/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "arm920t.h" #include "time_support.h" #include "target_type.h" #include "register.h" /* * For information about the ARM920T, see ARM DDI 0151C especially * Chapter 9 about debug support, which shows how to manipulate each * of the different scan chains: * * 0 ... ARM920 signals, e.g. to rest of SOC (unused here) * 1 ... debugging; watchpoint and breakpoint status, etc; also * MMU and cache access in conjunction with scan chain 15 * 2 ... EmbeddedICE * 3 ... external boundary scan (SoC-specific, unused here) * 4 ... access to cache tag RAM * 6 ... ETM9 * 15 ... access coprocessor 15, "physical" or "interpreted" modes * "interpreted" works with a few actual MRC/MCR instructions * "physical" provides register-like behaviors. * * The ARM922T is similar, but with smaller caches (8K each, vs 16K). */ #if 0 #define _DEBUG_INSTRUCTION_EXECUTION_ #endif #define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z)) static int arm920t_read_cp15_physical(struct target *target, int reg_addr, uint32_t *value) { struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 1; uint8_t reg_addr_buf = reg_addr & 0x3f; uint8_t nr_w_buf = 0; jtag_info = &arm920t->arm7_9_common.jtag_info; jtag_set_end_state(TAP_IDLE); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); fields[0].tap = jtag_info->tap; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].tap = jtag_info->tap; fields[1].num_bits = 32; fields[1].out_value = NULL; fields[1].in_value = NULL; fields[2].tap = jtag_info->tap; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].tap = jtag_info->tap; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(4, fields, jtag_get_end_state()); fields[1].in_value = (uint8_t *)value; jtag_add_dr_scan(4, fields, jtag_get_end_state()); jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ jtag_execute_queue(); LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value); #endif return ERROR_OK; } static int arm920t_write_cp15_physical(struct target *target, int reg_addr, uint32_t value) { struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 1; uint8_t reg_addr_buf = reg_addr & 0x3f; uint8_t nr_w_buf = 1; uint8_t value_buf[4]; jtag_info = &arm920t->arm7_9_common.jtag_info; buf_set_u32(value_buf, 0, 32, value); jtag_set_end_state(TAP_IDLE); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); fields[0].tap = jtag_info->tap; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].tap = jtag_info->tap; fields[1].num_bits = 32; fields[1].out_value = value_buf; fields[1].in_value = NULL; fields[2].tap = jtag_info->tap; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].tap = jtag_info->tap; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(4, fields, jtag_get_end_state()); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value); #endif return ERROR_OK; } static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode, uint32_t arm_opcode) { int retval; struct arm920t_common *arm920t = target_to_arm920(target); struct arm_jtag *jtag_info; struct scan_field fields[4]; uint8_t access_type_buf = 0; /* interpreted access */ uint8_t reg_addr_buf = 0x0; uint8_t nr_w_buf = 0; uint8_t cp15_opcode_buf[4]; jtag_info = &arm920t->arm7_9_common.jtag_info; jtag_set_end_state(TAP_IDLE); arm_jtag_scann(jtag_info, 0xf); arm_jtag_set_instr(jtag_info, jtag_info->intest_instr, NULL); buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode); fields[0].tap = jtag_info->tap; fields[0].num_bits = 1; fields[0].out_value = &access_type_buf; fields[0].in_value = NULL; fields[1].tap = jtag_info->tap; fields[1].num_bits = 32; fields[1].out_value = cp15_opcode_buf; fields[1].in_value = NULL; fields[2].tap = jtag_info->tap; fields[2].num_bits = 6; fields[2].out_value = ®_addr_buf; fields[2].in_value = NULL; fields[3].tap = jtag_info->tap; fields[3].num_bits = 1; fields[3].out_value = &nr_w_buf; fields[3].in_value = NULL; jtag_add_dr_scan(4, fields, jtag_get_end_state()); arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0); arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1); retval = arm7_9_execute_sys_speed(target); if (retval != ERROR_OK) return retval; if ((retval = jtag_execute_queue()) != ERROR_OK) { LOG_ERROR("failed executing JTAG queue"); return retval; } return ERROR_OK; } static int arm920t_read_cp15_interpreted(struct target *target, uint32_t cp15_opcode, uint32_t address, uint32_t *value) { struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); uint32_t* regs_p[1]; uint32_t regs[2]; uint32_t cp15c15 = 0x0; /* load address into R1 */ regs[1] = address; arm9tdmi_write_core_regs(target, 0x2, regs); /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* execute CP15 instruction and ARM load (reading from coprocessor) */ arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1)); /* disable interpreted access mode */ cp15c15 &= ~1U; /* clear interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* retrieve value from R0 */ regs_p[0] = value; arm9tdmi_read_core_regs(target, 0x1, regs_p); jtag_execute_queue(); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x", cp15_opcode, address, *value); #endif if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).dirty = 1; return ERROR_OK; } static int arm920t_write_cp15_interpreted(struct target *target, uint32_t cp15_opcode, uint32_t value, uint32_t address) { uint32_t cp15c15 = 0x0; struct armv4_5_common_s *armv4_5 = target_to_armv4_5(target); uint32_t regs[2]; /* load value, address into R0, R1 */ regs[0] = value; regs[1] = address; arm9tdmi_write_core_regs(target, 0x3, regs); /* read-modify-write CP15 test state register * to enable interpreted access mode */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 1; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* execute CP15 instruction and ARM store (writing to coprocessor) */ arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1)); /* disable interpreted access mode */ cp15c15 &= ~1U; /* set interpret mode */ arm920t_write_cp15_physical(target, 0x1e, cp15c15); #ifdef _DEBUG_INSTRUCTION_EXECUTION_ LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x", cp15_opcode, value, address); #endif if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = 1; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).dirty = 1; return ERROR_OK; } // EXPORTED to FA256 uint32_t arm920t_get_ttb(struct target *target) { int retval; uint32_t ttb = 0x0; if ((retval = arm920t_read_cp15_interpreted(target, 0xeebf0f51, 0x0, &ttb)) != ERROR_OK) return retval; return ttb; } // EXPORTED to FA256 void arm920t_disable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache) { uint32_t cp15_control; /* read cp15 control register */ arm920t_read_cp15_physical(target, 0x2, &cp15_control); jtag_execute_queue(); if (mmu) cp15_control &= ~0x1U; if (d_u_cache) cp15_control &= ~0x4U; if (i_cache) cp15_control &= ~0x1000U; arm920t_write_cp15_physical(target, 0x2, cp15_control); } // EXPORTED to FA256 void arm920t_enable_mmu_caches(struct target *target, int mmu, int d_u_cache, int i_cache) { uint32_t cp15_control; /* read cp15 control register */ arm920t_read_cp15_physical(target, 0x2, &cp15_control); jtag_execute_queue(); if (mmu) cp15_control |= 0x1U; if (d_u_cache) cp15_control |= 0x4U; if (i_cache) cp15_control |= 0x1000U; arm920t_write_cp15_physical(target, 0x2, cp15_control); } // EXPORTED to FA256 void arm920t_post_debug_entry(struct target *target) { uint32_t cp15c15; struct arm920t_common *arm920t = target_to_arm920(target); /* examine cp15 control reg */ arm920t_read_cp15_physical(target, 0x2, &arm920t->cp15_control_reg); jtag_execute_queue(); LOG_DEBUG("cp15_control_reg: %8.8" PRIx32 "", arm920t->cp15_control_reg); if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) { uint32_t cache_type_reg; /* identify caches */ arm920t_read_cp15_physical(target, 0x1, &cache_type_reg); jtag_execute_queue(); armv4_5_identify_cache(cache_type_reg, &arm920t->armv4_5_mmu.armv4_5_cache); } arm920t->armv4_5_mmu.mmu_enabled = (arm920t->cp15_control_reg & 0x1U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = (arm920t->cp15_control_reg & 0x4U) ? 1 : 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = (arm920t->cp15_control_reg & 0x1000U) ? 1 : 0; /* save i/d fault status and address register */ arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr); arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr); arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far); arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far); LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32 ", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32 "", arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far); if (arm920t->preserve_cache) { /* read-modify-write CP15 test state register * to disable I/D-cache linefills */ arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 |= 0x600; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } } // EXPORTED to FA256 void arm920t_pre_restore_context(struct target *target) { uint32_t cp15c15; struct arm920t_common *arm920t = target_to_arm920(target); /* restore i/d fault status and address register */ arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0); arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0); /* read-modify-write CP15 test state register * to reenable I/D-cache linefills */ if (arm920t->preserve_cache) { arm920t_read_cp15_physical(target, 0x1e, &cp15c15); jtag_execute_queue(); cp15c15 &= ~0x600U; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } } static const char arm920_not[] = "target is not an ARM920"; static int arm920t_verify_pointer(struct command_context *cmd_ctx, struct arm920t_common *arm920t) { if (arm920t->common_magic != ARM920T_COMMON_MAGIC) { command_print(cmd_ctx, arm920_not); return ERROR_TARGET_INVALID; } return ERROR_OK; } /** Logs summary of ARM920 state for a halted target. */ int arm920t_arch_state(struct target *target) { static const char *state[] = { "disabled", "enabled" }; struct arm920t_common *arm920t = target_to_arm920(target); struct armv4_5_common_s *armv4_5; if (arm920t->common_magic != ARM920T_COMMON_MAGIC) { LOG_ERROR("BUG: %s", arm920_not); return ERROR_TARGET_INVALID; } armv4_5 = &arm920t->arm7_9_common.armv4_5_common; LOG_USER("target halted in %s state due to %s, current mode: %s\n" "cpsr: 0x%8.8" PRIx32 " pc: 0x%8.8" PRIx32 "\n" "MMU: %s, D-Cache: %s, I-Cache: %s", armv4_5_state_strings[armv4_5->core_state], Jim_Nvp_value2name_simple(nvp_target_debug_reason, target->debug_reason)->name, armv4_5_mode_strings[armv4_5_mode_to_number(armv4_5->core_mode)], buf_get_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 32), buf_get_u32(armv4_5->core_cache->reg_list[15].value, 0, 32), state[arm920t->armv4_5_mmu.mmu_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled], state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]); return ERROR_OK; } static int arm920_mmu(struct target *target, int *enabled) { if (target->state != TARGET_HALTED) { LOG_ERROR("%s: target not halted", __func__); return ERROR_TARGET_INVALID; } *enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled; return ERROR_OK; } static int arm920_virt2phys(struct target *target, uint32_t virt, uint32_t *phys) { /** @todo Implement this! */ LOG_ERROR("%s: not implemented", __func__); return ERROR_FAIL; } /** Reads a buffer, in the specified word size, with current MMU settings. */ int arm920t_read_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { int retval; retval = arm7_9_read_memory(target, address, size, count, buffer); return retval; } static int arm920t_read_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct arm920t_common *arm920t = target_to_arm920(target); return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu, address, size, count, buffer); } static int arm920t_write_phys_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { struct arm920t_common *arm920t = target_to_arm920(target); return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu, address, size, count, buffer); } /** Writes a buffer, in the specified word size, with current MMU settings. */ int arm920t_write_memory(struct target *target, uint32_t address, uint32_t size, uint32_t count, uint8_t *buffer) { int retval; if ((retval = arm7_9_write_memory(target, address, size, count, buffer)) != ERROR_OK) return retval; /* This fn is used to write breakpoints, so we need to make sure * that the data cache is flushed and the instruction cache is * invalidated */ if (((size == 4) || (size == 2)) && (count == 1)) { struct arm920t_common *arm920t = target_to_arm920(target); if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) { LOG_DEBUG("D-Cache enabled, flush and invalidate cache line"); /* MCR p15,0,Rd,c7,c10,2 */ retval = arm920t_write_cp15_interpreted(target, 0xee070f5e, 0x0, address); if (retval != ERROR_OK) return retval; } if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) { LOG_DEBUG("I-Cache enabled, invalidating affected I-Cache line"); retval = arm920t_write_cp15_interpreted(target, 0xee070f35, 0x0, address); if (retval != ERROR_OK) return retval; } } return retval; } // EXPORTED to FA256 int arm920t_soft_reset_halt(struct target *target) { int retval = ERROR_OK; struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT]; if ((retval = target_halt(target)) != ERROR_OK) { return retval; } long long then = timeval_ms(); int timeout; while (!(timeout = ((timeval_ms()-then) > 1000))) { if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) { embeddedice_read_reg(dbg_stat); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } } else { break; } if (debug_level >= 3) { /* do not eat all CPU, time out after 1 se*/ alive_sleep(100); } else { keep_alive(); } } if (timeout) { LOG_ERROR("Failed to halt CPU after 1 sec"); return ERROR_TARGET_TIMEOUT; } target->state = TARGET_HALTED; /* SVC, ARM state, IRQ and FIQ disabled */ buf_set_u32(armv4_5->core_cache->reg_list[ARMV4_5_CPSR].value, 0, 8, 0xd3); armv4_5->core_cache->reg_list[ARMV4_5_CPSR].dirty = 1; armv4_5->core_cache->reg_list[ARMV4_5_CPSR].valid = 1; /* start fetching from 0x0 */ buf_set_u32(armv4_5->core_cache->reg_list[15].value, 0, 32, 0x0); armv4_5->core_cache->reg_list[15].dirty = 1; armv4_5->core_cache->reg_list[15].valid = 1; armv4_5->core_mode = ARMV4_5_MODE_SVC; armv4_5->core_state = ARMV4_5_STATE_ARM; arm920t_disable_mmu_caches(target, 1, 1, 1); arm920t->armv4_5_mmu.mmu_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0; arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0; if ((retval = target_call_event_callbacks(target, TARGET_EVENT_HALTED)) != ERROR_OK) { return retval; } return ERROR_OK; } int arm920t_init_arch_info(struct target *target, struct arm920t_common *arm920t, struct jtag_tap *tap) { struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common; /* initialize arm7/arm9 specific info (including armv4_5) */ arm9tdmi_init_arch_info(target, arm7_9, tap); arm920t->common_magic = ARM920T_COMMON_MAGIC; arm7_9->post_debug_entry = arm920t_post_debug_entry; arm7_9->pre_restore_context = arm920t_pre_restore_context; arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1; arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb; arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory; arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory; arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches; arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches; arm920t->armv4_5_mmu.has_tiny_pages = 1; arm920t->armv4_5_mmu.mmu_enabled = 0; /* disabling linefills leads to lockups, so keep them enabled for now * this doesn't affect correctness, but might affect timing issues, if * important data is evicted from the cache during the debug session * */ arm920t->preserve_cache = 0; /* override hw single-step capability from ARM9TDMI */ arm7_9->has_single_step = 1; return ERROR_OK; } static int arm920t_target_create(struct target *target, Jim_Interp *interp) { struct arm920t_common *arm920t = calloc(1,sizeof(struct arm920t_common)); return arm920t_init_arch_info(target, arm920t, target->tap); } COMMAND_HANDLER(arm920t_handle_read_cache_command) { int retval = ERROR_OK; struct target *target = get_current_target(cmd_ctx); struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; uint32_t cp15c15; uint32_t cp15_ctrl, cp15_ctrl_saved; uint32_t regs[16]; uint32_t *regs_p[16]; uint32_t C15_C_D_Ind, C15_C_I_Ind; int i; FILE *output; struct arm920t_cache_line d_cache[8][64], i_cache[8][64]; int segment, index; retval = arm920t_verify_pointer(cmd_ctx, arm920t); if (retval != ERROR_OK) return retval; if (CMD_ARGC != 1) { command_print(cmd_ctx, "usage: arm920t read_cache "); return ERROR_OK; } if ((output = fopen(CMD_ARGV[0], "w")) == NULL) { LOG_DEBUG("error opening cache content file"); return ERROR_OK; } for (i = 0; i < 16; i++) regs_p[i] = ®s[i]; /* disable MMU and Caches */ arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } cp15_ctrl_saved = cp15_ctrl; cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED); arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl); /* read CP15 test state register */ arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15); jtag_execute_queue(); /* read DCache content */ fprintf(output, "DCache:\n"); /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */ for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++) { fprintf(output, "\nsegment: %i\n----------", segment); /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* D CAM Read, loads current victim into C15.C.D.Ind */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(1, 0)); /* read current victim */ arm920t_read_cp15_physical(target, 0x3d, &C15_C_D_Ind); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); for (index = 0; index < 64; index++) { /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (index << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write DCache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0)); /* Read D RAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,10,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0)); /* Read D CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,6,2), ARMV4_5_LDR(9, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read D RAM and CAM content */ arm9tdmi_read_core_regs(target, 0x3fe, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } d_cache[segment][index].cam = regs[9]; /* mask LFSR[6] */ regs[9] &= 0xfffffffe; fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid"); for (i = 1; i < 9; i++) { d_cache[segment][index].data[i] = regs[i]; fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]); } } /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write DCache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,0), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } /* read ICache content */ fprintf(output, "ICache:\n"); /* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */ for (segment = 0; segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets; segment++) { fprintf(output, "segment: %i\n----------", segment); /* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* I CAM Read, loads current victim into C15.C.I.Ind */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(1, 0)); /* read current victim */ arm920t_read_cp15_physical(target, 0x3b, &C15_C_I_Ind); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); for (index = 0; index < 64; index++) { /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (index << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write ICache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0)); /* Read I RAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,9,2), ARMV4_5_LDMIA(0, 0x1fe, 0, 0)); /* Read I CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,2,0,15,5,2), ARMV4_5_LDR(9, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read I RAM and CAM content */ arm9tdmi_read_core_regs(target, 0x3fe, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } i_cache[segment][index].cam = regs[9]; /* mask LFSR[6] */ regs[9] &= 0xfffffffe; fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8" PRIx32 ", content (%s):\n", segment, index, regs[9], (regs[9] & 0x10) ? "valid" : "invalid"); for (i = 1; i < 9; i++) { i_cache[segment][index].data[i] = regs[i]; fprintf(output, "%i: 0x%8.8" PRIx32 "\n", i-1, regs[i]); } } /* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */ regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26); arm9tdmi_write_core_regs(target, 0x1, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write ICache victim */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,9,1,1), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); } /* restore CP15 MMU and Cache settings */ arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved); command_print(cmd_ctx, "cache content successfully output to %s", CMD_ARGV[0]); fclose(output); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* mark registers dirty. */ ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 2).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 2).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 3).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 3).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 4).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 4).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 5).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 5).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 6).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 6).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 7).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 7).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 8).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 8).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 9).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 9).valid; return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_read_mmu_command) { int retval = ERROR_OK; struct target *target = get_current_target(cmd_ctx); struct arm920t_common *arm920t = target_to_arm920(target); struct arm7_9_common *arm7_9 = target_to_arm7_9(target); struct armv4_5_common_s *armv4_5 = &arm7_9->armv4_5_common; uint32_t cp15c15; uint32_t cp15_ctrl, cp15_ctrl_saved; uint32_t regs[16]; uint32_t *regs_p[16]; int i; FILE *output; uint32_t Dlockdown, Ilockdown; struct arm920t_tlb_entry d_tlb[64], i_tlb[64]; int victim; retval = arm920t_verify_pointer(cmd_ctx, arm920t); if (retval != ERROR_OK) return retval; if (CMD_ARGC != 1) { command_print(cmd_ctx, "usage: arm920t read_mmu "); return ERROR_OK; } if ((output = fopen(CMD_ARGV[0], "w")) == NULL) { LOG_DEBUG("error opening mmu content file"); return ERROR_OK; } for (i = 0; i < 16; i++) regs_p[i] = ®s[i]; /* disable MMU and Caches */ arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), &cp15_ctrl); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } cp15_ctrl_saved = cp15_ctrl; cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED | ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED); arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl); /* read CP15 test state register */ arm920t_read_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), &cp15c15); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } /* prepare reading D TLB content * */ /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Read D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,0), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read D TLB lockdown stored to r1 */ arm9tdmi_read_core_regs(target, 0x2, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } Dlockdown = regs[1]; for (victim = 0; victim < 64; victim += 8) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* Read D TLB CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,6,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read D TLB CAM content stored to r2-r9 */ arm9tdmi_read_core_regs(target, 0x3fc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } for (i = 0; i < 8; i++) d_tlb[victim + i].cam = regs[i + 2]; } for (victim = 0; victim < 64; victim++) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* Read D TLB RAM1 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,10,4), ARMV4_5_LDR(2,0)); /* Read D TLB RAM2 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,2,5), ARMV4_5_LDR(3,0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read D TLB RAM content stored to r2 and r3 */ arm9tdmi_read_core_regs(target, 0xc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } d_tlb[victim].ram1 = regs[2]; d_tlb[victim].ram2 = regs[3]; } /* restore D TLB lockdown */ regs[1] = Dlockdown; arm9tdmi_write_core_regs(target, 0x2, regs); /* Write D TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,0), ARMV4_5_STR(1, 0)); /* prepare reading I TLB content * */ /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Read I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MRC(15,0,0,10,0,1), ARMV4_5_LDR(1, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read I TLB lockdown stored to r1 */ arm9tdmi_read_core_regs(target, 0x2, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } Ilockdown = regs[1]; for (victim = 0; victim < 64; victim += 8) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Ilockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* Read I TLB CAM */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,5,4), ARMV4_5_LDMIA(0, 0x3fc, 0, 0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read I TLB CAM content stored to r2-r9 */ arm9tdmi_read_core_regs(target, 0x3fc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } for (i = 0; i < 8; i++) i_tlb[i + victim].cam = regs[i + 2]; } for (victim = 0; victim < 64; victim++) { /* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0] * base remains unchanged, victim goes through entries 0 to 63 */ regs[1] = (Dlockdown & 0xfc000000) | (victim << 20); arm9tdmi_write_core_regs(target, 0x2, regs); /* set interpret mode */ cp15c15 |= 0x1; arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0xf, 0), cp15c15); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* Read I TLB RAM1 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,9,4), ARMV4_5_LDR(2,0)); /* Read I TLB RAM2 */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,4,0,15,1,5), ARMV4_5_LDR(3,0)); /* clear interpret mode */ cp15c15 &= ~0x1; arm920t_write_cp15_physical(target, 0x1e, cp15c15); /* read I TLB RAM content stored to r2 and r3 */ arm9tdmi_read_core_regs(target, 0xc, regs_p); if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } i_tlb[victim].ram1 = regs[2]; i_tlb[victim].ram2 = regs[3]; } /* restore I TLB lockdown */ regs[1] = Ilockdown; arm9tdmi_write_core_regs(target, 0x2, regs); /* Write I TLB lockdown */ arm920t_execute_cp15(target, ARMV4_5_MCR(15,0,0,10,0,1), ARMV4_5_STR(1, 0)); /* restore CP15 MMU and Cache settings */ arm920t_write_cp15_physical(target, ARM920T_CP15_PHYS_ADDR(0, 0x1, 0), cp15_ctrl_saved); /* output data to file */ fprintf(output, "D TLB content:\n"); for (i = 0; i < 64; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2, (d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)"); } fprintf(output, "\n\nI TLB content:\n"); for (i = 0; i < 64; i++) { fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " 0x%8.8" PRIx32 " %s\n", i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2, (i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)"); } command_print(cmd_ctx, "mmu content successfully output to %s", CMD_ARGV[0]); fclose(output); if (armv4_5_mode_to_number(armv4_5->core_mode)==-1) return ERROR_FAIL; /* mark registers dirty */ ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 0).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 1).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 2).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 2).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 3).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 3).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 4).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 4).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 5).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 5).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 6).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 6).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 7).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 7).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 8).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 8).valid; ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 9).dirty = ARMV4_5_CORE_REG_MODE(armv4_5->core_cache, armv4_5->core_mode, 9).valid; return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cp15_command) { int retval; struct target *target = get_current_target(cmd_ctx); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(cmd_ctx, arm920t); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME); return ERROR_OK; } /* one or more argument, access a single register (write if second argument is given */ if (CMD_ARGC >= 1) { int address; COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address); if (CMD_ARGC == 1) { uint32_t value; if ((retval = arm920t_read_cp15_physical(target, address, &value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't access reg %i", address); return ERROR_OK; } if ((retval = jtag_execute_queue()) != ERROR_OK) { return retval; } command_print(cmd_ctx, "%i: %8.8" PRIx32 "", address, value); } else if (CMD_ARGC == 2) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); if ((retval = arm920t_write_cp15_physical(target, address, value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't access reg %i", address); return ERROR_OK; } command_print(cmd_ctx, "%i: %8.8" PRIx32 "", address, value); } } return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cp15i_command) { int retval; struct target *target = get_current_target(cmd_ctx); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(cmd_ctx, arm920t); if (retval != ERROR_OK) return retval; if (target->state != TARGET_HALTED) { command_print(cmd_ctx, "target must be stopped for \"%s\" command", CMD_NAME); return ERROR_OK; } /* one or more argument, access a single register (write if second argument is given */ if (CMD_ARGC >= 1) { uint32_t opcode; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode); if (CMD_ARGC == 1) { uint32_t value; if ((retval = arm920t_read_cp15_interpreted(target, opcode, 0x0, &value)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8" PRIx32 "", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value); } else if (CMD_ARGC == 2) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, 0)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8" PRIx32 "", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8" PRIx32 ": %8.8" PRIx32 "", opcode, value); } else if (CMD_ARGC == 3) { uint32_t value; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value); uint32_t address; COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address); if ((retval = arm920t_write_cp15_interpreted(target, opcode, value, address)) != ERROR_OK) { command_print(cmd_ctx, "couldn't execute %8.8" PRIx32 "", opcode); return ERROR_OK; } command_print(cmd_ctx, "%8.8" PRIx32 ": %8.8" PRIx32 " %8.8" PRIx32 "", opcode, value, address); } } else { command_print(cmd_ctx, "usage: arm920t cp15i [value] [address]"); } return ERROR_OK; } COMMAND_HANDLER(arm920t_handle_cache_info_command) { int retval; struct target *target = get_current_target(cmd_ctx); struct arm920t_common *arm920t = target_to_arm920(target); retval = arm920t_verify_pointer(cmd_ctx, arm920t); if (retval != ERROR_OK) return retval; return armv4_5_handle_cache_info_command(cmd_ctx, &arm920t->armv4_5_mmu.armv4_5_cache); } static int arm920t_mrc(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t *value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } return arm920t_read_cp15_interpreted(target, mrc_opcode(cpnum, op1, op2, CRn, CRm), 0, value); } static int arm920t_mcr(struct target *target, int cpnum, uint32_t op1, uint32_t op2, uint32_t CRn, uint32_t CRm, uint32_t value) { if (cpnum!=15) { LOG_ERROR("Only cp15 is supported"); return ERROR_FAIL; } return arm920t_write_cp15_interpreted(target, mrc_opcode(cpnum, op1, op2, CRn, CRm), 0, value); } /** Registers commands to access coprocessor, cache, and MMU resources. */ int arm920t_register_commands(struct command_context *cmd_ctx) { int retval; struct command *arm920t_cmd; retval = arm9tdmi_register_commands(cmd_ctx); arm920t_cmd = register_command(cmd_ctx, NULL, "arm920t", NULL, COMMAND_ANY, "arm920t specific commands"); register_command(cmd_ctx, arm920t_cmd, "cp15", arm920t_handle_cp15_command, COMMAND_EXEC, "display/modify cp15 register [value]"); register_command(cmd_ctx, arm920t_cmd, "cp15i", arm920t_handle_cp15i_command, COMMAND_EXEC, "display/modify cp15 (interpreted access) " " [value] [address]"); register_command(cmd_ctx, arm920t_cmd, "cache_info", arm920t_handle_cache_info_command, COMMAND_EXEC, "display information about target caches"); register_command(cmd_ctx, arm920t_cmd, "read_cache", arm920t_handle_read_cache_command, COMMAND_EXEC, "display I/D cache content"); register_command(cmd_ctx, arm920t_cmd, "read_mmu", arm920t_handle_read_mmu_command, COMMAND_EXEC, "display I/D mmu content"); return retval; } /** Holds methods for ARM920 targets. */ struct target_type arm920t_target = { .name = "arm920t", .poll = arm7_9_poll, .arch_state = arm920t_arch_state, .target_request_data = arm7_9_target_request_data, .halt = arm7_9_halt, .resume = arm7_9_resume, .step = arm7_9_step, .assert_reset = arm7_9_assert_reset, .deassert_reset = arm7_9_deassert_reset, .soft_reset_halt = arm920t_soft_reset_halt, .get_gdb_reg_list = armv4_5_get_gdb_reg_list, .read_memory = arm920t_read_memory, .write_memory = arm920t_write_memory, .read_phys_memory = arm920t_read_phys_memory, .write_phys_memory = arm920t_write_phys_memory, .mmu = arm920_mmu, .virt2phys = arm920_virt2phys, .bulk_write_memory = arm7_9_bulk_write_memory, .checksum_memory = arm_checksum_memory, .blank_check_memory = arm_blank_check_memory, .run_algorithm = armv4_5_run_algorithm, .add_breakpoint = arm7_9_add_breakpoint, .remove_breakpoint = arm7_9_remove_breakpoint, .add_watchpoint = arm7_9_add_watchpoint, .remove_watchpoint = arm7_9_remove_watchpoint, .register_commands = arm920t_register_commands, .target_create = arm920t_target_create, .init_target = arm9tdmi_init_target, .examine = arm7_9_examine, .mrc = arm920t_mrc, .mcr = arm920t_mcr, };