/*************************************************************************** * (c) Copyright 2007, 2008 by Christopher Kilgour * * techie |_at_| whiterocker |_dot_| com * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "log.h" #include "tms470.h" #include #include int tms470_register_commands( struct command_context_s *cmd_ctx ); int tms470_flash_bank_command( struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank ); int tms470_erase( struct flash_bank_s *bank, int first, int last ); int tms470_protect( struct flash_bank_s *bank, int set, int first, int last ); int tms470_write( struct flash_bank_s *bank, u8 *buffer, u32 offset, u32 count ); int tms470_probe( struct flash_bank_s *bank ); int tms470_auto_probe( struct flash_bank_s *bank ); int tms470_erase_check( struct flash_bank_s *bank ); int tms470_protect_check( struct flash_bank_s *bank ); int tms470_info( struct flash_bank_s *bank, char *buf, int buf_size ); flash_driver_t tms470_flash = { .name = "tms470", .register_commands = tms470_register_commands, .flash_bank_command = tms470_flash_bank_command, .erase = tms470_erase, .protect = tms470_protect, .write = tms470_write, .probe = tms470_probe, .auto_probe = tms470_auto_probe, .erase_check = tms470_erase_check, .protect_check = tms470_protect_check, .info = tms470_info }; /* ---------------------------------------------------------------------- Internal Support, Helpers ---------------------------------------------------------------------- */ const flash_sector_t TMS470R1A256_SECTORS[] = { { 0x00000000, 0x00002000, -1, -1 }, { 0x00002000, 0x00002000, -1, -1 }, { 0x00004000, 0x00002000, -1, -1 }, { 0x00006000, 0x00002000, -1, -1 }, { 0x00008000, 0x00008000, -1, -1 }, { 0x00010000, 0x00008000, -1, -1 }, { 0x00018000, 0x00008000, -1, -1 }, { 0x00020000, 0x00008000, -1, -1 }, { 0x00028000, 0x00008000, -1, -1 }, { 0x00030000, 0x00008000, -1, -1 }, { 0x00038000, 0x00002000, -1, -1 }, { 0x0003A000, 0x00002000, -1, -1 }, { 0x0003C000, 0x00002000, -1, -1 }, { 0x0003E000, 0x00002000, -1, -1 }, }; #define TMS470R1A256_NUM_SECTORS \ (sizeof(TMS470R1A256_SECTORS)/sizeof(TMS470R1A256_SECTORS[0])) const flash_sector_t TMS470R1A288_BANK0_SECTORS[] = { { 0x00000000, 0x00002000, -1, -1 }, { 0x00002000, 0x00002000, -1, -1 }, { 0x00004000, 0x00002000, -1, -1 }, { 0x00006000, 0x00002000, -1, -1 }, }; #define TMS470R1A288_BANK0_NUM_SECTORS \ (sizeof(TMS470R1A288_BANK0_SECTORS)/sizeof(TMS470R1A288_BANK0_SECTORS[0])) const flash_sector_t TMS470R1A288_BANK1_SECTORS[] = { { 0x00040000, 0x00010000, -1, -1 }, { 0x00050000, 0x00010000, -1, -1 }, { 0x00060000, 0x00010000, -1, -1 }, { 0x00070000, 0x00010000, -1, -1 }, }; #define TMS470R1A288_BANK1_NUM_SECTORS \ (sizeof(TMS470R1A288_BANK1_SECTORS)/sizeof(TMS470R1A288_BANK1_SECTORS[0])) /* ---------------------------------------------------------------------- */ int tms470_read_part_info( struct flash_bank_s *bank ) { tms470_flash_bank_t *tms470_info = bank->driver_priv; target_t *target = bank->target; u32 device_ident_reg; u32 silicon_version; u32 technology_family; u32 rom_flash; u32 part_number; char * part_name; if (target->state != TARGET_HALTED) { WARNING( "Cannot communicate... target not halted." ); return ERROR_TARGET_NOT_HALTED; } /* read and parse the device identification register */ target_read_u32( target, 0xFFFFFFF0, &device_ident_reg ); INFO( "device_ident_reg=0x%08x", device_ident_reg ); if ((device_ident_reg & 7) == 0) { WARNING( "Cannot identify target as a TMS470 family." ); return ERROR_FLASH_OPERATION_FAILED; } silicon_version = (device_ident_reg >> 12) & 0xF; technology_family = (device_ident_reg >> 11) & 1; rom_flash = (device_ident_reg >> 10) & 1; part_number = (device_ident_reg >> 3) & 0x7f; /* * If the part number is known, determine if the flash bank is valid * based on the base address being within the known flash bank * ranges. Then fixup/complete the remaining fields of the flash * bank structure. */ switch( part_number ) { case 0x0a: part_name = "TMS470R1A256"; if (bank->base >= 0x00040000) { ERROR( "No %s flash bank contains base address 0x%08x.", part_name, bank->base ); return ERROR_FLASH_OPERATION_FAILED; } tms470_info->ordinal = 0; bank->base = 0x00000000; bank->size = 256*1024; bank->num_sectors = TMS470R1A256_NUM_SECTORS; bank->sectors = malloc( sizeof( TMS470R1A256_SECTORS ) ); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void) memcpy( bank->sectors, TMS470R1A256_SECTORS, sizeof( TMS470R1A256_SECTORS ) ); break; case 0x2b: part_name = "TMS470R1A288"; if ((bank->base >= 0x00000000) && (bank->base < 0x00008000)) { tms470_info->ordinal = 0; bank->base = 0x00000000; bank->size = 32*1024; bank->num_sectors = TMS470R1A288_BANK0_NUM_SECTORS; bank->sectors = malloc( sizeof( TMS470R1A288_BANK0_SECTORS ) ); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void) memcpy( bank->sectors, TMS470R1A288_BANK0_SECTORS, sizeof( TMS470R1A288_BANK0_SECTORS ) ); } else if ((bank->base >= 0x00040000) && (bank->base < 0x00080000)) { tms470_info->ordinal = 1; bank->base = 0x00040000; bank->size = 256*1024; bank->num_sectors = TMS470R1A288_BANK1_NUM_SECTORS; bank->sectors = malloc( sizeof( TMS470R1A288_BANK1_SECTORS ) ); if (!bank->sectors) { return ERROR_FLASH_OPERATION_FAILED; } (void) memcpy( bank->sectors, TMS470R1A288_BANK1_SECTORS, sizeof( TMS470R1A288_BANK1_SECTORS ) ); } else { ERROR( "No %s flash bank contains base address 0x%08x.", part_name, bank->base ); return ERROR_FLASH_OPERATION_FAILED; } break; default: WARNING( "Could not identify part 0x%02x as a member of the TMS470 family.", part_number ); return ERROR_FLASH_OPERATION_FAILED; } /* turn off memory selects */ target_write_u32( target, 0xFFFFFFE4, 0x00000000 ); target_write_u32( target, 0xFFFFFFE0, 0x00000000 ); bank->chip_width = 32; bank->bus_width = 32; INFO( "Identified %s, ver=%d, core=%s, nvmem=%s.", part_name, silicon_version, (technology_family ? "1.8v" : "3.3v"), (rom_flash ? "rom" : "flash") ); tms470_info->device_ident_reg = device_ident_reg; tms470_info->silicon_version = silicon_version; tms470_info->technology_family = technology_family; tms470_info->rom_flash = rom_flash; tms470_info->part_number = part_number; tms470_info->part_name = part_name; /* * Disable reset on address access violation. */ target_write_u32( target, 0xFFFFFFE0, 0x00004007 ); return ERROR_OK; } /* ---------------------------------------------------------------------- */ u32 keysSet = 0; u32 flashKeys[4]; int tms470_handle_flash_keyset_command( struct command_context_s * cmd_ctx, char * cmd, char ** args, int argc ) { if (argc > 4) { command_print( cmd_ctx, "tms470 flash_keyset " ); return ERROR_INVALID_ARGUMENTS; } else if (argc == 4) { int i; for( i=0; i<4; i++ ) { int start = (0 == strncmp( args[i], "0x", 2 )) ? 2 : 0; if (1 != sscanf( &args[i][start], "%x", &flashKeys[i] )) { command_print( cmd_ctx, "could not process flash key %s", args[i] ); ERROR( "could not process flash key %s", args[i] ); return ERROR_INVALID_ARGUMENTS; } } keysSet = 1; } else if (argc != 0) { command_print( cmd_ctx, "tms470 flash_keyset " ); return ERROR_INVALID_ARGUMENTS; } if (keysSet) { command_print( cmd_ctx, "using flash keys 0x%08x, 0x%08x, 0x%08x, 0x%08x", flashKeys[0], flashKeys[1], flashKeys[2], flashKeys[3] ); } else { command_print( cmd_ctx, "flash keys not set" ); } return ERROR_OK; } const u32 FLASH_KEYS_ALL_ONES[] = { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, }; const u32 FLASH_KEYS_ALL_ZEROS[] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, }; const u32 FLASH_KEYS_MIX1[] = { 0xf0fff0ff, 0xf0fff0ff, 0xf0fff0ff, 0xf0fff0ff }; const u32 FLASH_KEYS_MIX2[] = { 0x0000ffff, 0x0000ffff, 0x0000ffff, 0x0000ffff }; /* ---------------------------------------------------------------------- */ int oscMHz = 12; int tms470_handle_osc_megahertz_command( struct command_context_s * cmd_ctx, char * cmd, char ** args, int argc ) { if (argc > 1) { command_print( cmd_ctx, "tms470 osc_megahertz " ); return ERROR_INVALID_ARGUMENTS; } else if (argc == 1) { sscanf( args[0], "%d", &oscMHz ); } if (oscMHz <= 0) { ERROR( "osc_megahertz must be positive and non-zero!" ); command_print( cmd_ctx, "osc_megahertz must be positive and non-zero!" ); oscMHz = 12; return ERROR_INVALID_ARGUMENTS; } command_print( cmd_ctx, "osc_megahertz=%d", oscMHz ); return ERROR_OK; } /* ---------------------------------------------------------------------- */ int plldis = 0; int tms470_handle_plldis_command( struct command_context_s * cmd_ctx, char * cmd, char ** args, int argc ) { if (argc > 1) { command_print( cmd_ctx, "tms470 plldis <0|1>" ); return ERROR_INVALID_ARGUMENTS; } else if (argc == 1) { sscanf( args[0], "%d", &plldis ); plldis = plldis ? 1 : 0; } command_print( cmd_ctx, "plldis=%d", plldis ); return ERROR_OK; } /* ---------------------------------------------------------------------- */ int tms470_check_flash_unlocked( target_t * target ) { u32 fmbbusy; target_read_u32( target, 0xFFE89C08, &fmbbusy ); INFO( "tms470 fmbbusy=0x%08x -> %s", fmbbusy, fmbbusy & 0x8000 ? "unlocked" : "LOCKED" ); return fmbbusy & 0x8000 ? ERROR_OK : ERROR_FLASH_OPERATION_FAILED; } /* ---------------------------------------------------------------------- */ int tms470_try_flash_keys( target_t * target, const u32 * key_set ) { u32 glbctrl, fmmstat; int retval = ERROR_FLASH_OPERATION_FAILED; /* set GLBCTRL.4 */ target_read_u32( target, 0xFFFFFFDC, &glbctrl ); target_write_u32( target, 0xFFFFFFDC, glbctrl | 0x10 ); /* only perform the key match when 3VSTAT is clear */ target_read_u32( target, 0xFFE8BC0C, &fmmstat ); if (!(fmmstat & 0x08)) { unsigned i; u32 fmbptr, fmbac2, orig_fmregopt; target_write_u32( target, 0xFFE8BC04, fmmstat & ~0x07 ); /* wait for pump ready */ do { target_read_u32( target, 0xFFE8A814, &fmbptr ); usleep( 1000 ); } while( !(fmbptr & 0x0200) ); /* force max wait states */ target_read_u32( target, 0xFFE88004, &fmbac2 ); target_write_u32( target, 0xFFE88004, fmbac2 | 0xff ); /* save current access mode, force normal read mode */ target_read_u32( target, 0xFFE89C00, &orig_fmregopt ); target_write_u32( target, 0xFFE89C00, 0x00 ); for( i=0; i<4; i++ ) { u32 tmp; /* There is no point displaying the value of tmp, it is * filtered by the chip. The purpose of this read is to * prime the unlocking logic rather than read out the value. */ target_read_u32( target, 0x00001FF0+4*i, &tmp ); INFO( "tms470 writing fmpkey=0x%08x", key_set[i] ); target_write_u32( target, 0xFFE89C0C, key_set[i] ); } if (ERROR_OK == tms470_check_flash_unlocked( target )) { /* * There seems to be a side-effect of reading the FMPKEY * register in that it re-enables the protection. So we * re-enable it. */ for( i=0; i<4; i++ ) { u32 tmp; target_read_u32( target, 0x00001FF0+4*i, &tmp ); target_write_u32( target, 0xFFE89C0C, key_set[i] ); } retval = ERROR_OK; } /* restore settings */ target_write_u32( target, 0xFFE89C00, orig_fmregopt ); target_write_u32( target, 0xFFE88004, fmbac2 ); } /* clear config bit */ target_write_u32( target, 0xFFFFFFDC, glbctrl ); return retval; } /* ---------------------------------------------------------------------- */ int tms470_unlock_flash( struct flash_bank_s * bank ) { target_t * target = bank->target; const u32 * p_key_sets[5]; unsigned i, key_set_count; if (keysSet) { p_key_sets[0] = flashKeys; p_key_sets[1] = FLASH_KEYS_ALL_ONES; p_key_sets[2] = FLASH_KEYS_ALL_ZEROS; p_key_sets[3] = FLASH_KEYS_MIX1; p_key_sets[4] = FLASH_KEYS_MIX2; } else { key_set_count = 4; p_key_sets[0] = FLASH_KEYS_ALL_ONES; p_key_sets[1] = FLASH_KEYS_ALL_ZEROS; p_key_sets[2] = FLASH_KEYS_MIX1; p_key_sets[3] = FLASH_KEYS_MIX2; } for( i=0; itarget; tms470_flash_bank_t * tms470_info = bank->driver_priv; int result = ERROR_OK; /* * Select the desired bank to be programmed by writing BANK[2:0] of * FMMAC2. */ target_read_u32( target, 0xFFE8BC04, &fmmac2 ); fmmac2 &= ~0x0007; fmmac2 |= (tms470_info->ordinal & 7); target_write_u32( target, 0xFFE8BC04, fmmac2 ); DEBUG( "set fmmac2=0x%04x", fmmac2 ); /* * Disable level 1 sector protection by setting bit 15 of FMMAC1. */ target_read_u32( target, 0xFFE8BC00, &fmmac1 ); fmmac1 |= 0x8000; target_write_u32( target, 0xFFE8BC00, fmmac1 ); DEBUG( "set fmmac1=0x%04x", fmmac1 ); /* * FMTCREG=0x2fc0; */ target_write_u32( target, 0xFFE8BC10, 0x2fc0 ); DEBUG( "set fmtcreg=0x2fc0" ); /* * MAXPP=50 */ target_write_u32( target, 0xFFE8A07C, 50 ); DEBUG( "set fmmaxpp=50" ); /* * MAXCP=0xf000+2000 */ target_write_u32( target, 0xFFE8A084, 0xf000+2000 ); DEBUG( "set fmmaxcp=0x%04x", 0xf000+2000 ); /* * configure VHV */ target_read_u32( target, 0xFFE8A080, &fmmaxep ); if (fmmaxep == 0xf000) { fmmaxep = 0xf000+4095; target_write_u32( target, 0xFFE8A80C, 0x9964 ); DEBUG( "set fmptr3=0x9964" ); } else { fmmaxep = 0xa000+4095; target_write_u32( target, 0xFFE8A80C, 0x9b64 ); DEBUG( "set fmptr3=0x9b64" ); } target_write_u32( target, 0xFFE8A080, fmmaxep ); DEBUG( "set fmmaxep=0x%04x", fmmaxep ); /* * FMPTR4=0xa000 */ target_write_u32( target, 0xFFE8A810, 0xa000 ); DEBUG( "set fmptr4=0xa000" ); /* * FMPESETUP, delay parameter selected based on clock frequency. * * According to the TI App Note SPNU257 and flashing code, delay is * int((sysclk(MHz) + 1) / 2), with a minimum of 5. The system * clock is usually derived from the ZPLL module, and selected by * the plldis global. */ target_read_u32( target, 0xFFFFFFDC, &glbctrl ); sysclk = (plldis ? 1 : (glbctrl & 0x08) ? 4 : 8 ) * oscMHz / (1 + (glbctrl & 7)); delay = (sysclk > 10) ? (sysclk + 1) / 2 : 5; target_write_u32( target, 0xFFE8A018, (delay<<4)|(delay<<8) ); DEBUG( "set fmpsetup=0x%04x", (delay<<4)|(delay<<8) ); /* * FMPVEVACCESS, based on delay. */ k = delay|(delay<<8); target_write_u32( target, 0xFFE8A05C, k ); DEBUG( "set fmpvevaccess=0x%04x", k ); /* * FMPCHOLD, FMPVEVHOLD, FMPVEVSETUP, based on delay. */ k <<= 1; target_write_u32( target, 0xFFE8A034, k ); DEBUG( "set fmpchold=0x%04x", k ); target_write_u32( target, 0xFFE8A040, k ); DEBUG( "set fmpvevhold=0x%04x", k ); target_write_u32( target, 0xFFE8A024, k ); DEBUG( "set fmpvevsetup=0x%04x", k ); /* * FMCVACCESS, based on delay. */ k = delay*16; target_write_u32( target, 0xFFE8A060, k ); DEBUG( "set fmcvaccess=0x%04x", k ); /* * FMCSETUP, based on delay. */ k = 0x3000 | delay*20; target_write_u32( target, 0xFFE8A020, k ); DEBUG( "set fmcsetup=0x%04x", k ); /* * FMEHOLD, based on delay. */ k = (delay*20) << 2; target_write_u32( target, 0xFFE8A038, k ); DEBUG( "set fmehold=0x%04x", k ); /* * PWIDTH, CWIDTH, EWIDTH, based on delay. */ target_write_u32( target, 0xFFE8A050, delay*8 ); DEBUG( "set fmpwidth=0x%04x", delay*8 ); target_write_u32( target, 0xFFE8A058, delay*1000 ); DEBUG( "set fmcwidth=0x%04x", delay*1000 ); target_write_u32( target, 0xFFE8A054, delay*5400 ); DEBUG( "set fmewidth=0x%04x", delay*5400 ); return result; } /* ---------------------------------------------------------------------- */ int tms470_flash_status( struct flash_bank_s * bank ) { target_t *target = bank->target; int result = ERROR_OK; u32 fmmstat; target_read_u32( target, 0xFFE8BC0C, &fmmstat ); DEBUG( "set fmmstat=0x%04x", fmmstat ); if (fmmstat & 0x0080) { WARNING( "tms470 flash command: erase still active after busy clear." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0040) { WARNING( "tms470 flash command: program still active after busy clear." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0020) { WARNING( "tms470 flash command: invalid data command." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0010) { WARNING( "tms470 flash command: program, erase or validate sector failed." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0008) { WARNING( "tms470 flash command: voltage instability detected." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0006) { WARNING( "tms470 flash command: command suspend detected." ); result = ERROR_FLASH_OPERATION_FAILED; } if (fmmstat & 0x0001) { WARNING( "tms470 flash command: sector was locked." ); result = ERROR_FLASH_OPERATION_FAILED; } return result; } /* ---------------------------------------------------------------------- */ int tms470_erase_sector( struct flash_bank_s * bank, int sector ) { u32 glbctrl, orig_fmregopt, fmbsea, fmbseb, fmmstat; target_t *target = bank->target; u32 flashAddr = bank->base + bank->sectors[sector].offset; int result = ERROR_OK; /* * Set the bit GLBCTRL4 of the GLBCTRL register (in the System * module) to enable writing to the flash registers }. */ target_read_u32( target, 0xFFFFFFDC, &glbctrl ); target_write_u32( target, 0xFFFFFFDC, glbctrl | 0x10 ); DEBUG( "set glbctrl=0x%08x", glbctrl | 0x10 ); /* Force normal read mode. */ target_read_u32( target, 0xFFE89C00, &orig_fmregopt ); target_write_u32( target, 0xFFE89C00, 0 ); DEBUG( "set fmregopt=0x%08x", 0 ); (void) tms470_flash_initialize_internal_state_machine( bank ); /* * Select one or more bits in FMBSEA or FMBSEB to disable Level 1 * protection for the particular sector to be erased/written. */ if (sector < 16) { target_read_u32( target, 0xFFE88008, &fmbsea ); target_write_u32( target, 0xFFE88008, fmbsea | (1<sectors[sector].is_protected = 0; /* * clear status regiser, sent erase command, kickoff erase */ target_write_u16( target, flashAddr, 0x0040 ); DEBUG( "write *(u16 *)0x%08x=0x0040", flashAddr ); target_write_u16( target, flashAddr, 0x0020 ); DEBUG( "write *(u16 *)0x%08x=0x0020", flashAddr ); target_write_u16( target, flashAddr, 0xffff ); DEBUG( "write *(u16 *)0x%08x=0xffff", flashAddr ); /* * Monitor FMMSTAT, busy until clear, then check and other flags for * ultimate result of the operation. */ do { target_read_u32( target, 0xFFE8BC0C, &fmmstat ); if (fmmstat & 0x0100) { usleep( 1000 ); } } while( fmmstat & 0x0100 ); result = tms470_flash_status( bank ); if (sector < 16) { target_write_u32( target, 0xFFE88008, fmbsea ); DEBUG( "set fmbsea=0x%04x", fmbsea ); bank->sectors[sector].is_protected = fmbsea & (1<sectors[sector].is_protected = fmbseb & (1<<(sector-16)) ? 0 : 1; } target_write_u32( target, 0xFFE89C00, orig_fmregopt ); DEBUG( "set fmregopt=0x%08x", orig_fmregopt ); target_write_u32( target, 0xFFFFFFDC, glbctrl ); DEBUG( "set glbctrl=0x%08x", glbctrl ); if (result == ERROR_OK) { bank->sectors[sector].is_erased = 1; } return result; } /* ---------------------------------------------------------------------- Implementation of Flash Driver Interfaces ---------------------------------------------------------------------- */ int tms470_register_commands( struct command_context_s *cmd_ctx ) { command_t *tms470_cmd = register_command( cmd_ctx, NULL, "tms470", NULL, COMMAND_ANY, "applies to TI tms470 family" ); register_command( cmd_ctx, tms470_cmd, "flash_keyset", tms470_handle_flash_keyset_command, COMMAND_ANY, "tms470 flash_keyset " ); register_command( cmd_ctx, tms470_cmd, "osc_megahertz", tms470_handle_osc_megahertz_command, COMMAND_ANY, "tms470 osc_megahertz " ); register_command( cmd_ctx, tms470_cmd, "plldis", tms470_handle_plldis_command, COMMAND_ANY, "tms470 plldis <0/1>" ); return ERROR_OK; } /* ---------------------------------------------------------------------- */ int tms470_erase( struct flash_bank_s * bank, int first, int last ) { tms470_flash_bank_t *tms470_info = bank->driver_priv; int sector, result = ERROR_OK; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last)) { ERROR( "Sector range %d to %d invalid.", first, last ); return ERROR_FLASH_SECTOR_INVALID; } result = tms470_unlock_flash( bank ); if (result != ERROR_OK) { return result; } for( sector=first; sector<=last; sector++ ) { INFO( "Erasing tms470 bank %d sector %d...", tms470_info->ordinal, sector ); result = tms470_erase_sector( bank, sector ); if (result != ERROR_OK) { ERROR( "tms470 could not erase flash sector." ); break; } else { INFO( "sector erased successfully." ); } } return result; } /* ---------------------------------------------------------------------- */ int tms470_protect( struct flash_bank_s * bank, int set, int first, int last ) { tms470_flash_bank_t *tms470_info = bank->driver_priv; target_t *target = bank->target; u32 fmmac2, fmbsea, fmbseb; int sector; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } if ((first < 0) || (first >= bank->num_sectors) || (last < 0) || (last >= bank->num_sectors) || (first > last)) { ERROR( "Sector range %d to %d invalid.", first, last ); return ERROR_FLASH_SECTOR_INVALID; } /* enable the appropriate bank */ target_read_u32( target, 0xFFE8BC04, &fmmac2 ); target_write_u32( target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal ); /* get the original sector proection flags for this bank */ target_read_u32( target, 0xFFE88008, &fmbsea ); target_read_u32( target, 0xFFE8800C, &fmbseb ); for( sector=0; sectornum_sectors; sector++ ) { if (sector < 16) { fmbsea = set ? fmbsea & ~(1<sectors[sector].is_protected = set ? 1 : 0; } else { fmbseb = set ? fmbseb & ~(1<<(sector-16)) : fmbseb | (1<<(sector-16)); bank->sectors[sector].is_protected = set ? 1 : 0; } } /* update the protection bits */ target_write_u32( target, 0xFFE88008, fmbsea ); target_write_u32( target, 0xFFE8800C, fmbseb ); return ERROR_OK; } /* ---------------------------------------------------------------------- */ int tms470_write( struct flash_bank_s * bank, u8 * buffer, u32 offset, u32 count ) { target_t *target = bank->target; tms470_flash_bank_t *tms470_info = bank->driver_priv; u32 glbctrl, fmbac2, orig_fmregopt, fmbsea, fmbseb, fmmaxpp, fmmstat; int i, result = ERROR_OK; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } INFO( "Writing %d bytes starting at 0x%08x", count, bank->base + offset ); /* set GLBCTRL.4 */ target_read_u32( target, 0xFFFFFFDC, &glbctrl ); target_write_u32( target, 0xFFFFFFDC, glbctrl | 0x10 ); (void) tms470_flash_initialize_internal_state_machine( bank ); /* force max wait states */ target_read_u32( target, 0xFFE88004, &fmbac2 ); target_write_u32( target, 0xFFE88004, fmbac2 | 0xff ); /* save current access mode, force normal read mode */ target_read_u32( target, 0xFFE89C00, &orig_fmregopt ); target_write_u32( target, 0xFFE89C00, 0x00 ); /* * Disable Level 1 protection for all sectors to be erased/written. */ target_read_u32( target, 0xFFE88008, &fmbsea ); target_write_u32( target, 0xFFE88008, 0xffff ); target_read_u32( target, 0xFFE8800C, &fmbseb ); target_write_u32( target, 0xFFE8800C, 0xffff ); /* read MAXPP */ target_read_u32( target, 0xFFE8A07C, &fmmaxpp ); for( i=0; ibase + offset + i; u16 word = (((u16) buffer[i]) << 8) | (u16) buffer[i+1]; if (word != 0xffff) { INFO( "writing 0x%04x at 0x%08x", word, addr ); /* clear status register */ target_write_u16( target, addr, 0x0040 ); /* program flash command */ target_write_u16( target, addr, 0x0010 ); /* burn the 16-bit word (big-endian) */ target_write_u16( target, addr, word ); /* * Monitor FMMSTAT, busy until clear, then check and other flags * for ultimate result of the operation. */ do { target_read_u32( target, 0xFFE8BC0C, &fmmstat ); if (fmmstat & 0x0100) { usleep( 1000 ); } } while( fmmstat & 0x0100 ); if (fmmstat & 0x3ff) { ERROR( "fmstat=0x%04x", fmmstat ); ERROR( "Could not program word 0x%04x at address 0x%08x.", word, addr ); result = ERROR_FLASH_OPERATION_FAILED; break; } } else { INFO( "skipping 0xffff at 0x%08x", addr ); } } /* restore */ target_write_u32( target, 0xFFE88008, fmbsea ); target_write_u32( target, 0xFFE8800C, fmbseb ); target_write_u32( target, 0xFFE88004, fmbac2 ); target_write_u32( target, 0xFFE89C00, orig_fmregopt ); target_write_u32( target, 0xFFFFFFDC, glbctrl ); return result; } /* ---------------------------------------------------------------------- */ int tms470_probe( struct flash_bank_s * bank ) { tms470_flash_bank_t * tms470_info = bank->driver_priv; tms470_info->probed = 0; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } tms470_info->probed = 1; return ERROR_OK; } int tms470_auto_probe( struct flash_bank_s * bank ) { tms470_flash_bank_t * tms470_info = bank->driver_priv; if (tms470_info->probed) return ERROR_OK; return tms470_probe(bank); } /* ---------------------------------------------------------------------- */ int tms470_erase_check( struct flash_bank_s * bank ) { target_t *target = bank->target; tms470_flash_bank_t * tms470_info = bank->driver_priv; int sector, result = ERROR_OK; u32 fmmac2, fmbac2, glbctrl, orig_fmregopt; static u8 buffer[64*1024]; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } /* set GLBCTRL.4 */ target_read_u32( target, 0xFFFFFFDC, &glbctrl ); target_write_u32( target, 0xFFFFFFDC, glbctrl | 0x10 ); /* save current access mode, force normal read mode */ target_read_u32( target, 0xFFE89C00, &orig_fmregopt ); target_write_u32( target, 0xFFE89C00, 0x00 ); /* enable the appropriate bank */ target_read_u32( target, 0xFFE8BC04, &fmmac2 ); target_write_u32( target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal ); /* TCR=0 */ target_write_u32( target, 0xFFE8BC10, 0x2fc0 ); /* clear TEZ in fmbrdy */ target_write_u32( target, 0xFFE88010, 0x0b ); /* save current wait states, force max */ target_read_u32( target, 0xFFE88004, &fmbac2 ); target_write_u32( target, 0xFFE88004, fmbac2 | 0xff ); /* * The TI primitives inspect the flash memory by reading one 32-bit * word at a time. Here we read an entire sector and inspect it in * an attempt to reduce the JTAG overhead. */ for( sector=0; sectornum_sectors; sector++ ) { if (bank->sectors[sector].is_erased != 1) { u32 i, addr = bank->base + bank->sectors[sector].offset; INFO( "checking flash bank %d sector %d", tms470_info->ordinal, sector ); target_read_buffer( target, addr, bank->sectors[sector].size, buffer ); bank->sectors[sector].is_erased = 1; for( i=0; isectors[sector].size; i++ ) { if (buffer[i] != 0xff) { WARNING( "tms470 bank %d, sector %d, not erased.", tms470_info->ordinal, sector ); WARNING( "at location 0x%08x: flash data is 0x%02x.", addr+i, buffer[i] ); bank->sectors[sector].is_erased = 0; break; } } } if (bank->sectors[sector].is_erased != 1) { result = ERROR_FLASH_SECTOR_NOT_ERASED; break; } else { INFO( "sector erased" ); } } /* reset TEZ, wait states, read mode, GLBCTRL.4 */ target_write_u32( target, 0xFFE88010, 0x0f ); target_write_u32( target, 0xFFE88004, fmbac2 ); target_write_u32( target, 0xFFE89C00, orig_fmregopt ); target_write_u32( target, 0xFFFFFFDC, glbctrl ); return result; } /* ---------------------------------------------------------------------- */ int tms470_protect_check( struct flash_bank_s * bank ) { target_t *target = bank->target; tms470_flash_bank_t * tms470_info = bank->driver_priv; int sector, result = ERROR_OK; u32 fmmac2, fmbsea, fmbseb; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } /* enable the appropriate bank */ target_read_u32( target, 0xFFE8BC04, &fmmac2 ); target_write_u32( target, 0xFFE8BC04, (fmmac2 & ~7) | tms470_info->ordinal ); target_read_u32( target, 0xFFE88008, &fmbsea ); target_read_u32( target, 0xFFE8800C, &fmbseb ); for( sector=0; sectornum_sectors; sector++ ) { int protected; if (sector < 16) { protected = fmbsea & (1<sectors[sector].is_protected = protected; } else { protected = fmbseb & (1<<(sector-16)) ? 0 : 1; bank->sectors[sector].is_protected = protected; } DEBUG( "bank %d sector %d is %s", tms470_info->ordinal, sector, protected ? "protected" : "not protected" ); } return result; } /* ---------------------------------------------------------------------- */ int tms470_info( struct flash_bank_s * bank, char * buf, int buf_size ) { int used = 0; tms470_flash_bank_t * tms470_info = bank->driver_priv; if (!tms470_info->device_ident_reg) { tms470_read_part_info( bank ); } if (!tms470_info->device_ident_reg) { (void) snprintf(buf, buf_size, "Cannot identify target as a TMS470\n"); return ERROR_FLASH_OPERATION_FAILED; } used += snprintf( buf, buf_size, "\ntms470 information: Chip is %s\n", tms470_info->part_name ); buf += used; buf_size -= used; used += snprintf( buf, buf_size, "Flash protection level 2 is %s\n", tms470_check_flash_unlocked( bank->target ) == ERROR_OK ? "disabled" : "enabled" ); buf += used; buf_size -= used; return ERROR_OK; } /* ---------------------------------------------------------------------- */ /* * flash bank tms470 * [options...] */ int tms470_flash_bank_command( struct command_context_s *cmd_ctx, char *cmd, char **args, int argc, struct flash_bank_s *bank ) { bank->driver_priv = malloc( sizeof( tms470_flash_bank_t ) ); if (!bank->driver_priv) { return ERROR_FLASH_OPERATION_FAILED; } (void) memset( bank->driver_priv, 0, sizeof( tms470_flash_bank_t ) ); return ERROR_OK; }