// SPDX-License-Identifier: GPL-2.0-or-later /*************************************************************************** * Copyright (C) 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * Copyright (C) 2008 by Spencer Oliver * * spen@spen-soft.co.uk * * * * Copyright (C) 2009 by Franck Hereson * * franck.hereson@secad.fr * * * * Copyright (C) 2018 by Advantest * * florian.meister@advantest.com * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "image.h" #include "target.h" #include #include /* convert ELF header field to host endianness */ #define field16(elf, field) \ ((elf->endianness == ELFDATA2LSB) ? \ le_to_h_u16((uint8_t *)&field) : be_to_h_u16((uint8_t *)&field)) #define field32(elf, field) \ ((elf->endianness == ELFDATA2LSB) ? \ le_to_h_u32((uint8_t *)&field) : be_to_h_u32((uint8_t *)&field)) #define field64(elf, field) \ ((elf->endianness == ELFDATA2LSB) ? \ le_to_h_u64((uint8_t *)&field) : be_to_h_u64((uint8_t *)&field)) static int autodetect_image_type(struct image *image, const char *url) { int retval; struct fileio *fileio; size_t read_bytes; uint8_t buffer[9]; /* read the first 9 bytes of image */ retval = fileio_open(&fileio, url, FILEIO_READ, FILEIO_BINARY); if (retval != ERROR_OK) return retval; retval = fileio_read(fileio, 9, buffer, &read_bytes); fileio_close(fileio); /* If the file is smaller than 9 bytes, it can only be bin */ if (retval == ERROR_OK && read_bytes != 9) { LOG_DEBUG("Less than 9 bytes in the image file found."); LOG_DEBUG("BIN image detected."); image->type = IMAGE_BINARY; return ERROR_OK; } if (retval != ERROR_OK) return retval; /* check header against known signatures */ if (strncmp((char *)buffer, ELFMAG, SELFMAG) == 0) { LOG_DEBUG("ELF image detected."); image->type = IMAGE_ELF; } else if ((buffer[0] == ':') /* record start byte */ && (isxdigit(buffer[1])) && (isxdigit(buffer[2])) && (isxdigit(buffer[3])) && (isxdigit(buffer[4])) && (isxdigit(buffer[5])) && (isxdigit(buffer[6])) && (buffer[7] == '0') /* record type : 00 -> 05 */ && (buffer[8] >= '0') && (buffer[8] < '6')) { LOG_DEBUG("IHEX image detected."); image->type = IMAGE_IHEX; } else if ((buffer[0] == 'S') /* record start byte */ && (isxdigit(buffer[1])) && (isxdigit(buffer[2])) && (isxdigit(buffer[3])) && (buffer[1] >= '0') && (buffer[1] < '9')) { LOG_DEBUG("S19 image detected."); image->type = IMAGE_SRECORD; } else { LOG_DEBUG("BIN image detected."); image->type = IMAGE_BINARY; } return ERROR_OK; } static int identify_image_type(struct image *image, const char *type_string, const char *url) { if (type_string) { if (!strcmp(type_string, "bin")) { image->type = IMAGE_BINARY; } else if (!strcmp(type_string, "ihex")) { image->type = IMAGE_IHEX; } else if (!strcmp(type_string, "elf")) { image->type = IMAGE_ELF; } else if (!strcmp(type_string, "mem")) { image->type = IMAGE_MEMORY; } else if (!strcmp(type_string, "s19")) { image->type = IMAGE_SRECORD; } else if (!strcmp(type_string, "build")) { image->type = IMAGE_BUILDER; } else { LOG_ERROR("Unknown image type: %s, use one of: bin, ihex, elf, mem, s19, build", type_string); return ERROR_IMAGE_TYPE_UNKNOWN; } } else return autodetect_image_type(image, url); return ERROR_OK; } static int image_ihex_buffer_complete_inner(struct image *image, char *lpsz_line, struct imagesection *section) { struct image_ihex *ihex = image->type_private; struct fileio *fileio = ihex->fileio; uint32_t full_address; uint32_t cooked_bytes; bool end_rec = false; /* we can't determine the number of sections that we'll have to create ahead of time, * so we locally hold them until parsing is finished */ size_t filesize; int retval; retval = fileio_size(fileio, &filesize); if (retval != ERROR_OK) return retval; ihex->buffer = malloc(filesize >> 1); cooked_bytes = 0x0; image->num_sections = 0; while (!fileio_feof(fileio)) { full_address = 0x0; section[image->num_sections].private = &ihex->buffer[cooked_bytes]; section[image->num_sections].base_address = 0x0; section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) { uint32_t count; uint32_t address; uint32_t record_type; uint32_t checksum; uint8_t cal_checksum = 0; size_t bytes_read = 0; /* skip comments and blank lines */ if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0)) continue; if (sscanf(&lpsz_line[bytes_read], ":%2" SCNx32 "%4" SCNx32 "%2" SCNx32, &count, &address, &record_type) != 3) return ERROR_IMAGE_FORMAT_ERROR; bytes_read += 9; cal_checksum += (uint8_t)count; cal_checksum += (uint8_t)(address >> 8); cal_checksum += (uint8_t)address; cal_checksum += (uint8_t)record_type; if (record_type == 0) { /* Data Record */ if ((full_address & 0xffff) != address) { /* we encountered a nonconsecutive location, create a new section, * unless the current section has zero size, in which case this specifies * the current section's base address */ if (section[image->num_sections].size != 0) { image->num_sections++; if (image->num_sections >= IMAGE_MAX_SECTIONS) { /* too many sections */ LOG_ERROR("Too many sections found in IHEX file"); return ERROR_IMAGE_FORMAT_ERROR; } section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; section[image->num_sections].private = &ihex->buffer[cooked_bytes]; } section[image->num_sections].base_address = (full_address & 0xffff0000) | address; full_address = (full_address & 0xffff0000) | address; } while (count-- > 0) { unsigned value; sscanf(&lpsz_line[bytes_read], "%2x", &value); ihex->buffer[cooked_bytes] = (uint8_t)value; cal_checksum += (uint8_t)ihex->buffer[cooked_bytes]; bytes_read += 2; cooked_bytes += 1; section[image->num_sections].size += 1; full_address++; } } else if (record_type == 1) { /* End of File Record */ /* finish the current section */ image->num_sections++; /* copy section information */ image->sections = malloc(sizeof(struct imagesection) * image->num_sections); for (unsigned int i = 0; i < image->num_sections; i++) { image->sections[i].private = section[i].private; image->sections[i].base_address = section[i].base_address; image->sections[i].size = section[i].size; image->sections[i].flags = section[i].flags; } end_rec = true; break; } else if (record_type == 2) { /* Linear Address Record */ uint16_t upper_address; sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address); cal_checksum += (uint8_t)(upper_address >> 8); cal_checksum += (uint8_t)upper_address; bytes_read += 4; if ((full_address >> 4) != upper_address) { /* we encountered a nonconsecutive location, create a new section, * unless the current section has zero size, in which case this specifies * the current section's base address */ if (section[image->num_sections].size != 0) { image->num_sections++; if (image->num_sections >= IMAGE_MAX_SECTIONS) { /* too many sections */ LOG_ERROR("Too many sections found in IHEX file"); return ERROR_IMAGE_FORMAT_ERROR; } section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; section[image->num_sections].private = &ihex->buffer[cooked_bytes]; } section[image->num_sections].base_address = (full_address & 0xffff) | (upper_address << 4); full_address = (full_address & 0xffff) | (upper_address << 4); } } else if (record_type == 3) { /* Start Segment Address Record */ uint32_t dummy; /* "Start Segment Address Record" will not be supported * but we must consume it, and do not create an error. */ while (count-- > 0) { sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy); cal_checksum += (uint8_t)dummy; bytes_read += 2; } } else if (record_type == 4) { /* Extended Linear Address Record */ uint16_t upper_address; sscanf(&lpsz_line[bytes_read], "%4hx", &upper_address); cal_checksum += (uint8_t)(upper_address >> 8); cal_checksum += (uint8_t)upper_address; bytes_read += 4; if ((full_address >> 16) != upper_address) { /* we encountered a nonconsecutive location, create a new section, * unless the current section has zero size, in which case this specifies * the current section's base address */ if (section[image->num_sections].size != 0) { image->num_sections++; if (image->num_sections >= IMAGE_MAX_SECTIONS) { /* too many sections */ LOG_ERROR("Too many sections found in IHEX file"); return ERROR_IMAGE_FORMAT_ERROR; } section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; section[image->num_sections].private = &ihex->buffer[cooked_bytes]; } section[image->num_sections].base_address = (full_address & 0xffff) | (upper_address << 16); full_address = (full_address & 0xffff) | (upper_address << 16); } } else if (record_type == 5) { /* Start Linear Address Record */ uint32_t start_address; sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &start_address); cal_checksum += (uint8_t)(start_address >> 24); cal_checksum += (uint8_t)(start_address >> 16); cal_checksum += (uint8_t)(start_address >> 8); cal_checksum += (uint8_t)start_address; bytes_read += 8; image->start_address_set = true; image->start_address = be_to_h_u32((uint8_t *)&start_address); } else { LOG_ERROR("unhandled IHEX record type: %i", (int)record_type); return ERROR_IMAGE_FORMAT_ERROR; } sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum); if ((uint8_t)checksum != (uint8_t)(~cal_checksum + 1)) { /* checksum failed */ LOG_ERROR("incorrect record checksum found in IHEX file"); return ERROR_IMAGE_CHECKSUM; } if (end_rec) { end_rec = false; LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line); } } } if (end_rec) return ERROR_OK; else { LOG_ERROR("premature end of IHEX file, no matching end-of-file record found"); return ERROR_IMAGE_FORMAT_ERROR; } } /** * Allocate memory dynamically instead of on the stack. This * is important w/embedded hosts. */ static int image_ihex_buffer_complete(struct image *image) { char *lpsz_line = malloc(1023); if (!lpsz_line) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS); if (!section) { free(lpsz_line); LOG_ERROR("Out of memory"); return ERROR_FAIL; } int retval; retval = image_ihex_buffer_complete_inner(image, lpsz_line, section); free(section); free(lpsz_line); return retval; } static int image_elf32_read_headers(struct image *image) { struct image_elf *elf = image->type_private; size_t read_bytes; uint32_t i, j; int retval; uint32_t nload; bool load_to_vaddr = false; retval = fileio_seek(elf->fileio, 0); if (retval != ERROR_OK) { LOG_ERROR("cannot seek to ELF file header, read failed"); return retval; } elf->header32 = malloc(sizeof(Elf32_Ehdr)); if (!elf->header32) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } retval = fileio_read(elf->fileio, sizeof(Elf32_Ehdr), (uint8_t *)elf->header32, &read_bytes); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF file header, read failed"); return ERROR_FILEIO_OPERATION_FAILED; } if (read_bytes != sizeof(Elf32_Ehdr)) { LOG_ERROR("cannot read ELF file header, only partially read"); return ERROR_FILEIO_OPERATION_FAILED; } elf->segment_count = field16(elf, elf->header32->e_phnum); if (elf->segment_count == 0) { LOG_ERROR("invalid ELF file, no program headers"); return ERROR_IMAGE_FORMAT_ERROR; } retval = fileio_seek(elf->fileio, field32(elf, elf->header32->e_phoff)); if (retval != ERROR_OK) { LOG_ERROR("cannot seek to ELF program header table, read failed"); return retval; } elf->segments32 = malloc(elf->segment_count*sizeof(Elf32_Phdr)); if (!elf->segments32) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf32_Phdr), (uint8_t *)elf->segments32, &read_bytes); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF segment headers, read failed"); return retval; } if (read_bytes != elf->segment_count*sizeof(Elf32_Phdr)) { LOG_ERROR("cannot read ELF segment headers, only partially read"); return ERROR_FILEIO_OPERATION_FAILED; } /* count useful segments (loadable), ignore BSS section */ image->num_sections = 0; for (i = 0; i < elf->segment_count; i++) if ((field32(elf, elf->segments32[i].p_type) == PT_LOAD) && (field32(elf, elf->segments32[i].p_filesz) != 0)) image->num_sections++; if (image->num_sections == 0) { LOG_ERROR("invalid ELF file, no loadable segments"); return ERROR_IMAGE_FORMAT_ERROR; } /** * some ELF linkers produce binaries with *all* the program header * p_paddr fields zero (there can be however one loadable segment * that has valid physical address 0x0). * If we have such a binary with more than * one PT_LOAD header, then use p_vaddr instead of p_paddr * (ARM ELF standard demands p_paddr = 0 anyway, and BFD * library uses this approach to workaround zero-initialized p_paddrs * when obtaining lma - look at elf.c of BDF) */ for (nload = 0, i = 0; i < elf->segment_count; i++) if (elf->segments32[i].p_paddr != 0) break; else if ((field32(elf, elf->segments32[i].p_type) == PT_LOAD) && (field32(elf, elf->segments32[i].p_memsz) != 0)) ++nload; if (i >= elf->segment_count && nload > 1) load_to_vaddr = true; /* alloc and fill sections array with loadable segments */ image->sections = malloc(image->num_sections * sizeof(struct imagesection)); if (!image->sections) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } for (i = 0, j = 0; i < elf->segment_count; i++) { if ((field32(elf, elf->segments32[i].p_type) == PT_LOAD) && (field32(elf, elf->segments32[i].p_filesz) != 0)) { image->sections[j].size = field32(elf, elf->segments32[i].p_filesz); if (load_to_vaddr) image->sections[j].base_address = field32(elf, elf->segments32[i].p_vaddr); else image->sections[j].base_address = field32(elf, elf->segments32[i].p_paddr); image->sections[j].private = &elf->segments32[i]; image->sections[j].flags = field32(elf, elf->segments32[i].p_flags); j++; } } image->start_address_set = true; image->start_address = field32(elf, elf->header32->e_entry); return ERROR_OK; } static int image_elf64_read_headers(struct image *image) { struct image_elf *elf = image->type_private; size_t read_bytes; uint32_t i, j; int retval; uint32_t nload; bool load_to_vaddr = false; retval = fileio_seek(elf->fileio, 0); if (retval != ERROR_OK) { LOG_ERROR("cannot seek to ELF file header, read failed"); return retval; } elf->header64 = malloc(sizeof(Elf64_Ehdr)); if (!elf->header64) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } retval = fileio_read(elf->fileio, sizeof(Elf64_Ehdr), (uint8_t *)elf->header64, &read_bytes); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF file header, read failed"); return ERROR_FILEIO_OPERATION_FAILED; } if (read_bytes != sizeof(Elf64_Ehdr)) { LOG_ERROR("cannot read ELF file header, only partially read"); return ERROR_FILEIO_OPERATION_FAILED; } elf->segment_count = field16(elf, elf->header64->e_phnum); if (elf->segment_count == 0) { LOG_ERROR("invalid ELF file, no program headers"); return ERROR_IMAGE_FORMAT_ERROR; } retval = fileio_seek(elf->fileio, field64(elf, elf->header64->e_phoff)); if (retval != ERROR_OK) { LOG_ERROR("cannot seek to ELF program header table, read failed"); return retval; } elf->segments64 = malloc(elf->segment_count*sizeof(Elf64_Phdr)); if (!elf->segments64) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } retval = fileio_read(elf->fileio, elf->segment_count*sizeof(Elf64_Phdr), (uint8_t *)elf->segments64, &read_bytes); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF segment headers, read failed"); return retval; } if (read_bytes != elf->segment_count*sizeof(Elf64_Phdr)) { LOG_ERROR("cannot read ELF segment headers, only partially read"); return ERROR_FILEIO_OPERATION_FAILED; } /* count useful segments (loadable), ignore BSS section */ image->num_sections = 0; for (i = 0; i < elf->segment_count; i++) if ((field32(elf, elf->segments64[i].p_type) == PT_LOAD) && (field64(elf, elf->segments64[i].p_filesz) != 0)) image->num_sections++; if (image->num_sections == 0) { LOG_ERROR("invalid ELF file, no loadable segments"); return ERROR_IMAGE_FORMAT_ERROR; } /** * some ELF linkers produce binaries with *all* the program header * p_paddr fields zero (there can be however one loadable segment * that has valid physical address 0x0). * If we have such a binary with more than * one PT_LOAD header, then use p_vaddr instead of p_paddr * (ARM ELF standard demands p_paddr = 0 anyway, and BFD * library uses this approach to workaround zero-initialized p_paddrs * when obtaining lma - look at elf.c of BDF) */ for (nload = 0, i = 0; i < elf->segment_count; i++) if (elf->segments64[i].p_paddr != 0) break; else if ((field32(elf, elf->segments64[i].p_type) == PT_LOAD) && (field64(elf, elf->segments64[i].p_memsz) != 0)) ++nload; if (i >= elf->segment_count && nload > 1) load_to_vaddr = true; /* alloc and fill sections array with loadable segments */ image->sections = malloc(image->num_sections * sizeof(struct imagesection)); if (!image->sections) { LOG_ERROR("insufficient memory to perform operation"); return ERROR_FILEIO_OPERATION_FAILED; } for (i = 0, j = 0; i < elf->segment_count; i++) { if ((field32(elf, elf->segments64[i].p_type) == PT_LOAD) && (field64(elf, elf->segments64[i].p_filesz) != 0)) { image->sections[j].size = field64(elf, elf->segments64[i].p_filesz); if (load_to_vaddr) image->sections[j].base_address = field64(elf, elf->segments64[i].p_vaddr); else image->sections[j].base_address = field64(elf, elf->segments64[i].p_paddr); image->sections[j].private = &elf->segments64[i]; image->sections[j].flags = field64(elf, elf->segments64[i].p_flags); j++; } } image->start_address_set = true; image->start_address = field64(elf, elf->header64->e_entry); return ERROR_OK; } static int image_elf_read_headers(struct image *image) { struct image_elf *elf = image->type_private; size_t read_bytes; unsigned char e_ident[EI_NIDENT]; int retval; retval = fileio_read(elf->fileio, EI_NIDENT, e_ident, &read_bytes); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF file header, read failed"); return ERROR_FILEIO_OPERATION_FAILED; } if (read_bytes != EI_NIDENT) { LOG_ERROR("cannot read ELF file header, only partially read"); return ERROR_FILEIO_OPERATION_FAILED; } if (strncmp((char *)e_ident, ELFMAG, SELFMAG) != 0) { LOG_ERROR("invalid ELF file, bad magic number"); return ERROR_IMAGE_FORMAT_ERROR; } elf->endianness = e_ident[EI_DATA]; if ((elf->endianness != ELFDATA2LSB) && (elf->endianness != ELFDATA2MSB)) { LOG_ERROR("invalid ELF file, unknown endianness setting"); return ERROR_IMAGE_FORMAT_ERROR; } switch (e_ident[EI_CLASS]) { case ELFCLASS32: LOG_DEBUG("ELF32 image detected."); elf->is_64_bit = false; return image_elf32_read_headers(image); case ELFCLASS64: LOG_DEBUG("ELF64 image detected."); elf->is_64_bit = true; return image_elf64_read_headers(image); default: LOG_ERROR("invalid ELF file, only 32/64 bit ELF files are supported"); return ERROR_IMAGE_FORMAT_ERROR; } } static int image_elf32_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read) { struct image_elf *elf = image->type_private; Elf32_Phdr *segment = (Elf32_Phdr *)image->sections[section].private; size_t read_size, really_read; int retval; *size_read = 0; LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size); /* read initialized data in current segment if any */ if (offset < field32(elf, segment->p_filesz)) { /* maximal size present in file for the current segment */ read_size = MIN(size, field32(elf, segment->p_filesz) - offset); LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size, field32(elf, segment->p_offset) + offset); /* read initialized area of the segment */ retval = fileio_seek(elf->fileio, field32(elf, segment->p_offset) + offset); if (retval != ERROR_OK) { LOG_ERROR("cannot find ELF segment content, seek failed"); return retval; } retval = fileio_read(elf->fileio, read_size, buffer, &really_read); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF segment content, read failed"); return retval; } size -= read_size; *size_read += read_size; /* need more data ? */ if (!size) return ERROR_OK; } return ERROR_OK; } static int image_elf64_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read) { struct image_elf *elf = image->type_private; Elf64_Phdr *segment = (Elf64_Phdr *)image->sections[section].private; size_t read_size, really_read; int retval; *size_read = 0; LOG_DEBUG("load segment %d at 0x%" TARGET_PRIxADDR " (sz = 0x%" PRIx32 ")", section, offset, size); /* read initialized data in current segment if any */ if (offset < field64(elf, segment->p_filesz)) { /* maximal size present in file for the current segment */ read_size = MIN(size, field64(elf, segment->p_filesz) - offset); LOG_DEBUG("read elf: size = 0x%zx at 0x%" TARGET_PRIxADDR "", read_size, field64(elf, segment->p_offset) + offset); /* read initialized area of the segment */ retval = fileio_seek(elf->fileio, field64(elf, segment->p_offset) + offset); if (retval != ERROR_OK) { LOG_ERROR("cannot find ELF segment content, seek failed"); return retval; } retval = fileio_read(elf->fileio, read_size, buffer, &really_read); if (retval != ERROR_OK) { LOG_ERROR("cannot read ELF segment content, read failed"); return retval; } size -= read_size; *size_read += read_size; /* need more data ? */ if (!size) return ERROR_OK; } return ERROR_OK; } static int image_elf_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read) { struct image_elf *elf = image->type_private; if (elf->is_64_bit) return image_elf64_read_section(image, section, offset, size, buffer, size_read); else return image_elf32_read_section(image, section, offset, size, buffer, size_read); } static int image_mot_buffer_complete_inner(struct image *image, char *lpsz_line, struct imagesection *section) { struct image_mot *mot = image->type_private; struct fileio *fileio = mot->fileio; uint32_t full_address; uint32_t cooked_bytes; bool end_rec = false; /* we can't determine the number of sections that we'll have to create ahead of time, * so we locally hold them until parsing is finished */ int retval; size_t filesize; retval = fileio_size(fileio, &filesize); if (retval != ERROR_OK) return retval; mot->buffer = malloc(filesize >> 1); cooked_bytes = 0x0; image->num_sections = 0; while (!fileio_feof(fileio)) { full_address = 0x0; section[image->num_sections].private = &mot->buffer[cooked_bytes]; section[image->num_sections].base_address = 0x0; section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; while (fileio_fgets(fileio, 1023, lpsz_line) == ERROR_OK) { uint32_t count; uint32_t address; uint32_t record_type; uint32_t checksum; uint8_t cal_checksum = 0; uint32_t bytes_read = 0; /* skip comments and blank lines */ if ((lpsz_line[0] == '#') || (strlen(lpsz_line + strspn(lpsz_line, "\n\t\r ")) == 0)) continue; /* get record type and record length */ if (sscanf(&lpsz_line[bytes_read], "S%1" SCNx32 "%2" SCNx32, &record_type, &count) != 2) return ERROR_IMAGE_FORMAT_ERROR; bytes_read += 4; cal_checksum += (uint8_t)count; /* skip checksum byte */ count -= 1; if (record_type == 0) { /* S0 - starting record (optional) */ int value; while (count-- > 0) { sscanf(&lpsz_line[bytes_read], "%2x", &value); cal_checksum += (uint8_t)value; bytes_read += 2; } } else if (record_type >= 1 && record_type <= 3) { switch (record_type) { case 1: /* S1 - 16 bit address data record */ sscanf(&lpsz_line[bytes_read], "%4" SCNx32, &address); cal_checksum += (uint8_t)(address >> 8); cal_checksum += (uint8_t)address; bytes_read += 4; count -= 2; break; case 2: /* S2 - 24 bit address data record */ sscanf(&lpsz_line[bytes_read], "%6" SCNx32, &address); cal_checksum += (uint8_t)(address >> 16); cal_checksum += (uint8_t)(address >> 8); cal_checksum += (uint8_t)address; bytes_read += 6; count -= 3; break; case 3: /* S3 - 32 bit address data record */ sscanf(&lpsz_line[bytes_read], "%8" SCNx32, &address); cal_checksum += (uint8_t)(address >> 24); cal_checksum += (uint8_t)(address >> 16); cal_checksum += (uint8_t)(address >> 8); cal_checksum += (uint8_t)address; bytes_read += 8; count -= 4; break; } if (full_address != address) { /* we encountered a nonconsecutive location, create a new section, * unless the current section has zero size, in which case this specifies * the current section's base address */ if (section[image->num_sections].size != 0) { image->num_sections++; section[image->num_sections].size = 0x0; section[image->num_sections].flags = 0; section[image->num_sections].private = &mot->buffer[cooked_bytes]; } section[image->num_sections].base_address = address; full_address = address; } while (count-- > 0) { unsigned value; sscanf(&lpsz_line[bytes_read], "%2x", &value); mot->buffer[cooked_bytes] = (uint8_t)value; cal_checksum += (uint8_t)mot->buffer[cooked_bytes]; bytes_read += 2; cooked_bytes += 1; section[image->num_sections].size += 1; full_address++; } } else if (record_type == 5 || record_type == 6) { /* S5 and S6 are the data count records, we ignore them */ uint32_t dummy; while (count-- > 0) { sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &dummy); cal_checksum += (uint8_t)dummy; bytes_read += 2; } } else if (record_type >= 7 && record_type <= 9) { /* S7, S8, S9 - ending records for 32, 24 and 16bit */ image->num_sections++; /* copy section information */ image->sections = malloc(sizeof(struct imagesection) * image->num_sections); for (unsigned int i = 0; i < image->num_sections; i++) { image->sections[i].private = section[i].private; image->sections[i].base_address = section[i].base_address; image->sections[i].size = section[i].size; image->sections[i].flags = section[i].flags; } end_rec = true; break; } else { LOG_ERROR("unhandled S19 record type: %i", (int)(record_type)); return ERROR_IMAGE_FORMAT_ERROR; } /* account for checksum, will always be 0xFF */ sscanf(&lpsz_line[bytes_read], "%2" SCNx32, &checksum); cal_checksum += (uint8_t)checksum; if (cal_checksum != 0xFF) { /* checksum failed */ LOG_ERROR("incorrect record checksum found in S19 file"); return ERROR_IMAGE_CHECKSUM; } if (end_rec) { end_rec = false; LOG_WARNING("continuing after end-of-file record: %.40s", lpsz_line); } } } if (end_rec) return ERROR_OK; else { LOG_ERROR("premature end of S19 file, no matching end-of-file record found"); return ERROR_IMAGE_FORMAT_ERROR; } } /** * Allocate memory dynamically instead of on the stack. This * is important w/embedded hosts. */ static int image_mot_buffer_complete(struct image *image) { char *lpsz_line = malloc(1023); if (!lpsz_line) { LOG_ERROR("Out of memory"); return ERROR_FAIL; } struct imagesection *section = malloc(sizeof(struct imagesection) * IMAGE_MAX_SECTIONS); if (!section) { free(lpsz_line); LOG_ERROR("Out of memory"); return ERROR_FAIL; } int retval; retval = image_mot_buffer_complete_inner(image, lpsz_line, section); free(section); free(lpsz_line); return retval; } int image_open(struct image *image, const char *url, const char *type_string) { int retval = ERROR_OK; retval = identify_image_type(image, type_string, url); if (retval != ERROR_OK) return retval; if (image->type == IMAGE_BINARY) { struct image_binary *image_binary; image_binary = image->type_private = malloc(sizeof(struct image_binary)); retval = fileio_open(&image_binary->fileio, url, FILEIO_READ, FILEIO_BINARY); if (retval != ERROR_OK) goto free_mem_on_error; size_t filesize; retval = fileio_size(image_binary->fileio, &filesize); if (retval != ERROR_OK) { fileio_close(image_binary->fileio); goto free_mem_on_error; } image->num_sections = 1; image->sections = malloc(sizeof(struct imagesection)); image->sections[0].base_address = 0x0; image->sections[0].size = filesize; image->sections[0].flags = 0; } else if (image->type == IMAGE_IHEX) { struct image_ihex *image_ihex; image_ihex = image->type_private = malloc(sizeof(struct image_ihex)); retval = fileio_open(&image_ihex->fileio, url, FILEIO_READ, FILEIO_TEXT); if (retval != ERROR_OK) goto free_mem_on_error; retval = image_ihex_buffer_complete(image); if (retval != ERROR_OK) { LOG_ERROR( "failed buffering IHEX image, check server output for additional information"); fileio_close(image_ihex->fileio); goto free_mem_on_error; } } else if (image->type == IMAGE_ELF) { struct image_elf *image_elf; image_elf = image->type_private = malloc(sizeof(struct image_elf)); retval = fileio_open(&image_elf->fileio, url, FILEIO_READ, FILEIO_BINARY); if (retval != ERROR_OK) goto free_mem_on_error; retval = image_elf_read_headers(image); if (retval != ERROR_OK) { fileio_close(image_elf->fileio); goto free_mem_on_error; } } else if (image->type == IMAGE_MEMORY) { struct target *target = get_target(url); if (!target) { LOG_ERROR("target '%s' not defined", url); return ERROR_FAIL; } struct image_memory *image_memory; image->num_sections = 1; image->sections = malloc(sizeof(struct imagesection)); image->sections[0].base_address = 0x0; image->sections[0].size = 0xffffffff; image->sections[0].flags = 0; image_memory = image->type_private = malloc(sizeof(struct image_memory)); image_memory->target = target; image_memory->cache = NULL; image_memory->cache_address = 0x0; } else if (image->type == IMAGE_SRECORD) { struct image_mot *image_mot; image_mot = image->type_private = malloc(sizeof(struct image_mot)); retval = fileio_open(&image_mot->fileio, url, FILEIO_READ, FILEIO_TEXT); if (retval != ERROR_OK) goto free_mem_on_error; retval = image_mot_buffer_complete(image); if (retval != ERROR_OK) { LOG_ERROR( "failed buffering S19 image, check server output for additional information"); fileio_close(image_mot->fileio); goto free_mem_on_error; } } else if (image->type == IMAGE_BUILDER) { image->num_sections = 0; image->base_address_set = false; image->sections = NULL; image->type_private = NULL; } if (image->base_address_set) { /* relocate */ for (unsigned int section = 0; section < image->num_sections; section++) image->sections[section].base_address += image->base_address; /* we're done relocating. The two statements below are mainly * for documentation purposes: stop anyone from empirically * thinking they should use these values henceforth. */ image->base_address = 0; image->base_address_set = false; } return retval; free_mem_on_error: free(image->type_private); image->type_private = NULL; return retval; }; int image_read_section(struct image *image, int section, target_addr_t offset, uint32_t size, uint8_t *buffer, size_t *size_read) { int retval; /* don't read past the end of a section */ if (offset + size > image->sections[section].size) { LOG_DEBUG( "read past end of section: 0x%8.8" TARGET_PRIxADDR " + 0x%8.8" PRIx32 " > 0x%8.8" PRIx32 "", offset, size, image->sections[section].size); return ERROR_COMMAND_SYNTAX_ERROR; } if (image->type == IMAGE_BINARY) { struct image_binary *image_binary = image->type_private; /* only one section in a plain binary */ if (section != 0) return ERROR_COMMAND_SYNTAX_ERROR; /* seek to offset */ retval = fileio_seek(image_binary->fileio, offset); if (retval != ERROR_OK) return retval; /* return requested bytes */ retval = fileio_read(image_binary->fileio, size, buffer, size_read); if (retval != ERROR_OK) return retval; } else if (image->type == IMAGE_IHEX) { memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size); *size_read = size; return ERROR_OK; } else if (image->type == IMAGE_ELF) { return image_elf_read_section(image, section, offset, size, buffer, size_read); } else if (image->type == IMAGE_MEMORY) { struct image_memory *image_memory = image->type_private; uint32_t address = image->sections[section].base_address + offset; *size_read = 0; while ((size - *size_read) > 0) { uint32_t size_in_cache; if (!image_memory->cache || (address < image_memory->cache_address) || (address >= (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE))) { if (!image_memory->cache) image_memory->cache = malloc(IMAGE_MEMORY_CACHE_SIZE); if (target_read_buffer(image_memory->target, address & ~(IMAGE_MEMORY_CACHE_SIZE - 1), IMAGE_MEMORY_CACHE_SIZE, image_memory->cache) != ERROR_OK) { free(image_memory->cache); image_memory->cache = NULL; return ERROR_IMAGE_TEMPORARILY_UNAVAILABLE; } image_memory->cache_address = address & ~(IMAGE_MEMORY_CACHE_SIZE - 1); } size_in_cache = (image_memory->cache_address + IMAGE_MEMORY_CACHE_SIZE) - address; memcpy(buffer + *size_read, image_memory->cache + (address - image_memory->cache_address), (size_in_cache > size) ? size : size_in_cache ); *size_read += (size_in_cache > size) ? size : size_in_cache; address += (size_in_cache > size) ? size : size_in_cache; } } else if (image->type == IMAGE_SRECORD) { memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size); *size_read = size; return ERROR_OK; } else if (image->type == IMAGE_BUILDER) { memcpy(buffer, (uint8_t *)image->sections[section].private + offset, size); *size_read = size; return ERROR_OK; } return ERROR_OK; } int image_add_section(struct image *image, target_addr_t base, uint32_t size, uint64_t flags, uint8_t const *data) { struct imagesection *section; /* only image builder supports adding sections */ if (image->type != IMAGE_BUILDER) return ERROR_COMMAND_SYNTAX_ERROR; /* see if there's a previous section */ if (image->num_sections) { section = &image->sections[image->num_sections - 1]; /* see if it's enough to extend the last section, * adding data to previous sections or merging is not supported */ if (((section->base_address + section->size) == base) && (section->flags == flags)) { section->private = realloc(section->private, section->size + size); memcpy((uint8_t *)section->private + section->size, data, size); section->size += size; return ERROR_OK; } } /* allocate new section */ image->num_sections++; image->sections = realloc(image->sections, sizeof(struct imagesection) * image->num_sections); section = &image->sections[image->num_sections - 1]; section->base_address = base; section->size = size; section->flags = flags; section->private = malloc(sizeof(uint8_t) * size); memcpy((uint8_t *)section->private, data, size); return ERROR_OK; } void image_close(struct image *image) { if (image->type == IMAGE_BINARY) { struct image_binary *image_binary = image->type_private; fileio_close(image_binary->fileio); } else if (image->type == IMAGE_IHEX) { struct image_ihex *image_ihex = image->type_private; fileio_close(image_ihex->fileio); free(image_ihex->buffer); image_ihex->buffer = NULL; } else if (image->type == IMAGE_ELF) { struct image_elf *image_elf = image->type_private; fileio_close(image_elf->fileio); if (image_elf->is_64_bit) { free(image_elf->header64); image_elf->header64 = NULL; free(image_elf->segments64); image_elf->segments64 = NULL; } else { free(image_elf->header32); image_elf->header32 = NULL; free(image_elf->segments32); image_elf->segments32 = NULL; } } else if (image->type == IMAGE_MEMORY) { struct image_memory *image_memory = image->type_private; free(image_memory->cache); image_memory->cache = NULL; } else if (image->type == IMAGE_SRECORD) { struct image_mot *image_mot = image->type_private; fileio_close(image_mot->fileio); free(image_mot->buffer); image_mot->buffer = NULL; } else if (image->type == IMAGE_BUILDER) { for (unsigned int i = 0; i < image->num_sections; i++) { free(image->sections[i].private); image->sections[i].private = NULL; } } free(image->type_private); image->type_private = NULL; free(image->sections); image->sections = NULL; } int image_calculate_checksum(const uint8_t *buffer, uint32_t nbytes, uint32_t *checksum) { uint32_t crc = 0xffffffff; LOG_DEBUG("Calculating checksum"); static uint32_t crc32_table[256]; static bool first_init; if (!first_init) { /* Initialize the CRC table and the decoding table. */ unsigned int i, j, c; for (i = 0; i < 256; i++) { /* as per gdb */ for (c = i << 24, j = 8; j > 0; --j) c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); crc32_table[i] = c; } first_init = true; } while (nbytes > 0) { int run = nbytes; if (run > 32768) run = 32768; nbytes -= run; while (run--) { /* as per gdb */ crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buffer++) & 255]; } keep_alive(); if (openocd_is_shutdown_pending()) return ERROR_SERVER_INTERRUPTED; } LOG_DEBUG("Calculating checksum done; checksum=0x%" PRIx32, crc); *checksum = crc; return ERROR_OK; }