/*************************************************************************** * Copyright (C) 2005 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Copyright (C) 2007,2008 Øyvind Harboe * * oyvind.harboe@zylin.com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifndef JTAG_H #define JTAG_H #include "types.h" #include "binarybuffer.h" #include "log.h" #include "command.h" #if 0 #define _DEBUG_JTAG_IO_ #endif /* Tap States * TLR - Test-Logic-Reset, RTI - Run-Test/Idle, * SDS - Select-DR-Scan, CD - Capture-DR, SD - Shift-DR, E1D - Exit1-DR, * PD - Pause-DR, E2D - Exit2-DR, UD - Update-DR, * SIS - Select-IR-Scan, CI - Capture-IR, SI - Shift-IR, E1I - Exit1-IR, * PI - Pause-IR, E2I - Exit2-IR, UI - Update-IR */ enum tap_state { TAP_TLR = 0x0, TAP_RTI = 0x8, TAP_SDS = 0x1, TAP_CD = 0x2, TAP_SD = 0x3, TAP_E1D = 0x4, TAP_PD = 0x5, TAP_E2D = 0x6, TAP_UD = 0x7, TAP_SIS = 0x9, TAP_CI = 0xa, TAP_SI = 0xb, TAP_E1I = 0xc, TAP_PI = 0xd, TAP_E2I = 0xe, TAP_UI = 0xf }; typedef struct tap_transition_s { enum tap_state high; enum tap_state low; } tap_transition_t; extern char* tap_state_strings[16]; extern int tap_move_map[16]; /* map 16 TAP states to 6 stable states */ extern u8 tap_move[6][6]; /* value scanned to TMS to move from one of six stable states to another */ extern tap_transition_t tap_transitions[16]; /* describe the TAP state diagram */ extern enum tap_state end_state; /* finish DR scans in dr_end_state */ extern enum tap_state cur_state; /* current TAP state */ extern enum tap_state cmd_queue_end_state; /* finish DR scans in dr_end_state */ extern enum tap_state cmd_queue_cur_state; /* current TAP state */ #define TAP_MOVE(from, to) tap_move[tap_move_map[from]][tap_move_map[to]] typedef void * error_handler_t; /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */ struct scan_field_s; typedef int (*in_handler_t)(u8 *in_value, void *priv, struct scan_field_s *field); typedef struct scan_field_s { jtag_tap_t *tap; /* tap pointer this instruction refers to */ int num_bits; /* number of bits this field specifies (up to 32) */ u8 *out_value; /* value to be scanned into the device */ u8 *out_mask; /* only masked bits care */ u8 *in_value; /* pointer to a 32-bit memory location to take data scanned out */ /* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage */ u8 *in_check_value; /* used to validate scan results */ u8 *in_check_mask; /* check specified bits against check_value */ in_handler_t in_handler; /* process received buffer using this handler */ void *in_handler_priv; /* additional information for the in_handler */ } scan_field_t; enum scan_type { /* IN: from device to host, OUT: from host to device */ SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3 }; typedef struct scan_command_s { int ir_scan; /* instruction/not data scan */ int num_fields; /* number of fields in *fields array */ scan_field_t *fields; /* pointer to an array of data scan fields */ enum tap_state end_state; /* TAP state in which JTAG commands should finish */ } scan_command_t; typedef struct statemove_command_s { enum tap_state end_state; /* TAP state in which JTAG commands should finish */ } statemove_command_t; typedef struct pathmove_command_s { int num_states; /* number of states in *path */ enum tap_state *path; /* states that have to be passed */ } pathmove_command_t; typedef struct runtest_command_s { int num_cycles; /* number of cycles that should be spent in Run-Test/Idle */ enum tap_state end_state; /* TAP state in which JTAG commands should finish */ } runtest_command_t; typedef struct reset_command_s { int trst; /* trst/srst 0: deassert, 1: assert, -1: don't change */ int srst; } reset_command_t; typedef struct end_state_command_s { enum tap_state end_state; /* TAP state in which JTAG commands should finish */ } end_state_command_t; typedef struct sleep_command_s { u32 us; /* number of microseconds to sleep */ } sleep_command_t; typedef union jtag_command_container_u { scan_command_t *scan; statemove_command_t *statemove; pathmove_command_t *pathmove; runtest_command_t *runtest; reset_command_t *reset; end_state_command_t *end_state; sleep_command_t *sleep; } jtag_command_container_t; enum jtag_command_type { JTAG_SCAN = 1, JTAG_STATEMOVE = 2, JTAG_RUNTEST = 3, JTAG_RESET = 4, JTAG_END_STATE = 5, JTAG_PATHMOVE = 6, JTAG_SLEEP = 7 }; typedef struct jtag_command_s { jtag_command_container_t cmd; enum jtag_command_type type; struct jtag_command_s *next; } jtag_command_t; extern jtag_command_t *jtag_command_queue; // this is really: typedef jtag_tap_t // But - the typedef is done in "types.h" // due to "forward decloration reasons" struct jtag_tap_s { const char *chip; const char *tapname; const char *dotted_name; int abs_chain_position; int enabled; int ir_length; /* size of instruction register */ u32 ir_capture_value; u8 *expected; /* Capture-IR expected value */ u32 ir_capture_mask; u8 *expected_mask; /* Capture-IR expected mask */ u32 idcode; /* device identification code */ u32 expected_id; u8 *cur_instr; /* current instruction */ int bypass; /* bypass register selected */ jtag_tap_t *next_tap; }; extern jtag_tap_t *jtag_AllTaps(void); extern jtag_tap_t *jtag_TapByPosition(int n); extern jtag_tap_t *jtag_NextEnabledTap( jtag_tap_t * ); extern jtag_tap_t *jtag_TapByPosition( int n ); extern jtag_tap_t *jtag_TapByString( const char *dotted_name ); extern jtag_tap_t *jtag_TapByJimObj( Jim_Interp *interp, Jim_Obj *obj ); extern jtag_tap_t *jtag_TapByAbsPosition( int abs_position ); extern int jtag_NumEnabledTaps(void); extern int jtag_NumTotalTaps(void); enum reset_line_mode { LINE_OPEN_DRAIN = 0x0, LINE_PUSH_PULL = 0x1, }; typedef struct jtag_interface_s { char* name; /* queued command execution */ int (*execute_queue)(void); /* interface initalization */ int (*speed)(int speed); int (*register_commands)(struct command_context_s *cmd_ctx); int (*init)(void); int (*quit)(void); /* returns JTAG maxium speed for KHz. 0=RTCK. The function returns a failure if it can't support the KHz/RTCK. WARNING!!!! if RTCK is *slow* then think carefully about whether you actually want to support this in the driver. Many target scripts are written to handle the absence of RTCK and use a fallback kHz TCK. */ int (*khz)(int khz, int *jtag_speed); /* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns a failure if it can't support the KHz/RTCK. */ int (*speed_div)(int speed, int *khz); /* Read and clear the power dropout flag. Note that a power dropout can be transitionary, easily much less than a ms. So to find out if the power is *currently* on, you must invoke this method twice. Once to clear the power dropout flag and a second time to read the current state. Currently the default implementation is never to detect power dropout. */ int (*power_dropout)(int *power_dropout); /* Read and clear the srst asserted detection flag. * * NB!!!! like power_dropout this does *not* read the current * state. srst assertion is transitionary and *can* be much * less than 1ms. */ int (*srst_asserted)(int *srst_asserted); } jtag_interface_t; enum jtag_event { JTAG_TRST_ASSERTED }; extern char* jtag_event_strings[]; extern int jtag_trst; extern int jtag_srst; typedef struct jtag_event_callback_s { int (*callback)(enum jtag_event event, void *priv); void *priv; struct jtag_event_callback_s *next; } jtag_event_callback_t; extern jtag_event_callback_t *jtag_event_callbacks; extern jtag_interface_t *jtag; /* global pointer to configured JTAG interface */ extern enum tap_state end_state; extern enum tap_state cur_state; extern int jtag_speed; extern int jtag_speed_post_reset; enum reset_types { RESET_NONE = 0x0, RESET_HAS_TRST = 0x1, RESET_HAS_SRST = 0x2, RESET_TRST_AND_SRST = 0x3, RESET_SRST_PULLS_TRST = 0x4, RESET_TRST_PULLS_SRST = 0x8, RESET_TRST_OPEN_DRAIN = 0x10, RESET_SRST_PUSH_PULL = 0x20, }; extern enum reset_types jtag_reset_config; /* initialize interface upon startup. A successful no-op * upon subsequent invocations */ extern int jtag_interface_init(struct command_context_s *cmd_ctx); /* initialize JTAG chain using only a TLR reset. If init fails, * try reset + init. */ extern int jtag_init(struct command_context_s *cmd_ctx); /* reset, then initialize JTAG chain */ extern int jtag_init_reset(struct command_context_s *cmd_ctx); extern int jtag_register_commands(struct command_context_s *cmd_ctx); /* JTAG interface, can be implemented with a software or hardware fifo * * TAP_SD and TAP_SI are illegal end states. TAP_SD/SI as end states * can be emulated by using a larger scan. * * Code that is relatively insensitive to the path(as long * as it is JTAG compliant) taken through state machine can use * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be * specified as end state and a subsequent jtag_add_pathmove() must * be issued. * */ extern void jtag_add_ir_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern int interface_jtag_add_ir_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern void jtag_add_dr_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern int interface_jtag_add_dr_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern int interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); extern int interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t *fields, enum tap_state endstate); /* run a TAP_TLR reset. End state is TAP_TLR, regardless * of start state. */ extern void jtag_add_tlr(void); extern int interface_jtag_add_tlr(void); /* Do not use jtag_add_pathmove() unless you need to, but do use it * if you have to. * * DANGER! If the target is dependent upon a particular sequence * of transitions for things to work correctly(e.g. as a workaround * for an errata that contradicts the JTAG standard), then pathmove * must be used, even if some jtag interfaces happen to use the * desired path. Worse, the jtag interface used for testing a * particular implementation, could happen to use the "desired" * path when transitioning to/from end * state. * * A list of unambigious single clock state transitions, not * all drivers can support this, but it is required for e.g. * XScale and Xilinx support * * Note! TAP_TLR must not be used in the path! * * Note that the first on the list must be reachable * via a single transition from the current state. * * All drivers are required to implement jtag_add_pathmove(). * However, if the pathmove sequence can not be precisely * executed, an interface_jtag_add_pathmove() or jtag_execute_queue() * must return an error. It is legal, but not recommended, that * a driver returns an error in all cases for a pathmove if it * can only implement a few transitions and therefore * a partial implementation of pathmove would have little practical * application. */ extern void jtag_add_pathmove(int num_states, enum tap_state *path); extern int interface_jtag_add_pathmove(int num_states, enum tap_state *path); /* go to TAP_RTI, if we're not already there and cycle * precisely num_cycles in the TAP_RTI after which move * to the end state, if it is != TAP_RTI * * nb! num_cycles can be 0, in which case the fn will navigate * to endstate via TAP_RTI */ extern void jtag_add_runtest(int num_cycles, enum tap_state endstate); extern int interface_jtag_add_runtest(int num_cycles, enum tap_state endstate); /* A reset of the TAP state machine can be requested. * * Whether tms or trst reset is used depends on the capabilities of * the target and jtag interface(reset_config command configures this). * * srst can driver a reset of the TAP state machine and vice * versa * * Application code may need to examine value of jtag_reset_config * to determine the proper codepath * * DANGER! Even though srst drives trst, trst might not be connected to * the interface, and it might actually be *harmful* to assert trst in this case. * * This is why combinations such as "reset_config srst_only srst_pulls_trst" * are supported. * * only req_tlr_or_trst and srst can have a transition for a * call as the effects of transitioning both at the "same time" * are undefined, but when srst_pulls_trst or vice versa, * then trst & srst *must* be asserted together. */ extern void jtag_add_reset(int req_tlr_or_trst, int srst); /* this drives the actual srst and trst pins. srst will always be 0 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for * trst. * * the higher level jtag_add_reset will invoke jtag_add_tlr() if * approperiate */ extern int interface_jtag_add_reset(int trst, int srst); extern void jtag_add_end_state(enum tap_state endstate); extern int interface_jtag_add_end_state(enum tap_state endstate); extern void jtag_add_sleep(u32 us); extern int interface_jtag_add_sleep(u32 us); /* * For software FIFO implementations, the queued commands can be executed * during this call or earlier. A sw queue might decide to push out * some of the jtag_add_xxx() operations once the queue is "big enough". * * This fn will return an error code if any of the prior jtag_add_xxx() * calls caused a failure, e.g. check failure. Note that it does not * matter if the operation was executed *before* jtag_execute_queue(), * jtag_execute_queue() will still return an error code. * * All jtag_add_xxx() calls that have in_handler!=NULL will have been * executed when this fn returns, but if what has been queued only * clocks data out, without reading anything back, then JTAG could * be running *after* jtag_execute_queue() returns. The API does * not define a way to flush a hw FIFO that runs *after* * jtag_execute_queue() returns. * * jtag_add_xxx() commands can either be executed immediately or * at some time between the jtag_add_xxx() fn call and jtag_execute_queue(). */ extern int jtag_execute_queue(void); /* can be implemented by hw+sw */ extern int interface_jtag_execute_queue(void); extern int jtag_power_dropout(int *dropout); extern int jtag_srst_asserted(int *srst_asserted); /* JTAG support functions */ extern void jtag_set_check_value(scan_field_t *field, u8 *value, u8 *mask, error_handler_t *in_error_handler); extern enum scan_type jtag_scan_type(scan_command_t *cmd); extern int jtag_scan_size(scan_command_t *cmd); extern int jtag_read_buffer(u8 *buffer, scan_command_t *cmd); extern int jtag_build_buffer(scan_command_t *cmd, u8 **buffer); extern void jtag_sleep(u32 us); extern int jtag_call_event_callbacks(enum jtag_event event); extern int jtag_register_event_callback(int (*callback)(enum jtag_event event, void *priv), void *priv); extern int jtag_verify_capture_ir; /* error codes * JTAG subsystem uses codes between -100 and -199 */ #define ERROR_JTAG_INIT_FAILED (-100) #define ERROR_JTAG_INVALID_INTERFACE (-101) #define ERROR_JTAG_NOT_IMPLEMENTED (-102) #define ERROR_JTAG_TRST_ASSERTED (-103) #define ERROR_JTAG_QUEUE_FAILED (-104) #define ERROR_JTAG_DEVICE_ERROR (-107) /* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */ #ifdef HAVE_JTAG_MINIDRIVER_H /* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */ #include "jtag_minidriver.h" #define MINIDRIVER(a) notused ## a #else #define MINIDRIVER(a) a /* jtag_add_dr_out() is a faster version of jtag_add_dr_scan() * * Current or end_state can not be TAP_TLR. end_state can be -1 * * num_bits[i] is the number of bits to clock out from value[i] LSB first. * * If the device is in bypass, then that is an error condition in * the caller code that is not detected by this fn, whereas jtag_add_dr_scan() * does detect it. Similarly if the device is not in bypass, data must * be passed to it. * * If anything fails, then jtag_error will be set and jtag_execute() will * return an error. There is no way to determine if there was a failure * during this function call. * * Note that this jtag_add_dr_out can be defined as an inline function. */ extern void interface_jtag_add_dr_out(jtag_tap_t *tap, int num_fields, const int *num_bits, const u32 *value, enum tap_state end_state); #endif static __inline__ void jtag_add_dr_out(jtag_tap_t *tap, int num_fields, const int *num_bits, const u32 *value, enum tap_state end_state) { if (end_state != -1) cmd_queue_end_state=end_state; cmd_queue_cur_state=cmd_queue_end_state; interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state); } #endif /* JTAG_H */