.cfg \
         -c "gdb_memory_map enable" \
         -c "gdb_flash_program enable" \
         -f target/sam7x256.cfg
@@ -1032,7 +1042,7 @@ that the @code{reset-init} event handler does.
 Likewise, the @command{arm9 vector_catch} command (or
 @cindex vector_catch
 its siblings @command{xscale vector_catch}
-and @command{cortex_m vector_catch}) can be a timesaver
+and @command{cortex_m vector_catch}) can be a time-saver
 during some debug sessions, but don't make everyone use that either.
 Keep those kinds of debugging aids in your user config file,
 along with messaging and tracing setup.
@@ -1123,7 +1133,7 @@ handling issues like:
 @itemize @bullet
 
 @item @b{Watchdog Timers}...
-Watchog timers are typically used to automatically reset systems if
+Watchdog timers are typically used to automatically reset systems if
 some application task doesn't periodically reset the timer. (The
 assumption is that the system has locked up if the task can't run.)
 When a JTAG debugger halts the system, that task won't be able to run
@@ -1460,7 +1470,7 @@ While the default is normally provided by the chip manufacturer,
 board files may need to distinguish between instances of a chip.
 @item @code{ENDIAN} ...
 By default @option{little} - although chips may hard-wire @option{big}.
-Chips that can't change endianness don't need to use this variable.
+Chips that can't change endianess don't need to use this variable.
 @item @code{CPUTAPID} ...
 When OpenOCD examines the JTAG chain, it can be told verify the
 chips against the JTAG IDCODE register.
@@ -1591,8 +1601,11 @@ proc enable_fast_clock @{@} @{
 proc init_board @{@} @{
     reset_config trst_and_srst trst_pulls_srst
 
+    $_TARGETNAME configure -event reset-start @{
+        adapter_khz 100
+    @}
+
     $_TARGETNAME configure -event reset-init @{
-        adapter_khz 1
         enable_fast_clock
         adapter_khz 10000
     @}
@@ -1868,9 +1881,9 @@ Target config files can either be ``linear'' (script executed line-by-line when
 configuration stage, @xref{configurationstage,,Configuration Stage},) or they can contain a special
 procedure called @code{init_targets}, which will be executed when entering run stage
 (after parsing all config files or after @code{init} command, @xref{enteringtherunstage,,Entering the Run Stage}.)
-Such procedure can be overriden by ``next level'' script (which sources the original).
-This concept faciliates code reuse when basic target config files provide generic configuration
-procedures and @code{init_targets} procedure, which can then be sourced and enchanced or changed in
+Such procedure can be overridden by ``next level'' script (which sources the original).
+This concept facilitates code reuse when basic target config files provide generic configuration
+procedures and @code{init_targets} procedure, which can then be sourced and enhanced or changed in
 a ``more specific'' target config file. This is not possible with ``linear'' config scripts,
 because sourcing them executes every initialization commands they provide.
 
@@ -1994,8 +2007,8 @@ proc setc15 @{regs value@} @{
 
 
 
-@node Daemon Configuration
-@chapter Daemon Configuration
+@node Server Configuration
+@chapter Server Configuration
 @cindex initialization
 The commands here are commonly found in the openocd.cfg file and are
 used to specify what TCP/IP ports are used, and how GDB should be
@@ -2046,7 +2059,7 @@ Once OpenOCD has entered the run stage, a number of commands
 become available.
 A number of these relate to the debug targets you may have declared.
 For example, the @command{mww} command will not be available until
-a target has been successfuly instantiated.
+a target has been successfully instantiated.
 If you want to use those commands, you may need to force
 entry to the run stage.
 
@@ -2101,6 +2114,7 @@ In such cases, just specify the relevant port number as "disabled".
 If you disable all access through TCP/IP, you will need to
 use the command line @option{-pipe} option.
 
+@anchor{gdb_port}
 @deffn {Command} gdb_port [number]
 @cindex GDB server
 Normally gdb listens to a TCP/IP port, but GDB can also
@@ -2109,7 +2123,7 @@ communicate via pipes(stdin/out or named pipes). The name
 the normal use cases.
 
 No arguments reports GDB port. "pipe" means listen to stdin
-output to stdout, an integer is base port number, "disable"
+output to stdout, an integer is base port number, "disabled"
 disables the gdb server.
 
 When using "pipe", also use log_output to redirect the log
@@ -2126,11 +2140,15 @@ The GDB port for the first target will be the base port, the
 second target will listen on gdb_port + 1, and so on.
 When not specified during the configuration stage,
 the port @var{number} defaults to 3333.
+When @var{number} is not a numeric value, incrementing it to compute
+the next port number does not work. In this case, specify the proper
+@var{number} for each target by using the option @code{-gdb-port} of the
+commands @command{target create} or @command{$target_name configure}.
+@xref{gdbportoverride,,option -gdb-port}.
 
 Note: when using "gdb_port pipe", increasing the default remote timeout in
 gdb (with 'set remotetimeout') is recommended. An insufficient timeout may
 cause initialization to fail with "Unknown remote qXfer reply: OK".
-
 @end deffn
 
 @deffn {Command} tcl_port [number]
@@ -2193,13 +2211,20 @@ The default behaviour is @option{disable};
 use @option{enable} see these errors reported.
 @end deffn
 
+@deffn {Config Command} gdb_report_register_access_error (@option{enable}|@option{disable})
+Specifies whether register accesses requested by GDB register read/write
+packets report errors or not.
+The default behaviour is @option{disable};
+use @option{enable} see these errors reported.
+@end deffn
+
 @deffn {Config Command} gdb_target_description (@option{enable}|@option{disable})
 Set to @option{enable} to cause OpenOCD to send the target descriptions to gdb via qXfer:features:read packet.
 The default behaviour is @option{enable}.
 @end deffn
 
 @deffn {Command} gdb_save_tdesc
-Saves the target descripton file to the local file system.
+Saves the target description file to the local file system.
 
 The file name is @i{target_name}.xml.
 @end deffn
@@ -2403,113 +2428,15 @@ A dummy software-only driver for debugging.
 Cirrus Logic EP93xx based single-board computer bit-banging (in development)
 @end deffn
 
-@deffn {Interface Driver} {ft2232}
-FTDI FT2232 (USB) based devices over one of the userspace libraries.
-
-Note that this driver has several flaws and the @command{ftdi} driver is
-recommended as its replacement.
-
-These interfaces have several commands, used to configure the driver
-before initializing the JTAG scan chain:
-
-@deffn {Config Command} {ft2232_device_desc} description
-Provides the USB device description (the @emph{iProduct string})
-of the FTDI FT2232 device. If not
-specified, the FTDI default value is used. This setting is only valid
-if compiled with FTD2XX support.
-@end deffn
-
-@deffn {Config Command} {ft2232_serial} serial-number
-Specifies the @var{serial-number} of the FTDI FT2232 device to use,
-in case the vendor provides unique IDs and more than one FT2232 device
-is connected to the host.
-If not specified, serial numbers are not considered.
-(Note that USB serial numbers can be arbitrary Unicode strings,
-and are not restricted to containing only decimal digits.)
-@end deffn
-
-@deffn {Config Command} {ft2232_layout} name
-Each vendor's FT2232 device can use different GPIO signals
-to control output-enables, reset signals, and LEDs.
-Currently valid layout @var{name} values include:
-@itemize @minus
-@item @b{axm0432_jtag} Axiom AXM-0432
-@item @b{comstick} Hitex STR9 comstick
-@item @b{cortino} Hitex Cortino JTAG interface
-@item @b{evb_lm3s811} TI/Luminary Micro EVB_LM3S811 as a JTAG interface,
-either for the local Cortex-M3 (SRST only)
-or in a passthrough mode (neither SRST nor TRST)
-This layout can not support the SWO trace mechanism, and should be
-used only for older boards (before rev C).
-@item @b{luminary_icdi} This layout should be used with most TI/Luminary
-eval boards, including Rev C LM3S811 eval boards and the eponymous
-ICDI boards, to debug either the local Cortex-M3 or in passthrough mode
-to debug some other target. It can support the SWO trace mechanism.
-@item @b{flyswatter} Tin Can Tools Flyswatter
-@item @b{icebear} ICEbear JTAG adapter from Section 5
-@item @b{jtagkey} Amontec JTAGkey and JTAGkey-Tiny (and compatibles)
-@item @b{jtagkey2} Amontec JTAGkey2 (and compatibles)
-@item @b{m5960} American Microsystems M5960
-@item @b{olimex-jtag} Olimex ARM-USB-OCD and ARM-USB-Tiny
-@item @b{oocdlink} OOCDLink
-@c oocdlink ~= jtagkey_prototype_v1
-@item @b{redbee-econotag} Integrated with a Redbee development board.
-@item @b{redbee-usb} Integrated with a Redbee USB-stick development board.
-@item @b{sheevaplug} Marvell Sheevaplug development kit
-@item @b{signalyzer} Xverve Signalyzer
-@item @b{stm32stick} Hitex STM32 Performance Stick
-@item @b{turtelizer2} egnite Software turtelizer2
-@item @b{usbjtag} "USBJTAG-1" layout described in the OpenOCD diploma thesis
-@end itemize
-@end deffn
-
-@deffn {Config Command} {ft2232_vid_pid} [vid pid]+
-The vendor ID and product ID of the FTDI FT2232 device. If not specified, the FTDI
-default values are used.
-Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
-@example
-ft2232_vid_pid 0x0403 0xcff8 0x15ba 0x0003
-@end example
-@end deffn
-
-@deffn {Config Command} {ft2232_latency} ms
-On some systems using FT2232 based JTAG interfaces the FT_Read function call in
-ft2232_read() fails to return the expected number of bytes. This can be caused by
-USB communication delays and has proved hard to reproduce and debug. Setting the
-FT2232 latency timer to a larger value increases delays for short USB packets but it
-also reduces the risk of timeouts before receiving the expected number of bytes.
-The OpenOCD default value is 2 and for some systems a value of 10 has proved useful.
-@end deffn
-
-@deffn {Config Command} {ft2232_channel} channel
-Used to select the channel of the ft2232 chip to use (between 1 and 4).
-The default value is 1.
-@end deffn
-
-For example, the interface config file for a
-Turtelizer JTAG Adapter looks something like this:
-
-@example
-interface ft2232
-ft2232_device_desc "Turtelizer JTAG/RS232 Adapter"
-ft2232_layout turtelizer2
-ft2232_vid_pid 0x0403 0xbdc8
-@end example
-@end deffn
-
 @deffn {Interface Driver} {ftdi}
 This driver is for adapters using the MPSSE (Multi-Protocol Synchronous Serial
 Engine) mode built into many FTDI chips, such as the FT2232, FT4232 and FT232H.
-It is a complete rewrite to address a large number of problems with the ft2232
-interface driver.
 
 The driver is using libusb-1.0 in asynchronous mode to talk to the FTDI device,
-bypassing intermediate libraries like libftdi of D2XX. Performance-wise it is
-consistently faster than the ft2232 driver, sometimes several times faster.
+bypassing intermediate libraries like libftdi or D2XX.
 
-A major improvement of this driver is that support for new FTDI based adapters
-can be added competely through configuration files, without the need to patch
-and rebuild OpenOCD.
+Support for new FTDI based adapters can be added completely through
+configuration files, without the need to patch and rebuild OpenOCD.
 
 The driver uses a signal abstraction to enable Tcl configuration files to
 define outputs for one or several FTDI GPIO. These outputs can then be
@@ -2518,6 +2445,12 @@ are reserved for nTRST, nSRST and LED (for blink) so that they, if defined,
 will be used for their customary purpose. Inputs can be read using the
 @command{ftdi_get_signal} command.
 
+To support SWD, a signal named SWD_EN must be defined. It is set to 1 when the
+SWD protocol is selected. When set, the adapter should route the SWDIO pin to
+the data input. An SWDIO_OE signal, if defined, will be set to 1 or 0 as
+required by the protocol, to tell the adapter to drive the data output onto
+the SWDIO pin or keep the SWDIO pin Hi-Z, respectively.
+
 Depending on the type of buffer attached to the FTDI GPIO, the outputs have to
 be controlled differently. In order to support tristateable signals such as
 nSRST, both a data GPIO and an output-enable GPIO can be specified for each
@@ -2536,9 +2469,8 @@ These interfaces have several commands, used to configure the driver
 before initializing the JTAG scan chain:
 
 @deffn {Config Command} {ftdi_vid_pid} [vid pid]+
-The vendor ID and product ID of the adapter. If not specified, the FTDI
-default values are used.
-Currently, up to eight [@var{vid}, @var{pid}] pairs may be given, e.g.
+The vendor ID and product ID of the adapter. Up to eight
+[@var{vid}, @var{pid}] pairs may be given, e.g.
 @example
 ftdi_vid_pid 0x0403 0xcff8 0x15ba 0x0003
 @end example
@@ -2631,7 +2563,7 @@ Get the value of a previously defined signal.
 Configure TCK edge at which the adapter samples the value of the TDO signal
 
 Due to signal propagation delays, sampling TDO on rising TCK can become quite
-peculiar at high JTAG clock speeds. However, FTDI chips offer a possiblity to sample
+peculiar at high JTAG clock speeds. However, FTDI chips offer a possibility to sample
 TDO on falling edge of TCK. With some board/adapter configurations, this may increase
 stability at higher JTAG clocks.
 @itemize @minus
@@ -2645,6 +2577,36 @@ For example adapter definitions, see the configuration files shipped in the
 
 @end deffn
 
+@deffn {Interface Driver} {ft232r}
+This driver is implementing synchronous bitbang mode of an FTDI FT232R
+USB UART bridge IC.
+
+List of connections (pin numbers for SSOP):
+@itemize @minus
+@item RXD(5) - TDI
+@item TXD(1) - TCK
+@item RTS(3) - TDO
+@item CTS(11) - TMS
+@item DTR(2) - TRST
+@item DCD(10) - SRST
+@end itemize
+
+These interfaces have several commands, used to configure the driver
+before initializing the JTAG scan chain:
+
+@deffn {Config Command} {ft232r_vid_pid} @var{vid} @var{pid}
+The vendor ID and product ID of the adapter. If not specified, default
+0x0403:0x6001 is used.
+@end deffn
+
+@deffn {Config Command} {ft232r_serial_desc} @var{serial}
+Specifies the @var{serial} of the adapter to use, in case the
+vendor provides unique IDs and more than one adapter is connected to
+the host. If not specified, serial numbers are not considered.
+@end deffn
+
+@end deffn
+
 @deffn {Interface Driver} {remote_bitbang}
 Drive JTAG from a remote process. This sets up a UNIX or TCP socket connection
 with a remote process and sends ASCII encoded bitbang requests to that process
@@ -2721,7 +2683,7 @@ reset_config srst_only
 @end example
 @end deffn
 
-@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ftd2xx}|@option{ublast2})
+@deffn {Command} {usb_blaster_lowlevel_driver} (@option{ftdi}|@option{ublast2})
 Chooses the low level access method for the adapter. If not specified,
 @option{ftdi} is selected unless it wasn't enabled during the
 configure stage. USB-Blaster II needs @option{ublast2}.
@@ -2751,7 +2713,7 @@ SEGGER J-Link family of USB adapters. It currently supports JTAG and SWD
 transports.
 
 @quotation Compatibility Note
-SEGGER released many firmware versions for the many harware versions they
+SEGGER released many firmware versions for the many hardware versions they
 produced. OpenOCD was extensively tested and intended to run on all of them,
 but some combinations were reported as incompatible. As a general
 recommendation, it is advisable to use the latest firmware version
@@ -2799,6 +2761,26 @@ Reset the current configuration.
 @deffn {Command} {jlink config write}
 Write the current configuration to the internal persistent storage.
 @end deffn
+@deffn {Command} {jlink emucom write <channel> <data>}
+Write data to an EMUCOM channel. The data needs to be encoded as hexadecimal
+pairs.
+
+The following example shows how to write the three bytes 0xaa, 0x0b and 0x23 to
+the EMUCOM channel 0x10:
+@example
+> jlink emucom write 0x10 aa0b23
+@end example
+@end deffn
+@deffn {Command} {jlink emucom read <channel> <length>}
+Read data from an EMUCOM channel. The read data is encoded as hexadecimal
+pairs.
+
+The following example shows how to read 4 bytes from the EMUCOM channel 0x0:
+@example
+> jlink emucom read 0x0 4
+77a90000
+@end example
+@end deffn
 @deffn {Config} {jlink usb} <@option{0} to @option{3}>
 Set the USB address of the interface, in case more than one adapter is connected
 to the host. If not specified, USB addresses are not considered. Device
@@ -2815,6 +2797,62 @@ As a configuration command, it can be used only before 'init'.
 @end deffn
 @end deffn
 
+@deffn {Interface Driver} {kitprog}
+This driver is for Cypress Semiconductor's KitProg adapters. The KitProg is an
+SWD-only adapter that is designed to be used with Cypress's PSoC and PRoC device
+families, but it is possible to use it with some other devices. If you are using
+this adapter with a PSoC or a PRoC, you may need to add
+@command{kitprog_init_acquire_psoc} or @command{kitprog acquire_psoc} to your
+configuration script.
+
+Note that this driver is for the proprietary KitProg protocol, not the CMSIS-DAP
+mode introduced in firmware 2.14. If the KitProg is in CMSIS-DAP mode, it cannot
+be used with this driver, and must either be used with the cmsis-dap driver or
+switched back to KitProg mode. See the Cypress KitProg User Guide for
+instructions on how to switch KitProg modes.
+
+Known limitations:
+@itemize @bullet
+@item The frequency of SWCLK cannot be configured, and varies between 1.6 MHz
+and 2.7 MHz.
+@item For firmware versions below 2.14, "JTAG to SWD" sequences are replaced by
+"SWD line reset" in the driver. This is for two reasons. First, the KitProg does
+not support sending arbitrary SWD sequences, and only firmware 2.14 and later
+implement both "JTAG to SWD" and "SWD line reset" in firmware. Earlier firmware
+versions only implement "SWD line reset". Second, due to a firmware quirk, an
+SWD sequence must be sent after every target reset in order to re-establish
+communications with the target.
+@item Due in part to the limitation above, KitProg devices with firmware below
+version 2.14 will need to use @command{kitprog_init_acquire_psoc} in order to
+communicate with PSoC 5LP devices. This is because, assuming debug is not
+disabled on the PSoC, the PSoC 5LP needs its JTAG interface switched to SWD
+mode before communication can begin, but prior to firmware 2.14, "JTAG to SWD"
+could only be sent with an acquisition sequence.
+@end itemize
+
+@deffn {Config Command} {kitprog_init_acquire_psoc}
+Indicate that a PSoC acquisition sequence needs to be run during adapter init.
+Please be aware that the acquisition sequence hard-resets the target.
+@end deffn
+
+@deffn {Config Command} {kitprog_serial} serial
+Select a KitProg device by its @var{serial}. If left unspecified, the first
+device detected by OpenOCD will be used.
+@end deffn
+
+@deffn {Command} {kitprog acquire_psoc}
+Run a PSoC acquisition sequence immediately. Typically, this should not be used
+outside of the target-specific configuration scripts since it hard-resets the
+target as a side-effect.
+This is necessary for "reset halt" on some PSoC 4 series devices.
+@end deffn
+
+@deffn {Command} {kitprog info}
+Display various adapter information, such as the hardware version, firmware
+version, and target voltage.
+@end deffn
+@end deffn
+
 @deffn {Interface Driver} {parport}
 Supports PC parallel port bit-banging cables:
 Wigglers, PLD download cable, and more.
@@ -2943,10 +2981,10 @@ This is a driver that supports multiple High Level Adapters.
 This type of adapter does not expose some of the lower level api's
 that OpenOCD would normally use to access the target.
 
-Currently supported adapters include the ST STLINK and TI ICDI.
-STLINK firmware version >= V2.J21.S4 recommended due to issues with earlier
+Currently supported adapters include the ST ST-LINK and TI ICDI.
+ST-LINK firmware version >= V2.J21.S4 recommended due to issues with earlier
 versions of firmware where serial number is reset after first use.  Suggest
-using ST firmware update utility to upgrade STLINK firmware even if current
+using ST firmware update utility to upgrade ST-LINK firmware even if current
 version reported is V2.J21.S4.
 
 @deffn {Config Command} {hla_device_desc} description
@@ -2961,8 +2999,8 @@ Specifies the serial number of the adapter.
 Specifies the adapter layout to use.
 @end deffn
 
-@deffn {Config Command} {hla_vid_pid} vid pid
-The vendor ID and product ID of the device.
+@deffn {Config Command} {hla_vid_pid} [vid pid]+
+Pairs of vendor IDs and product IDs of the device.
 @end deffn
 
 @deffn {Command} {hla_command} command
@@ -3009,6 +3047,39 @@ pinout.
 
 @end deffn
 
+@deffn {Interface Driver} {imx_gpio}
+i.MX SoC is present in many community boards. Wandboard is an example
+of the one which is most popular.
+
+This driver is mostly the same as bcm2835gpio.
+
+See @file{interface/imx-native.cfg} for a sample config and
+pinout.
+
+@end deffn
+
+
+@deffn {Interface Driver} {openjtag}
+OpenJTAG compatible USB adapter.
+This defines some driver-specific commands:
+
+@deffn {Config Command} {openjtag_variant} variant
+Specifies the variant of the OpenJTAG adapter (see @uref{http://www.openjtag.org/}).
+Currently valid @var{variant} values include:
+
+@itemize @minus
+@item @b{standard} Standard variant (default).
+@item @b{cy7c65215} Cypress CY7C65215 Dual Channel USB-Serial Bridge Controller
+(see @uref{http://www.cypress.com/?rID=82870}).
+@end itemize
+@end deffn
+
+@deffn {Config Command} {openjtag_device_desc} string
+The USB device description string of the adapter.
+This value is only used with the standard variant.
+@end deffn
+@end deffn
+
 @section Transport Configuration
 @cindex Transport
 As noted earlier, depending on the version of OpenOCD you use,
@@ -3071,7 +3142,7 @@ Parameters are currently the same as "jtag newtap" but this is
 expected to change.
 @end deffn
 @deffn Command {swd wcr trn prescale}
-Updates TRN (turnaraound delay) and prescaling.fields of the
+Updates TRN (turnaround delay) and prescaling.fields of the
 Wire Control Register (WCR).
 No parameters: displays current settings.
 @end deffn
@@ -3373,7 +3444,7 @@ haven't seen hardware with such a bug, and can be worked around).
 
 @item
 The @var{gates} tokens control flags that describe some cases where
-JTAG may be unvailable during reset.
+JTAG may be unavailable during reset.
 @option{srst_gates_jtag} (default)
 indicates that asserting SRST gates the
 JTAG clock. This means that no communication can happen on JTAG
@@ -3412,7 +3483,7 @@ Possible @var{srst_type} driver modes for the system reset signal (SRST)
 are the default @option{srst_open_drain}, and @option{srst_push_pull}.
 Most boards connect this signal to a pullup, and allow the
 signal to be pulled low by various events including system
-powerup and pressing a reset button.
+power-up and pressing a reset button.
 @end itemize
 @end deffn
 
@@ -3581,7 +3652,7 @@ That declaration order must match the order in the JTAG scan chain,
 both inside a single chip and between them.
 @xref{faqtaporder,,FAQ TAP Order}.
 
-For example, the ST Microsystems STR912 chip has
+For example, the STMicroelectronics STR912 chip has
 three separate TAPs@footnote{See the ST
 document titled: @emph{STR91xFAxxx, Section 3.15 Jtag Interface, Page:
 28/102, Figure 3: JTAG chaining inside the STR91xFA}.
@@ -3726,6 +3797,11 @@ a TAP doesn't conform to the JTAG specification.
 to verify that instruction scans work correctly.
 Such scans are not used by OpenOCD except to verify that
 there seems to be no problems with JTAG scan chain operations.
+@item @code{-ignore-syspwrupack}
+@*Specify this to ignore the CSYSPWRUPACK bit in the ARM DAP DP CTRL/STAT
+register during initial examination and when checking the sticky error bit.
+This bit is normally checked after setting the CSYSPWRUPREQ bit, but some
+devices do not set the ack bit until sometime later.
 @end itemize
 @end deffn
 
@@ -3949,6 +4025,145 @@ with these TAPs, any targets associated with them, and any on-chip
 resources; then a @file{board.cfg} with off-chip resources, clocking,
 and so forth.
 
+@anchor{dapdeclaration}
+@section DAP declaration (ARMv7 and ARMv8 targets)
+@cindex DAP declaration
+
+Since OpenOCD version 0.11.0, the Debug Access Port (DAP) is
+no longer implicitly created together with the target. It must be
+explicitly declared using the @command{dap create} command. For all
+ARMv7 and ARMv8 targets, the option "@option{-dap} @var{dap_name}" has to be used
+instead of "@option{-chain-position} @var{dotted.name}" when the target is created.
+
+The @command{dap} command group supports the following sub-commands:
+
+@deffn Command {dap create} dap_name @option{-chain-position} dotted.name configparams...
+Declare a DAP instance named @var{dap_name} linked to the JTAG tap
+@var{dotted.name}. This also creates a new command (@command{dap_name})
+which is used for various purposes including additional configuration.
+There can only be one DAP for each JTAG tap in the system.
+
+A DAP may also provide optional @var{configparams}:
+
+@itemize @bullet
+@item @code{-ignore-syspwrupack}
+@*Specify this to ignore the CSYSPWRUPACK bit in the ARM DAP DP CTRL/STAT
+register during initial examination and when checking the sticky error bit.
+This bit is normally checked after setting the CSYSPWRUPREQ bit, but some
+devices do not set the ack bit until sometime later.
+@end itemize
+@end deffn
+
+@deffn Command {dap names}
+This command returns a list of all registered DAP objects. It it useful mainly
+for TCL scripting.
+@end deffn
+
+@deffn Command {dap info} [num]
+Displays the ROM table for MEM-AP @var{num},
+defaulting to the currently selected AP of the currently selected target.
+@end deffn
+
+@deffn Command {dap init}
+Initialize all registered DAPs. This command is used internally
+during initialization. It can be issued at any time after the
+initialization, too.
+@end deffn
+
+The following commands exist as subcommands of DAP instances:
+
+@deffn Command {$dap_name info} [num]
+Displays the ROM table for MEM-AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {$dap_name apid} [num]
+Displays ID register from AP @var{num}, defaulting to the currently selected AP.
+@end deffn
+
+@anchor{DAP subcommand apreg}
+@deffn Command {$dap_name apreg} ap_num reg [value]
+Displays content of a register @var{reg} from AP @var{ap_num}
+or set a new value @var{value}.
+@var{reg} is byte address of a word register, 0, 4, 8 ... 0xfc.
+@end deffn
+
+@deffn Command {$dap_name apsel} [num]
+Select AP @var{num}, defaulting to 0.
+@end deffn
+
+@deffn Command {$dap_name dpreg} reg [value]
+Displays the content of DP register at address @var{reg}, or set it to a new
+value @var{value}.
+
+In case of SWD, @var{reg} is a value in packed format
+@math{dpbanksel << 4 | addr} and assumes values 0, 4, 8 ... 0xfc.
+In case of JTAG it only assumes values 0, 4, 8 and 0xc.
+
+@emph{Note:} Consider using @command{poll off} to avoid any disturbing
+background activity by OpenOCD while you are operating at such low-level.
+@end deffn
+
+@deffn Command {$dap_name baseaddr} [num]
+Displays debug base address from MEM-AP @var{num},
+defaulting to the currently selected AP.
+@end deffn
+
+@deffn Command {$dap_name memaccess} [value]
+Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP
+memory bus access [0-255], giving additional time to respond to reads.
+If @var{value} is defined, first assigns that.
+@end deffn
+
+@deffn Command {$dap_name apcsw} [value [mask]]
+Displays or changes CSW bit pattern for MEM-AP transfers.
+
+At the begin of each memory access the CSW pattern is extended (bitwise or-ed)
+by @dfn{Size} and @dfn{AddrInc} bit-fields according to transfer requirements
+and the result is written to the real CSW register. All bits except dynamically
+updated fields @dfn{Size} and @dfn{AddrInc} can be changed by changing
+the CSW pattern. Refer to ARM ADI v5 manual chapter 7.6.4 and appendix A
+for details.
+
+Use @var{value} only syntax if you want to set the new CSW pattern as a whole.
+The example sets HPROT1 bit (required by Cortex-M) and clears the rest of
+the pattern:
+@example
+kx.dap apcsw 0x2000000
+@end example
+
+If @var{mask} is also used, the CSW pattern is changed only on bit positions
+where the mask bit is 1. The following example sets HPROT3 (cacheable)
+and leaves the rest of the pattern intact. It configures memory access through
+DCache on Cortex-M7.
+@example
+set CSW_HPROT3_CACHEABLE [expr 1 << 27]
+samv.dap apcsw $CSW_HPROT3_CACHEABLE $CSW_HPROT3_CACHEABLE
+@end example
+
+Another example clears SPROT bit and leaves the rest of pattern intact:
+@example
+set CSW_SPROT [expr 1 << 30]
+samv.dap apcsw 0 $CSW_SPROT
+@end example
+
+@emph{Note:} If you want to check the real value of CSW, not CSW pattern, use
+@code{xxx.dap apreg 0}. @xref{DAP subcommand apreg,,}.
+
+@emph{Warning:} Some of the CSW bits are vital for working memory transfer.
+If you set a wrong CSW pattern and MEM-AP stopped working, use the following
+example with a proper dap name:
+@example
+xxx.dap apcsw default
+@end example
+@end deffn
+
+@deffn Command {$dap_name ti_be_32_quirks} [@option{enable}]
+Set/get quirks mode for TI TMS450/TMS570 processors
+Disabled by default
+@end deffn
+
+
 @node CPU Configuration
 @chapter CPU Configuration
 @cindex GDB target
@@ -4056,9 +4271,12 @@ At this writing, the supported CPU types are:
 @item @code{cortex_a} -- this is an ARMv7 core with an MMU
 @item @code{cortex_m} -- this is an ARMv7 core, supporting only the
 compact Thumb2 instruction set.
+@item @code{aarch64} -- this is an ARMv8-A core with an MMU
 @item @code{dragonite} -- resembles arm966e
 @item @code{dsp563xx} -- implements Freescale's 24-bit DSP.
 (Support for this is still incomplete.)
+@item @code{esirisc} -- this is an EnSilica eSi-RISC core.
+The current implementation supports eSi-32xx cores.
 @item @code{fa526} -- resembles arm920 (w/o Thumb)
 @item @code{feroceon} -- resembles arm926
 @item @code{mips_m4k} -- a MIPS core
@@ -4085,10 +4303,10 @@ To avoid being confused by the variety of ARM based cores, remember
 this key point: @emph{ARM is a technology licencing company}.
 (See: @url{http://www.arm.com}.)
 The CPU name used by OpenOCD will reflect the CPU design that was
-licenced, not a vendor brand which incorporates that design.
+licensed, not a vendor brand which incorporates that design.
 Name prefixes like arm7, arm9, arm11, and cortex
 reflect design generations;
-while names like ARMv4, ARMv5, ARMv6, and ARMv7
+while names like ARMv4, ARMv5, ARMv6, ARMv7 and ARMv8
 reflect an architecture version implemented by a CPU design.
 
 @anchor{targetconfiguration}
@@ -4114,10 +4332,11 @@ to be much more board-specific.
 The key steps you use might look something like this
 
 @example
-target create MyTarget cortex_m -chain-position mychip.cpu
-$MyTarget configure -work-area-phys 0x08000 -work-area-size 8096
-$MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @}
-$MyTarget configure -event reset-init @{ myboard_reinit @}
+dap create mychip.dap -chain-position mychip.cpu
+target create MyTarget cortex_m -dap mychip.dap
+MyTarget configure -work-area-phys 0x08000 -work-area-size 8096
+MyTarget configure -event reset-deassert-pre @{ jtag_rclk 5 @}
+MyTarget configure -event reset-init @{ myboard_reinit @}
 @end example
 
 You should specify a working area if you can; typically it uses some
@@ -4133,7 +4352,7 @@ On more complex chips, the work area can become
 inaccessible when application code
 (such as an operating system)
 enables or disables the MMU.
-For example, the particular MMU context used to acess the virtual
+For example, the particular MMU context used to access the virtual
 address will probably matter ... and that context might not have
 easy access to other addresses needed.
 At this writing, OpenOCD doesn't have much MMU intelligence.
@@ -4167,7 +4386,8 @@ and in other places the target needs to be identified.
 @command{$target_name configure} are permitted.
 If the target is big-endian, set it here with @code{-endian big}.
 
-You @emph{must} set the @code{-chain-position @var{dotted.name}} here.
+You @emph{must} set the @code{-chain-position @var{dotted.name}} or
+@code{-dap @var{dap_name}} here.
 @end itemize
 @end deffn
 
@@ -4186,6 +4406,10 @@ and changing its endianness.
 @item @code{-chain-position} @var{dotted.name} -- names the TAP
 used to access this target.
 
+@item @code{-dap} @var{dap_name} -- names the DAP used to access
+this target. @xref{dapdeclaration,,DAP declaration}, on how to
+create and manage DAP instances.
+
 @item @code{-endian} (@option{big}|@option{little}) -- specifies
 whether the CPU uses big or little endian conventions
 
@@ -4196,6 +4420,9 @@ Calling this twice with two different event names assigns
 two different handlers, but calling it twice with the
 same event name assigns only one handler.
 
+Current target is temporarily overridden to the event issuing target
+before handler code starts and switched back after handler is done.
+
 @item @code{-work-area-backup} (@option{0}|@option{1}) -- says
 whether the work area gets backed up; by default,
 @emph{it is not backed up.}
@@ -4219,10 +4446,32 @@ The value should normally correspond to a static mapping for the
 
 @anchor{rtostype}
 @item @code{-rtos} @var{rtos_type} -- enable rtos support for target,
-@var{rtos_type} can be one of @option{auto}|@option{eCos}|@option{ThreadX}|
-@option{FreeRTOS}|@option{linux}|@option{ChibiOS}|@option{embKernel}|@option{mqx}
+@var{rtos_type} can be one of @option{auto}, @option{eCos},
+@option{ThreadX}, @option{FreeRTOS}, @option{linux}, @option{ChibiOS},
+@option{embKernel}, @option{mqx}, @option{uCOS-III}, @option{nuttx}
 @xref{gdbrtossupport,,RTOS Support}.
 
+@item @code{-defer-examine} -- skip target examination at initial JTAG chain
+scan and after a reset. A manual call to arp_examine is required to
+access the target for debugging.
+
+@item @code{-ap-num} @var{ap_number} -- set DAP access port for target,
+@var{ap_number} is the numeric index of the DAP AP the target is connected to.
+Use this option with systems where multiple, independent cores are connected
+to separate access ports of the same DAP.
+
+@item @code{-cti} @var{cti_name} -- set Cross-Trigger Interface (CTI) connected
+to the target. Currently, only the @code{aarch64} target makes use of this option,
+where it is a mandatory configuration for the target run control.
+@xref{armcrosstrigger,,ARM Cross-Trigger Interface},
+for instruction on how to declare and control a CTI instance.
+
+@anchor{gdbportoverride}
+@item @code{-gdb-port} @var{number} -- see command @command{gdb_port} for the
+possible values of the parameter @var{number}, which are not only numeric values.
+Use this option to override, for this target only, the global parameter set with
+command @command{gdb_port}.
+@xref{gdb_port,,command gdb_port}.
 @end itemize
 @end deffn
 
@@ -4259,7 +4508,7 @@ omap3530.cpu  mww 0x5555 123
 
 The commands supported by OpenOCD target objects are:
 
-@deffn Command {$target_name arp_examine}
+@deffn Command {$target_name arp_examine} @option{allow-defer}
 @deffnx Command {$target_name arp_halt}
 @deffnx Command {$target_name arp_poll}
 @deffnx Command {$target_name arp_reset}
@@ -4393,16 +4642,14 @@ buttons and events. The two examples below act the same, but one creates
 and invokes a small procedure while the other inlines it.
 
 @example
-proc my_attach_proc @{ @} @{
-    echo "Reset..."
-    reset halt
+proc my_init_proc @{ @} @{
+    echo "Disabling watchdog..."
+    mww 0xfffffd44 0x00008000
 @}
-mychip.cpu configure -event gdb-attach my_attach_proc
-mychip.cpu configure -event gdb-attach @{
-    echo "Reset..."
-    # To make flash probe and gdb load to flash work
-    # we need a reset init.
-    reset init
+mychip.cpu configure -event reset-init my_init_proc
+mychip.cpu configure -event reset-init @{
+    echo "Disabling watchdog..."
+    mww 0xfffffd44 0x00008000
 @}
 @end example
 
@@ -4412,7 +4659,7 @@ The following target events are defined:
 @item @b{debug-halted}
 @* The target has halted for debug reasons (i.e.: breakpoint)
 @item @b{debug-resumed}
-@* The target has resumed (i.e.: gdb said run)
+@* The target has resumed (i.e.: GDB said run)
 @item @b{early-halted}
 @* Occurs early in the halt process
 @item @b{examine-start}
@@ -4420,11 +4667,17 @@ The following target events are defined:
 @item @b{examine-end}
 @* After target examine is called with no errors.
 @item @b{gdb-attach}
-@* When GDB connects. This is before any communication with the target, so this
-can be used to set up the target so it is possible to probe flash. Probing flash
-is necessary during gdb connect if gdb load is to write the image to flash. Another
-use of the flash memory map is for GDB to automatically hardware/software breakpoints
-depending on whether the breakpoint is in RAM or read only memory.
+@* When GDB connects. Issued before any GDB communication with the target
+starts. GDB expects the target is halted during attachment.
+@xref{gdbmeminspect,,GDB as a non-intrusive memory inspector}, how to
+connect GDB to running target.
+The event can be also used to set up the target so it is possible to probe flash.
+Probing flash is necessary during GDB connect if you want to use
+@pxref{programmingusinggdb,,programming using GDB}.
+Another use of the flash memory map is for GDB to automatically choose
+hardware or software breakpoints depending on whether the breakpoint
+is in RAM or read only memory.
+Default is @code{halt}
 @item @b{gdb-detach}
 @* When GDB disconnects
 @item @b{gdb-end}
@@ -4439,13 +4692,13 @@ depending on whether the breakpoint is in RAM or read only memory.
 @item @b{gdb-flash-write-end}
 @* After GDB writes to the flash (default is @code{reset halt})
 @item @b{gdb-start}
-@* Before the target steps, gdb is trying to start/resume the target
+@* Before the target steps, GDB is trying to start/resume the target
 @item @b{halted}
 @* The target has halted
 @item @b{reset-assert-pre}
 @* Issued as part of @command{reset} processing
-after @command{reset_init} was triggered
-but before either SRST alone is re-asserted on the scan chain,
+after @command{reset-start} was triggered
+but before either SRST alone is asserted on the scan chain,
 or @code{reset-assert} is triggered.
 @item @b{reset-assert}
 @* Issued as part of @command{reset} processing
@@ -4469,12 +4722,6 @@ and (if the target is using it) after SRST has been
 released on the scan chain.
 @item @b{reset-end}
 @* Issued as the final step in @command{reset} processing.
-@ignore
-@item @b{reset-halt-post}
-@* Currently not used
-@item @b{reset-halt-pre}
-@* Currently not used
-@end ignore
 @item @b{reset-init}
 @* Used by @b{reset init} command for board-specific initialization.
 This event fires after @emph{reset-deassert-post}.
@@ -4485,18 +4732,12 @@ multiplexing, and so on.
 (You may be able to switch to a fast JTAG clock rate here, after
 the target clocks are fully set up.)
 @item @b{reset-start}
-@* Issued as part of @command{reset} processing
-before @command{reset_init} is called.
+@* Issued as the first step in @command{reset} processing
+before @command{reset-assert-pre} is called.
 
 This is the most robust place to use @command{jtag_rclk}
 or @command{adapter_khz} to switch to a low JTAG clock rate,
 when reset disables PLLs needed to use a fast clock.
-@ignore
-@item @b{reset-wait-pos}
-@* Currently not used
-@item @b{reset-wait-pre}
-@* Currently not used
-@end ignore
 @item @b{resume-start}
 @* Before any target is resumed
 @item @b{resume-end}
@@ -4535,7 +4776,7 @@ bank'', and the GDB flash features be enabled.
 @xref{gdbconfiguration,,GDB Configuration}.
 @end enumerate
 
-Many CPUs have the ablity to ``boot'' from the first flash bank.
+Many CPUs have the ability to ``boot'' from the first flash bank.
 This means that misprogramming that bank can ``brick'' a system,
 so that it can't boot.
 JTAG tools, like OpenOCD, are often then used to ``de-brick'' the
@@ -4612,7 +4853,7 @@ but most don't bother.
 @anchor{flashprogrammingcommands}
 
 One feature distinguishing NOR flash from NAND or serial flash technologies
-is that for read access, it acts exactly like any other addressible memory.
+is that for read access, it acts exactly like any other addressable memory.
 This means you can use normal memory read commands like @command{mdw} or
 @command{dump_image} with it, with no special @command{flash} subcommands.
 @xref{memoryaccess,,Memory access}, and @ref{imageaccess,,Image access}.
@@ -4629,7 +4870,7 @@ chips consume target address space. They implicitly refer to the current
 JTAG target, and map from an address in that target's address space
 back to a flash bank.
 @comment In May 2009, those mappings may fail if any bank associated
-@comment with that target doesn't succesfuly autoprobe ... bug worth fixing?
+@comment with that target doesn't successfully autoprobe ... bug worth fixing?
 A few commands use abstract addressing based on bank and sector numbers,
 and don't depend on searching the current target and its address space.
 Avoid confusing the two command models.
@@ -4682,21 +4923,25 @@ each block, and the specified length must stay within that bank.
 @end deffn
 @comment no current checks for errors if fill blocks touch multiple banks!
 
-@deffn Command {flash write_bank} num filename offset
+@deffn Command {flash write_bank} num filename [offset]
 Write the binary @file{filename} to flash bank @var{num},
-starting at @var{offset} bytes from the beginning of the bank.
+starting at @var{offset} bytes from the beginning of the bank. If @var{offset}
+is omitted, start at the beginning of the flash bank.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
-@deffn Command {flash read_bank} num filename offset length
+@deffn Command {flash read_bank} num filename [offset [length]]
 Read @var{length} bytes from the flash bank @var{num} starting at @var{offset}
-and write the contents to the binary @file{filename}.
+and write the contents to the binary @file{filename}. If @var{offset} is
+omitted, start at the beginning of the flash bank. If @var{length} is omitted,
+read the remaining bytes from the flash bank.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
-@deffn Command {flash verify_bank} num filename offset
+@deffn Command {flash verify_bank} num filename [offset]
 Compare the contents of the binary file @var{filename} with the contents of the
-flash @var{num} starting at @var{offset}. Fails if the contents do not match.
+flash bank @var{num} starting at @var{offset}. If @var{offset} is omitted,
+start at the beginning of the flash bank. Fail if the contents do not match.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
@@ -4746,8 +4991,10 @@ and display that status.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
-@deffn Command {flash info} num
-Print info about flash bank @var{num}
+@deffn Command {flash info} num [sectors]
+Print info about flash bank @var{num}, a list of protection blocks
+and their status. Use @option{sectors} to show a list of sectors instead.
+
 The @var{num} parameter is a value shown by @command{flash banks}.
 This command will first query the hardware, it does not print cached
 and possibly stale information.
@@ -4755,18 +5002,21 @@ and possibly stale information.
 
 @anchor{flashprotect}
 @deffn Command {flash protect} num first last (@option{on}|@option{off})
-Enable (@option{on}) or disable (@option{off}) protection of flash sectors
-in flash bank @var{num}, starting at sector @var{first}
+Enable (@option{on}) or disable (@option{off}) protection of flash blocks
+in flash bank @var{num}, starting at protection block @var{first}
 and continuing up to and including @var{last}.
-Providing a @var{last} sector of @option{last}
+Providing a @var{last} block of @option{last}
 specifies "to the end of the flash bank".
 The @var{num} parameter is a value shown by @command{flash banks}.
+The protection block is usually identical to a flash sector.
+Some devices may utilize a protection block distinct from flash sector.
+See @command{flash info} for a list of protection blocks.
 @end deffn
 
 @deffn Command {flash padded_value} num value
 Sets the default value used for padding any image sections, This should
 normally match the flash bank erased value. If not specified by this
-comamnd or the flash driver then it defaults to 0xff.
+command or the flash driver then it defaults to 0xff.
 @end deffn
 
 @anchor{program}
@@ -4793,12 +5043,14 @@ The @var{virtual} driver defines one mandatory parameters,
 @end itemize
 
 So in the following example addresses 0xbfc00000 and 0x9fc00000 refer to
-the flash bank defined at address 0x1fc00000. Any cmds executed on
-the virtual banks are actually performed on the physical banks.
+the flash bank defined at address 0x1fc00000. Any command executed on
+the virtual banks is actually performed on the physical banks.
 @example
 flash bank $_FLASHNAME pic32mx 0x1fc00000 0 0 0 $_TARGETNAME
-flash bank vbank0 virtual 0xbfc00000 0 0 0 $_TARGETNAME $_FLASHNAME
-flash bank vbank1 virtual 0x9fc00000 0 0 0 $_TARGETNAME $_FLASHNAME
+flash bank vbank0 virtual 0xbfc00000 0 0 0 \
+           $_TARGETNAME $_FLASHNAME
+flash bank vbank1 virtual 0x9fc00000 0 0 0 \
+           $_TARGETNAME $_FLASHNAME
 @end example
 @end deffn
 
@@ -4827,7 +5079,7 @@ like AM29LV010 and similar types.
 @item @var{x16_as_x8} ... when a 16-bit flash is hooked up to an 8-bit bus.
 @item @var{bus_swap} ... when data bytes in a 16-bit flash needs to be swapped.
 @item @var{data_swap} ... when data bytes in a 16-bit flash needs to be
-swapped when writing data values (ie. not CFI commands).
+swapped when writing data values (i.e. not CFI commands).
 @end itemize
 
 To configure two adjacent banks of 16 MBytes each, both sixteen bits (two bytes)
@@ -4864,8 +5116,8 @@ Since signaling between JTAG and SPI is compatible, all that is required for
 a proxy bitstream is to connect TDI-MOSI, TDO-MISO, TCK-CLK and activate
 the flash chip select when the JTAG state machine is in SHIFT-DR. Such
 a bitstream for several Xilinx FPGAs can be found in
-@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires migen
-(@url{http://github.com/m-labs/migen}) and a Xilinx toolchain to build.
+@file{contrib/loaders/flash/fpga/xilinx_bscan_spi.py}. It requires
+@uref{https://github.com/m-labs/migen, migen} and a Xilinx toolchain to build.
 
 This flash bank driver requires a target on a JTAG tap and will access that
 tap directly. Since no support from the target is needed, the target can be a
@@ -4880,18 +5132,62 @@ functionality is available through the @command{flash write_bank},
 @item @var{ir} ... is loaded into the JTAG IR to map the flash as the JTAG DR.
 For the bitstreams generated from @file{xilinx_bscan_spi.py} this is the
 @var{USER1} instruction.
-@item @var{dr_length} ... is the length of the DR register. This will be 1 for
-@file{xilinx_bscan_spi.py} bitstreams and most other cases.
 @end itemize
 
 @example
 target create $_TARGETNAME testee -chain-position $_CHIPNAME.fpga
 set _XILINX_USER1 0x02
-set _DR_LENGTH 1
-flash bank $_FLASHNAME spi 0x0 0 0 0 $_TARGETNAME $_XILINX_USER1 $_DR_LENGTH
+flash bank $_FLASHNAME spi 0x0 0 0 0 \
+           $_TARGETNAME $_XILINX_USER1
+@end example
+@end deffn
+
+@deffn {Flash Driver} xcf
+@cindex Xilinx Platform flash driver
+@cindex xcf
+Xilinx FPGAs can be configured from specialized flash ICs named Platform Flash.
+It is (almost) regular NOR flash with erase sectors, program pages, etc. The
+only difference is special registers controlling its FPGA specific behavior.
+They must be properly configured for successful FPGA loading using
+additional @var{xcf} driver command:
+
+@deffn Command {xcf ccb} <bank_id>
+command accepts additional parameters:
+@itemize
+@item @var{external|internal} ... selects clock source.
+@item @var{serial|parallel} ... selects serial or parallel data bus mode.
+@item @var{slave|master} ... selects slave of master mode for flash device.
+@item @var{40|20} ... selects clock frequency in MHz for internal clock
+in master mode.
+@end itemize
+@example
+xcf ccb 0 external parallel slave 40
+@end example
+All of them must be specified even if clock frequency is pointless
+in slave mode. If only bank id specified than command prints current
+CCB register value. Note: there is no need to write this register
+every time you erase/program data sectors because it stores in
+dedicated sector.
+@end deffn
+
+@deffn Command {xcf configure} <bank_id>
+Initiates FPGA loading procedure. Useful if your board has no "configure"
+button.
+@example
+xcf configure 0
 @end example
 @end deffn
 
+Additional driver notes:
+@itemize
+@item Only single revision supported.
+@item Driver automatically detects need of bit reverse, but
+only "bin" (raw binary, do not confuse it with "bit") and "mcs"
+(Intel hex) file types supported.
+@item For additional info check xapp972.pdf and ug380.pdf.
+@end itemize
+@end deffn
+
 @deffn {Flash Driver} lpcspifi
 @cindex NXP SPI Flash Interface
 @cindex SPIFI
@@ -4920,7 +5216,7 @@ flash bank $_FLASHNAME lpcspifi 0x14000000 0 0 0 $_TARGETNAME
 @cindex STMicroelectronics Serial Memory Interface
 @cindex SMI
 @cindex stmsmi
-Some devices form STMicroelectronics (e.g. STR75x MCU family,
+Some devices from STMicroelectronics (e.g. STR75x MCU family,
 SPEAr MPU family) include a proprietary
 ``Serial Memory Interface'' (SMI) controller able to drive external
 SPI flash devices.
@@ -4957,6 +5253,45 @@ flash bank $_FLASHNAME mrvlqspi 0x0 0 0 0 $_TARGETNAME 0x46010000
 
 @end deffn
 
+@deffn {Flash Driver} ath79
+@cindex Atheros ath79 SPI driver
+@cindex ath79
+Members of ATH79 SoC family from Atheros include a SPI interface with 3
+chip selects.
+On reset a SPI flash connected to the first chip select (CS0) is made
+directly read-accessible in the CPU address space (up to 16MBytes)
+and is usually used to store the bootloader and operating system.
+Normal OpenOCD commands like @command{mdw} can be used to display
+the flash content while it is in memory-mapped mode (only the first
+4MBytes are accessible without additional configuration on reset).
+
+The setup command only requires the @var{base} parameter in order
+to identify the memory bank. The actual value for the base address
+is not otherwise used by the driver. However the mapping is passed
+to gdb. Thus for the memory mapped flash (chipselect CS0) the base
+address should be the actual memory mapped base address. For unmapped
+chipselects (CS1 and CS2) care should be taken to use a base address
+that does not overlap with real memory regions.
+Additional information, like flash size, are detected automatically.
+An optional additional parameter sets the chipselect for the bank,
+with the default CS0.
+CS1 and CS2 require additional GPIO setup before they can be used
+since the alternate function must be enabled on the GPIO pin
+CS1/CS2 is routed to on the given SoC.
+
+@example
+flash bank $_FLASHNAME ath79 0 0 0 0 $_TARGETNAME
+
+# When using multiple chipselects the base should be different for each,
+# otherwise the write_image command is not able to distinguish the
+# banks.
+flash bank flash0 ath79 0x00000000 0 0 0 $_TARGETNAME cs0
+flash bank flash1 ath79 0x10000000 0 0 0 $_TARGETNAME cs1
+flash bank flash2 ath79 0x20000000 0 0 0 $_TARGETNAME cs2
+@end example
+
+@end deffn
+
 @subsection Internal Flash (Microcontrollers)
 
 @deffn {Flash Driver} aduc702x
@@ -4981,7 +5316,7 @@ with the target using SWD.
 
 The @var{ambiqmicro} driver reads the Chip Information Register detect
 the device class of the MCU.
-The Flash and Sram sizes directly follow device class, and are used
+The Flash and SRAM sizes directly follow device class, and are used
 to set up the flash banks.
 If this fails, the driver will use default values set to the minimum
 sizes of an Apollo chip.
@@ -4994,7 +5329,8 @@ and the second bank starts after the first.
 # Flash bank 0
 flash bank $_FLASHNAME ambiqmicro 0 0x00040000 0 0 $_TARGETNAME
 # Flash bank 1 - same size as bank0, starts after bank 0.
-flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 $_TARGETNAME
+flash bank $_FLASHNAME ambiqmicro 0x00040000 0x00040000 0 0 \
+           $_TARGETNAME
 @end example
 
 Flash is programmed using custom entry points into the bootloader.
@@ -5011,8 +5347,8 @@ Erase device pages.
 @end deffn
 @deffn Command {ambiqmicro program_otp} <bank> <offset> <count>
 Program OTP is a one time operation to create write protected flash.
-The user writes sectors to sram starting at 0x10000010.
-Program OTP will write these sectors from sram to flash, and write protect
+The user writes sectors to SRAM starting at 0x10000010.
+Program OTP will write these sectors from SRAM to flash, and write protect
 the flash.
 @end deffn
 @end deffn
@@ -5022,7 +5358,7 @@ the flash.
 @cindex at91samd
 All members of the ATSAMD, ATSAMR, ATSAML and ATSAMC microcontroller
 families from Atmel include internal flash and use ARM's Cortex-M0+ core.
-This driver uses the same cmd names/syntax as @xref{at91sam3}.
+This driver uses the same command names/syntax as @xref{at91sam3}.
 
 @deffn Command {at91samd chip-erase}
 Issues a complete Flash erase via the Device Service Unit (DSU). This can be
@@ -5047,7 +5383,7 @@ Shows or sets the EEPROM emulation size configuration, stored in the User Row
 of the Flash. When setting, the EEPROM size must be specified in bytes and it
 must be one of the permitted sizes according to the datasheet. Settings are
 written immediately but only take effect on MCU reset. EEPROM emulation
-requires additional firmware support and the minumum EEPROM size may not be
+requires additional firmware support and the minimum EEPROM size may not be
 the same as the minimum that the hardware supports. Set the EEPROM size to 0
 in order to disable this feature.
 
@@ -5076,6 +5412,26 @@ and prepares reset vector catch in case of reset halt.
 Command is used internally in event event reset-deassert-post.
 @end deffn
 
+@deffn Command {at91samd nvmuserrow}
+Writes or reads the entire 64 bit wide NVM user row register which is located at
+0x804000. This register includes various fuses lock-bits and factory calibration
+data. Reading the register is done by invoking this command without any
+arguments. Writing is possible by giving 1 or 2 hex values. The first argument
+is the register value to be written and the second one is an optional changemask.
+Every bit which value in changemask is 0 will stay unchanged. The lock- and
+reserved-bits are masked out and cannot be changed.
+
+@example
+# Read user row
+>at91samd nvmuserrow
+NVMUSERROW: 0xFFFFFC5DD8E0C788
+# Write 0xFFFFFC5DD8E0C788 to user row
+>at91samd nvmuserrow 0xFFFFFC5DD8E0C788
+# Write 0x12300 to user row but leave other bits and low byte unchanged
+>at91samd nvmuserrow 0x12345 0xFFF00
+@end example
+@end deffn
+
 @end deffn
 
 @anchor{at91sam3}
@@ -5087,7 +5443,7 @@ currently (6/22/09) recognizes the AT91SAM3U[1/2/4][C/E] chips. Note
 that the driver was orginaly developed and tested using the
 AT91SAM3U4E, using a SAM3U-EK eval board. Support for other chips in
 the family was cribbed from the data sheet. @emph{Note to future
-readers/updaters: Please remove this worrysome comment after other
+readers/updaters: Please remove this worrisome comment after other
 chips are confirmed.}
 
 The AT91SAM3U4[E/C] (256K) chips have two flash banks; most other chips
@@ -5147,14 +5503,14 @@ This command shows/sets the slow clock frequency used in the
 @cindex at91sam4
 All members of the AT91SAM4 microcontroller family from
 Atmel include internal flash and use ARM's Cortex-M4 core.
-This driver uses the same cmd names/syntax as @xref{at91sam3}.
+This driver uses the same command names/syntax as @xref{at91sam3}.
 @end deffn
 
 @deffn {Flash Driver} at91sam4l
 @cindex at91sam4l
 All members of the AT91SAM4L microcontroller family from
 Atmel include internal flash and use ARM's Cortex-M4 core.
-This driver uses the same cmd names/syntax as @xref{at91sam3}.
+This driver uses the same command names/syntax as @xref{at91sam3}.
 
 The AT91SAM4L driver adds some additional commands:
 @deffn Command {at91sam4l smap_reset_deassert}
@@ -5168,7 +5524,7 @@ Command is used internally in event event reset-deassert-post.
 @cindex atsamv
 All members of the ATSAMV, ATSAMS, and ATSAME families from
 Atmel include internal flash and use ARM's Cortex-M7 core.
-This driver uses the same cmd names/syntax as @xref{at91sam3}.
+This driver uses the same command names/syntax as @xref{at91sam3}.
 @end deffn
 
 @deffn {Flash Driver} at91sam7
@@ -5224,6 +5580,55 @@ The AVR 8-bit microcontrollers from Atmel integrate flash memory.
 @comment - defines mass_erase ... pointless given flash_erase_address
 @end deffn
 
+@deffn {Flash Driver} bluenrg-x
+STMicroelectronics BlueNRG-1 and BlueNRG-2 Bluetooth low energy wireless system-on-chip. They include ARM Cortex-M0 core and internal flash memory.
+The driver automatically recognizes these chips using
+the chip identification registers, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME bluenrg-x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that when users ask to erase all the sectors of the flash, a mass erase command is used which is faster than erasing
+each single sector one by one.
+
+@example
+flash erase_sector 0 0 79 # It will perform a mass erase on BlueNRG-1
+@end example
+
+@example
+flash erase_sector 0 0 127 # It will perform a mass erase on BlueNRG-2
+@end example
+
+Triggering a mass erase is also useful when users want to disable readout protection.
+@end deffn
+
+@deffn {Flash Driver} cc26xx
+All versions of the SimpleLink CC13xx and CC26xx microcontrollers from Texas
+Instruments include internal flash. The cc26xx flash driver supports both the
+CC13xx and CC26xx family of devices. The driver automatically recognizes the
+specific version's flash parameters and autoconfigures itself. Flash bank 0
+starts at address 0.
+
+@example
+flash bank $_FLASHNAME cc26xx 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} cc3220sf
+The CC3220SF version of the SimpleLink CC32xx microcontrollers from Texas
+Instruments includes 1MB of internal flash. The cc3220sf flash driver only
+supports the internal flash. The serial flash on SimpleLink boards is
+programmed via the bootloader over a UART connection. Security features of
+the CC3220SF may erase the internal flash during power on reset. Refer to
+documentation at @url{www.ti.com/cc3220sf} for details on security features
+and programming the serial flash.
+
+@example
+flash bank $_FLASHNAME cc3220sf 0 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
 @deffn {Flash Driver} efm32
 All members of the EFM32 microcontroller family from Energy Micro include
 internal flash and use ARM Cortex-M3 cores. The driver automatically recognizes
@@ -5244,6 +5649,27 @@ Note that in order for this command to take effect, the target needs to be reset
 supported.}
 @end deffn
 
+@deffn {Flash Driver} esirisc
+Members of the eSi-RISC family may optionally include internal flash programmed
+via the eSi-TSMC Flash interface. Additional parameters are required to
+configure the driver: @option{cfg_address} is the base address of the
+configuration register interface, @option{clock_hz} is the expected clock
+frequency, and @option{wait_states} is the number of configured read wait states.
+
+@example
+flash bank $_FLASHNAME esirisc base_address size_bytes 0 0 $_TARGETNAME cfg_address clock_hz wait_states
+@end example
+
+@deffn Command {esirisc_flash mass_erase} (bank_id)
+Erases all pages in data memory for the bank identified by @option{bank_id}.
+@end deffn
+
+@deffn Command {esirisc_flash ref_erase} (bank_id)
+Erases the reference cell for the bank identified by @option{bank_id}. This is
+an uncommon operation.
+@end deffn
+@end deffn
+
 @deffn {Flash Driver} fm3
 All members of the FM3 microcontroller family from Fujitsu
 include internal flash and use ARM Cortex-M3 cores.
@@ -5268,8 +5694,10 @@ with @code{x} treated as wildcard and otherwise case (and any trailing
 characters) ignored.
 
 @example
-flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 $_TARGETNAME S6E2CCAJ0A
-flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 $_TARGETNAME S6E2CCAJ0A
+flash bank $@{_FLASHNAME@}0 fm4 0x00000000 0 0 0 \
+           $_TARGETNAME S6E2CCAJ0A
+flash bank $@{_FLASHNAME@}1 fm4 0x00100000 0 0 0 \
+           $_TARGETNAME S6E2CCAJ0A
 @end example
 @emph{The current implementation is incomplete. Protection is not supported,
 nor is Chip Erase (only Sector Erase is implemented).}
@@ -5277,15 +5705,45 @@ nor is Chip Erase (only Sector Erase is implemented).}
 
 @deffn {Flash Driver} kinetis
 @cindex kinetis
-Kx and KLx members of the Kinetis microcontroller family from Freescale include
+Kx, KLx, KVx and KE1x members of the Kinetis microcontroller family
+from NXP (former Freescale) include
 internal flash and use ARM Cortex-M0+ or M4 cores. The driver automatically
 recognizes flash size and a number of flash banks (1-4) using the chip
 identification register, and autoconfigures itself.
+Use kinetis_ke driver for KE0x and KEAx devices.
+
+The @var{kinetis} driver defines option:
+@itemize
+@item -sim-base @var{addr} ... base of System Integration Module where chip identification resides. Driver tries two known locations if option is omitted.
+@end itemize
 
 @example
 flash bank $_FLASHNAME kinetis 0 0 0 0 $_TARGETNAME
 @end example
 
+@deffn Command {kinetis create_banks}
+Configuration command enables automatic creation of additional flash banks
+based on real flash layout of device. Banks are created during device probe.
+Use 'flash probe 0' to force probe.
+@end deffn
+
+@deffn Command {kinetis fcf_source} [protection|write]
+Select what source is used when writing to a Flash Configuration Field.
+@option{protection} mode builds FCF content from protection bits previously
+set by 'flash protect' command.
+This mode is default. MCU is protected from unwanted locking by immediate
+writing FCF after erase of relevant sector.
+@option{write} mode enables direct write to FCF.
+Protection cannot be set by 'flash protect' command. FCF is written along
+with the rest of a flash image.
+@emph{BEWARE: Incorrect flash configuration may permanently lock the device!}
+@end deffn
+
+@deffn Command {kinetis fopt} [num]
+Set value to write to FOPT byte of Flash Configuration Field.
+Used in kinetis 'fcf_source protection' mode only.
+@end deffn
+
 @deffn Command {kinetis mdm check_security}
 Checks status of device security lock. Used internally in examine-end event.
 @end deffn
@@ -5345,10 +5803,11 @@ Command disables watchdog timer.
 
 @deffn {Flash Driver} kinetis_ke
 @cindex kinetis_ke
-KE members of the Kinetis microcontroller family from Freescale include
+KE0x and KEAx members of the Kinetis microcontroller family from NXP include
 internal flash and use ARM Cortex-M0+. The driver automatically recognizes
-the KE family and sub-family using the chip identification register, and
+the KE0x sub-family using the chip identification register, and
 autoconfigures itself.
+Use kinetis (not kinetis_ke) driver for KE1x devices.
 
 @example
 flash bank $_FLASHNAME kinetis_ke 0 0 0 0 $_TARGETNAME
@@ -5496,7 +5955,7 @@ lpc2900 read_custom 0 /path_to/customer_info.bin
 
 The index sector of the flash is a @emph{write-only} sector. It cannot be
 erased! In order to guard against unintentional write access, all following
-commands need to be preceeded by a successful call to the @code{password}
+commands need to be preceded by a successful call to the @code{password}
 command:
 
 @deffn Command {lpc2900 password} bank password
@@ -5588,6 +6047,41 @@ if @{ [info exists IMEMORY] && [string equal $IMEMORY true] @} @{
 @end example
 @end deffn
 
+@deffn {Flash Driver} msp432
+All versions of the SimpleLink MSP432 microcontrollers from Texas
+Instruments include internal flash. The msp432 flash driver automatically
+recognizes the specific version's flash parameters and autoconfigures itself.
+Main program flash (starting at address 0) is flash bank 0. Information flash
+region on MSP432P4 versions (starting at address 0x200000) is flash bank 1.
+
+@example
+flash bank $_FLASHNAME msp432 0 0 0 0 $_TARGETNAME
+@end example
+
+@deffn Command {msp432 mass_erase} [main|all]
+Performs a complete erase of flash. By default, @command{mass_erase} will erase
+only the main program flash.
+
+On MSP432P4 versions, using @command{mass_erase all} will erase both the
+main program and information flash regions. To also erase the BSL in information
+flash, the user must first use the @command{bsl} command.
+@end deffn
+
+@deffn Command {msp432 bsl} [unlock|lock]
+On MSP432P4 versions, @command{bsl} unlocks and locks the bootstrap loader (BSL)
+region in information flash so that flash commands can erase or write the BSL.
+Leave the BSL locked to prevent accidentally corrupting the bootstrap loader.
+
+To erase and program the BSL:
+@example
+msp432 bsl unlock
+flash erase_address 0x202000 0x2000
+flash write_image bsl.bin 0x202000
+msp432 bsl lock
+@end example
+@end deffn
+@end deffn
+
 @deffn {Flash Driver} niietcm4
 This drivers handles the integrated NOR flash on NIIET Cortex-M4
 based controllers. Flash size and sector layout are auto-configured by the driver.
@@ -5598,7 +6092,7 @@ Full erase, single and block writes are supported for both main and info regions
 There is additional not memory mapped flash called "Userflash", which
 also have division into regions: main and info.
 Purpose of userflash - to store system and user settings.
-Driver has special commands to perform operations with this memmory.
+Driver has special commands to perform operations with this memory.
 
 @example
 flash bank $_FLASHNAME niietcm4 0 0 0 0 $_TARGETNAME
@@ -5648,17 +6142,19 @@ Show information about flash driver.
 
 @end deffn
 
-@deffn {Flash Driver} nrf51
+@deffn {Flash Driver} nrf5
 All members of the nRF51 microcontroller families from Nordic Semiconductor
 include internal flash and use ARM Cortex-M0 core.
+Also, the nRF52832 microcontroller from Nordic Semiconductor, which include
+internal flash and use an ARM Cortex-M4F core.
 
 @example
-flash bank $_FLASHNAME nrf51 0 0x00000000 0 0 $_TARGETNAME
+flash bank $_FLASHNAME nrf5 0 0x00000000 0 0 $_TARGETNAME
 @end example
 
-Some nrf51-specific commands are defined:
+Some nrf5-specific commands are defined:
 
-@deffn Command {nrf51 mass_erase}
+@deffn Command {nrf5 mass_erase}
 Erases the contents of the code memory and user information
 configuration registers as well. It must be noted that this command
 works only for chips that do not have factory pre-programmed region 0
@@ -5739,12 +6235,130 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 @end deffn
 
-@deffn {Flash Driver} sim3x
+@deffn {Flash Driver} psoc5lp
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal program flash and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself,
+apart from the base address.
+
+@example
+flash bank $_FLASHNAME psoc5lp 0x00000000 0 0 0 $_TARGETNAME
+@end example
+
+@b{Note:} PSoC 5LP chips can be configured to have ECC enabled or disabled.
+@quotation Attention
+If flash operations are performed in ECC-disabled mode, they will also affect
+the ECC flash region. Erasing a 16k flash sector in the 0x00000000 area will
+then also erase the corresponding 2k data bytes in the 0x48000000 area.
+Writing to the ECC data bytes in ECC-disabled mode is not implemented.
+@end quotation
+
+Commands defined in the @var{psoc5lp} driver:
+
+@deffn Command {psoc5lp mass_erase}
+Erases all flash data and ECC/configuration bytes, all flash protection rows,
+and all row latches in all flash arrays on the device.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} psoc5lp_eeprom
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal EEPROM and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself,
+apart from the base address.
+
+@example
+flash bank $_CHIPNAME.eeprom psoc5lp_eeprom 0x40008000 0 0 0 $_TARGETNAME
+@end example
+@end deffn
+
+@deffn {Flash Driver} psoc5lp_nvl
+All members of the PSoC 5LP microcontroller family from Cypress
+include internal Nonvolatile Latches and use ARM Cortex-M3 cores.
+The driver probes for a number of these chips and autoconfigures itself.
+
+@example
+flash bank $_CHIPNAME.nvl psoc5lp_nvl 0 0 0 0 $_TARGETNAME
+@end example
+
+PSoC 5LP chips have multiple NV Latches:
+
+@itemize
+@item Device Configuration NV Latch - 4 bytes
+@item Write Once (WO) NV Latch - 4 bytes
+@end itemize
+
+@b{Note:} This driver only implements the Device Configuration NVL.
+
+The @var{psoc5lp} driver reads the ECC mode from Device Configuration NVL.
+@quotation Attention
+Switching ECC mode via write to Device Configuration NVL will require a reset
+after successful write.
+@end quotation
+@end deffn
+
+@deffn {Flash Driver} psoc6
+Supports PSoC6 (CY8C6xxx) family of Cypress microcontrollers.
+PSoC6 is a dual-core device with CM0+ and CM4 cores. Both cores share
+the same Flash/RAM/MMIO address space.
+
+Flash in PSoC6 is split into three regions:
+@itemize @bullet
+@item Main Flash - this is the main storage for user application.
+Total size varies among devices, sector size: 256 kBytes, row size:
+512 bytes. Supports erase operation on individual rows.
+@item Work Flash - intended to be used as storage for user data
+(e.g. EEPROM emulation). Total size: 32 KBytes, sector size: 32 KBytes,
+row size: 512 bytes.
+@item Supervisory Flash - special region which contains device-specific
+service data. This region does not support erase operation. Only few rows can
+be programmed by the user, most of the rows are read only. Programming
+operation will erase row automatically.
+@end itemize
+
+All three flash regions are supported by the driver. Flash geometry is detected
+automatically by parsing data in SPCIF_GEOMETRY register.
+
+PSoC6 is equipped with NOR Flash so erased Flash reads as 0x00.
+
+@example
+flash bank main_flash_cm0 psoc6 0x10000000 0 0 0 $@{TARGET@}.cm0
+flash bank work_flash_cm0 psoc6 0x14000000 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_user_cm0 psoc6 0x16000800 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_nar_cm0 psoc6 0x16001A00 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_key_cm0 psoc6 0x16005A00 0 0 0 $@{TARGET@}.cm0
+flash bank super_flash_toc2_cm0 psoc6 0x16007C00 0 0 0 $@{TARGET@}.cm0
+
+flash bank main_flash_cm4 psoc6 0x10000000 0 0 0 $@{TARGET@}.cm4
+flash bank work_flash_cm4 psoc6 0x14000000 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_user_cm4 psoc6 0x16000800 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_nar_cm4 psoc6 0x16001A00 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_key_cm4 psoc6 0x16005A00 0 0 0 $@{TARGET@}.cm4
+flash bank super_flash_toc2_cm4 psoc6 0x16007C00 0 0 0 $@{TARGET@}.cm4
+@end example
+
+psoc6-specific commands
+@deffn Command {psoc6 reset_halt}
+Command can be used to simulate broken Vector Catch from gdbinit or tcl scripts.
+When invoked for CM0+ target, it will set break point at application entry point
+and issue SYSRESETREQ. This will reset both cores and all peripherals. CM0+ will
+reset CM4 during boot anyway so this is safe. On CM4 target, VECTRESET is used
+instead of SYSRESETREQ to avoid unwanted reset of CM0+;
+@end deffn
+
+@deffn Command {psoc6 mass_erase} num
+Erases the contents given flash bank. The @var{num} parameter is a value shown
+by @command{flash banks}.
+Note: only Main and Work flash regions support Erase operation.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} sim3x
 All members of the SiM3 microcontroller family from Silicon Laboratories
 include internal flash and use ARM Cortex-M3 cores. It supports both JTAG
 and SWD interface.
 The @var{sim3x} driver tries to probe the device to auto detect the MCU.
-If this failes, it will use the @var{size} parameter as the size of flash bank.
+If this fails, it will use the @var{size} parameter as the size of flash bank.
 
 @example
 flash bank $_FLASHNAME sim3x 0 $_CPUROMSIZE 0 0 $_TARGETNAME
@@ -5767,9 +6381,6 @@ All members of the Stellaris LM3Sxxx, LM4x and Tiva C microcontroller
 families from Texas Instruments include internal flash. The driver
 automatically recognizes a number of these chips using the chip
 identification register, and autoconfigures itself.
-@footnote{Currently there is a @command{stellaris mass_erase} command.
-That seems pointless since the same effect can be had using the
-standard @command{flash erase_address} command.}
 
 @example
 flash bank $_FLASHNAME stellaris 0 0 0 0 $_TARGETNAME
@@ -5815,25 +6426,27 @@ as per the following example.
 flash bank $_FLASHNAME stm32f1x 0x08080000 0 0 0 $_TARGETNAME
 @end example
 
-Some stm32f1x-specific commands
-@footnote{Currently there is a @command{stm32f1x mass_erase} command.
-That seems pointless since the same effect can be had using the
-standard @command{flash erase_address} command.}
-are defined:
+Some stm32f1x-specific commands are defined:
 
 @deffn Command {stm32f1x lock} num
-Locks the entire stm32 device.
+Locks the entire stm32 device against reading.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @deffn Command {stm32f1x unlock} num
-Unlocks the entire stm32 device.
+Unlocks the entire stm32 device for reading. This command will cause
+a mass erase of the entire stm32 device if previously locked.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32f1x mass_erase} num
+Mass erases the entire stm32 device.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @deffn Command {stm32f1x options_read} num
-Read and display the stm32 option bytes written by
-the @command{stm32f1x options_write} command.
+Reads and displays active stm32 option bytes loaded during POR
+or upon executing the @command{stm32f1x options_load} command.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
@@ -5841,6 +6454,13 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 Writes the stm32 option byte with the specified values.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
+
+@deffn Command {stm32f1x options_load} num
+Generates a special kind of reset to re-load the stm32 option bytes written
+by the @command{stm32f1x options_write} or @command{flash protect} commands
+without having to power cycle the target. Not applicable to stm32f1x devices.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
 @end deffn
 
 @deffn {Flash Driver} stm32f2x
@@ -5849,6 +6469,10 @@ include internal flash and use ARM Cortex-M3/M4/M7 cores.
 The driver automatically recognizes a number of these chips using
 the chip identification register, and autoconfigures itself.
 
+@example
+flash bank $_FLASHNAME stm32f2x 0 0 0 0 $_TARGETNAME
+@end example
+
 Note that some devices have been found that have a flash size register that contains
 an invalid value, to workaround this issue you can override the probed value used by
 the flash driver.
@@ -5869,17 +6493,63 @@ Unlocks the entire stm32 device.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
+@deffn Command {stm32f2x mass_erase} num
+Mass erases the entire stm32f2x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
 @deffn Command {stm32f2x options_read} num
-Reads and displays user options and (where implemented) boot_addr0 and boot_addr1.
+Reads and displays user options and (where implemented) boot_addr0, boot_addr1, optcr2.
 The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 
 @deffn Command {stm32f2x options_write} num user_options boot_addr0 boot_addr1
 Writes user options and (where implemented) boot_addr0 and boot_addr1 in raw format.
 Warning: The meaning of the various bits depends on the device, always check datasheet!
-The @var{num} parameter is a value shown by @command{flash banks}, user_options a
-12 bit value, consisting of bits 31-28 and 7-0 of FLASH_OPTCR, boot_addr0 and boot_addr1
-two halfwords (of FLASH_OPTCR1).
+The @var{num} parameter is a value shown by @command{flash banks}, @var{user_options} a
+12 bit value, consisting of bits 31-28 and 7-0 of FLASH_OPTCR, @var{boot_addr0} and
+@var{boot_addr1} two halfwords (of FLASH_OPTCR1).
+@end deffn
+
+@deffn Command {stm32f2x optcr2_write} num optcr2
+Writes FLASH_OPTCR2 options. Warning: Clearing PCROPi bits requires a full mass erase!
+The @var{num} parameter is a value shown by @command{flash banks}, @var{optcr2} a 32-bit word.
+@end deffn
+@end deffn
+
+@deffn {Flash Driver} stm32h7x
+All members of the STM32H7 microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M7 core.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME stm32h7x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that some devices have been found that have a flash size register that contains
+an invalid value, to workaround this issue you can override the probed value used by
+the flash driver.
+
+@example
+flash bank $_FLASHNAME stm32h7x 0 0x20000 0 0 $_TARGETNAME
+@end example
+
+Some stm32h7x-specific commands are defined:
+
+@deffn Command {stm32h7x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32h7x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32h7x mass_erase} num
+Mass erases the entire stm32h7x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 @end deffn
 
@@ -5889,6 +6559,10 @@ include internal flash and use ARM Cortex-M3 and Cortex-M0+ cores.
 The driver automatically recognizes a number of these chips using
 the chip identification register, and autoconfigures itself.
 
+@example
+flash bank $_FLASHNAME stm32lx 0 0 0 0 $_TARGETNAME
+@end example
+
 Note that some devices have been found that have a flash size register that contains
 an invalid value, to workaround this issue you can override the probed value used by
 the flash driver. If you use 0 as the bank base address, it tells the
@@ -5901,6 +6575,16 @@ flash bank $_FLASHNAME stm32lx 0x08000000 0x20000 0 0 $_TARGETNAME
 
 Some stm32lx-specific commands are defined:
 
+@deffn Command {stm32lx lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32lx unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
 @deffn Command {stm32lx mass_erase} num
 Mass erases the entire stm32lx device (all flash banks and EEPROM
 data). This is the only way to unlock a protected flash (unless RDP
@@ -5909,6 +6593,78 @@ The @var{num} parameter is a value shown by @command{flash banks}.
 @end deffn
 @end deffn
 
+@deffn {Flash Driver} stm32l4x
+All members of the STM32L4 microcontroller families from ST Microelectronics
+include internal flash and use ARM Cortex-M4 cores.
+The driver automatically recognizes a number of these chips using
+the chip identification register, and autoconfigures itself.
+
+@example
+flash bank $_FLASHNAME stm32l4x 0 0 0 0 $_TARGETNAME
+@end example
+
+Note that some devices have been found that have a flash size register that contains
+an invalid value, to workaround this issue you can override the probed value used by
+the flash driver.
+
+@example
+flash bank $_FLASHNAME stm32l4x 0x08000000 0x40000 0 0 $_TARGETNAME
+@end example
+
+Some stm32l4x-specific commands are defined:
+
+@deffn Command {stm32l4x lock} num
+Locks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32l4x unlock} num
+Unlocks the entire stm32 device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32l4x mass_erase} num
+Mass erases the entire stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+
+@deffn Command {stm32l4x option_read} num reg_offset
+Reads an option byte register from the stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}, @var{reg_offset}
+is the register offset of the Option byte to read.
+
+For example to read the FLASH_OPTR register:
+@example
+stm32l4x option_read 0 0x20
+# Option Register: <0x40022020> = 0xffeff8aa
+@end example
+
+The above example will read out the FLASH_OPTR register which contains the RDP
+option byte, Watchdog configuration, BOR level etc.
+@end deffn
+
+@deffn Command {stm32l4x option_write} num reg_offset reg_mask
+Write an option byte register of the stm32l4x device.
+The @var{num} parameter is a value shown by @command{flash banks}, @var{reg_offset}
+is the register offset of the Option byte to write, and @var{reg_mask} is the mask
+to apply when writing the register (only bits with a '1' will be touched).
+
+For example to write the WRP1AR option bytes:
+@example
+stm32l4x option_write 0 0x28 0x00FF0000 0x00FF00FF
+@end example
+
+The above example will write the WRP1AR option register configuring the Write protection
+Area A for bank 1. The above example set WRP1AR_END=255, WRP1AR_START=0.
+This will effectively write protect all sectors in flash bank 1.
+@end deffn
+
+@deffn Command {stm32l4x option_load} num
+Forces a re-load of the option byte registers. Will cause a reset of the device.
+The @var{num} parameter is a value shown by @command{flash banks}.
+@end deffn
+@end deffn
+
 @deffn {Flash Driver} str7x
 All members of the STR7 microcontroller family from ST Microelectronics
 include internal flash and use ARM7TDMI cores.
@@ -5968,7 +6724,7 @@ Standard driver @option{str9x} programmed via the str9 core. Normally used for
 flash programming as it is faster than the @option{str9xpec} driver.
 @item
 Direct programming @option{str9xpec} using the flash controller. This is an
-ISC compilant (IEEE 1532) tap connected in series with the str9 core. The str9
+ISC compliant (IEEE 1532) tap connected in series with the str9 core. The str9
 core does not need to be running to program using this flash driver. Typical use
 for this driver is locking/unlocking the target and programming the option bytes.
 @end enumerate
@@ -6121,7 +6877,7 @@ geared for newer MLC chips may correct 4 or more errors for
 every 512 bytes of data.
 
 You will need to make sure that any data you write using
-OpenOCD includes the apppropriate kind of ECC. For example,
+OpenOCD includes the appropriate kind of ECC. For example,
 that may mean passing the @code{oob_softecc} flag when
 writing NAND data, or ensuring that the correct hardware
 ECC mode is used.
@@ -6294,7 +7050,7 @@ if @command{nand raw_access} was used to disable hardware ECC.
 @itemize @bullet
 @item no oob_* parameter
 @*File has only page data, which is written.
-If raw acccess is in use, the OOB area will not be written.
+If raw access is in use, the OOB area will not be written.
 Otherwise, if the underlying NAND controller driver has
 a @code{write_page} routine, that routine may write the OOB
 with hardware-computed ECC data.
@@ -6347,7 +7103,7 @@ can be compared against the contents produced from @command{nand dump}.
 
 @b{NOTE:} This will not work when the underlying NAND controller
 driver's @code{write_page} routine must update the OOB with a
-hardward-computed ECC before the data is written. This limitation may
+hardware-computed ECC before the data is written. This limitation may
 be removed in a future release.
 @end deffn
 
@@ -6471,7 +7227,7 @@ in the MLC controller mode, but won't change SLC behavior.
 
 @deffn {NAND Driver} mx3
 This driver handles the NAND controller in i.MX31. The mxc driver
-should work for this chip aswell.
+should work for this chip as well.
 @end deffn
 
 @deffn {NAND Driver} mxc
@@ -6485,7 +7241,7 @@ main area and spare area (@option{biswap}), defaults to off.
 nand device mx35.nand mxc imx35.cpu mx35 hwecc biswap
 @end example
 @deffn Command {mxc biswap} bank_num [enable|disable]
-Turns on/off bad block information swaping from main area,
+Turns on/off bad block information swapping from main area,
 without parameter query status.
 @end deffn
 @end deffn
@@ -6580,13 +7336,13 @@ Write the binary file @var{filename} to mflash bank @var{num}, starting at
 @chapter Flash Programming
 
 OpenOCD implements numerous ways to program the target flash, whether internal or external.
-Programming can be acheived by either using GDB @ref{programmingusinggdb,,Programming using GDB},
-or using the cmds given in @ref{flashprogrammingcommands,,Flash Programming Commands}.
+Programming can be achieved by either using GDB @ref{programmingusinggdb,,Programming using GDB},
+or using the commands given in @ref{flashprogrammingcommands,,Flash Programming Commands}.
 
-@*To simplify using the flash cmds directly a jimtcl script is available that handles the programming and verify stage.
+@*To simplify using the flash commands directly a jimtcl script is available that handles the programming and verify stage.
 OpenOCD will program/verify/reset the target and optionally shutdown.
 
-The script is executed as follows and by default the following actions will be peformed.
+The script is executed as follows and by default the following actions will be performed.
 @enumerate
 @item 'init' is executed.
 @item 'reset init' is called to reset and halt the target, any 'reset init' scripts are executed.
@@ -6679,7 +7435,7 @@ Intent:
 @itemize @bullet
 @item @b{Source Of Commands}
 @* OpenOCD commands can occur in a configuration script (discussed
-elsewhere) or typed manually by a human or supplied programatically,
+elsewhere) or typed manually by a human or supplied programmatically,
 or via one of several TCP/IP Ports.
 
 @item @b{From the human}
@@ -6696,7 +7452,7 @@ port is 5555.
 @end itemize
 
 
-@section Daemon Commands
+@section Server Commands
 
 @deffn {Command} exit
 Exits the current telnet session.
@@ -6722,21 +7478,35 @@ Useful in connection with script files
 @end deffn
 
 @deffn Command shutdown [@option{error}]
-Close the OpenOCD daemon, disconnecting all clients (GDB, telnet,
+Close the OpenOCD server, disconnecting all clients (GDB, telnet,
 other). If option @option{error} is used, OpenOCD will return a
 non-zero exit code to the parent process.
+
+Like any TCL commands, also @command{shutdown} can be redefined, e.g.:
+@example
+# redefine shutdown
+rename shutdown original_shutdown
+proc shutdown @{@} @{
+    puts "This is my implementation of shutdown"
+    # my own stuff before exit OpenOCD
+    original_shutdown
+@}
+@end example
+If user types CTRL-C or kills OpenOCD, either the command @command{shutdown}
+or its replacement will be automatically executed before OpenOCD exits.
 @end deffn
 
 @anchor{debuglevel}
 @deffn Command debug_level [n]
 @cindex message level
 Display debug level.
-If @var{n} (from 0..3) is provided, then set it to that level.
+If @var{n} (from 0..4) is provided, then set it to that level.
 This affects the kind of messages sent to the server log.
 Level 0 is error messages only;
 level 1 adds warnings;
 level 2 adds informational messages;
-and level 3 adds debugging messages.
+level 3 adds debugging messages;
+and level 4 adds verbose low-level debug messages.
 The default is level 2, but that can be overridden on
 the command line along with the location of that log
 file (which is normally the server's standard output).
@@ -6761,9 +7531,11 @@ the initial log output channel is stderr.
 Add @var{directory} to the file/script search path.
 @end deffn
 
-@deffn Command bindto [name]
-Specify address by name on which to listen for incoming TCP/IP connections.
-By default, OpenOCD will listen on all available interfaces.
+@deffn Command bindto [@var{name}]
+Specify hostname or IPv4 address on which to listen for incoming
+TCP/IP connections. By default, OpenOCD will listen on the loopback
+interface only. If your network environment is safe, @code{bindto
+0.0.0.0} can be used to cover all available interfaces.
 @end deffn
 
 @anchor{targetstatehandling}
@@ -6844,7 +7616,7 @@ Also, it can't work until an interrupt is issued.
 
 A more complete workaround is to not use that operation while you
 work with a JTAG debugger.
-Tasking environments generaly have idle loops where the body is the
+Tasking environments generally have idle loops where the body is the
 @emph{wait for interrupt} operation.
 (On older cores, it is a coprocessor action;
 newer cores have a @option{wfi} instruction.)
@@ -7012,7 +7784,7 @@ binary file named @var{filename}.
 
 @deffn Command {fast_load}
 Loads an image stored in memory by @command{fast_load_image} to the
-current target. Must be preceeded by fast_load_image.
+current target. Must be preceded by fast_load_image.
 @end deffn
 
 @deffn Command {fast_load_image} filename address [@option{bin}|@option{ihex}|@option{elf}|@option{s19}]
@@ -7030,7 +7802,7 @@ separately.
 Load image from file @var{filename} to target memory offset by @var{address} from its load address.
 The file format may optionally be specified
 (@option{bin}, @option{ihex}, @option{elf}, or @option{s19}).
-In addition the following arguments may be specifed:
+In addition the following arguments may be specified:
 @var{min_addr} - ignore data below @var{min_addr} (this is w.r.t. to the target's load address + @var{address})
 @var{max_length} - maximum number of bytes to load.
 @example
@@ -7058,6 +7830,13 @@ The file format may optionally be specified
 This will first attempt a comparison using a CRC checksum, if this fails it will try a binary compare.
 @end deffn
 
+@deffn Command {verify_image_checksum} filename address [@option{bin}|@option{ihex}|@option{elf}]
+Verify @var{filename} against target memory starting at @var{address}.
+The file format may optionally be specified
+(@option{bin}, @option{ihex}, or @option{elf})
+This perform a comparison using a CRC checksum only
+@end deffn
+
 
 @section Breakpoint and Watchpoint commands
 @cindex breakpoint
@@ -7194,7 +7973,7 @@ Declares the ETM associated with @var{target}, and associates it
 with a given trace port @var{driver}. @xref{traceportdrivers,,Trace Port Drivers}.
 
 Several of the parameters must reflect the trace port capabilities,
-which are a function of silicon capabilties (exposed later
+which are a function of silicon capabilities (exposed later
 using @command{etm info}) and of what hardware is connected to
 that port (such as an external pod, or ETB).
 The @var{width} must be either 4, 8, or 16,
@@ -7401,6 +8180,50 @@ Reports whether the capture clock is locked or not.
 @end deffn
 @end deffn
 
+@anchor{armcrosstrigger}
+@section ARM Cross-Trigger Interface
+@cindex CTI
+
+The ARM Cross-Trigger Interface (CTI) is a generic CoreSight component
+that connects event sources like tracing components or CPU cores with each
+other through a common trigger matrix (CTM). For ARMv8 architecture, a
+CTI is mandatory for core run control and each core has an individual
+CTI instance attached to it. OpenOCD has limited support for CTI using
+the @emph{cti} group of commands.
+
+@deffn Command {cti create} cti_name @option{-dap} dap_name @option{-ap-num} apn @option{-ctibase} base_address
+Creates a CTI instance @var{cti_name} on the DAP instance @var{dap_name} on MEM-AP
+@var{apn}. The @var{base_address} must match the base address of the CTI
+on the respective MEM-AP. All arguments are mandatory. This creates a
+new command @command{$cti_name} which is used for various purposes
+including additional configuration.
+@end deffn
+
+@deffn Command {$cti_name enable} @option{on|off}
+Enable (@option{on}) or disable (@option{off}) the CTI.
+@end deffn
+
+@deffn Command {$cti_name dump}
+Displays a register dump of the CTI.
+@end deffn
+
+@deffn Command {$cti_name write } @var{reg_name} @var{value}
+Write @var{value} to the CTI register with the symbolic name @var{reg_name}.
+@end deffn
+
+@deffn Command {$cti_name read} @var{reg_name}
+Print the value read from the CTI register with the symbolic name @var{reg_name}.
+@end deffn
+
+@deffn Command {$cti_name testmode} @option{on|off}
+Enable (@option{on}) or disable (@option{off}) the integration test mode
+of the CTI.
+@end deffn
+
+@deffn Command {cti names}
+Prints a list of names of all CTI objects created. This command is mainly
+useful in TCL scripting.
+@end deffn
 
 @section Generic ARM
 @cindex ARM
@@ -7470,6 +8293,55 @@ requests by using a special SVC instruction that is trapped at the
 Supervisor Call vector by OpenOCD.
 @end deffn
 
+@deffn Command {arm semihosting_cmdline} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Set the command line to be passed to the debugger.
+
+@example
+arm semihosting_cmdline argv0 argv1 argv2 ...
+@end example
+
+This option lets one set the command line arguments to be passed to
+the program. The first argument (argv0) is the program name in a
+standard C environment (argv[0]). Depending on the program (not much
+programs look at argv[0]), argv0 is ignored and can be any string.
+@end deffn
+
+@deffn Command {arm semihosting_fileio} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Display status of semihosting fileio, after optionally changing that
+status.
+
+Enabling this option forwards semihosting I/O to GDB process using the
+File-I/O remote protocol extension. This is especially useful for
+interacting with remote files or displaying console messages in the
+debugger.
+@end deffn
+
+@deffn Command {arm semihosting_resexit} [@option{enable}|@option{disable}]
+@cindex ARM semihosting
+Enable resumable SEMIHOSTING_SYS_EXIT.
+
+When SEMIHOSTING_SYS_EXIT is called outside a debug session,
+things are simple, the openocd process calls exit() and passes
+the value returned by the target.
+
+When SEMIHOSTING_SYS_EXIT is called during a debug session,
+by default execution returns to the debugger, leaving the
+debugger in a HALT state, similar to the state entered when
+encountering a break.
+
+In some use cases, it is useful to have SEMIHOSTING_SYS_EXIT
+return normally, as any semihosting call, and do not break
+to the debugger.
+The standard allows this to happen, but the condition
+to trigger it is a bit obscure ("by performing an RDI_Execute
+request or equivalent").
+
+To make the SEMIHOSTING_SYS_EXIT call return normally, enable
+this option (default: disabled).
+@end deffn
+
 @section ARMv4 and ARMv5 Architecture
 @cindex ARMv4
 @cindex ARMv5
@@ -7658,7 +8530,7 @@ mini-IC is marked valid, which makes the CPU fetch all exception
 handlers from the mini-IC, ignoring the code in RAM.
 
 To address this situation, OpenOCD provides the @code{xscale
-vector_table} command, which allows the user to explicity write
+vector_table} command, which allows the user to explicitly write
 individual entries to either the high or low vector table stored in
 the mini-IC.
 
@@ -7851,57 +8723,9 @@ coprocessor 14 register 7 itself) but all current ARM11
 cores @emph{except the ARM1176} use the same six bits.
 @end deffn
 
-@section ARMv7 Architecture
+@section ARMv7 and ARMv8 Architecture
 @cindex ARMv7
-
-@subsection ARMv7 Debug Access Port (DAP) specific commands
-@cindex Debug Access Port
-@cindex DAP
-These commands are specific to ARM architecture v7 Debug Access Port (DAP),
-included on Cortex-M and Cortex-A systems.
-They are available in addition to other core-specific commands that may be available.
-
-@deffn Command {dap apid} [num]
-Displays ID register from AP @var{num},
-defaulting to the currently selected AP.
-@end deffn
-
-@deffn Command {dap apreg} ap_num reg [value]
-Displays content of a register @var{reg} from AP @var{ap_num}
-or set a new value @var{value}.
-@var{reg} is byte address of a word register, 0, 4, 8 ... 0xfc.
-@end deffn
-
-@deffn Command {dap apsel} [num]
-Select AP @var{num}, defaulting to 0.
-@end deffn
-
-@deffn Command {dap baseaddr} [num]
-Displays debug base address from MEM-AP @var{num},
-defaulting to the currently selected AP.
-@end deffn
-
-@deffn Command {dap info} [num]
-Displays the ROM table for MEM-AP @var{num},
-defaulting to the currently selected AP.
-@end deffn
-
-@deffn Command {dap memaccess} [value]
-Displays the number of extra tck cycles in the JTAG idle to use for MEM-AP
-memory bus access [0-255], giving additional time to respond to reads.
-If @var{value} is defined, first assigns that.
-@end deffn
-
-@deffn Command {dap apcsw} [0 / 1]
-fix CSW_SPROT from register AP_REG_CSW on selected dap.
-Defaulting to 0.
-@end deffn
-
-@deffn Command {dap ti_be_32_quirks} [@option{enable}]
-Set/get quirks mode for TI TMS450/TMS570 processors
-Disabled by default
-@end deffn
-
+@cindex ARMv8
 
 @subsection ARMv7-A specific commands
 @cindex Cortex-A
@@ -7942,6 +8766,12 @@ Selects whether interrupts will be processed when single stepping
 configure l2x cache
 @end deffn
 
+@deffn Command {cortex_a mmu dump} [@option{0}|@option{1}|@option{addr} address [@option{num_entries}]]
+Dump the MMU translation table from TTB0 or TTB1 register, or from physical
+memory location @var{address}. When dumping the table from @var{address}, print at most
+@var{num_entries} page table entries. @var{num_entries} is optional, if omitted, the maximum
+possible (4096) entries are printed.
+@end deffn
 
 @subsection ARMv7-R specific commands
 @cindex Cortex-R
@@ -8032,7 +8862,7 @@ baud with our custom divisor to get 12MHz)
 @item @code{itmdump -f /dev/ttyUSB1 -d1}
 @item OpenOCD invocation line:
 @example
-openocd -f interface/stlink-v2-1.cfg \
+openocd -f interface/stlink.cfg \
         -c "transport select hla_swd" \
         -f target/stm32l1.cfg \
         -c "tpiu config external uart off 24000000 12000000"
@@ -8055,16 +8885,17 @@ Enable or disable trace output for all ITM stimulus ports.
 @deffn Command {cortex_m maskisr} (@option{auto}|@option{on}|@option{off})
 Control masking (disabling) interrupts during target step/resume.
 
-The @option{auto} option handles interrupts during stepping a way they get
-served but don't disturb the program flow. The step command first allows
+The @option{auto} option handles interrupts during stepping in a way that they
+get served but don't disturb the program flow. The step command first allows
 pending interrupt handlers to execute, then disables interrupts and steps over
 the next instruction where the core was halted. After the step interrupts
 are enabled again. If the interrupt handlers don't complete within 500ms,
 the step command leaves with the core running.
 
-Note that a free breakpoint is required for the @option{auto} option. If no
-breakpoint is available at the time of the step, then the step is taken
-with interrupts enabled, i.e. the same way the @option{off} option does.
+Note that a free hardware (FPB) breakpoint is required for the @option{auto}
+option. If no breakpoint is available at the time of the step, then the step
+is taken with interrupts enabled, i.e. the same way the @option{off} option
+does.
 
 Default is @option{auto}.
 @end deffn
@@ -8106,11 +8937,62 @@ otherwise fallback to @option{vectreset}.
 @end itemize
 Using @option{vectreset} is a safe option for all current Cortex-M cores.
 This however has the disadvantage of only resetting the core, all peripherals
-are uneffected. A solution would be to use a @code{reset-init} event handler to manually reset
+are unaffected. A solution would be to use a @code{reset-init} event handler to manually reset
 the peripherals.
 @xref{targetevents,,Target Events}.
 @end deffn
 
+@subsection ARMv8-A specific commands
+@cindex ARMv8-A
+@cindex aarch64
+
+@deffn Command {aarch64 cache_info}
+Display information about target caches
+@end deffn
+
+@deffn Command {aarch64 dbginit}
+This command enables debugging by clearing the OS Lock and sticky power-down and reset
+indications. It also establishes the expected, basic cross-trigger configuration the aarch64
+target code relies on. In a configuration file, the command would typically be called from a
+@code{reset-end} or @code{reset-deassert-post} handler, to re-enable debugging after a system reset.
+However, normally it is not necessary to use the command at all.
+@end deffn
+
+@deffn Command {aarch64 smp_on|smp_off}
+Enable and disable SMP handling. The state of SMP handling influences the way targets in an SMP group
+are handled by the run control. With SMP handling enabled, issuing halt or resume to one core will trigger
+halting or resuming of all cores in the group. The command @code{target smp} defines which targets are in the SMP
+group. With SMP handling disabled, all targets need to be treated individually.
+@end deffn
+
+@deffn Command {aarch64 maskisr} [@option{on}|@option{off}]
+Selects whether interrupts will be processed when single stepping. The default configuration is
+@option{on}.
+@end deffn
+
+@section EnSilica eSi-RISC Architecture
+
+eSi-RISC is a highly configurable microprocessor architecture for embedded systems
+provided by EnSilica. (See: @url{http://www.ensilica.com/risc-ip/}.)
+
+@subsection esirisc specific commands
+@deffn Command {esirisc cache_arch} (@option{harvard}|@option{von_neumann})
+Configure the caching architecture. Targets with the @code{UNIFIED_ADDRESS_SPACE}
+option disabled employ a Harvard architecture. By default, @option{von_neumann} is assumed.
+@end deffn
+
+@deffn Command {esirisc flush_caches}
+Flush instruction and data caches. This command requires that the target is halted
+when the command is issued and configured with an instruction or data cache.
+@end deffn
+
+@deffn Command {esirisc hwdc} (@option{all}|@option{none}|mask ...)
+Configure hardware debug control. The HWDC register controls which exceptions return
+control back to the debugger. Possible masks are @option{all}, @option{none},
+@option{reset}, @option{interrupt}, @option{syscall}, @option{error}, and @option{debug}.
+By default, @option{reset}, @option{error}, and @option{debug} are enabled.
+@end deffn
+
 @section Intel Architecture
 
 Intel Quark X10xx is the first product in the Quark family of SoCs. It is an IA-32
@@ -8197,6 +9079,87 @@ Display all registers in @emph{group}.
  "timer" or any new group created with addreg command.
 @end deffn
 
+@section RISC-V Architecture
+
+@uref{http://riscv.org/, RISC-V} is a free and open ISA. OpenOCD supports JTAG
+debug of RV32 and RV64 cores in heterogeneous multicore systems of up to 32
+harts. (It's possible to increase this limit to 1024 by changing
+RISCV_MAX_HARTS in riscv.h.) OpenOCD primarily supports 0.13 of the RISC-V
+Debug Specification, but there is also support for legacy targets that
+implement version 0.11.
+
+@subsection RISC-V Terminology
+
+A @emph{hart} is a hardware thread. A hart may share resources (eg. FPU) with
+another hart, or may be a separate core.  RISC-V treats those the same, and
+OpenOCD exposes each hart as a separate core.
+
+@subsection RISC-V Debug Configuration Commands
+
+@deffn Command {riscv expose_csrs} n0[-m0][,n1[-m1]]...
+Configure a list of inclusive ranges for CSRs to expose in addition to the
+standard ones. This must be executed before `init`.
+
+By default OpenOCD attempts to expose only CSRs that are mentioned in a spec,
+and then only if the corresponding extension appears to be implemented. This
+command can be used if OpenOCD gets this wrong, or a target implements custom
+CSRs.
+@end deffn
+
+@deffn Command {riscv set_command_timeout_sec} [seconds]
+Set the wall-clock timeout (in seconds) for individual commands. The default
+should work fine for all but the slowest targets (eg. simulators).
+@end deffn
+
+@deffn Command {riscv set_reset_timeout_sec} [seconds]
+Set the maximum time to wait for a hart to come out of reset after reset is
+deasserted.
+@end deffn
+
+@deffn Command {riscv set_scratch_ram} none|[address]
+Set the address of 16 bytes of scratch RAM the debugger can use, or 'none'.
+This is used to access 64-bit floating point registers on 32-bit targets.
+@end deffn
+
+@deffn Command {riscv set_prefer_sba} on|off
+When on, prefer to use System Bus Access to access memory.  When off, prefer to
+use the Program Buffer to access memory.
+@end deffn
+
+@subsection RISC-V Authentication Commands
+
+The following commands can be used to authenticate to a RISC-V system. Eg.  a
+trivial challenge-response protocol could be implemented as follows in a
+configuration file, immediately following @command{init}:
+@example
+set challenge [ocd_riscv authdata_read]
+riscv authdata_write [expr $challenge + 1]
+@end example
+
+@deffn Command {riscv authdata_read}
+Return the 32-bit value read from authdata. Note that to get read value back in
+a TCL script, it needs to be invoked as @command{ocd_riscv authdata_read}.
+@end deffn
+
+@deffn Command {riscv authdata_write} value
+Write the 32-bit value to authdata.
+@end deffn
+
+@subsection RISC-V DMI Commands
+
+The following commands allow direct access to the Debug Module Interface, which
+can be used to interact with custom debug features.
+
+@deffn Command {riscv dmi_read}
+Perform a 32-bit DMI read at address, returning the value.  Note that to get
+read value back in a TCL script, it needs to be invoked as @command{ocd_riscv
+dmi_read}.
+@end deffn
+
+@deffn Command {riscv dmi_write} address value
+Perform a 32-bit DMI write of value at address.
+@end deffn
+
 @anchor{softwaredebugmessagesandtracing}
 @section Software Debug Messages and Tracing
 @cindex Linux-ARM DCC support
@@ -8515,11 +9478,27 @@ way to represent JTAG test patterns in text files.
 In a debug session using JTAG for its transport protocol,
 OpenOCD supports running such test files.
 
-@deffn Command {svf} filename [@option{quiet}]
+@deffn Command {svf} @file{filename} [@option{-tap @var{tapname}}] [@option{[-]quiet}] @
+                     [@option{[-]nil}] [@option{[-]progress}] [@option{[-]ignore_error}]
 This issues a JTAG reset (Test-Logic-Reset) and then
 runs the SVF script from @file{filename}.
-Unless the @option{quiet} option is specified,
-each command is logged before it is executed.
+
+Arguments can be specified in any order; the optional dash doesn't
+affect their semantics.
+
+Command options:
+@itemize @minus
+@item @option{-tap @var{tapname}} ignore IR and DR headers and footers
+specified by the SVF file with HIR, TIR, HDR and TDR commands;
+instead, calculate them automatically according to the current JTAG
+chain configuration, targeting @var{tapname};
+@item @option{[-]quiet} do not log every command before execution;
+@item @option{[-]nil} ``dry run'', i.e., do not perform any operations
+on the real interface;
+@item @option{[-]progress} enable progress indication;
+@item @option{[-]ignore_error} continue execution despite TDO check
+errors.
+@end itemize
 @end deffn
 
 @section XSVF: Xilinx Serial Vector Format
@@ -8767,19 +9746,6 @@ With that particular hardware (Cortex-M3) the hardware breakpoints
 only work for code running from flash memory. Most other ARM systems
 do not have such restrictions.
 
-Another example of useful GDB configuration came from a user who
-found that single stepping his Cortex-M3 didn't work well with IRQs
-and an RTOS until he told GDB to disable the IRQs while stepping:
-
-@example
-define hook-step
-mon cortex_m maskisr on
-end
-define hookpost-step
-mon cortex_m maskisr off
-end
-@end example
-
 Rather than typing such commands interactively, you may prefer to
 save them in a file and have GDB execute them as it starts, perhaps
 using a @file{.gdbinit} in your project directory or starting GDB
@@ -8819,14 +9785,60 @@ GDB will look at the target memory map when a load command is given, if any
 areas to be programmed lie within the target flash area the vFlash packets
 will be used.
 
-If the target needs configuring before GDB programming, an event
-script can be executed:
+If the target needs configuring before GDB programming, set target
+event gdb-flash-erase-start:
 @example
-$_TARGETNAME configure -event EVENTNAME BODY
+$_TARGETNAME configure -event gdb-flash-erase-start BODY
 @end example
+@xref{targetevents,,Target Events}, for other GDB programming related events.
 
 To verify any flash programming the GDB command @option{compare-sections}
 can be used.
+
+@section Using GDB as a non-intrusive memory inspector
+@cindex Using GDB as a non-intrusive memory inspector
+@anchor{gdbmeminspect}
+
+If your project controls more than a blinking LED, let's say a heavy industrial
+robot or an experimental nuclear reactor, stopping the controlling process
+just because you want to attach GDB is not a good option.
+
+OpenOCD does not support GDB non-stop mode (might be implemented in the future).
+Though there is a possible setup where the target does not get stopped
+and GDB treats it as it were running.
+If the target supports background access to memory while it is running,
+you can use GDB in this mode to inspect memory (mainly global variables)
+without any intrusion of the target process.
+
+Remove default setting of gdb-attach event. @xref{targetevents,,Target Events}.
+Place following command after target configuration:
+@example
+$_TARGETNAME configure -event gdb-attach @{@}
+@end example
+
+If any of installed flash banks does not support probe on running target,
+switch off gdb_memory_map:
+@example
+gdb_memory_map disable
+@end example
+
+Ensure GDB is configured without interrupt-on-connect.
+Some GDB versions set it by default, some does not.
+@example
+set remote interrupt-on-connect off
+@end example
+
+If you switched gdb_memory_map off, you may want to setup GDB memory map
+manually or issue @command{set mem inaccessible-by-default off}
+
+Now you can issue GDB command @command{target remote ...} and inspect memory
+of a running target. Do not use GDB commands @command{continue},
+@command{step} or @command{next} as they synchronize GDB with your target
+and GDB would require stopping the target to get the prompt back.
+
+Do not use this mode under an IDE like Eclipse as it caches values of
+previously shown varibles.
+
 @anchor{usingopenocdsmpwithgdb}
 @section Using OpenOCD SMP with GDB
 @cindex SMP
@@ -8881,7 +9893,11 @@ end
 @anchor{gdbrtossupport}
 
 OpenOCD includes RTOS support, this will however need enabling as it defaults to disabled.
-It can be enabled by passing @option{-rtos} arg to the target @xref{rtostype,,RTOS Type}.
+It can be enabled by passing @option{-rtos} arg to the target. @xref{rtostype,,RTOS Type}.
+
+@xref{Threads, Debugging Programs with Multiple Threads,
+Debugging Programs with Multiple Threads, gdb, GDB manual}, for details about relevant
+GDB commands.
 
 @* An example setup is below:
 
@@ -8900,6 +9916,8 @@ Currently supported rtos's include:
 @item @option{ChibiOS}
 @item @option{embKernel}
 @item @option{mqx}
+@item @option{uCOS-III}
+@item @option{nuttx}
 @end itemize
 
 @quotation Note
@@ -8933,10 +9951,14 @@ Rtos::sCurrentTask, Rtos::sListReady, Rtos::sListSleep,
 Rtos::sListSuspended, Rtos::sMaxPriorities, Rtos::sCurrentTaskCount.
 @item mqx symbols
 _mqx_kernel_data, MQX_init_struct.
+@item uC/OS-III symbols
+OSRunning, OSTCBCurPtr, OSTaskDbgListPtr, OSTaskQty
+@item nuttx symbols
+g_readytorun, g_tasklisttable
 @end table
 
 For most RTOS supported the above symbols will be exported by default. However for
-some, eg. FreeRTOS, extra steps must be taken.
+some, eg. FreeRTOS and uC/OS-III, extra steps must be taken.
 
 These RTOSes may require additional OpenOCD-specific file to be linked
 along with the project:
@@ -8944,6 +9966,8 @@ along with the project:
 @table @code
 @item FreeRTOS
 contrib/rtos-helpers/FreeRTOS-openocd.c
+@item uC/OS-III
+contrib/rtos-helpers/uCOS-III-openocd.c
 @end table
 
 @node Tcl Scripting API
@@ -9035,18 +10059,18 @@ holds one of the following values:
 
 @itemize @bullet
 @item @b{cygwin}   Running under Cygwin
-@item @b{darwin}   Darwin (Mac-OS) is the underlying operating sytem.
+@item @b{darwin}   Darwin (Mac-OS) is the underlying operating system.
 @item @b{freebsd}  Running under FreeBSD
 @item @b{openbsd}  Running under OpenBSD
 @item @b{netbsd}   Running under NetBSD
-@item @b{linux}    Linux is the underlying operating sytem
+@item @b{linux}    Linux is the underlying operating system
 @item @b{mingw32}  Running under MingW32
 @item @b{winxx}    Built using Microsoft Visual Studio
 @item @b{ecos}     Running under eCos
 @item @b{other}    Unknown, none of the above.
 @end itemize
 
-Note: 'winxx' was choosen because today (March-2009) no distinction is made between Win32 and Win64.
+Note: 'winxx' was chosen because today (March-2009) no distinction is made between Win32 and Win64.
 
 @quotation Note
 We should add support for a variable like Tcl variable
@@ -9127,7 +10151,7 @@ See an example application here:
 @cindex adaptive clocking
 @*
 
-In digital circuit design it is often refered to as ``clock
+In digital circuit design it is often referred to as ``clock
 synchronisation'' the JTAG interface uses one clock (TCK or TCLK)
 operating at some speed, your CPU target is operating at another.
 The two clocks are not synchronised, they are ``asynchronous''
@@ -9255,7 +10279,7 @@ Make sure you have Cygwin installed, or at least a version of OpenOCD that
 claims to come with all the necessary DLLs. When using Cygwin, try launching
 OpenOCD from the Cygwin shell.
 
-@item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a frontend like Insight or
+@item @b{Breakpoint Issue} I'm trying to set a breakpoint using GDB (or a front-end like Insight or
 Eclipse), but OpenOCD complains that "Info: arm7_9_common.c:213
 arm7_9_add_breakpoint(): sw breakpoint requested, but software breakpoints not enabled".
 
@@ -9295,7 +10319,7 @@ stackframes have been processed. By pushing zeros on the stack, GDB
 gracefully stops.
 
 @b{Debugging Interrupt Service Routines} - In your ISR before you call
-your C code, do the same - artifically push some zeros onto the stack,
+your C code, do the same - artificially push some zeros onto the stack,
 remember to pop them off when the ISR is done.
 
 @b{Also note:} If you have a multi-threaded operating system, they
@@ -9325,16 +10349,6 @@ supply stable enough for the Amontec JTAGkey to be operated.
 
 @b{Laptops running on battery have this problem too...}
 
-@item @b{USB Power} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the
-following error messages: "Error: ft2232.c:201 ft2232_read(): FT_Read returned:
-4" and "Error: ft2232.c:365 ft2232_send_and_recv(): couldn't read from FT2232".
-What does that mean and what might be the reason for this?
-
-First of all, the reason might be the USB power supply. Try using a self-powered
-hub instead of a direct connection to your computer. Secondly, the error code 4
-corresponds to an FT_IO_ERROR, which means that the driver for the FTDI USB
-chip ran into some sort of error - this points us to a USB problem.
-
 @item @b{GDB Disconnects} When using the Amontec JTAGkey, sometimes OpenOCD crashes with the following
 error message: "Error: gdb_server.c:101 gdb_get_char(): read: 10054".
 What does that mean and what might be the reason for this?
@@ -9381,8 +10395,8 @@ particular order?
 Yes; whenever you have more than one, you must declare them in
 the same order used by the hardware.
 
-Many newer devices have multiple JTAG TAPs. For example: ST
-Microsystems STM32 chips have two TAPs, a ``boundary scan TAP'' and
+Many newer devices have multiple JTAG TAPs. For example:
+STMicroelectronics STM32 chips have two TAPs, a ``boundary scan TAP'' and
 ``Cortex-M3'' TAP. Example: The STM32 reference manual, Document ID:
 RM0008, Section 26.5, Figure 259, page 651/681, the ``TDI'' pin is
 connected to the boundary scan TAP, which then connects to the
@@ -9465,7 +10479,7 @@ those commands is the word ``for'', another command is ``if''.
 
 @section Per Rule #1 - All Results are strings
 Every Tcl command results in a string. The word ``result'' is used
-deliberatly. No result is just an empty string. Remember: @i{Rule #1 -
+deliberately. No result is just an empty string. Remember: @i{Rule #1 -
 Everything is a string}
 
 @section Tcl Quoting Operators
@@ -9482,7 +10496,7 @@ three primary quoting constructs, the [square-brackets] the
 
 By now you should know $VARIABLES always start with a $DOLLAR
 sign. BTW: To set a variable, you actually use the command ``set'', as
-in ``set VARNAME VALUE'' much like the ancient BASIC langauge ``let x
+in ``set VARNAME VALUE'' much like the ancient BASIC language ``let x
 = 1'' statement, but without the equal sign.
 
 @itemize @bullet
@@ -9528,7 +10542,7 @@ the normal way.
 
 As a script is parsed, each (multi) line in the script file is
 tokenised and according to the quoting rules. After tokenisation, that
-line is immedatly executed.
+line is immediately executed.
 
 Multi line statements end with one or more ``still-open''
 @{curly-braces@} which - eventually - closes a few lines later.
@@ -9599,7 +10613,7 @@ MyCommand( Jim_Interp *interp,
 @end example
 
 Real Tcl is nearly identical. Although the newer versions have
-introduced a byte-code parser and intepreter, but at the core, it
+introduced a byte-code parser and interpreter, but at the core, it
 still operates in the same basic way.
 
 @subsection FOR command implementation
@@ -9612,7 +10626,7 @@ In Tcl there are two underlying C helper functions.
 Remember Rule #1 - You are a string.
 
 The @b{first} helper parses and executes commands found in an ascii
-string. Commands can be seperated by semicolons, or newlines. While
+string. Commands can be separated by semicolons, or newlines. While
 parsing, variables are expanded via the quoting rules.
 
 The @b{second} helper evaluates an ascii string as a numerical
@@ -9707,7 +10721,7 @@ it reads a file and executes as a script.
    @}
    $_TARGETNAME configure -event FOO someproc
 #2 Good - no variables
-   $_TARGETNAME confgure -event foo "this ; that;"
+   $_TARGETNAME configure -event foo "this ; that;"
 #3 Good Curly Braces
    $_TARGETNAME configure -event FOO @{
         puts "Time: [date]"
@@ -9726,7 +10740,7 @@ command.
 @*There are 4 examples:
 @enumerate
 @item The TCLBODY is a simple string that happens to be a proc name
-@item The TCLBODY is several simple commands seperated by semicolons
+@item The TCLBODY is several simple commands separated by semicolons
 @item The TCLBODY is a multi-line @{curly-brace@} quoted string
 @item The TCLBODY is a string with variables that get expanded.
 @end enumerate

Linking to existing account procedure

If you already have an account and want to add another login method you MUST first sign in with your existing account and then change URL to read https://review.openocd.org/login/?link to get to this page again but this time it'll work for linking. Thank you.

SSH host keys fingerprints

1024 SHA256:YKx8b7u5ZWdcbp7/4AeXNaqElP49m6QrwfXaqQGJAOk gerrit-code-review@openocd.zylin.com (DSA)
384 SHA256:jHIbSQa4REvwCFG4cq5LBlBLxmxSqelQPem/EXIrxjk gerrit-code-review@openocd.org (ECDSA)
521 SHA256:UAOPYkU9Fjtcao0Ul/Rrlnj/OsQvt+pgdYSZ4jOYdgs gerrit-code-review@openocd.org (ECDSA)
256 SHA256:A13M5QlnozFOvTllybRZH6vm7iSt0XLxbA48yfc2yfY gerrit-code-review@openocd.org (ECDSA)
256 SHA256:spYMBqEYoAOtK7yZBrcwE8ZpYt6b68Cfh9yEVetvbXg gerrit-code-review@openocd.org (ED25519)
+--[ED25519 256]--+
|=..              |
|+o..   .         |
|*.o   . .        |
|+B . . .         |
|Bo. = o S        |
|Oo.+ + =         |
|oB=.* = . o      |
| =+=.+   + E     |
|. .=o   . o      |
+----[SHA256]-----+
2048 SHA256:0Onrb7/PHjpo6iVZ7xQX2riKN83FJ3KGU0TvI0TaFG4 gerrit-code-review@openocd.zylin.com (RSA)