/*************************************************************************** * Copyright (C) 2015 by Uwe Bonnes * * bon@elektron.ikp.physik.tu-darmstadt.de * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include /* STM32L4xxx series for reference. * * RM0351 * http://www.st.com/st-web-ui/static/active/en/resource/technical/document/reference_manual/DM00083560.pdf * * STM32L476RG Datasheet (for erase timing) * http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/DM00108832.pdf * * * The device has normally two banks, but on 512 and 256 kiB devices an * option byte is available to map all sectors to the first bank. * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices * handlers do! * */ /* Erase time can be as high as 25ms, 10x this and assume it's toast... */ #define FLASH_ERASE_TIMEOUT 250 #define STM32_FLASH_BASE 0x40022000 #define STM32_FLASH_ACR 0x40022000 #define STM32_FLASH_KEYR 0x40022008 #define STM32_FLASH_OPTKEYR 0x4002200c #define STM32_FLASH_SR 0x40022010 #define STM32_FLASH_CR 0x40022014 #define STM32_FLASH_OPTR 0x40022020 #define STM32_FLASH_WRP1AR 0x4002202c #define STM32_FLASH_WRP2AR 0x40022030 #define STM32_FLASH_WRP1BR 0x4002204c #define STM32_FLASH_WRP2BR 0x40022050 /* FLASH_CR register bits */ #define FLASH_PG (1 << 0) #define FLASH_PER (1 << 1) #define FLASH_MER1 (1 << 2) #define FLASH_PAGE_SHIFT 3 #define FLASH_CR_BKER (1 << 11) #define FLASH_MER2 (1 << 15) #define FLASH_STRT (1 << 16) #define FLASH_EOPIE (1 << 24) #define FLASH_ERRIE (1 << 25) #define FLASH_OPTLOCK (1 << 30) #define FLASH_LOCK (1 << 31) /* FLASH_SR register bits */ #define FLASH_BSY (1 << 16) /* Fast programming not used => related errors not used*/ #define FLASH_PGSERR (1 << 7) /* Programming sequence error */ #define FLASH_SIZERR (1 << 6) /* Size error */ #define FLASH_PGAERR (1 << 5) /* Programming alignment error */ #define FLASH_WRPERR (1 << 4) /* Write protection error */ #define FLASH_PROGERR (1 << 3) /* Programming error */ #define FLASH_OPERR (1 << 1) /* Operation error */ #define FLASH_EOP (1 << 0) /* End of operation */ #define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR) /* STM32_FLASH_OBR bit definitions (reading) */ #define OPT_DUALBANK 21 /* dual flash bank only */ /* register unlock keys */ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB /* option register unlock key */ #define OPTKEY1 0x08192A3B #define OPTKEY2 0x4C5D6E7F /* other registers */ #define DBGMCU_IDCODE 0xE0042000 #define FLASH_SIZE_REG 0x1FFF75E0 struct stm32l4_options { uint8_t RDP; uint16_t bank_b_start; uint8_t user_options; uint8_t wpr1a_start; uint8_t wpr1a_end; uint8_t wpr1b_start; uint8_t wpr1b_end; uint8_t wpr2a_start; uint8_t wpr2a_end; uint8_t wpr2b_start; uint8_t wpr2b_end; /* Fixme: Handle PCROP */ }; struct stm32l4_flash_bank { struct stm32l4_options option_bytes; int probed; }; /* flash bank stm32l4x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command) { struct stm32l4_flash_bank *stm32l4_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank)); if (!stm32l4_info) return ERROR_FAIL; /* Checkme: What better error to use?*/ bank->driver_priv = stm32l4_info; stm32l4_info->probed = 0; return ERROR_OK; } static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg) { return reg; } static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; return target_read_u32( target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status); } static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout) { struct target *target = bank->target; uint32_t status; int retval = ERROR_OK; /* wait for busy to clear */ for (;;) { retval = stm32l4_get_flash_status(bank, &status); if (retval != ERROR_OK) return retval; LOG_DEBUG("status: 0x%" PRIx32 "", status); if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_ERROR("timed out waiting for flash"); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_WRPERR) { LOG_ERROR("stm32x device protected"); retval = ERROR_FAIL; } /* Clear but report errors */ if (status & FLASH_ERROR) { /* If this operation fails, we ignore it and report the original * retval */ target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status & FLASH_ERROR); } return retval; } static int stm32l4_unlock_reg(struct target *target) { uint32_t ctrl; /* first check if not already unlocked * otherwise writing on STM32_FLASH_KEYR will fail */ int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & FLASH_LOCK) == 0) return ERROR_OK; /* unlock flash registers */ retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & FLASH_LOCK) { LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32l4_unlock_option_reg(struct target *target) { uint32_t ctrl; int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & FLASH_OPTLOCK) == 0) return ERROR_OK; /* unlock option registers */ retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, STM32_FLASH_CR, &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & FLASH_OPTLOCK) { LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32l4_read_options(struct flash_bank *bank) { uint32_t optiondata; struct stm32l4_flash_bank *stm32l4_info = NULL; struct target *target = bank->target; stm32l4_info = bank->driver_priv; /* read current option bytes */ int retval = target_read_u32(target, STM32_FLASH_OPTR, &optiondata); if (retval != ERROR_OK) return retval; stm32l4_info->option_bytes.user_options = (optiondata >> 8) & 0x3ffff; stm32l4_info->option_bytes.RDP = optiondata & 0xff; retval = target_read_u32(target, STM32_FLASH_WRP1AR, &optiondata); if (retval != ERROR_OK) return retval; stm32l4_info->option_bytes.wpr1a_start = optiondata & 0xff; stm32l4_info->option_bytes.wpr1a_end = (optiondata >> 16) & 0xff; retval = target_read_u32(target, STM32_FLASH_WRP2AR, &optiondata); if (retval != ERROR_OK) return retval; stm32l4_info->option_bytes.wpr2a_start = optiondata & 0xff; stm32l4_info->option_bytes.wpr2a_end = (optiondata >> 16) & 0xff; retval = target_read_u32(target, STM32_FLASH_WRP1BR, &optiondata); if (retval != ERROR_OK) return retval; stm32l4_info->option_bytes.wpr1b_start = optiondata & 0xff; stm32l4_info->option_bytes.wpr1b_end = (optiondata >> 16) & 0xff; retval = target_read_u32(target, STM32_FLASH_WRP2BR, &optiondata); if (retval != ERROR_OK) return retval; stm32l4_info->option_bytes.wpr2b_start = optiondata & 0xff; stm32l4_info->option_bytes.wpr2b_end = (optiondata >> 16) & 0xff; if (stm32l4_info->option_bytes.RDP != 0xAA) LOG_INFO("Device Security Bit Set"); return ERROR_OK; } static int stm32l4_write_options(struct flash_bank *bank) { struct stm32l4_flash_bank *stm32l4_info = NULL; struct target *target = bank->target; uint32_t optiondata; stm32l4_info = bank->driver_priv; (void) optiondata; (void) stm32l4_info; int retval = stm32l4_unlock_option_reg(target); if (retval != ERROR_OK) return retval; /* FIXME: Implement Option writing!*/ return ERROR_OK; } static int stm32l4_protect_check(struct flash_bank *bank) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; /* read write protection settings */ int retval = stm32l4_read_options(bank); if (retval != ERROR_OK) { LOG_DEBUG("unable to read option bytes"); return retval; } for (int i = 0; i < bank->num_sectors; i++) { if (i < stm32l4_info->option_bytes.bank_b_start) { if (((i >= stm32l4_info->option_bytes.wpr1a_start) && (i <= stm32l4_info->option_bytes.wpr1a_end)) || ((i >= stm32l4_info->option_bytes.wpr2a_start) && (i <= stm32l4_info->option_bytes.wpr2a_end))) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } else { uint8_t snb; snb = i - stm32l4_info->option_bytes.bank_b_start + 256; if (((snb >= stm32l4_info->option_bytes.wpr1b_start) && (snb <= stm32l4_info->option_bytes.wpr1b_end)) || ((snb >= stm32l4_info->option_bytes.wpr2b_start) && (snb <= stm32l4_info->option_bytes.wpr2b_end))) bank->sectors[i].is_protected = 1; else bank->sectors[i].is_protected = 0; } } return ERROR_OK; } static int stm32l4_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; int i; assert(first < bank->num_sectors); assert(last < bank->num_sectors); if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } int retval; retval = stm32l4_unlock_reg(target); if (retval != ERROR_OK) return retval; /* Sector Erase To erase a sector, follow the procedure below: 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the FLASH_SR register 2. Set the PER bit and select the page and bank you wish to erase in the FLASH_CR register 3. Set the STRT bit in the FLASH_CR register 4. Wait for the BSY bit to be cleared */ struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; for (i = first; i <= last; i++) { uint32_t erase_flags; erase_flags = FLASH_PER | FLASH_STRT; if (i >= stm32l4_info->option_bytes.bank_b_start) { uint8_t snb; snb = (i - stm32l4_info->option_bytes.bank_b_start) + 256; erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER; } else erase_flags |= i << FLASH_PAGE_SHIFT; retval = target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags); if (retval != ERROR_OK) return retval; retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) return retval; bank->sectors[i].is_erased = 1; } retval = target_write_u32( target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* read protection settings */ int retval = stm32l4_read_options(bank); if (retval != ERROR_OK) { LOG_DEBUG("unable to read option bytes"); return retval; } (void)stm32l4_info; /* FIXME: Write First and last in a valid WRPxx_start/end combo*/ retval = stm32l4_write_options(bank); if (retval != ERROR_OK) return retval; return ERROR_OK; } /* Count is in halfwords */ static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t buffer_size = 16384; struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; int retval = ERROR_OK; /* See contrib/loaders/flash/stm32l4x.S for source and * hints how to generate the data! */ static const uint8_t stm32l4_flash_write_code[] = { 0xd0, 0xf8, 0x00, 0x80, 0xb8, 0xf1, 0x00, 0x0f, 0x21, 0xd0, 0x45, 0x68, 0xb8, 0xeb, 0x05, 0x06, 0x44, 0xbf, 0x76, 0x18, 0x36, 0x1a, 0x08, 0x2e, 0xf2, 0xd3, 0xdf, 0xf8, 0x36, 0x60, 0x66, 0x61, 0xf5, 0xe8, 0x02, 0x67, 0xe2, 0xe8, 0x02, 0x67, 0xbf, 0xf3, 0x4f, 0x8f, 0x26, 0x69, 0x16, 0xf4, 0x80, 0x3f, 0xfb, 0xd1, 0x16, 0xf0, 0xfa, 0x0f, 0x07, 0xd1, 0x8d, 0x42, 0x28, 0xbf, 0x00, 0xf1, 0x08, 0x05, 0x45, 0x60, 0x01, 0x3b, 0x13, 0xb1, 0xda, 0xe7, 0x00, 0x21, 0x41, 0x60, 0x30, 0x46, 0x00, 0xbe, 0x01, 0x00, 0x00, 0x00 }; if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32l4_flash_write_code), stm32l4_flash_write_code); if (retval != ERROR_OK) return retval; /* memory buffer */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { buffer_size /= 2; if (buffer_size <= 256) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (double word-64bit) */ init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash base */ buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[2].value, 0, 32, address); buf_set_u32(reg_params[3].value, 0, 32, count / 4); buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE); retval = target_run_flash_async_algorithm(target, buffer, count, 2, 0, NULL, 5, reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info); if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_ERROR("error executing stm32l4 flash write algorithm"); uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR; if (error & FLASH_WRPERR) LOG_ERROR("flash memory write protected"); if (error != 0) { LOG_ERROR("flash write failed = %08" PRIx32, error); /* Clear but report errors */ target_write_u32(target, STM32_FLASH_SR, error); retval = ERROR_FAIL; } } target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); return retval; } static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; int retval; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset & 0x7) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } if (count & 0x7) { LOG_WARNING("Padding %d bytes to keep 8-byte write size", count & 7); count = (count + 7) & ~7; /* This pads the write chunk with random bytes by overrunning the * write buffer. Padding with the erased pattern 0xff is purely * cosmetical, as 8-byte flash words are ECC secured and the first * write will program the ECC bits. A second write would need * to reprogramm these ECC bits. * But this can only be done after erase! */ } retval = stm32l4_unlock_reg(target); if (retval != ERROR_OK) return retval; /* Only full double words (8-byte) can be programmed*/ retval = stm32l4_write_block(bank, buffer, offset, count / 2); if (retval != ERROR_OK) { LOG_WARNING("block write failed"); return retval; } LOG_WARNING("block write succeeded"); return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK); } static int stm32l4_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; int i; uint16_t flash_size_in_kb = 0xffff; uint16_t max_flash_size_in_kb; uint32_t device_id; uint32_t options; uint32_t base_address = 0x08000000; stm32l4_info->probed = 0; /* read stm32 device id register */ int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id); if (retval != ERROR_OK) return retval; LOG_INFO("device id = 0x%08" PRIx32 "", device_id); /* set max flash size depending on family */ switch (device_id & 0xfff) { case 0x415: max_flash_size_in_kb = 1024; break; case 0x435: max_flash_size_in_kb = 256; break; default: LOG_WARNING("Cannot identify target as a STM32L4 family."); return ERROR_FAIL; } /* get flash size from target. */ retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb); /* failed reading flash size or flash size invalid (early silicon), * default to max target family */ if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) { LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash", max_flash_size_in_kb); flash_size_in_kb = max_flash_size_in_kb; } LOG_INFO("flash size = %dkbytes", flash_size_in_kb); /* did we assign flash size? */ assert(flash_size_in_kb != 0xffff); /* get options to for DUAL BANK. */ retval = target_read_u32(target, STM32_FLASH_OPTR, &options); /* only devices with < 1024 kiB may be set to single bank dual banks */ if ((flash_size_in_kb == 1024) || !(options & OPT_DUALBANK)) stm32l4_info->option_bytes.bank_b_start = 256; else stm32l4_info->option_bytes.bank_b_start = flash_size_in_kb << 9; /* did we assign flash size? */ assert((flash_size_in_kb != 0xffff) && flash_size_in_kb); /* calculate numbers of pages */ int num_pages = flash_size_in_kb / 2; /* check that calculation result makes sense */ assert(num_pages > 0); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->base = base_address; bank->size = num_pages * (1 << 11); bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); if (!bank->sectors) return ERROR_FAIL; /* Checkme: What better error to use?*/ for (i = 0; i < num_pages; i++) { bank->sectors[i].offset = i << 11; bank->sectors[i].size = 1 << 11; bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 1; } stm32l4_info->probed = 1; return ERROR_OK; } static int stm32l4_auto_probe(struct flash_bank *bank) { struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv; if (stm32l4_info->probed) return ERROR_OK; return stm32l4_probe(bank); } static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size) { struct target *target = bank->target; uint32_t dbgmcu_idcode; /* read stm32 device id register */ int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode); if (retval != ERROR_OK) return retval; uint16_t device_id = dbgmcu_idcode & 0xfff; uint8_t rev_id = dbgmcu_idcode >> 28; uint8_t rev_minor = 0; int i; for (i = 16; i < 28; i++) { if (dbgmcu_idcode & (1 << i)) rev_minor++; else break; } const char *device_str; switch (device_id) { case 0x415: device_str = "STM32L4xx"; break; case 0x435: device_str = "STM32L43x"; break; default: snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n"); return ERROR_FAIL; } snprintf(buf, buf_size, "%s - Rev: %1d.%02d", device_str, rev_id, rev_minor); return ERROR_OK; } COMMAND_HANDLER(stm32l4_handle_lock_command) { struct target *target = NULL; struct stm32l4_flash_bank *stm32l4_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32l4_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32l4_read_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to read options", bank->driver->name); return ERROR_OK; } /* set readout protection */ stm32l4_info->option_bytes.RDP = 0; if (stm32l4_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to lock device", bank->driver->name); return ERROR_OK; } command_print(CMD_CTX, "%s locked", bank->driver->name); return ERROR_OK; } COMMAND_HANDLER(stm32l4_handle_unlock_command) { struct target *target = NULL; struct stm32l4_flash_bank *stm32l4_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32l4_info = bank->driver_priv; target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32l4_read_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to read options", bank->driver->name); return ERROR_OK; } /* clear readout protection and complementary option bytes * this will also force a device unlock if set */ stm32l4_info->option_bytes.RDP = 0xAA; if (stm32l4_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name); return ERROR_OK; } command_print(CMD_CTX, "%s unlocked.\n" "INFO: a reset or power cycle is required " "for the new settings to take effect.", bank->driver->name); return ERROR_OK; } static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action) { int retval; struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32l4_unlock_reg(target); if (retval != ERROR_OK) return retval; /* mass erase flash memory */ retval = target_write_u32( target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action); if (retval != ERROR_OK) return retval; retval = target_write_u32( target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action | FLASH_STRT); if (retval != ERROR_OK) return retval; retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) return retval; retval = target_write_u32( target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } COMMAND_HANDLER(stm32l4_handle_mass_erase_command) { int i; uint32_t action; if (CMD_ARGC < 1) { command_print(CMD_CTX, "stm32x mass_erase "); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; action = FLASH_MER1 | FLASH_MER2; retval = stm32l4_mass_erase(bank, action); if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; command_print(CMD_CTX, "stm32x mass erase complete"); } else { command_print(CMD_CTX, "stm32x mass erase failed"); } return retval; } static const struct command_registration stm32l4_exec_command_handlers[] = { { .name = "lock", .handler = stm32l4_handle_lock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Lock entire flash device.", }, { .name = "unlock", .handler = stm32l4_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Unlock entire protected flash device.", }, { .name = "mass_erase", .handler = stm32l4_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32l4_command_handlers[] = { { .name = "stm32l4x", .mode = COMMAND_ANY, .help = "stm32l4x flash command group", .usage = "", .chain = stm32l4_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver stm32l4x_flash = { .name = "stm32l4x", .commands = stm32l4_command_handlers, .flash_bank_command = stm32l4_flash_bank_command, .erase = stm32l4_erase, .protect = stm32l4_protect, .write = stm32l4_write, .read = default_flash_read, .probe = stm32l4_probe, .auto_probe = stm32l4_auto_probe, .erase_check = default_flash_blank_check, .protect_check = stm32l4_protect_check, .info = get_stm32l4_info, };