# SPDX-License-Identifier: GPL-2.0-or-later # script for stm32h7x family # # stm32h7 devices support both JTAG and SWD transports. # source [find target/swj-dp.tcl] source [find mem_helper.tcl] if { [info exists CHIPNAME] } { set _CHIPNAME $CHIPNAME } else { set _CHIPNAME stm32h7x } if { [info exists DUAL_BANK] } { set $_CHIPNAME.DUAL_BANK $DUAL_BANK unset DUAL_BANK } else { set $_CHIPNAME.DUAL_BANK 0 } if { [info exists DUAL_CORE] } { set $_CHIPNAME.DUAL_CORE $DUAL_CORE unset DUAL_CORE } else { set $_CHIPNAME.DUAL_CORE 0 } # Issue a warning when hla is used, and fallback to single core configuration if { [set $_CHIPNAME.DUAL_CORE] && [using_hla] } { echo "Warning : hla does not support multicore debugging" set $_CHIPNAME.DUAL_CORE 0 } if { [info exists USE_CTI] } { set $_CHIPNAME.USE_CTI $USE_CTI unset USE_CTI } else { set $_CHIPNAME.USE_CTI 0 } # Issue a warning when DUAL_CORE=0 and USE_CTI=1, and fallback to USE_CTI=0 if { ![set $_CHIPNAME.DUAL_CORE] && [set $_CHIPNAME.USE_CTI] } { echo "Warning : could not use CTI with a single core device, CTI is disabled" set $_CHIPNAME.USE_CTI 0 } set _ENDIAN little # Work-area is a space in RAM used for flash programming # By default use 64kB if { [info exists WORKAREASIZE] } { set _WORKAREASIZE $WORKAREASIZE } else { set _WORKAREASIZE 0x10000 } #jtag scan chain if { [info exists CPUTAPID] } { set _CPUTAPID $CPUTAPID } else { if { [using_jtag] } { set _CPUTAPID 0x6ba00477 } { set _CPUTAPID 0x6ba02477 } } swj_newdap $_CHIPNAME cpu -irlen 4 -ircapture 0x1 -irmask 0xf -expected-id $_CPUTAPID dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu if {[using_jtag]} { jtag newtap $_CHIPNAME bs -irlen 5 } if {![using_hla]} { # STM32H7 provides an APB-AP at access port 2, which allows the access to # the debug and trace features on the system APB System Debug Bus (APB-D). target create $_CHIPNAME.ap2 mem_ap -dap $_CHIPNAME.dap -ap-num 2 swo create $_CHIPNAME.swo -dap $_CHIPNAME.dap -ap-num 2 -baseaddr 0xE00E3000 tpiu create $_CHIPNAME.tpiu -dap $_CHIPNAME.dap -ap-num 2 -baseaddr 0xE00F5000 } target create $_CHIPNAME.cpu0 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 0 $_CHIPNAME.cpu0 configure -work-area-phys 0x20000000 -work-area-size $_WORKAREASIZE -work-area-backup 0 flash bank $_CHIPNAME.bank1.cpu0 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu0 if {[set $_CHIPNAME.DUAL_BANK]} { flash bank $_CHIPNAME.bank2.cpu0 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu0 } if {[set $_CHIPNAME.DUAL_CORE]} { target create $_CHIPNAME.cpu1 cortex_m -endian $_ENDIAN -dap $_CHIPNAME.dap -ap-num 3 $_CHIPNAME.cpu1 configure -work-area-phys 0x38000000 -work-area-size $_WORKAREASIZE -work-area-backup 0 flash bank $_CHIPNAME.bank1.cpu1 stm32h7x 0x08000000 0 0 0 $_CHIPNAME.cpu1 if {[set $_CHIPNAME.DUAL_BANK]} { flash bank $_CHIPNAME.bank2.cpu1 stm32h7x 0x08100000 0 0 0 $_CHIPNAME.cpu1 } } # Make sure that cpu0 is selected targets $_CHIPNAME.cpu0 if { [info exists QUADSPI] && $QUADSPI } { set a [llength [flash list]] set _QSPINAME $_CHIPNAME.qspi flash bank $_QSPINAME stmqspi 0x90000000 0 0 0 $_CHIPNAME.cpu0 0x52005000 } else { if { [info exists OCTOSPI1] && $OCTOSPI1 } { set a [llength [flash list]] set _OCTOSPINAME1 $_CHIPNAME.octospi1 flash bank $_OCTOSPINAME1 stmqspi 0x90000000 0 0 0 $_CHIPNAME.cpu0 0x52005000 } if { [info exists OCTOSPI2] && $OCTOSPI2 } { set b [llength [flash list]] set _OCTOSPINAME2 $_CHIPNAME.octospi2 flash bank $_OCTOSPINAME2 stmqspi 0x70000000 0 0 0 $_CHIPNAME.cpu0 0x5200A000 } } # Clock after reset is HSI at 64 MHz, no need of PLL adapter speed 1800 adapter srst delay 100 if {[using_jtag]} { jtag_ntrst_delay 100 } # use hardware reset # # The STM32H7 does not support connect_assert_srst mode because the AXI is # unavailable while SRST is asserted, and that is used to access the DBGMCU # component at 0x5C001000 in the examine-end event handler. # # It is possible to access the DBGMCU component at 0xE00E1000 via AP2 instead # of the default AP0, and that works with SRST asserted; however, nonzero AP # usage does not work with HLA, so is not done by default. That change could be # made in a local configuration file if connect_assert_srst mode is needed for # a specific application and a non-HLA adapter is in use. reset_config srst_nogate if {![using_hla]} { # if srst is not fitted use SYSRESETREQ to # perform a soft reset $_CHIPNAME.cpu0 cortex_m reset_config sysresetreq if {[set $_CHIPNAME.DUAL_CORE]} { $_CHIPNAME.cpu1 cortex_m reset_config sysresetreq } # Set CSW[27], which according to ARM ADI v5 appendix E1.4 maps to AHB signal # HPROT[3], which according to AMBA AHB/ASB/APB specification chapter 3.7.3 # makes the data access cacheable. This allows reading and writing data in the # CPU cache from the debugger, which is far more useful than going straight to # RAM when operating on typical variables, and is generally no worse when # operating on special memory locations. $_CHIPNAME.dap apcsw 0x08000000 0x08000000 } $_CHIPNAME.cpu0 configure -event examine-end { # Enable D3 and D1 DBG clocks # DBGMCU_CR |= D3DBGCKEN | D1DBGCKEN stm32h7x_dbgmcu_mmw 0x004 0x00600000 0 # Enable debug during low power modes (uses more power) # DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP D1 Domain stm32h7x_dbgmcu_mmw 0x004 0x00000007 0 # DBGMCU_CR |= DBG_STANDBY | DBG_STOP | DBG_SLEEP D2 Domain stm32h7x_dbgmcu_mmw 0x004 0x00000038 0 # Stop watchdog counters during halt # DBGMCU_APB3FZ1 |= WWDG1 stm32h7x_dbgmcu_mmw 0x034 0x00000040 0 # DBGMCU_APB1LFZ1 |= WWDG2 stm32h7x_dbgmcu_mmw 0x03C 0x00000800 0 # DBGMCU_APB4FZ1 |= WDGLSD1 | WDGLSD2 stm32h7x_dbgmcu_mmw 0x054 0x000C0000 0 # Enable clock for tracing # DBGMCU_CR |= TRACECLKEN stm32h7x_dbgmcu_mmw 0x004 0x00100000 0 # RM0399 (id 0x450) M7+M4 with SWO Funnel # RM0433 (id 0x450) M7 with SWO Funnel # RM0455 (id 0x480) M7 without SWO Funnel # RM0468 (id 0x483) M7 without SWO Funnel # Enable CM7 and CM4 slave ports in SWO trace Funnel # Works ok also on devices single core and without SWO funnel # Hack, use stm32h7x_dbgmcu_mmw with big offset to control SWTF # SWTF_CTRL |= ENS0 | ENS1 stm32h7x_dbgmcu_mmw 0x3000 0x00000003 0 } $_CHIPNAME.cpu0 configure -event reset-init { # Clock after reset is HSI at 64 MHz, no need of PLL adapter speed 4000 } # get _CHIPNAME from current target proc stm32h7x_get_chipname {} { set t [target current] set sep [string last "." $t] if {$sep == -1} { return $t } return [string range $t 0 [expr {$sep - 1}]] } if {[set $_CHIPNAME.DUAL_CORE]} { $_CHIPNAME.cpu1 configure -event examine-end { set _CHIPNAME [stm32h7x_get_chipname] global $_CHIPNAME.USE_CTI # Stop watchdog counters during halt # DBGMCU_APB3FZ2 |= WWDG1 stm32h7x_dbgmcu_mmw 0x038 0x00000040 0 # DBGMCU_APB1LFZ2 |= WWDG2 stm32h7x_dbgmcu_mmw 0x040 0x00000800 0 # DBGMCU_APB4FZ2 |= WDGLSD1 | WDGLSD2 stm32h7x_dbgmcu_mmw 0x058 0x000C0000 0 if {[set $_CHIPNAME.USE_CTI]} { stm32h7x_cti_start } } } # like mrw, but with target selection proc stm32h7x_mrw {used_target reg} { return [$used_target read_memory $reg 32 1] } # like mmw, but with target selection proc stm32h7x_mmw {used_target reg setbits clearbits} { set old [stm32h7x_mrw $used_target $reg] set new [expr {($old & ~$clearbits) | $setbits}] $used_target mww $reg $new } # mmw for dbgmcu component registers, it accepts the register offset from dbgmcu base # this procedure will use the mem_ap on AP2 whenever possible proc stm32h7x_dbgmcu_mmw {reg_offset setbits clearbits} { # use $_CHIPNAME.ap2 if possible, and use the proper dbgmcu base address if {![using_hla]} { set _CHIPNAME [stm32h7x_get_chipname] set used_target $_CHIPNAME.ap2 set reg_addr [expr {0xE00E1000 + $reg_offset}] } { set used_target [target current] set reg_addr [expr {0x5C001000 + $reg_offset}] } stm32h7x_mmw $used_target $reg_addr $setbits $clearbits } if {[set $_CHIPNAME.USE_CTI]} { # create CTI instances for both cores cti create $_CHIPNAME.cti0 -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0xE0043000 cti create $_CHIPNAME.cti1 -dap $_CHIPNAME.dap -ap-num 3 -baseaddr 0xE0043000 $_CHIPNAME.cpu0 configure -event halted { stm32h7x_cti_prepare_restart_all } $_CHIPNAME.cpu1 configure -event halted { stm32h7x_cti_prepare_restart_all } $_CHIPNAME.cpu0 configure -event debug-halted { stm32h7x_cti_prepare_restart_all } $_CHIPNAME.cpu1 configure -event debug-halted { stm32h7x_cti_prepare_restart_all } proc stm32h7x_cti_start {} { set _CHIPNAME [stm32h7x_get_chipname] # Configure Cores' CTIs to halt each other # TRIGIN0 (DBGTRIGGER) and TRIGOUT0 (EDBGRQ) at CTM_CHANNEL_0 $_CHIPNAME.cti0 write INEN0 0x1 $_CHIPNAME.cti0 write OUTEN0 0x1 $_CHIPNAME.cti1 write INEN0 0x1 $_CHIPNAME.cti1 write OUTEN0 0x1 # enable CTIs $_CHIPNAME.cti0 enable on $_CHIPNAME.cti1 enable on } proc stm32h7x_cti_stop {} { set _CHIPNAME [stm32h7x_get_chipname] $_CHIPNAME.cti0 enable off $_CHIPNAME.cti1 enable off } proc stm32h7x_cti_prepare_restart_all {} { stm32h7x_cti_prepare_restart cti0 stm32h7x_cti_prepare_restart cti1 } proc stm32h7x_cti_prepare_restart {cti} { set _CHIPNAME [stm32h7x_get_chipname] # Acknowlodge EDBGRQ at TRIGOUT0 $_CHIPNAME.$cti write INACK 0x01 $_CHIPNAME.$cti write INACK 0x00 } }