/*************************************************************************** * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by David T.L. Wong * * * * Copyright (C) 2009 by David N. Claffey * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "breakpoints.h" #include "mips32.h" #include "mips_m4k.h" #include "mips32_dmaacc.h" #include "target_type.h" #include "register.h" /* cli handling */ /* forward declarations */ int mips_m4k_poll(struct target *target); int mips_m4k_halt(struct target *target); int mips_m4k_soft_reset_halt(struct target *target); int mips_m4k_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution); int mips_m4k_step(struct target *target, int current, uint32_t address, int handle_breakpoints); int mips_m4k_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer); int mips_m4k_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer); int mips_m4k_init_target(struct command_context *cmd_ctx, struct target *target); int mips_m4k_target_create(struct target *target, Jim_Interp *interp); int mips_m4k_examine(struct target *target); int mips_m4k_assert_reset(struct target *target); int mips_m4k_deassert_reset(struct target *target); int mips_m4k_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t *checksum); struct target_type mips_m4k_target = { .name = "mips_m4k", .poll = mips_m4k_poll, .arch_state = mips32_arch_state, .target_request_data = NULL, .halt = mips_m4k_halt, .resume = mips_m4k_resume, .step = mips_m4k_step, .assert_reset = mips_m4k_assert_reset, .deassert_reset = mips_m4k_deassert_reset, .soft_reset_halt = mips_m4k_soft_reset_halt, .get_gdb_reg_list = mips32_get_gdb_reg_list, .read_memory = mips_m4k_read_memory, .write_memory = mips_m4k_write_memory, .bulk_write_memory = mips_m4k_bulk_write_memory, .checksum_memory = mips_m4k_checksum_memory, .blank_check_memory = NULL, .run_algorithm = mips32_run_algorithm, .add_breakpoint = mips_m4k_add_breakpoint, .remove_breakpoint = mips_m4k_remove_breakpoint, .add_watchpoint = mips_m4k_add_watchpoint, .remove_watchpoint = mips_m4k_remove_watchpoint, .target_create = mips_m4k_target_create, .init_target = mips_m4k_init_target, .examine = mips_m4k_examine, }; int mips_m4k_examine_debug_reason(struct target *target) { uint32_t break_status; int retval; if ((target->debug_reason != DBG_REASON_DBGRQ) && (target->debug_reason != DBG_REASON_SINGLESTEP)) { /* get info about inst breakpoint support */ if ((retval = target_read_u32(target, EJTAG_IBS, &break_status)) != ERROR_OK) return retval; if (break_status & 0x1f) { /* we have halted on a breakpoint */ if ((retval = target_write_u32(target, EJTAG_IBS, 0)) != ERROR_OK) return retval; target->debug_reason = DBG_REASON_BREAKPOINT; } /* get info about data breakpoint support */ if ((retval = target_read_u32(target, EJTAG_DBS, &break_status)) != ERROR_OK) return retval; if (break_status & 0x1f) { /* we have halted on a breakpoint */ if ((retval = target_write_u32(target, EJTAG_DBS, 0)) != ERROR_OK) return retval; target->debug_reason = DBG_REASON_WATCHPOINT; } } return ERROR_OK; } int mips_m4k_debug_entry(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; uint32_t debug_reg; /* read debug register */ mips_ejtag_read_debug(ejtag_info, &debug_reg); /* make sure break unit configured */ mips32_configure_break_unit(target); /* attempt to find halt reason */ mips_m4k_examine_debug_reason(target); /* clear single step if active */ if (debug_reg & EJTAG_DEBUG_DSS) { /* stopped due to single step - clear step bit */ mips_ejtag_config_step(ejtag_info, 0); } mips32_save_context(target); /* default to mips32 isa, it will be changed below if required */ mips32->isa_mode = MIPS32_ISA_MIPS32; if (ejtag_info->impcode & EJTAG_IMP_MIPS16) { if (buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32) & 0x01) { /* core is running mips16e isa */ mips32->isa_mode = MIPS32_ISA_MIPS16E; } } LOG_DEBUG("entered debug state at PC 0x%" PRIx32 ", target->state: %s", buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32), target_state_name(target)); return ERROR_OK; } int mips_m4k_poll(struct target *target) { int retval; struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl; /* read ejtag control reg */ jtag_set_end_state(TAP_IDLE); mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL, NULL); mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl); /* clear this bit before handling polling * as after reset registers will read zero */ if (ejtag_ctrl & EJTAG_CTRL_ROCC) { /* we have detected a reset, clear flag * otherwise ejtag will not work */ jtag_set_end_state(TAP_IDLE); ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_ROCC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL, NULL); mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl); LOG_DEBUG("Reset Detected"); } /* check for processor halted */ if (ejtag_ctrl & EJTAG_CTRL_BRKST) { if ((target->state == TARGET_RUNNING) || (target->state == TARGET_RESET)) { jtag_set_end_state(TAP_IDLE); mips_ejtag_set_instr(ejtag_info, EJTAG_INST_NORMALBOOT, NULL); target->state = TARGET_HALTED; if ((retval = mips_m4k_debug_entry(target)) != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_HALTED); } else if (target->state == TARGET_DEBUG_RUNNING) { target->state = TARGET_HALTED; if ((retval = mips_m4k_debug_entry(target)) != ERROR_OK) return retval; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED); } } else { target->state = TARGET_RUNNING; } // LOG_DEBUG("ctrl = 0x%08X", ejtag_ctrl); return ERROR_OK; } int mips_m4k_halt(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; LOG_DEBUG("target->state: %s", target_state_name(target)); if (target->state == TARGET_HALTED) { LOG_DEBUG("target was already halted"); return ERROR_OK; } if (target->state == TARGET_UNKNOWN) { LOG_WARNING("target was in unknown state when halt was requested"); } if (target->state == TARGET_RESET) { if ((jtag_get_reset_config() & RESET_SRST_PULLS_TRST) && jtag_get_srst()) { LOG_ERROR("can't request a halt while in reset if nSRST pulls nTRST"); return ERROR_TARGET_FAILURE; } else { /* we came here in a reset_halt or reset_init sequence * debug entry was already prepared in mips32_prepare_reset_halt() */ target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } } /* break processor */ mips_ejtag_enter_debug(ejtag_info); target->debug_reason = DBG_REASON_DBGRQ; return ERROR_OK; } int mips_m4k_assert_reset(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; LOG_DEBUG("target->state: %s", target_state_name(target)); enum reset_types jtag_reset_config = jtag_get_reset_config(); if (!(jtag_reset_config & RESET_HAS_SRST)) { LOG_ERROR("Can't assert SRST"); return ERROR_FAIL; } if (target->reset_halt) { /* use hardware to catch reset */ jtag_set_end_state(TAP_IDLE); mips_ejtag_set_instr(ejtag_info, EJTAG_INST_EJTAGBOOT, NULL); } else { jtag_set_end_state(TAP_IDLE); mips_ejtag_set_instr(ejtag_info, EJTAG_INST_NORMALBOOT, NULL); } if (strcmp(target->variant, "ejtag_srst") == 0) { uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl | EJTAG_CTRL_PRRST | EJTAG_CTRL_PERRST; LOG_DEBUG("Using EJTAG reset (PRRST) to reset processor..."); mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL, NULL); mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl); } else { /* here we should issue a srst only, but we may have to assert trst as well */ if (jtag_reset_config & RESET_SRST_PULLS_TRST) { jtag_add_reset(1, 1); } else { jtag_add_reset(0, 1); } } target->state = TARGET_RESET; jtag_add_sleep(50000); register_cache_invalidate(mips32->core_cache); if (target->reset_halt) { int retval; if ((retval = target_halt(target)) != ERROR_OK) return retval; } return ERROR_OK; } int mips_m4k_deassert_reset(struct target *target) { LOG_DEBUG("target->state: %s", target_state_name(target)); /* deassert reset lines */ jtag_add_reset(0, 0); return ERROR_OK; } int mips_m4k_soft_reset_halt(struct target *target) { /* TODO */ return ERROR_OK; } int mips_m4k_single_step_core(struct target *target) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; /* configure single step mode */ mips_ejtag_config_step(ejtag_info, 1); /* disable interrupts while stepping */ mips32_enable_interrupts(target, 0); /* exit debug mode */ mips_ejtag_exit_debug(ejtag_info); mips_m4k_debug_entry(target); return ERROR_OK; } int mips_m4k_resume(struct target *target, int current, uint32_t address, int handle_breakpoints, int debug_execution) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; struct breakpoint *breakpoint = NULL; uint32_t resume_pc; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (!debug_execution) { target_free_all_working_areas(target); mips_m4k_enable_breakpoints(target); mips_m4k_enable_watchpoints(target); } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) { buf_set_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32, address); mips32->core_cache->reg_list[MIPS32_PC].dirty = 1; mips32->core_cache->reg_list[MIPS32_PC].valid = 1; } resume_pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32); mips32_restore_context(target); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) { /* Single step past breakpoint at current address */ if ((breakpoint = breakpoint_find(target, resume_pc))) { LOG_DEBUG("unset breakpoint at 0x%8.8" PRIx32 "", breakpoint->address); mips_m4k_unset_breakpoint(target, breakpoint); mips_m4k_single_step_core(target); mips_m4k_set_breakpoint(target, breakpoint); } } /* enable interrupts if we are running */ mips32_enable_interrupts(target, !debug_execution); /* exit debug mode */ mips_ejtag_exit_debug(ejtag_info); target->debug_reason = DBG_REASON_NOTHALTED; /* registers are now invalid */ register_cache_invalidate(mips32->core_cache); if (!debug_execution) { target->state = TARGET_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); LOG_DEBUG("target resumed at 0x%" PRIx32 "", resume_pc); } else { target->state = TARGET_DEBUG_RUNNING; target_call_event_callbacks(target, TARGET_EVENT_DEBUG_RESUMED); LOG_DEBUG("target debug resumed at 0x%" PRIx32 "", resume_pc); } return ERROR_OK; } int mips_m4k_step(struct target *target, int current, uint32_t address, int handle_breakpoints) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; struct breakpoint *breakpoint = NULL; if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* current = 1: continue on current pc, otherwise continue at
*/ if (!current) buf_set_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32, address); /* the front-end may request us not to handle breakpoints */ if (handle_breakpoints) if ((breakpoint = breakpoint_find(target, buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32)))) mips_m4k_unset_breakpoint(target, breakpoint); /* restore context */ mips32_restore_context(target); /* configure single step mode */ mips_ejtag_config_step(ejtag_info, 1); target->debug_reason = DBG_REASON_SINGLESTEP; target_call_event_callbacks(target, TARGET_EVENT_RESUMED); /* disable interrupts while stepping */ mips32_enable_interrupts(target, 0); /* exit debug mode */ mips_ejtag_exit_debug(ejtag_info); /* registers are now invalid */ register_cache_invalidate(mips32->core_cache); if (breakpoint) mips_m4k_set_breakpoint(target, breakpoint); LOG_DEBUG("target stepped "); mips_m4k_debug_entry(target); target_call_event_callbacks(target, TARGET_EVENT_HALTED); return ERROR_OK; } void mips_m4k_enable_breakpoints(struct target *target) { struct breakpoint *breakpoint = target->breakpoints; /* set any pending breakpoints */ while (breakpoint) { if (breakpoint->set == 0) mips_m4k_set_breakpoint(target, breakpoint); breakpoint = breakpoint->next; } } int mips_m4k_set_breakpoint(struct target *target, struct breakpoint *breakpoint) { struct mips32_common *mips32 = target_to_mips32(target); struct mips32_comparator * comparator_list = mips32->inst_break_list; int retval; if (breakpoint->set) { LOG_WARNING("breakpoint already set"); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { int bp_num = 0; while (comparator_list[bp_num].used && (bp_num < mips32->num_inst_bpoints)) bp_num++; if (bp_num >= mips32->num_inst_bpoints) { LOG_ERROR("Can not find free FP Comparator(bpid: %d)", breakpoint->unique_id ); return ERROR_FAIL; } breakpoint->set = bp_num + 1; comparator_list[bp_num].used = 1; comparator_list[bp_num].bp_value = breakpoint->address; target_write_u32(target, comparator_list[bp_num].reg_address, comparator_list[bp_num].bp_value); target_write_u32(target, comparator_list[bp_num].reg_address + 0x08, 0x00000000); target_write_u32(target, comparator_list[bp_num].reg_address + 0x18, 1); LOG_DEBUG("bpid: %d, bp_num %i bp_value 0x%" PRIx32 "", breakpoint->unique_id, bp_num, comparator_list[bp_num].bp_value); } else if (breakpoint->type == BKPT_SOFT) { LOG_DEBUG("bpid: %d", breakpoint->unique_id ); if (breakpoint->length == 4) { uint32_t verify = 0xffffffff; if ((retval = target_read_memory(target, breakpoint->address, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } if ((retval = target_write_u32(target, breakpoint->address, MIPS32_SDBBP)) != ERROR_OK) { return retval; } if ((retval = target_read_u32(target, breakpoint->address, &verify)) != ERROR_OK) { return retval; } if (verify != MIPS32_SDBBP) { LOG_ERROR("Unable to set 32bit breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address); return ERROR_OK; } } else { uint16_t verify = 0xffff; if ((retval = target_read_memory(target, breakpoint->address, breakpoint->length, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } if ((retval = target_write_u16(target, breakpoint->address, MIPS16_SDBBP)) != ERROR_OK) { return retval; } if ((retval = target_read_u16(target, breakpoint->address, &verify)) != ERROR_OK) { return retval; } if (verify != MIPS16_SDBBP) { LOG_ERROR("Unable to set 16bit breakpoint at address %08" PRIx32 " - check that memory is read/writable", breakpoint->address); return ERROR_OK; } } breakpoint->set = 20; /* Any nice value but 0 */ } return ERROR_OK; } int mips_m4k_unset_breakpoint(struct target *target, struct breakpoint *breakpoint) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); struct mips32_comparator *comparator_list = mips32->inst_break_list; int retval; if (!breakpoint->set) { LOG_WARNING("breakpoint not set"); return ERROR_OK; } if (breakpoint->type == BKPT_HARD) { int bp_num = breakpoint->set - 1; if ((bp_num < 0) || (bp_num >= mips32->num_inst_bpoints)) { LOG_DEBUG("Invalid FP Comparator number in breakpoint (bpid: %d)", breakpoint->unique_id); return ERROR_OK; } LOG_DEBUG("bpid: %d - releasing hw: %d", breakpoint->unique_id, bp_num ); comparator_list[bp_num].used = 0; comparator_list[bp_num].bp_value = 0; target_write_u32(target, comparator_list[bp_num].reg_address + 0x18, 0); } else { /* restore original instruction (kept in target endianness) */ LOG_DEBUG("bpid: %d", breakpoint->unique_id); if (breakpoint->length == 4) { uint32_t current_instr; /* check that user program has not modified breakpoint instruction */ if ((retval = target_read_memory(target, breakpoint->address, 4, 1, (uint8_t*)¤t_instr)) != ERROR_OK) { return retval; } if (current_instr == MIPS32_SDBBP) { if ((retval = target_write_memory(target, breakpoint->address, 4, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } } else { uint16_t current_instr; /* check that user program has not modified breakpoint instruction */ if ((retval = target_read_memory(target, breakpoint->address, 2, 1, (uint8_t*)¤t_instr)) != ERROR_OK) { return retval; } if (current_instr == MIPS16_SDBBP) { if ((retval = target_write_memory(target, breakpoint->address, 2, 1, breakpoint->orig_instr)) != ERROR_OK) { return retval; } } } } breakpoint->set = 0; return ERROR_OK; } int mips_m4k_add_breakpoint(struct target *target, struct breakpoint *breakpoint) { struct mips32_common *mips32 = target_to_mips32(target); if (breakpoint->type == BKPT_HARD) { if (mips32->num_inst_bpoints_avail < 1) { LOG_INFO("no hardware breakpoint available"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } mips32->num_inst_bpoints_avail--; } mips_m4k_set_breakpoint(target, breakpoint); return ERROR_OK; } int mips_m4k_remove_breakpoint(struct target *target, struct breakpoint *breakpoint) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (breakpoint->set) { mips_m4k_unset_breakpoint(target, breakpoint); } if (breakpoint->type == BKPT_HARD) mips32->num_inst_bpoints_avail++; return ERROR_OK; } int mips_m4k_set_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct mips32_common *mips32 = target_to_mips32(target); struct mips32_comparator *comparator_list = mips32->data_break_list; int wp_num = 0; /* * watchpoint enabled, ignore all byte lanes in value register * and exclude both load and store accesses from watchpoint * condition evaluation */ int enable = EJTAG_DBCn_NOSB | EJTAG_DBCn_NOLB | EJTAG_DBCn_BE | (0xff << EJTAG_DBCn_BLM_SHIFT); if (watchpoint->set) { LOG_WARNING("watchpoint already set"); return ERROR_OK; } while(comparator_list[wp_num].used && (wp_num < mips32->num_data_bpoints)) wp_num++; if (wp_num >= mips32->num_data_bpoints) { LOG_ERROR("Can not find free FP Comparator"); return ERROR_FAIL; } if (watchpoint->length != 4) { LOG_ERROR("Only watchpoints of length 4 are supported"); return ERROR_TARGET_UNALIGNED_ACCESS; } if (watchpoint->address % 4) { LOG_ERROR("Watchpoints address should be word aligned"); return ERROR_TARGET_UNALIGNED_ACCESS; } switch (watchpoint->rw) { case WPT_READ: enable &= ~EJTAG_DBCn_NOLB; break; case WPT_WRITE: enable &= ~EJTAG_DBCn_NOSB; break; case WPT_ACCESS: enable &= ~(EJTAG_DBCn_NOLB | EJTAG_DBCn_NOSB); break; default: LOG_ERROR("BUG: watchpoint->rw neither read, write nor access"); } watchpoint->set = wp_num + 1; comparator_list[wp_num].used = 1; comparator_list[wp_num].bp_value = watchpoint->address; target_write_u32(target, comparator_list[wp_num].reg_address, comparator_list[wp_num].bp_value); target_write_u32(target, comparator_list[wp_num].reg_address + 0x08, 0x00000000); target_write_u32(target, comparator_list[wp_num].reg_address + 0x10, 0x00000000); target_write_u32(target, comparator_list[wp_num].reg_address + 0x18, enable); target_write_u32(target, comparator_list[wp_num].reg_address + 0x20, 0); LOG_DEBUG("wp_num %i bp_value 0x%" PRIx32 "", wp_num, comparator_list[wp_num].bp_value); return ERROR_OK; } int mips_m4k_unset_watchpoint(struct target *target, struct watchpoint *watchpoint) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); struct mips32_comparator *comparator_list = mips32->data_break_list; if (!watchpoint->set) { LOG_WARNING("watchpoint not set"); return ERROR_OK; } int wp_num = watchpoint->set - 1; if ((wp_num < 0) || (wp_num >= mips32->num_data_bpoints)) { LOG_DEBUG("Invalid FP Comparator number in watchpoint"); return ERROR_OK; } comparator_list[wp_num].used = 0; comparator_list[wp_num].bp_value = 0; target_write_u32(target, comparator_list[wp_num].reg_address + 0x18, 0); watchpoint->set = 0; return ERROR_OK; } int mips_m4k_add_watchpoint(struct target *target, struct watchpoint *watchpoint) { struct mips32_common *mips32 = target_to_mips32(target); if (mips32->num_data_bpoints_avail < 1) { LOG_INFO("no hardware watchpoints available"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } mips32->num_data_bpoints_avail--; mips_m4k_set_watchpoint(target, watchpoint); return ERROR_OK; } int mips_m4k_remove_watchpoint(struct target *target, struct watchpoint *watchpoint) { /* get pointers to arch-specific information */ struct mips32_common *mips32 = target_to_mips32(target); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } if (watchpoint->set) { mips_m4k_unset_watchpoint(target, watchpoint); } mips32->num_data_bpoints_avail++; return ERROR_OK; } void mips_m4k_enable_watchpoints(struct target *target) { struct watchpoint *watchpoint = target->watchpoints; /* set any pending watchpoints */ while (watchpoint) { if (watchpoint->set == 0) mips_m4k_set_watchpoint(target, watchpoint); watchpoint = watchpoint->next; } } int mips_m4k_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; /* if noDMA off, use DMAACC mode for memory read */ int retval; if (ejtag_info->impcode & EJTAG_IMP_NODMA) retval = mips32_pracc_read_mem(ejtag_info, address, size, count, (void *)buffer); else retval = mips32_dmaacc_read_mem(ejtag_info, address, size, count, (void *)buffer); if (ERROR_OK != retval) return retval; return ERROR_OK; } int mips_m4k_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; LOG_DEBUG("address: 0x%8.8" PRIx32 ", size: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, size, count); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* sanitize arguments */ if (((size != 4) && (size != 2) && (size != 1)) || (count == 0) || !(buffer)) return ERROR_INVALID_ARGUMENTS; if (((size == 4) && (address & 0x3u)) || ((size == 2) && (address & 0x1u))) return ERROR_TARGET_UNALIGNED_ACCESS; /* if noDMA off, use DMAACC mode for memory write */ if (ejtag_info->impcode & EJTAG_IMP_NODMA) return mips32_pracc_write_mem(ejtag_info, address, size, count, (void *)buffer); else return mips32_dmaacc_write_mem(ejtag_info, address, size, count, (void *)buffer); } int mips_m4k_init_target(struct command_context *cmd_ctx, struct target *target) { mips32_build_reg_cache(target); return ERROR_OK; } int mips_m4k_init_arch_info(struct target *target, struct mips_m4k_common *mips_m4k, struct jtag_tap *tap) { struct mips32_common *mips32 = &mips_m4k->mips32_common; mips_m4k->common_magic = MIPSM4K_COMMON_MAGIC; /* initialize mips4k specific info */ mips32_init_arch_info(target, mips32, tap); mips32->arch_info = mips_m4k; return ERROR_OK; } int mips_m4k_target_create(struct target *target, Jim_Interp *interp) { struct mips_m4k_common *mips_m4k = calloc(1, sizeof(struct mips_m4k_common)); mips_m4k_init_arch_info(target, mips_m4k, target->tap); return ERROR_OK; } int mips_m4k_examine(struct target *target) { int retval; struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; uint32_t idcode = 0; if (!target_was_examined(target)) { mips_ejtag_get_idcode(ejtag_info, &idcode); ejtag_info->idcode = idcode; if (((idcode >> 1) & 0x7FF) == 0x29) { /* we are using a pic32mx so select ejtag port * as it is not selected by default */ mips_ejtag_set_instr(ejtag_info, 0x05, NULL); LOG_DEBUG("PIC32MX Detected - using EJTAG Interface"); } } /* init rest of ejtag interface */ if ((retval = mips_ejtag_init(ejtag_info)) != ERROR_OK) return retval; if ((retval = mips32_examine(target)) != ERROR_OK) return retval; return ERROR_OK; } int mips_m4k_bulk_write_memory(struct target *target, uint32_t address, uint32_t count, uint8_t *buffer) { struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; struct working_area *source; int retval; int write = 1; LOG_DEBUG("address: 0x%8.8" PRIx32 ", count: 0x%8.8" PRIx32 "", address, count); if (target->state != TARGET_HALTED) { LOG_WARNING("target not halted"); return ERROR_TARGET_NOT_HALTED; } /* check alignment */ if (address & 0x3u) return ERROR_TARGET_UNALIGNED_ACCESS; /* Get memory for block write handler */ retval = target_alloc_working_area(target, MIPS32_FASTDATA_HANDLER_SIZE, &source); if (retval != ERROR_OK) { LOG_WARNING("No working area available, falling back to non-bulk write"); return mips_m4k_write_memory(target, address, 4, count, buffer); } /* TAP data register is loaded LSB first (little endian) */ if (target->endianness == TARGET_BIG_ENDIAN) { uint32_t i, t32; for(i = 0; i < (count * 4); i += 4) { t32 = be_to_h_u32((uint8_t *) &buffer[i]); h_u32_to_le(&buffer[i], t32); } } retval = mips32_pracc_fastdata_xfer(ejtag_info, source, write, address, count, (uint32_t*) buffer); if (retval != ERROR_OK) { /* FASTDATA access failed, try normal memory write */ LOG_DEBUG("Fastdata access Failed, falling back to non-bulk write"); retval = mips_m4k_write_memory(target, address, 4, count, buffer); } if (source) target_free_working_area(target, source); return retval; } int mips_m4k_checksum_memory(struct target *target, uint32_t address, uint32_t size, uint32_t *checksum) { return ERROR_FAIL; /* use bulk read method */ }