/*************************************************************************** * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2008 by David T.L. Wong * * * * Copyright (C) 2009 by David N. Claffey * * * * Copyright (C) 2011 by Drasko DRASKOVIC * * drasko.draskovic@gmail.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ /* * This version has optimized assembly routines for 32 bit operations: * - read word * - write word * - write array of words * * One thing to be aware of is that the MIPS32 cpu will execute the * instruction after a branch instruction (one delay slot). * * For example: * LW $2, ($5 +10) * B foo * LW $1, ($2 +100) * * The LW $1, ($2 +100) instruction is also executed. If this is * not wanted a NOP can be inserted: * * LW $2, ($5 +10) * B foo * NOP * LW $1, ($2 +100) * * or the code can be changed to: * * B foo * LW $2, ($5 +10) * LW $1, ($2 +100) * * The original code contained NOPs. I have removed these and moved * the branches. * * I also moved the PRACC_STACK to 0xFF204000. This allows * the use of 16 bits offsets to get pointers to the input * and output area relative to the stack. Note that the stack * isn't really a stack (the stack pointer is not 'moving') * but a FIFO simulated in software. * * These changes result in a 35% speed increase when programming an * external flash. * * More improvement could be gained if the registers do no need * to be preserved but in that case the routines should be aware * OpenOCD is used as a flash programmer or as a debug tool. * * Nico Coesel */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "mips32.h" #include "mips32_pracc.h" struct mips32_pracc_context { uint32_t *local_iparam; int num_iparam; uint32_t *local_oparam; int num_oparam; const uint32_t *code; int code_len; uint32_t stack[32]; int stack_offset; struct mips_ejtag *ejtag_info; }; static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr); static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr); static int wait_for_pracc_rw(struct mips_ejtag *ejtag_info, uint32_t *ctrl) { uint32_t ejtag_ctrl; long long then = timeval_ms(); int timeout; int retval; /* wait for the PrAcc to become "1" */ mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); while (1) { ejtag_ctrl = ejtag_info->ejtag_ctrl; retval = mips_ejtag_drscan_32(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; if (ejtag_ctrl & EJTAG_CTRL_PRACC) break; timeout = timeval_ms() - then; if (timeout > 1000) { LOG_DEBUG("DEBUGMODULE: No memory access in progress!"); return ERROR_JTAG_DEVICE_ERROR; } } *ctrl = ejtag_ctrl; return ERROR_OK; } static int mips32_pracc_exec_read(struct mips32_pracc_context *ctx, uint32_t address) { struct mips_ejtag *ejtag_info = ctx->ejtag_info; int offset; uint32_t ejtag_ctrl, data; if ((address >= MIPS32_PRACC_PARAM_IN) && (address < MIPS32_PRACC_PARAM_IN + ctx->num_iparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_IN) / 4; data = ctx->local_iparam[offset]; } else if ((address >= MIPS32_PRACC_PARAM_OUT) && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; data = ctx->local_oparam[offset]; } else if ((address >= MIPS32_PRACC_TEXT) && (address < MIPS32_PRACC_TEXT + ctx->code_len * 4)) { offset = (address - MIPS32_PRACC_TEXT) / 4; data = ctx->code[offset]; } else if (address == MIPS32_PRACC_STACK) { if (ctx->stack_offset <= 0) { LOG_ERROR("Error: Pracc stack out of bounds"); return ERROR_JTAG_DEVICE_ERROR; } /* save to our debug stack */ data = ctx->stack[--ctx->stack_offset]; } else if (address >= 0xFF200000) { /* CPU keeps reading at the end of execution. * If we after 0xF0000000 address range, we can use * one shot jump instruction. * Since this instruction is limited to * 26bit, we need to do some magic to fit it to our needs. */ LOG_DEBUG("Reading unexpected address. Jump to 0xFF200200\n"); data = MIPS32_J((0x0FFFFFFF & 0xFF200200) >> 2); } else { LOG_ERROR("Error reading unexpected address 0x%8.8" PRIx32 "", address); return ERROR_JTAG_DEVICE_ERROR; } /* Send the data out */ mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ctx->ejtag_info, data); /* Clear the access pending bit (let the processor eat!) */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl); return jtag_execute_queue(); } static int mips32_pracc_exec_write(struct mips32_pracc_context *ctx, uint32_t address) { uint32_t ejtag_ctrl, data; int offset; struct mips_ejtag *ejtag_info = ctx->ejtag_info; int retval; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_DATA); retval = mips_ejtag_drscan_32(ctx->ejtag_info, &data); if (retval != ERROR_OK) return retval; /* Clear access pending bit */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ctx->ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ctx->ejtag_info, ejtag_ctrl); retval = jtag_execute_queue(); if (retval != ERROR_OK) return retval; if ((address >= MIPS32_PRACC_PARAM_OUT) && (address < MIPS32_PRACC_PARAM_OUT + ctx->num_oparam * 4)) { offset = (address - MIPS32_PRACC_PARAM_OUT) / 4; ctx->local_oparam[offset] = data; } else if (address == MIPS32_PRACC_STACK) { if (ctx->stack_offset >= 32) { LOG_ERROR("Error: Pracc stack out of bounds"); return ERROR_JTAG_DEVICE_ERROR; } /* save data onto our stack */ ctx->stack[ctx->stack_offset++] = data; } else { LOG_ERROR("Error writing unexpected address 0x%8.8" PRIx32 "", address); return ERROR_JTAG_DEVICE_ERROR; } return ERROR_OK; } int mips32_pracc_exec(struct mips_ejtag *ejtag_info, int code_len, const uint32_t *code, int num_param_in, uint32_t *param_in, int num_param_out, uint32_t *param_out, int cycle) { uint32_t ejtag_ctrl; uint32_t address; struct mips32_pracc_context ctx; int retval; int pass = 0; ctx.local_iparam = param_in; ctx.local_oparam = param_out; ctx.num_iparam = num_param_in; ctx.num_oparam = num_param_out; ctx.code = code; ctx.code_len = code_len; ctx.ejtag_info = ejtag_info; ctx.stack_offset = 0; while (1) { retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; address = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; /* Check for read or write */ if (ejtag_ctrl & EJTAG_CTRL_PRNW) { retval = mips32_pracc_exec_write(&ctx, address); if (retval != ERROR_OK) return retval; } else { /* Check to see if its reading at the debug vector. The first pass through * the module is always read at the vector, so the first one we allow. When * the second read from the vector occurs we are done and just exit. */ if ((address == MIPS32_PRACC_TEXT) && (pass++)) break; retval = mips32_pracc_exec_read(&ctx, address); if (retval != ERROR_OK) return retval; } if (cycle == 0) break; } /* stack sanity check */ if (ctx.stack_offset != 0) LOG_DEBUG("Pracc Stack not zero"); return ERROR_OK; } inline void pracc_queue_init(struct pracc_queue_info *ctx) { ctx->retval = ERROR_OK; ctx->code_count = 0; ctx->store_count = 0; ctx->pracc_list = malloc(2 * ctx->max_code * sizeof(uint32_t)); if (ctx->pracc_list == NULL) { LOG_ERROR("Out of memory"); ctx->retval = ERROR_FAIL; } } inline void pracc_add(struct pracc_queue_info *ctx, uint32_t addr, uint32_t instr) { ctx->pracc_list[ctx->max_code + ctx->code_count] = addr; ctx->pracc_list[ctx->code_count++] = instr; if (addr) ctx->store_count++; } inline void pracc_queue_free(struct pracc_queue_info *ctx) { if (ctx->code_count > ctx->max_code) /* Only for internal check, will be erased */ LOG_ERROR("Internal error, code count: %d > max code: %d", ctx->code_count, ctx->max_code); if (ctx->pracc_list != NULL) free(ctx->pracc_list); } int mips32_pracc_queue_exec(struct mips_ejtag *ejtag_info, struct pracc_queue_info *ctx, uint32_t *buf) { if (ejtag_info->mode == 0) return mips32_pracc_exec(ejtag_info, ctx->code_count, ctx->pracc_list, 0, NULL, ctx->store_count, buf, ctx->code_count - 1); union scan_in { uint8_t scan_96[12]; struct { uint8_t ctrl[4]; uint8_t data[4]; uint8_t addr[4]; } scan_32; } *scan_in = malloc(sizeof(union scan_in) * (ctx->code_count + ctx->store_count)); if (scan_in == NULL) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } unsigned num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000; uint32_t ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ALL); int scan_count = 0; for (int i = 0; i != 2 * ctx->code_count; i++) { uint32_t data = 0; if (i & 1u) { /* Check store address from previous instruction, if not the first */ if (i < 2 || 0 == ctx->pracc_list[ctx->max_code + (i / 2) - 1]) continue; } else data = ctx->pracc_list[i / 2]; jtag_add_clocks(num_clocks); mips_ejtag_add_scan_96(ejtag_info, ejtag_ctrl, data, scan_in[scan_count++].scan_96); } int retval = jtag_execute_queue(); /* execute queued scans */ if (retval != ERROR_OK) goto exit; uint32_t fetch_addr = MIPS32_PRACC_TEXT; /* start address */ scan_count = 0; for (int i = 0; i != 2 * ctx->code_count; i++) { /* verify every pracc access */ uint32_t store_addr = 0; if (i & 1u) { /* Read store addres from previous instruction, if not the first */ store_addr = ctx->pracc_list[ctx->max_code + (i / 2) - 1]; if (i < 2 || 0 == store_addr) continue; } ejtag_ctrl = buf_get_u32(scan_in[scan_count].scan_32.ctrl, 0, 32); if (!(ejtag_ctrl & EJTAG_CTRL_PRACC)) { LOG_ERROR("Error: access not pending count: %d", scan_count); retval = ERROR_FAIL; goto exit; } uint32_t addr = buf_get_u32(scan_in[scan_count].scan_32.addr, 0, 32); if (store_addr != 0) { if (!(ejtag_ctrl & EJTAG_CTRL_PRNW)) { LOG_ERROR("Not a store/write access, count: %d", scan_count); retval = ERROR_FAIL; goto exit; } if (addr != store_addr) { LOG_ERROR("Store address mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d", addr, store_addr, scan_count); retval = ERROR_FAIL; goto exit; } int buf_index = (addr - MIPS32_PRACC_PARAM_OUT) / 4; buf[buf_index] = buf_get_u32(scan_in[scan_count].scan_32.data, 0, 32); } else { if (ejtag_ctrl & EJTAG_CTRL_PRNW) { LOG_ERROR("Not a fetch/read access, count: %d", scan_count); retval = ERROR_FAIL; goto exit; } if (addr != fetch_addr) { LOG_ERROR("Fetch addr mismatch, read: %" PRIx32 " expected: %" PRIx32 " count: %d", addr, fetch_addr, scan_count); retval = ERROR_FAIL; goto exit; } fetch_addr += 4; } scan_count++; } exit: free(scan_in); return retval; } int mips32_pracc_read_u32(struct mips_ejtag *ejtag_info, uint32_t addr, uint32_t *buf) { struct pracc_queue_info ctx = {.max_code = 9}; pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16((addr + 0x8000)))); /* load $8 with modified upper address */ pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 8)); /* lw $8, LOWER16(addr)($8) */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* sw $8,PRACC_OUT_OFFSET($15) */ pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 of $8 */ pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 of $8 */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf); exit: pracc_queue_free(&ctx); return ctx.retval; } int mips32_pracc_read_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, void *buf) { if (count == 1 && size == 4) return mips32_pracc_read_u32(ejtag_info, addr, (uint32_t *)buf); uint32_t *data = NULL; struct pracc_queue_info ctx = {.max_code = 256 * 3 + 9 + 1}; /* alloc memory for the worst case */ pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; if (size != 4) { data = malloc(256 * sizeof(uint32_t)); if (data == NULL) { LOG_ERROR("Out of memory"); goto exit; } } uint32_t *buf32 = buf; uint16_t *buf16 = buf; uint8_t *buf8 = buf; while (count) { ctx.code_count = 0; ctx.store_count = 0; int this_round_count = (count > 256) ? 256 : count; uint32_t last_upper_base_addr = UPPER16((addr + 0x8000)); pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_LUI(9, last_upper_base_addr)); /* load the upper memory address in $9 */ for (int i = 0; i != this_round_count; i++) { /* Main code loop */ uint32_t upper_base_addr = UPPER16((addr + 0x8000)); if (last_upper_base_addr != upper_base_addr) { /* if needed, change upper address in $9 */ pracc_add(&ctx, 0, MIPS32_LUI(9, upper_base_addr)); last_upper_base_addr = upper_base_addr; } if (size == 4) pracc_add(&ctx, 0, MIPS32_LW(8, LOWER16(addr), 9)); /* load from memory to $8 */ else if (size == 2) pracc_add(&ctx, 0, MIPS32_LHU(8, LOWER16(addr), 9)); else pracc_add(&ctx, 0, MIPS32_LBU(8, LOWER16(addr), 9)); pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + i * 4, MIPS32_SW(8, PRACC_OUT_OFFSET + i * 4, 15)); /* store $8 at param out */ addr += size; } pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */ pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */ pracc_add(&ctx, 0, MIPS32_LUI(9, UPPER16(ejtag_info->reg9))); /* restore upper 16 bits of reg 9 */ pracc_add(&ctx, 0, MIPS32_ORI(9, 9, LOWER16(ejtag_info->reg9))); /* restore lower 16 bits of reg 9 */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */ if (size == 4) { ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, buf32); if (ctx.retval != ERROR_OK) goto exit; buf32 += this_round_count; } else { ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, data); if (ctx.retval != ERROR_OK) goto exit; uint32_t *data_p = data; for (int i = 0; i != this_round_count; i++) { if (size == 2) *buf16++ = *data_p++; else *buf8++ = *data_p++; } } count -= this_round_count; } exit: pracc_queue_free(&ctx); if (data != NULL) free(data); return ctx.retval; } int mips32_cp0_read(struct mips_ejtag *ejtag_info, uint32_t *val, uint32_t cp0_reg, uint32_t cp0_sel) { struct pracc_queue_info ctx = {.max_code = 8}; pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(15, PRACC_UPPER_BASE_ADDR)); /* $15 = MIPS32_PRACC_BASE_ADDR */ pracc_add(&ctx, 0, MIPS32_MFC0(8, 0, 0) | (cp0_reg << 11) | cp0_sel); /* move COP0 [cp0_reg select] to $8 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT, MIPS32_SW(8, PRACC_OUT_OFFSET, 15)); /* store $8 to pracc_out */ pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */ pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of $8 */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of $8 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, val); exit: pracc_queue_free(&ctx); return ctx.retval; /** * Note that our input parametes cp0_reg and cp0_sel * are numbers (not gprs) which make part of mfc0 instruction opcode. * * These are not fix, but can be different for each mips32_cp0_read() function call, * and that is why we must insert them directly into opcode, * i.e. we can not pass it on EJTAG microprogram stack (via param_in), * and put them into the gprs later from MIPS32_PRACC_STACK * because mfc0 do not use gpr as a parameter for the cp0_reg and select part, * but plain (immediate) number. * * MIPS32_MTC0 is implemented via MIPS32_R_INST macro. * In order to insert our parameters, we must change rd and funct fields. * * code[2] |= (cp0_reg << 11) | cp0_sel; change rd and funct of MIPS32_R_INST macro **/ } int mips32_cp0_write(struct mips_ejtag *ejtag_info, uint32_t val, uint32_t cp0_reg, uint32_t cp0_sel) { struct pracc_queue_info ctx = {.max_code = 6}; pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* move $15 to COP0 DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(15, UPPER16(val))); /* Load val to $15 */ pracc_add(&ctx, 0, MIPS32_ORI(15, 15, LOWER16(val))); pracc_add(&ctx, 0, MIPS32_MTC0(15, 0, 0) | (cp0_reg << 11) | cp0_sel); /* write cp0 reg / sel */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* move COP0 DeSave to $15 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL); exit: pracc_queue_free(&ctx); return ctx.retval; /** * Note that MIPS32_MTC0 macro is implemented via MIPS32_R_INST macro. * In order to insert our parameters, we must change rd and funct fields. * code[3] |= (cp0_reg << 11) | cp0_sel; change rd and funct fields of MIPS32_R_INST macro **/ } /** * \b mips32_pracc_sync_cache * * Synchronize Caches to Make Instruction Writes Effective * (ref. doc. MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set, * Document Number: MD00086, Revision 2.00, June 9, 2003) * * When the instruction stream is written, the SYNCI instruction should be used * in conjunction with other instructions to make the newly-written instructions effective. * * Explanation : * A program that loads another program into memory is actually writing the D- side cache. * The instructions it has loaded can't be executed until they reach the I-cache. * * After the instructions have been written, the loader should arrange * to write back any containing D-cache line and invalidate any locations * already in the I-cache. * * You can do that with cache instructions, but those instructions are only available in kernel mode, * and a loader writing instructions for the use of its own process need not be privileged software. * * In the latest MIPS32/64 CPUs, MIPS provides the synci instruction, * which does the whole job for a cache-line-sized chunk of the memory you just loaded: * That is, it arranges a D-cache write-back and an I-cache invalidate. * * To employ synci at user level, you need to know the size of a cache line, * and that can be obtained with a rdhwr SYNCI_Step * from one of the standard “hardware registers”. */ static int mips32_pracc_sync_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */ MIPS32_RDHWR(11, MIPS32_SYNCI_STEP), /* $11 = MIPS32_SYNCI_STEP */ MIPS32_BEQ(11, 0, 6), /* beq $11, $0, end */ MIPS32_NOP, /* synci_loop : */ MIPS32_SYNCI(0, 9), /* synci 0($9) */ MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 # $8 = $10 < $9 ? 1 : 0 */ MIPS32_BNE(8, 0, NEG16(3)), /* bne $8, $0, synci_loop */ MIPS32_ADDU(9, 9, 11), /* $9 += MIPS32_SYNCI_STEP */ MIPS32_SYNC, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(24)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /* TODO remove array */ uint32_t *param_in = malloc(2 * sizeof(uint32_t)); int retval; param_in[0] = start_addr; param_in[1] = end_addr; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 2, param_in, 0, NULL, 1); free(param_in); return retval; } /** * \b mips32_pracc_clean_invalidate_cache * * Writeback D$ and Invalidate I$ * so that the instructions written can be visible to CPU */ static int mips32_pracc_clean_invalidate_cache(struct mips_ejtag *ejtag_info, uint32_t start_addr, uint32_t end_addr) { static const uint32_t code[] = { /* start: */ MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ MIPS32_LUI(15, UPPER16(MIPS32_PRACC_STACK)), /* $15 = MIPS32_PRACC_STACK */ MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_STACK)), MIPS32_SW(8, 0, 15), /* sw $8,($15) */ MIPS32_SW(9, 0, 15), /* sw $9,($15) */ MIPS32_SW(10, 0, 15), /* sw $10,($15) */ MIPS32_SW(11, 0, 15), /* sw $11,($15) */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_PARAM_IN)), /* $8 = MIPS32_PRACC_PARAM_IN */ MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_PARAM_IN)), MIPS32_LW(9, 0, 8), /* Load write start_addr to $9 */ MIPS32_LW(10, 4, 8), /* Load write end_addr to $10 */ MIPS32_LW(11, 8, 8), /* Load write clsiz to $11 */ /* cache_loop: */ MIPS32_SLTU(8, 10, 9), /* sltu $8, $10, $9 : $8 <- $10 < $9 ? */ MIPS32_BGTZ(8, 6), /* bgtz $8, end */ MIPS32_NOP, MIPS32_CACHE(MIPS32_CACHE_D_HIT_WRITEBACK, 0, 9), /* cache Hit_Writeback_D, 0($9) */ MIPS32_CACHE(MIPS32_CACHE_I_HIT_INVALIDATE, 0, 9), /* cache Hit_Invalidate_I, 0($9) */ MIPS32_ADDU(9, 9, 11), /* $9 += $11 */ MIPS32_B(NEG16(7)), /* b cache_loop */ MIPS32_NOP, /* end: */ MIPS32_LW(11, 0, 15), /* lw $11,($15) */ MIPS32_LW(10, 0, 15), /* lw $10,($15) */ MIPS32_LW(9, 0, 15), /* lw $9,($15) */ MIPS32_LW(8, 0, 15), /* lw $8,($15) */ MIPS32_B(NEG16(25)), /* b start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; /** * Find cache line size in bytes */ uint32_t conf; uint32_t dl, clsiz; mips32_cp0_read(ejtag_info, &conf, 16, 1); dl = (conf & MIPS32_CONFIG1_DL_MASK) >> MIPS32_CONFIG1_DL_SHIFT; /* dl encoding : dl=1 => 4 bytes, dl=2 => 8 bytes, etc... */ clsiz = 0x2 << dl; /* TODO remove array */ uint32_t *param_in = malloc(3 * sizeof(uint32_t)); int retval; param_in[0] = start_addr; param_in[1] = end_addr; param_in[2] = clsiz; retval = mips32_pracc_exec(ejtag_info, ARRAY_SIZE(code), code, 3, param_in, 0, NULL, 1); free(param_in); return retval; } static int mips32_pracc_write_mem_generic(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf) { struct pracc_queue_info ctx = {.max_code = 128 * 3 + 6 + 1}; /* alloc memory for the worst case */ pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; const uint32_t *buf32 = buf; const uint16_t *buf16 = buf; const uint8_t *buf8 = buf; while (count) { ctx.code_count = 0; ctx.store_count = 0; int this_round_count = (count > 128) ? 128 : count; uint32_t last_upper_base_addr = UPPER16((addr + 0x8000)); pracc_add(&ctx, 0, MIPS32_MTC0(15, 31, 0)); /* save $15 in DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(15, last_upper_base_addr)); /* load $15 with memory base address */ for (int i = 0; i != this_round_count; i++) { uint32_t upper_base_addr = UPPER16((addr + 0x8000)); if (last_upper_base_addr != upper_base_addr) { pracc_add(&ctx, 0, MIPS32_LUI(15, upper_base_addr)); /* if needed, change upper address in $15*/ last_upper_base_addr = upper_base_addr; } if (size == 4) { /* for word writes check if one half word is 0 and load it accordingly */ if (LOWER16(*buf32) == 0) pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load only upper value */ else if (UPPER16(*buf32) == 0) pracc_add(&ctx, 0, MIPS32_ORI(8, 0, LOWER16(*buf32))); /* load only lower */ else { pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(*buf32))); /* load upper and lower */ pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(*buf32))); } pracc_add(&ctx, 0, MIPS32_SW(8, LOWER16(addr), 15)); /* store word to memory */ buf32++; } else if (size == 2) { pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf16)); /* load lower value */ pracc_add(&ctx, 0, MIPS32_SH(8, LOWER16(addr), 15)); /* store half word to memory */ buf16++; } else { pracc_add(&ctx, 0, MIPS32_ORI(8, 0, *buf8)); /* load lower value */ pracc_add(&ctx, 0, MIPS32_SB(8, LOWER16(addr), 15)); /* store byte to memory */ buf8++; } addr += size; } pracc_add(&ctx, 0, MIPS32_LUI(8, UPPER16(ejtag_info->reg8))); /* restore upper 16 bits of reg 8 */ pracc_add(&ctx, 0, MIPS32_ORI(8, 8, LOWER16(ejtag_info->reg8))); /* restore lower 16 bits of reg 8 */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(15, 31, 0)); /* restore $15 from DeSave */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL); if (ctx.retval != ERROR_OK) goto exit; count -= this_round_count; } exit: pracc_queue_free(&ctx); return ctx.retval; } int mips32_pracc_write_mem(struct mips_ejtag *ejtag_info, uint32_t addr, int size, int count, const void *buf) { int retval = mips32_pracc_write_mem_generic(ejtag_info, addr, size, count, buf); if (retval != ERROR_OK) return retval; /** * If we are in the cachable regoion and cache is activated, * we must clean D$ + invalidate I$ after we did the write, * so that changes do not continue to live only in D$, but to be * replicated in I$ also (maybe we wrote the istructions) */ uint32_t conf = 0; int cached = 0; if ((KSEGX(addr) == KSEG1) || ((addr >= 0xff200000) && (addr <= 0xff3fffff))) return retval; /*Nothing to do*/ mips32_cp0_read(ejtag_info, &conf, 16, 0); switch (KSEGX(addr)) { case KUSEG: cached = (conf & MIPS32_CONFIG0_KU_MASK) >> MIPS32_CONFIG0_KU_SHIFT; break; case KSEG0: cached = (conf & MIPS32_CONFIG0_K0_MASK) >> MIPS32_CONFIG0_K0_SHIFT; break; case KSEG2: case KSEG3: cached = (conf & MIPS32_CONFIG0_K23_MASK) >> MIPS32_CONFIG0_K23_SHIFT; break; default: /* what ? */ break; } /** * Check cachablitiy bits coherency algorithm - * is the region cacheable or uncached. * If cacheable we have to synchronize the cache */ if (cached == 0x3) { uint32_t start_addr, end_addr; uint32_t rel; start_addr = addr; end_addr = addr + count * size; /** select cache synchronisation mechanism based on Architecture Release */ rel = (conf & MIPS32_CONFIG0_AR_MASK) >> MIPS32_CONFIG0_AR_SHIFT; switch (rel) { case MIPS32_ARCH_REL1: /* MIPS32/64 Release 1 - we must use cache instruction */ mips32_pracc_clean_invalidate_cache(ejtag_info, start_addr, end_addr); break; case MIPS32_ARCH_REL2: /* MIPS32/64 Release 2 - we can use synci instruction */ mips32_pracc_sync_cache(ejtag_info, start_addr, end_addr); break; default: /* what ? */ break; } } return retval; } int mips32_pracc_write_regs(struct mips_ejtag *ejtag_info, uint32_t *regs) { static const uint32_t cp0_write_code[] = { MIPS32_MTC0(1, 12, 0), /* move $1 to status */ MIPS32_MTLO(1), /* move $1 to lo */ MIPS32_MTHI(1), /* move $1 to hi */ MIPS32_MTC0(1, 8, 0), /* move $1 to badvaddr */ MIPS32_MTC0(1, 13, 0), /* move $1 to cause*/ MIPS32_MTC0(1, 24, 0), /* move $1 to depc (pc) */ }; struct pracc_queue_info ctx = {.max_code = 37 * 2 + 6 + 1}; pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; /* load registers 2 to 31 with lui and ori instructions, check if some instructions can be saved */ for (int i = 2; i < 32; i++) { if (LOWER16((regs[i])) == 0) /* if lower half word is 0, lui instruction only */ pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i])))); else if (UPPER16((regs[i])) == 0) /* if upper half word is 0, ori with $0 only*/ pracc_add(&ctx, 0, MIPS32_ORI(i, 0, LOWER16((regs[i])))); else { /* default, load with lui and ori instructions */ pracc_add(&ctx, 0, MIPS32_LUI(i, UPPER16((regs[i])))); pracc_add(&ctx, 0, MIPS32_ORI(i, i, LOWER16((regs[i])))); } } for (int i = 0; i != 6; i++) { pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[i + 32])))); /* load CPO value in $1, with lui and ori */ pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[i + 32])))); pracc_add(&ctx, 0, cp0_write_code[i]); /* write value from $1 to CPO register */ } pracc_add(&ctx, 0, MIPS32_LUI(1, UPPER16((regs[1])))); /* load upper half word in $1 */ pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_ORI(1, 1, LOWER16((regs[1])))); /* load lower half word in $1 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, NULL); ejtag_info->reg8 = regs[8]; ejtag_info->reg9 = regs[9]; exit: pracc_queue_free(&ctx); return ctx.retval; } int mips32_pracc_read_regs(struct mips_ejtag *ejtag_info, uint32_t *regs) { static int cp0_read_code[] = { MIPS32_MFC0(8, 12, 0), /* move status to $8 */ MIPS32_MFLO(8), /* move lo to $8 */ MIPS32_MFHI(8), /* move hi to $8 */ MIPS32_MFC0(8, 8, 0), /* move badvaddr to $8 */ MIPS32_MFC0(8, 13, 0), /* move cause to $8 */ MIPS32_MFC0(8, 24, 0), /* move depc (pc) to $8 */ }; struct pracc_queue_info ctx = {.max_code = 48}; pracc_queue_init(&ctx); if (ctx.retval != ERROR_OK) goto exit; pracc_add(&ctx, 0, MIPS32_MTC0(1, 31, 0)); /* move $1 to COP0 DeSave */ pracc_add(&ctx, 0, MIPS32_LUI(1, PRACC_UPPER_BASE_ADDR)); /* $1 = MIP32_PRACC_BASE_ADDR */ for (int i = 2; i != 32; i++) /* store GPR's 2 to 31 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i * 4), MIPS32_SW(i, PRACC_OUT_OFFSET + (i * 4), 1)); for (int i = 0; i != 6; i++) { pracc_add(&ctx, 0, cp0_read_code[i]); /* load COP0 needed registers to $8 */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + (i + 32) * 4, /* store $8 at PARAM OUT */ MIPS32_SW(8, PRACC_OUT_OFFSET + (i + 32) * 4, 1)); } pracc_add(&ctx, 0, MIPS32_MFC0(8, 31, 0)); /* move DeSave to $8, reg1 value */ pracc_add(&ctx, MIPS32_PRACC_PARAM_OUT + 4, /* store reg1 value from $8 to param out */ MIPS32_SW(8, PRACC_OUT_OFFSET + 4, 1)); pracc_add(&ctx, 0, MIPS32_B(NEG16(ctx.code_count + 1))); /* jump to start */ pracc_add(&ctx, 0, MIPS32_MFC0(1, 31, 0)); /* move COP0 DeSave to $1, restore reg1 */ if (ejtag_info->mode == 0) ctx.store_count++; /* Needed by legacy code, due to offset from reg0 */ ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, regs); ejtag_info->reg8 = regs[8]; /* reg8 is saved but not restored, next called function should restore it */ ejtag_info->reg9 = regs[9]; exit: pracc_queue_free(&ctx); return ctx.retval; } /* fastdata upload/download requires an initialized working area * to load the download code; it should not be called otherwise * fetch order from the fastdata area * 1. start addr * 2. end addr * 3. data ... */ int mips32_pracc_fastdata_xfer(struct mips_ejtag *ejtag_info, struct working_area *source, int write_t, uint32_t addr, int count, uint32_t *buf) { uint32_t handler_code[] = { /* caution when editing, table is modified below */ /* r15 points to the start of this code */ MIPS32_SW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_SW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_SW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_SW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), /* start of fastdata area in t0 */ MIPS32_LUI(8, UPPER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_ORI(8, 8, LOWER16(MIPS32_PRACC_FASTDATA_AREA)), MIPS32_LW(9, 0, 8), /* start addr in t1 */ MIPS32_LW(10, 0, 8), /* end addr to t2 */ /* loop: */ /* 8 */ MIPS32_LW(11, 0, 0), /* lw t3,[t8 | r9] */ /* 9 */ MIPS32_SW(11, 0, 0), /* sw t3,[r9 | r8] */ MIPS32_BNE(10, 9, NEG16(3)), /* bne $t2,t1,loop */ MIPS32_ADDI(9, 9, 4), /* addi t1,t1,4 */ MIPS32_LW(8, MIPS32_FASTDATA_HANDLER_SIZE - 4, 15), MIPS32_LW(9, MIPS32_FASTDATA_HANDLER_SIZE - 8, 15), MIPS32_LW(10, MIPS32_FASTDATA_HANDLER_SIZE - 12, 15), MIPS32_LW(11, MIPS32_FASTDATA_HANDLER_SIZE - 16, 15), MIPS32_LUI(15, UPPER16(MIPS32_PRACC_TEXT)), MIPS32_ORI(15, 15, LOWER16(MIPS32_PRACC_TEXT)), MIPS32_JR(15), /* jr start */ MIPS32_MFC0(15, 31, 0), /* move COP0 DeSave to $15 */ }; uint32_t jmp_code[] = { MIPS32_MTC0(15, 31, 0), /* move $15 to COP0 DeSave */ /* 1 */ MIPS32_LUI(15, 0), /* addr of working area added below */ /* 2 */ MIPS32_ORI(15, 15, 0), /* addr of working area added below */ MIPS32_JR(15), /* jump to ram program */ MIPS32_NOP, }; int retval, i; uint32_t val, ejtag_ctrl, address; if (source->size < MIPS32_FASTDATA_HANDLER_SIZE) return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; if (write_t) { handler_code[8] = MIPS32_LW(11, 0, 8); /* load data from probe at fastdata area */ handler_code[9] = MIPS32_SW(11, 0, 9); /* store data to RAM @ r9 */ } else { handler_code[8] = MIPS32_LW(11, 0, 9); /* load data from RAM @ r9 */ handler_code[9] = MIPS32_SW(11, 0, 8); /* store data to probe at fastdata area */ } /* write program into RAM */ if (write_t != ejtag_info->fast_access_save) { mips32_pracc_write_mem_generic(ejtag_info, source->address, 4, ARRAY_SIZE(handler_code), handler_code); /* save previous operation to speed to any consecutive read/writes */ ejtag_info->fast_access_save = write_t; } LOG_DEBUG("%s using 0x%.8" PRIx32 " for write handler", __func__, source->address); jmp_code[1] |= UPPER16(source->address); jmp_code[2] |= LOWER16(source->address); for (i = 0; i < (int) ARRAY_SIZE(jmp_code); i++) { retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_DATA); mips_ejtag_drscan_32_out(ejtag_info, jmp_code[i]); /* Clear the access pending bit (let the processor eat!) */ ejtag_ctrl = ejtag_info->ejtag_ctrl & ~EJTAG_CTRL_PRACC; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_CONTROL); mips_ejtag_drscan_32_out(ejtag_info, ejtag_ctrl); } /* wait PrAcc pending bit for FASTDATA write */ retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; /* next fetch to dmseg should be in FASTDATA_AREA, check */ address = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; if (address != MIPS32_PRACC_FASTDATA_AREA) return ERROR_FAIL; /* Send the load start address */ val = addr; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); mips_ejtag_fastdata_scan(ejtag_info, 1, &val); retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; /* Send the load end address */ val = addr + (count - 1) * 4; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_FASTDATA); mips_ejtag_fastdata_scan(ejtag_info, 1, &val); unsigned num_clocks = 0; /* like in legacy code */ if (ejtag_info->mode != 0) num_clocks = ((uint64_t)(ejtag_info->scan_delay) * jtag_get_speed_khz() + 500000) / 1000000; for (i = 0; i < count; i++) { jtag_add_clocks(num_clocks); retval = mips_ejtag_fastdata_scan(ejtag_info, write_t, buf++); if (retval != ERROR_OK) return retval; } retval = jtag_execute_queue(); if (retval != ERROR_OK) { LOG_ERROR("fastdata load failed"); return retval; } retval = wait_for_pracc_rw(ejtag_info, &ejtag_ctrl); if (retval != ERROR_OK) return retval; address = 0; mips_ejtag_set_instr(ejtag_info, EJTAG_INST_ADDRESS); retval = mips_ejtag_drscan_32(ejtag_info, &address); if (retval != ERROR_OK) return retval; if (address != MIPS32_PRACC_TEXT) LOG_ERROR("mini program did not return to start"); return retval; }