/*************************************************************************** * Copyright (C) 2009 by David Brownell * * * * Copyright (C) ST-Ericsson SA 2011 michel.jaouen@stericsson.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "armv7a.h" #include "arm_disassembler.h" #include "register.h" #include #include #include #include #include #include "arm_opcodes.h" #include "target.h" #include "target_type.h" static void armv7a_show_fault_registers(struct target *target) { uint32_t dfsr, ifsr, dfar, ifar; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; int retval; retval = dpm->prepare(dpm); if (retval != ERROR_OK) return; /* ARMV4_5_MRC(cpnum, op1, r0, CRn, CRm, op2) */ /* c5/c0 - {data, instruction} fault status registers */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 5, 0, 0), &dfsr); if (retval != ERROR_OK) goto done; retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 5, 0, 1), &ifsr); if (retval != ERROR_OK) goto done; /* c6/c0 - {data, instruction} fault address registers */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 6, 0, 0), &dfar); if (retval != ERROR_OK) goto done; retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 6, 0, 2), &ifar); if (retval != ERROR_OK) goto done; LOG_USER("Data fault registers DFSR: %8.8" PRIx32 ", DFAR: %8.8" PRIx32, dfsr, dfar); LOG_USER("Instruction fault registers IFSR: %8.8" PRIx32 ", IFAR: %8.8" PRIx32, ifsr, ifar); done: /* (void) */ dpm->finish(dpm); } static int armv7a_read_ttbcr(struct target *target) { struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; uint32_t ttbcr; int retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c2,c0,2 ; Read CP15 Translation Table Base Control Register*/ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 2, 0, 2), &ttbcr); if (retval != ERROR_OK) goto done; armv7a->armv7a_mmu.ttbr1_used = ((ttbcr & 0x7) != 0) ? 1 : 0; armv7a->armv7a_mmu.ttbr0_mask = 7 << (32 - ((ttbcr & 0x7))); #if 0 LOG_INFO("ttb1 %s ,ttb0_mask %x", armv7a->armv7a_mmu.ttbr1_used ? "used" : "not used", armv7a->armv7a_mmu.ttbr0_mask); #endif if (armv7a->armv7a_mmu.ttbr1_used == 1) { LOG_INFO("SVC access above %" PRIx32, (uint32_t)(0xffffffff & armv7a->armv7a_mmu.ttbr0_mask)); armv7a->armv7a_mmu.os_border = 0xffffffff & armv7a->armv7a_mmu.ttbr0_mask; } else { /* fix me , default is hard coded LINUX border */ armv7a->armv7a_mmu.os_border = 0xc0000000; } done: dpm->finish(dpm); return retval; } /* method adapted to cortex A : reused arm v4 v5 method*/ int armv7a_mmu_translate_va(struct target *target, uint32_t va, uint32_t *val) { uint32_t first_lvl_descriptor = 0x0; uint32_t second_lvl_descriptor = 0x0; int retval; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; uint32_t ttb = 0; /* default ttb0 */ if (armv7a->armv7a_mmu.ttbr1_used == -1) armv7a_read_ttbcr(target); if ((armv7a->armv7a_mmu.ttbr1_used) && (va > (0xffffffff & armv7a->armv7a_mmu.ttbr0_mask))) { /* select ttb 1 */ ttb = 1; } retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c2,c0,ttb */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 2, 0, ttb), &ttb); if (retval != ERROR_OK) return retval; retval = armv7a->armv7a_mmu.read_physical_memory(target, (ttb & 0xffffc000) | ((va & 0xfff00000) >> 18), 4, 1, (uint8_t *)&first_lvl_descriptor); if (retval != ERROR_OK) return retval; first_lvl_descriptor = target_buffer_get_u32(target, (uint8_t *) &first_lvl_descriptor); /* reuse armv4_5 piece of code, specific armv7a changes may come later */ LOG_DEBUG("1st lvl desc: %8.8" PRIx32 "", first_lvl_descriptor); if ((first_lvl_descriptor & 0x3) == 0) { LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; } if ((first_lvl_descriptor & 0x3) == 2) { /* section descriptor */ *val = (first_lvl_descriptor & 0xfff00000) | (va & 0x000fffff); return ERROR_OK; } if ((first_lvl_descriptor & 0x3) == 1) { /* coarse page table */ retval = armv7a->armv7a_mmu.read_physical_memory(target, (first_lvl_descriptor & 0xfffffc00) | ((va & 0x000ff000) >> 10), 4, 1, (uint8_t *)&second_lvl_descriptor); if (retval != ERROR_OK) return retval; } else if ((first_lvl_descriptor & 0x3) == 3) { /* fine page table */ retval = armv7a->armv7a_mmu.read_physical_memory(target, (first_lvl_descriptor & 0xfffff000) | ((va & 0x000ffc00) >> 8), 4, 1, (uint8_t *)&second_lvl_descriptor); if (retval != ERROR_OK) return retval; } second_lvl_descriptor = target_buffer_get_u32(target, (uint8_t *) &second_lvl_descriptor); LOG_DEBUG("2nd lvl desc: %8.8" PRIx32 "", second_lvl_descriptor); if ((second_lvl_descriptor & 0x3) == 0) { LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; } if ((second_lvl_descriptor & 0x3) == 1) { /* large page descriptor */ *val = (second_lvl_descriptor & 0xffff0000) | (va & 0x0000ffff); return ERROR_OK; } if ((second_lvl_descriptor & 0x3) == 2) { /* small page descriptor */ *val = (second_lvl_descriptor & 0xfffff000) | (va & 0x00000fff); return ERROR_OK; } if ((second_lvl_descriptor & 0x3) == 3) { *val = (second_lvl_descriptor & 0xfffffc00) | (va & 0x000003ff); return ERROR_OK; } /* should not happen */ LOG_ERROR("Address translation failure"); return ERROR_TARGET_TRANSLATION_FAULT; done: return retval; } /* V7 method VA TO PA */ int armv7a_mmu_translate_va_pa(struct target *target, uint32_t va, uint32_t *val, int meminfo) { int retval = ERROR_FAIL; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; uint32_t virt = va & ~0xfff; uint32_t NOS, NS, INNER, OUTER; *val = 0xdeadbeef; retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* mmu must be enable in order to get a correct translation * use VA to PA CP15 register for conversion */ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MCR(15, 0, 0, 7, 8, 0), virt); if (retval != ERROR_OK) goto done; retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 7, 4, 0), val); /* decode memory attribute */ NOS = (*val >> 10) & 1; /* Not Outer shareable */ NS = (*val >> 9) & 1; /* Non secure */ INNER = (*val >> 4) & 0x7; OUTER = (*val >> 2) & 0x3; if (retval != ERROR_OK) goto done; *val = (*val & ~0xfff) + (va & 0xfff); if (*val == va) LOG_WARNING("virt = phys : MMU disable !!"); if (meminfo) { LOG_INFO("%" PRIx32 " : %" PRIx32 " %s outer shareable %s secured", va, *val, NOS == 1 ? "not" : " ", NS == 1 ? "not" : ""); switch (OUTER) { case 0: LOG_INFO("outer: Non-Cacheable"); break; case 1: LOG_INFO("outer: Write-Back, Write-Allocate"); break; case 2: LOG_INFO("outer: Write-Through, No Write-Allocate"); break; case 3: LOG_INFO("outer: Write-Back, no Write-Allocate"); break; } switch (INNER) { case 0: LOG_INFO("inner: Non-Cacheable"); break; case 1: LOG_INFO("inner: Strongly-ordered"); break; case 3: LOG_INFO("inner: Device"); break; case 5: LOG_INFO("inner: Write-Back, Write-Allocate"); break; case 6: LOG_INFO("inner: Write-Through"); break; case 7: LOG_INFO("inner: Write-Back, no Write-Allocate"); default: LOG_INFO("inner: %" PRIx32 " ???", INNER); } } done: dpm->finish(dpm); return retval; } static int armv7a_handle_inner_cache_info_command(struct command_context *cmd_ctx, struct armv7a_cache_common *armv7a_cache) { if (armv7a_cache->ctype == -1) { command_print(cmd_ctx, "cache not yet identified"); return ERROR_OK; } command_print(cmd_ctx, "D-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv7a_cache->d_u_size.linelen, armv7a_cache->d_u_size.associativity, armv7a_cache->d_u_size.nsets, armv7a_cache->d_u_size.cachesize); command_print(cmd_ctx, "I-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv7a_cache->i_size.linelen, armv7a_cache->i_size.associativity, armv7a_cache->i_size.nsets, armv7a_cache->i_size.cachesize); return ERROR_OK; } static int _armv7a_flush_all_data(struct target *target) { struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; struct armv7a_cachesize *d_u_size = &(armv7a->armv7a_mmu.armv7a_cache.d_u_size); int32_t c_way, c_index = d_u_size->index; int retval; /* check that cache data is on at target halt */ if (!armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled) { LOG_INFO("flushed not performed :cache not on at target halt"); return ERROR_OK; } retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; do { c_way = d_u_size->way; do { uint32_t value = (c_index << d_u_size->index_shift) | (c_way << d_u_size->way_shift); /* DCCISW */ /* LOG_INFO ("%d %d %x",c_way,c_index,value); */ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MCR(15, 0, 0, 7, 14, 2), value); if (retval != ERROR_OK) goto done; c_way -= 1; } while (c_way >= 0); c_index -= 1; } while (c_index >= 0); return retval; done: LOG_ERROR("flushed failed"); dpm->finish(dpm); return retval; } static int armv7a_flush_all_data(struct target *target) { int retval = ERROR_FAIL; /* check that armv7a_cache is correctly identify */ struct armv7a_common *armv7a = target_to_armv7a(target); if (armv7a->armv7a_mmu.armv7a_cache.ctype == -1) { LOG_ERROR("trying to flush un-identified cache"); return retval; } if (target->smp) { /* look if all the other target have been flushed in order to flush level * 2 */ struct target_list *head; struct target *curr; head = target->head; while (head != (struct target_list *)NULL) { curr = head->target; if (curr->state == TARGET_HALTED) { LOG_INFO("Wait flushing data l1 on core %" PRId32, curr->coreid); retval = _armv7a_flush_all_data(curr); } head = head->next; } } else retval = _armv7a_flush_all_data(target); return retval; } /* L2 is not specific to armv7a a specific file is needed */ static int armv7a_l2x_flush_all_data(struct target *target) { #define L2X0_CLEAN_INV_WAY 0x7FC int retval = ERROR_FAIL; struct armv7a_common *armv7a = target_to_armv7a(target); struct armv7a_l2x_cache *l2x_cache = (struct armv7a_l2x_cache *) (armv7a->armv7a_mmu.armv7a_cache.l2_cache); uint32_t base = l2x_cache->base; uint32_t l2_way = l2x_cache->way; uint32_t l2_way_val = (1 << l2_way) - 1; retval = armv7a_flush_all_data(target); if (retval != ERROR_OK) return retval; retval = target->type->write_phys_memory(target, (uint32_t)(base+(uint32_t)L2X0_CLEAN_INV_WAY), (uint32_t)4, (uint32_t)1, (uint8_t *)&l2_way_val); return retval; } static int armv7a_handle_l2x_cache_info_command(struct command_context *cmd_ctx, struct armv7a_cache_common *armv7a_cache) { struct armv7a_l2x_cache *l2x_cache = (struct armv7a_l2x_cache *) (armv7a_cache->l2_cache); if (armv7a_cache->ctype == -1) { command_print(cmd_ctx, "cache not yet identified"); return ERROR_OK; } command_print(cmd_ctx, "L1 D-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv7a_cache->d_u_size.linelen, armv7a_cache->d_u_size.associativity, armv7a_cache->d_u_size.nsets, armv7a_cache->d_u_size.cachesize); command_print(cmd_ctx, "L1 I-Cache: linelen %" PRIi32 ", associativity %" PRIi32 ", nsets %" PRIi32 ", cachesize %" PRId32 " KBytes", armv7a_cache->i_size.linelen, armv7a_cache->i_size.associativity, armv7a_cache->i_size.nsets, armv7a_cache->i_size.cachesize); command_print(cmd_ctx, "L2 unified cache Base Address 0x%" PRIx32 ", %" PRId32 " ways", l2x_cache->base, l2x_cache->way); return ERROR_OK; } static int armv7a_l2x_cache_init(struct target *target, uint32_t base, uint32_t way) { struct armv7a_l2x_cache *l2x_cache; struct target_list *head = target->head; struct target *curr; struct armv7a_common *armv7a = target_to_armv7a(target); l2x_cache = calloc(1, sizeof(struct armv7a_l2x_cache)); l2x_cache->base = base; l2x_cache->way = way; /*LOG_INFO("cache l2 initialized base %x way %d", l2x_cache->base,l2x_cache->way);*/ if (armv7a->armv7a_mmu.armv7a_cache.l2_cache) LOG_INFO("cache l2 already initialized\n"); armv7a->armv7a_mmu.armv7a_cache.l2_cache = l2x_cache; /* initialize l1 / l2x cache function */ armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache = armv7a_l2x_flush_all_data; armv7a->armv7a_mmu.armv7a_cache.display_cache_info = armv7a_handle_l2x_cache_info_command; /* initialize all target in this cluster (smp target) * l2 cache must be configured after smp declaration */ while (head != (struct target_list *)NULL) { curr = head->target; if (curr != target) { armv7a = target_to_armv7a(curr); if (armv7a->armv7a_mmu.armv7a_cache.l2_cache) LOG_ERROR("smp target : cache l2 already initialized\n"); armv7a->armv7a_mmu.armv7a_cache.l2_cache = l2x_cache; armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache = armv7a_l2x_flush_all_data; armv7a->armv7a_mmu.armv7a_cache.display_cache_info = armv7a_handle_l2x_cache_info_command; } head = head->next; } return JIM_OK; } COMMAND_HANDLER(handle_cache_l2x) { struct target *target = get_current_target(CMD_CTX); uint32_t base, way; switch (CMD_ARGC) { case 0: return ERROR_COMMAND_SYNTAX_ERROR; break; case 2: /* command_print(CMD_CTX, "%s %s", CMD_ARGV[0], CMD_ARGV[1]); */ COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], base); COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], way); /* AP address is in bits 31:24 of DP_SELECT */ armv7a_l2x_cache_init(target, base, way); break; default: return ERROR_COMMAND_SYNTAX_ERROR; } return ERROR_OK; } int armv7a_handle_cache_info_command(struct command_context *cmd_ctx, struct armv7a_cache_common *armv7a_cache) { if (armv7a_cache->ctype == -1) { command_print(cmd_ctx, "cache not yet identified"); return ERROR_OK; } if (armv7a_cache->display_cache_info) armv7a_cache->display_cache_info(cmd_ctx, armv7a_cache); return ERROR_OK; } /* retrieve core id cluster id */ static int armv7a_read_mpidr(struct target *target) { int retval = ERROR_FAIL; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; uint32_t mpidr; retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* MRC p15,0,,c0,c0,5; read Multiprocessor ID register*/ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 0, 0, 0, 0, 5), &mpidr); if (retval != ERROR_OK) goto done; if (mpidr & 1<<31) { armv7a->multi_processor_system = (mpidr >> 30) & 1; armv7a->cluster_id = (mpidr >> 8) & 0xf; armv7a->cpu_id = mpidr & 0x3; LOG_INFO("%s cluster %x core %x %s", target_name(target), armv7a->cluster_id, armv7a->cpu_id, armv7a->multi_processor_system == 0 ? "multi core" : "mono core"); } else LOG_ERROR("mpdir not in multiprocessor format"); done: dpm->finish(dpm); return retval; } int armv7a_identify_cache(struct target *target) { /* read cache descriptor */ int retval = ERROR_FAIL; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm_dpm *dpm = armv7a->arm.dpm; uint32_t cache_selected, clidr; uint32_t cache_i_reg, cache_d_reg; struct armv7a_cache_common *cache = &(armv7a->armv7a_mmu.armv7a_cache); if (!armv7a->is_armv7r) armv7a_read_ttbcr(target); retval = dpm->prepare(dpm); if (retval != ERROR_OK) goto done; /* retrieve CLIDR * mrc p15, 1, r0, c0, c0, 1 @ read clidr */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 1), &clidr); if (retval != ERROR_OK) goto done; clidr = (clidr & 0x7000000) >> 23; LOG_INFO("number of cache level %" PRIx32, (uint32_t)(clidr / 2)); if ((clidr / 2) > 1) { /* FIXME not supported present in cortex A8 and later */ /* in cortex A7, A15 */ LOG_ERROR("cache l2 present :not supported"); } /* retrieve selected cache * MRC p15, 2,, c0, c0, 0; Read CSSELR */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), &cache_selected); if (retval != ERROR_OK) goto done; retval = armv7a->arm.mrc(target, 15, 2, 0, /* op1, op2 */ 0, 0, /* CRn, CRm */ &cache_selected); if (retval != ERROR_OK) goto done; /* select instruction cache * MCR p15, 2,, c0, c0, 0; Write CSSELR * [0] : 1 instruction cache selection , 0 data cache selection */ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), 1); if (retval != ERROR_OK) goto done; /* read CCSIDR * MRC P15,1,,C0, C0,0 ;on cortex A9 read CCSIDR * [2:0] line size 001 eight word per line * [27:13] NumSet 0x7f 16KB, 0xff 32Kbytes, 0x1ff 64Kbytes */ retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 0), &cache_i_reg); if (retval != ERROR_OK) goto done; /* select data cache*/ retval = dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), 0); if (retval != ERROR_OK) goto done; retval = dpm->instr_read_data_r0(dpm, ARMV4_5_MRC(15, 1, 0, 0, 0, 0), &cache_d_reg); if (retval != ERROR_OK) goto done; /* restore selected cache */ dpm->instr_write_data_r0(dpm, ARMV4_5_MRC(15, 2, 0, 0, 0, 0), cache_selected); if (retval != ERROR_OK) goto done; dpm->finish(dpm); /* put fake type */ cache->d_u_size.linelen = 16 << (cache_d_reg & 0x7); cache->d_u_size.cachesize = (((cache_d_reg >> 13) & 0x7fff)+1)/8; cache->d_u_size.nsets = (cache_d_reg >> 13) & 0x7fff; cache->d_u_size.associativity = ((cache_d_reg >> 3) & 0x3ff) + 1; /* compute info for set way operation on cache */ cache->d_u_size.index_shift = (cache_d_reg & 0x7) + 4; cache->d_u_size.index = (cache_d_reg >> 13) & 0x7fff; cache->d_u_size.way = ((cache_d_reg >> 3) & 0x3ff); cache->d_u_size.way_shift = cache->d_u_size.way + 1; { int i = 0; while (((cache->d_u_size.way_shift >> i) & 1) != 1) i++; cache->d_u_size.way_shift = 32-i; } #if 0 LOG_INFO("data cache index %d << %d, way %d << %d", cache->d_u_size.index, cache->d_u_size.index_shift, cache->d_u_size.way, cache->d_u_size.way_shift); LOG_INFO("data cache %d bytes %d KBytes asso %d ways", cache->d_u_size.linelen, cache->d_u_size.cachesize, cache->d_u_size.associativity); #endif cache->i_size.linelen = 16 << (cache_i_reg & 0x7); cache->i_size.associativity = ((cache_i_reg >> 3) & 0x3ff) + 1; cache->i_size.nsets = (cache_i_reg >> 13) & 0x7fff; cache->i_size.cachesize = (((cache_i_reg >> 13) & 0x7fff)+1)/8; /* compute info for set way operation on cache */ cache->i_size.index_shift = (cache_i_reg & 0x7) + 4; cache->i_size.index = (cache_i_reg >> 13) & 0x7fff; cache->i_size.way = ((cache_i_reg >> 3) & 0x3ff); cache->i_size.way_shift = cache->i_size.way + 1; { int i = 0; while (((cache->i_size.way_shift >> i) & 1) != 1) i++; cache->i_size.way_shift = 32-i; } #if 0 LOG_INFO("instruction cache index %d << %d, way %d << %d", cache->i_size.index, cache->i_size.index_shift, cache->i_size.way, cache->i_size.way_shift); LOG_INFO("instruction cache %d bytes %d KBytes asso %d ways", cache->i_size.linelen, cache->i_size.cachesize, cache->i_size.associativity); #endif /* if no l2 cache initialize l1 data cache flush function function */ if (armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache == NULL) { armv7a->armv7a_mmu.armv7a_cache.display_cache_info = armv7a_handle_inner_cache_info_command; armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache = armv7a_flush_all_data; } armv7a->armv7a_mmu.armv7a_cache.ctype = 0; done: dpm->finish(dpm); armv7a_read_mpidr(target); return retval; } int armv7a_init_arch_info(struct target *target, struct armv7a_common *armv7a) { struct arm *arm = &armv7a->arm; arm->arch_info = armv7a; target->arch_info = &armv7a->arm; /* target is useful in all function arm v4 5 compatible */ armv7a->arm.target = target; armv7a->arm.common_magic = ARM_COMMON_MAGIC; armv7a->common_magic = ARMV7_COMMON_MAGIC; armv7a->armv7a_mmu.armv7a_cache.l2_cache = NULL; armv7a->armv7a_mmu.armv7a_cache.ctype = -1; armv7a->armv7a_mmu.armv7a_cache.flush_all_data_cache = NULL; armv7a->armv7a_mmu.armv7a_cache.display_cache_info = NULL; return ERROR_OK; } int armv7a_arch_state(struct target *target) { static const char *state[] = { "disabled", "enabled" }; struct armv7a_common *armv7a = target_to_armv7a(target); struct arm *arm = &armv7a->arm; if (armv7a->common_magic != ARMV7_COMMON_MAGIC) { LOG_ERROR("BUG: called for a non-ARMv7A target"); return ERROR_COMMAND_SYNTAX_ERROR; } arm_arch_state(target); if (armv7a->is_armv7r) { LOG_USER("D-Cache: %s, I-Cache: %s", state[armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled], state[armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled]); } else { LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s", state[armv7a->armv7a_mmu.mmu_enabled], state[armv7a->armv7a_mmu.armv7a_cache.d_u_cache_enabled], state[armv7a->armv7a_mmu.armv7a_cache.i_cache_enabled]); } if (arm->core_mode == ARM_MODE_ABT) armv7a_show_fault_registers(target); if (target->debug_reason == DBG_REASON_WATCHPOINT) LOG_USER("Watchpoint triggered at PC %#08x", (unsigned) armv7a->dpm.wp_pc); return ERROR_OK; } static const struct command_registration l2_cache_commands[] = { { .name = "l2x", .handler = handle_cache_l2x, .mode = COMMAND_EXEC, .help = "configure l2x cache " "", .usage = "[base_addr] [number_of_way]", }, COMMAND_REGISTRATION_DONE }; const struct command_registration l2x_cache_command_handlers[] = { { .name = "cache_config", .mode = COMMAND_EXEC, .help = "cache configuation for a target", .usage = "", .chain = l2_cache_commands, }, COMMAND_REGISTRATION_DONE }; const struct command_registration armv7a_command_handlers[] = { { .chain = dap_command_handlers, }, { .chain = l2x_cache_command_handlers, }, COMMAND_REGISTRATION_DONE };