/*************************************************************************** * Copyright (C) 2017 by STMicroelectronics * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program. If not, see . * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include #include #include /* Erase time can be as high as 1000ms, 10x this and it's toast... */ #define FLASH_ERASE_TIMEOUT 10000 #define FLASH_WRITE_TIMEOUT 5 /* RM 433 */ /* Same Flash registers for both banks, */ /* access depends on Flash Base address */ #define FLASH_ACR 0x00 #define FLASH_KEYR 0x04 #define FLASH_OPTKEYR 0x08 #define FLASH_CR 0x0C #define FLASH_SR 0x10 #define FLASH_CCR 0x14 #define FLASH_OPTCR 0x18 #define FLASH_OPTCUR 0x1C #define FLASH_OPTPRG 0x20 #define FLASH_OPTCCR 0x24 #define FLASH_WPSNCUR 0x38 #define FLASH_WPSNPRG 0x3C /* FLASH_CR register bits */ #define FLASH_LOCK (1 << 0) #define FLASH_PG (1 << 1) #define FLASH_SER (1 << 2) #define FLASH_BER_CMD (1 << 3) #define FLASH_PSIZE_8 (0 << 4) #define FLASH_PSIZE_16 (1 << 4) #define FLASH_PSIZE_32 (2 << 4) #define FLASH_PSIZE_64 (3 << 4) #define FLASH_FW (1 << 6) #define FLASH_START (1 << 7) #define FLASH_SNB(a) ((a) << 8) /* FLASH_SR register bits */ #define FLASH_BSY (1 << 0) /* Operation in progress */ #define FLASH_WRPERR (1 << 17) /* Write protection error */ #define FLASH_PGSERR (1 << 18) /* Programming sequence error */ #define FLASH_STRBERR (1 << 19) /* Strobe error */ #define FLASH_INCERR (1 << 21) /* Inconsistency error */ #define FLASH_OPERR (1 << 22) /* Operation error */ #define FLASH_RDPERR (1 << 23) /* Read Protection error */ #define FLASH_RDSERR (1 << 24) /* Secure Protection error */ #define FLASH_SNECCERR (1 << 25) /* Single ECC error */ #define FLASH_DBECCERR (1 << 26) /* Double ECC error */ #define FLASH_ERROR (FLASH_WRPERR | FLASH_PGSERR | FLASH_STRBERR | FLASH_INCERR | FLASH_OPERR | \ FLASH_RDPERR | FLASH_RDSERR | FLASH_SNECCERR | FLASH_DBECCERR) /* FLASH_OPTCR register bits */ #define OPT_LOCK (1 << 0) #define OPT_START (1 << 1) /* FLASH_OPTCUR bit definitions (reading) */ #define IWDG1_HW (1 << 4) /* register unlock keys */ #define KEY1 0x45670123 #define KEY2 0xCDEF89AB /* option register unlock key */ #define OPTKEY1 0x08192A3B #define OPTKEY2 0x4C5D6E7F #define DBGMCU_IDCODE_REGISTER 0x5C001000 #define FLASH_BANK0_ADDRESS 0x08000000 #define FLASH_BANK1_ADDRESS 0x08100000 #define FLASH_REG_BASE_B0 0x52002000 #define FLASH_REG_BASE_B1 0x52002100 #define FLASH_SIZE_ADDRESS 0x1FF1E880 #define FLASH_BLOCK_SIZE 32 struct stm32h7x_rev { uint16_t rev; const char *str; }; struct stm32x_options { uint8_t RDP; uint32_t protection; /* bank1 WRP */ uint32_t protection2; /* bank2 WRP */ uint8_t user_options; uint8_t user2_options; uint8_t user3_options; uint8_t independent_watchdog_selection; }; struct stm32h7x_part_info { uint16_t id; const char *device_str; const struct stm32h7x_rev *revs; size_t num_revs; unsigned int page_size; unsigned int pages_per_sector; uint16_t max_flash_size_kb; uint8_t has_dual_bank; uint16_t first_bank_size_kb; /* Used when has_dual_bank is true */ uint32_t flash_base; /* Flash controller registers location */ uint32_t fsize_base; /* Location of FSIZE register */ }; struct stm32h7x_flash_bank { int probed; uint32_t idcode; uint32_t user_bank_size; uint32_t flash_base; /* Address of flash reg controller */ struct stm32x_options option_bytes; const struct stm32h7x_part_info *part_info; }; static const struct stm32h7x_rev stm32_450_revs[] = { { 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, }; static const struct stm32h7x_part_info stm32h7x_parts[] = { { .id = 0x450, .revs = stm32_450_revs, .num_revs = ARRAY_SIZE(stm32_450_revs), .device_str = "STM32H7xx 2M", .page_size = 128, /* 128 KB */ .max_flash_size_kb = 2048, .first_bank_size_kb = 1024, .has_dual_bank = 1, .flash_base = FLASH_REG_BASE_B0, .fsize_base = FLASH_SIZE_ADDRESS, }, }; static int stm32x_unlock_reg(struct flash_bank *bank); static int stm32x_lock_reg(struct flash_bank *bank); static int stm32x_probe(struct flash_bank *bank); /* flash bank stm32x 0 0 */ FLASH_BANK_COMMAND_HANDLER(stm32x_flash_bank_command) { struct stm32h7x_flash_bank *stm32x_info; if (CMD_ARGC < 6) return ERROR_COMMAND_SYNTAX_ERROR; stm32x_info = malloc(sizeof(struct stm32h7x_flash_bank)); bank->driver_priv = stm32x_info; stm32x_info->probed = 0; stm32x_info->user_bank_size = bank->size; return ERROR_OK; } static inline uint32_t stm32x_get_flash_reg(struct flash_bank *bank, uint32_t reg) { struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; return reg + stm32x_info->flash_base; } static inline int stm32x_get_flash_status(struct flash_bank *bank, uint32_t *status) { struct target *target = bank->target; return target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_SR), status); } static int stm32x_wait_status_busy(struct flash_bank *bank, int timeout) { struct target *target = bank->target; struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; uint32_t status; int retval; /* wait for busy to clear */ for (;;) { retval = stm32x_get_flash_status(bank, &status); if (retval != ERROR_OK) { LOG_INFO("wait_status_busy, target_read_u32 : error : remote address 0x%x", stm32x_info->flash_base); return retval; } if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_INFO("wait_status_busy, time out expired, status: 0x%" PRIx32 "", status); return ERROR_FAIL; } alive_sleep(1); } if (status & FLASH_WRPERR) { LOG_INFO("wait_status_busy, WRPERR : error : remote address 0x%x", stm32x_info->flash_base); retval = ERROR_FAIL; } /* Clear error + EOP flags but report errors */ if (status & FLASH_ERROR) { if (retval == ERROR_OK) retval = ERROR_FAIL; /* If this operation fails, we ignore it and report the original retval */ target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), status); } return retval; } static int stm32x_unlock_reg(struct flash_bank *bank) { uint32_t ctrl; struct target *target = bank->target; /* first check if not already unlocked * otherwise writing on FLASH_KEYR will fail */ int retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & FLASH_LOCK) == 0) return ERROR_OK; /* unlock flash registers for bank */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_KEYR), KEY2); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & FLASH_LOCK) { LOG_ERROR("flash not unlocked STM32_FLASH_CRx: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32x_unlock_option_reg(struct flash_bank *bank) { uint32_t ctrl; struct target *target = bank->target; int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl); if (retval != ERROR_OK) return retval; if ((ctrl & OPT_LOCK) == 0) return ERROR_OK; /* unlock option registers */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY1); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTKEYR, OPTKEY2); if (retval != ERROR_OK) return retval; retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, &ctrl); if (retval != ERROR_OK) return retval; if (ctrl & OPT_LOCK) { LOG_ERROR("options not unlocked STM32_FLASH_OPTCR: %" PRIx32, ctrl); return ERROR_TARGET_FAILURE; } return ERROR_OK; } static int stm32x_lock_reg(struct flash_bank *bank) { struct target *target = bank->target; /* Lock bank reg */ int retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_read_options(struct flash_bank *bank) { uint32_t optiondata; struct stm32h7x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; stm32x_info = bank->driver_priv; /* read current option bytes */ int retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCUR, &optiondata); if (retval != ERROR_OK) return retval; /* decode option data */ stm32x_info->option_bytes.user_options = optiondata & 0xfc; stm32x_info->option_bytes.RDP = (optiondata >> 8) & 0xff; stm32x_info->option_bytes.user2_options = (optiondata >> 16) & 0xff; stm32x_info->option_bytes.user3_options = (optiondata >> 24) & 0x83; if (optiondata & IWDG1_HW) stm32x_info->option_bytes.independent_watchdog_selection = 1; else stm32x_info->option_bytes.independent_watchdog_selection = 0; if (stm32x_info->option_bytes.RDP != 0xAA) LOG_INFO("Device Security Bit Set"); /* read current WPSN option bytes */ retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNCUR, &optiondata); if (retval != ERROR_OK) return retval; stm32x_info->option_bytes.protection = optiondata & 0xff; /* read current WPSN2 option bytes */ retval = target_read_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNCUR, &optiondata); if (retval != ERROR_OK) return retval; stm32x_info->option_bytes.protection2 = optiondata & 0xff; return ERROR_OK; } static int stm32x_write_options(struct flash_bank *bank) { struct stm32h7x_flash_bank *stm32x_info = NULL; struct target *target = bank->target; uint32_t optiondata; stm32x_info = bank->driver_priv; int retval = stm32x_unlock_option_reg(bank); if (retval != ERROR_OK) return retval; /* rebuild option data */ optiondata = stm32x_info->option_bytes.user_options; optiondata |= (stm32x_info->option_bytes.RDP << 8); optiondata |= (stm32x_info->option_bytes.user2_options & 0xff) << 16; optiondata |= (stm32x_info->option_bytes.user3_options & 0x83) << 24; if (stm32x_info->option_bytes.independent_watchdog_selection) optiondata |= IWDG1_HW; else optiondata &= ~IWDG1_HW; /* program options */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTPRG, optiondata); if (retval != ERROR_OK) return retval; optiondata = stm32x_info->option_bytes.protection & 0xff; /* Program protection WPSNPRG */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_WPSNPRG, optiondata); if (retval != ERROR_OK) return retval; optiondata = stm32x_info->option_bytes.protection2 & 0xff; /* Program protection WPSNPRG2 */ retval = target_write_u32(target, FLASH_REG_BASE_B1 + FLASH_WPSNPRG, optiondata); if (retval != ERROR_OK) return retval; optiondata = 0x40000000; /* Remove OPT error flag before programming */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCCR, optiondata); if (retval != ERROR_OK) return retval; /* start programming cycle */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_START); if (retval != ERROR_OK) return retval; /* wait for completion */ int timeout = FLASH_ERASE_TIMEOUT; for (;;) { uint32_t status; retval = target_read_u32(target, FLASH_REG_BASE_B0 + FLASH_SR, &status); if (retval != ERROR_OK) { LOG_INFO("stm32x_write_options: wait_status_busy : error"); return retval; } if ((status & FLASH_BSY) == 0) break; if (timeout-- <= 0) { LOG_INFO("wait_status_busy, time out expired, status: 0x%" PRIx32 "", status); return ERROR_FAIL; } alive_sleep(1); } /* relock option registers */ retval = target_write_u32(target, FLASH_REG_BASE_B0 + FLASH_OPTCR, OPT_LOCK); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_protect_check(struct flash_bank *bank) { struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; /* read 'write protection' settings */ int retval = stm32x_read_options(bank); if (retval != ERROR_OK) { LOG_DEBUG("unable to read option bytes"); return retval; } for (int i = 0; i < bank->num_sectors; i++) { if (stm32x_info->flash_base == FLASH_REG_BASE_B0) { if (stm32x_info->option_bytes.protection & (1 << i)) bank->sectors[i].is_protected = 0; else bank->sectors[i].is_protected = 1; } else { if (stm32x_info->option_bytes.protection2 & (1 << i)) bank->sectors[i].is_protected = 0; else bank->sectors[i].is_protected = 1; } } return ERROR_OK; } static int stm32x_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; int retval; assert(first < bank->num_sectors); assert(last < bank->num_sectors); if (bank->target->state != TARGET_HALTED) return ERROR_TARGET_NOT_HALTED; retval = stm32x_unlock_reg(bank); if (retval != ERROR_OK) return retval; /* Sector Erase To erase a sector, follow the procedure below: 1. Check that no Flash memory operation is ongoing by checking the BSY bit in the FLASH_SR register 2. Set the SER bit and select the sector you wish to erase (SNB) in the FLASH_CR register 3. Set the STRT bit in the FLASH_CR register 4. Wait for the BSY bit to be cleared */ for (int i = first; i <= last; i++) { LOG_DEBUG("erase sector %d", i); retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64); if (retval != ERROR_OK) { LOG_ERROR("Error erase sector %d", i); return retval; } retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_SER | FLASH_SNB(i) | FLASH_PSIZE_64 | FLASH_START); if (retval != ERROR_OK) { LOG_ERROR("Error erase sector %d", i); return retval; } retval = stm32x_wait_status_busy(bank, FLASH_ERASE_TIMEOUT); if (retval != ERROR_OK) { LOG_ERROR("erase time-out or operation error sector %d", i); return retval; } bank->sectors[i].is_erased = 1; } retval = stm32x_lock_reg(bank); if (retval != ERROR_OK) { LOG_ERROR("error during the lock of flash"); return retval; } return ERROR_OK; } static int stm32x_protect(struct flash_bank *bank, int set, int first, int last) { struct target *target = bank->target; struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* read protection settings */ int retval = stm32x_read_options(bank); if (retval != ERROR_OK) { LOG_DEBUG("unable to read option bytes"); return retval; } for (int i = first; i <= last; i++) { if (stm32x_info->flash_base == FLASH_REG_BASE_B0) { if (set) stm32x_info->option_bytes.protection &= ~(1 << i); else stm32x_info->option_bytes.protection |= (1 << i); } else { if (set) stm32x_info->option_bytes.protection2 &= ~(1 << i); else stm32x_info->option_bytes.protection2 |= (1 << i); } } LOG_INFO("stm32x_protect, option_bytes written WRP1 0x%x , WRP2 0x%x", (stm32x_info->option_bytes.protection & 0xff), (stm32x_info->option_bytes.protection2 & 0xff)); retval = stm32x_write_options(bank); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_write_block(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; /* * If the size of the data part of the buffer is not a multiple of FLASH_BLOCK_SIZE, we get * "corrupted fifo read" pointer in target_run_flash_async_algorithm() */ uint32_t data_size = 512 * FLASH_BLOCK_SIZE; /* 16384 */ uint32_t buffer_size = 8 + data_size; struct working_area *write_algorithm; struct working_area *source; uint32_t address = bank->base + offset; struct reg_param reg_params[5]; struct armv7m_algorithm armv7m_info; struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; int retval = ERROR_OK; static const uint8_t stm32x_flash_write_code[] = { #include "../../../contrib/loaders/flash/stm32/stm32h7x.inc" }; if (target_alloc_working_area(target, sizeof(stm32x_flash_write_code), &write_algorithm) != ERROR_OK) { LOG_WARNING("no working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } retval = target_write_buffer(target, write_algorithm->address, sizeof(stm32x_flash_write_code), stm32x_flash_write_code); if (retval != ERROR_OK) { target_free_working_area(target, write_algorithm); return retval; } /* memory buffer */ while (target_alloc_working_area_try(target, buffer_size, &source) != ERROR_OK) { data_size /= 2; buffer_size = 8 + data_size; if (data_size <= 256) { /* we already allocated the writing code, but failed to get a * buffer, free the algorithm */ target_free_working_area(target, write_algorithm); LOG_WARNING("no large enough working area available, can't do block memory writes"); return ERROR_TARGET_RESOURCE_NOT_AVAILABLE; } } LOG_DEBUG("target_alloc_working_area_try : buffer_size -> 0x%x", buffer_size); armv7m_info.common_magic = ARMV7M_COMMON_MAGIC; armv7m_info.core_mode = ARM_MODE_THREAD; init_reg_param(®_params[0], "r0", 32, PARAM_IN_OUT); /* buffer start, status (out) */ init_reg_param(®_params[1], "r1", 32, PARAM_OUT); /* buffer end */ init_reg_param(®_params[2], "r2", 32, PARAM_OUT); /* target address */ init_reg_param(®_params[3], "r3", 32, PARAM_OUT); /* count (word-256 bits) */ init_reg_param(®_params[4], "r4", 32, PARAM_OUT); /* flash reg base */ buf_set_u32(reg_params[0].value, 0, 32, source->address); buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size); buf_set_u32(reg_params[2].value, 0, 32, address); buf_set_u32(reg_params[3].value, 0, 32, count); buf_set_u32(reg_params[4].value, 0, 32, stm32x_info->flash_base); retval = target_run_flash_async_algorithm(target, buffer, count, FLASH_BLOCK_SIZE, 0, NULL, 5, reg_params, source->address, source->size, write_algorithm->address, 0, &armv7m_info); if (retval == ERROR_FLASH_OPERATION_FAILED) { LOG_INFO("error executing stm32h7x flash write algorithm"); uint32_t flash_sr = buf_get_u32(reg_params[0].value, 0, 32); if (flash_sr & FLASH_WRPERR) LOG_ERROR("flash memory write protected"); if ((flash_sr & FLASH_ERROR) != 0) { LOG_ERROR("flash write failed, FLASH_SR = %08" PRIx32, flash_sr); /* Clear error + EOP flags but report errors */ target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CCR), flash_sr); retval = ERROR_FAIL; } } target_free_working_area(target, source); target_free_working_area(target, write_algorithm); destroy_reg_param(®_params[0]); destroy_reg_param(®_params[1]); destroy_reg_param(®_params[2]); destroy_reg_param(®_params[3]); destroy_reg_param(®_params[4]); return retval; } static int stm32x_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; uint32_t address = bank->base + offset; int retval, retval2; if (bank->target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset % FLASH_BLOCK_SIZE) { LOG_WARNING("offset 0x%" PRIx32 " breaks required 32-byte alignment", offset); return ERROR_FLASH_DST_BREAKS_ALIGNMENT; } retval = stm32x_unlock_reg(bank); if (retval != ERROR_OK) return retval; uint32_t blocks_remaining = count / FLASH_BLOCK_SIZE; uint32_t bytes_remaining = count % FLASH_BLOCK_SIZE; /* multiple words (32-bytes) to be programmed in block */ if (blocks_remaining) { retval = stm32x_write_block(bank, buffer, offset, blocks_remaining); if (retval != ERROR_OK) { if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) { /* if block write failed (no sufficient working area), * we use normal (slow) dword accesses */ LOG_WARNING("couldn't use block writes, falling back to single memory accesses"); } } else { buffer += blocks_remaining * FLASH_BLOCK_SIZE; address += blocks_remaining * FLASH_BLOCK_SIZE; blocks_remaining = 0; } if ((retval != ERROR_OK) && (retval != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)) goto flash_lock; } /* Standard programming The Flash memory programming sequence is as follows: 1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the FLASH_SR register. 2. Set the PG bit in the FLASH_CR register 3. 8 x Word access (or Force Write FW) 4. Wait for the BSY bit to be cleared */ while (blocks_remaining > 0) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64); if (retval != ERROR_OK) goto flash_lock; retval = target_write_buffer(target, address, FLASH_BLOCK_SIZE, buffer); if (retval != ERROR_OK) goto flash_lock; retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT); if (retval != ERROR_OK) goto flash_lock; buffer += FLASH_BLOCK_SIZE; address += FLASH_BLOCK_SIZE; blocks_remaining--; } if (bytes_remaining) { retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64); if (retval != ERROR_OK) goto flash_lock; retval = target_write_buffer(target, address, bytes_remaining, buffer); if (retval != ERROR_OK) goto flash_lock; /* Force Write buffer of FLASH_BLOCK_SIZE = 32 bytes */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_PG | FLASH_PSIZE_64 | FLASH_FW); if (retval != ERROR_OK) goto flash_lock; retval = stm32x_wait_status_busy(bank, FLASH_WRITE_TIMEOUT); if (retval != ERROR_OK) goto flash_lock; } flash_lock: retval2 = stm32x_lock_reg(bank); if (retval2 != ERROR_OK) LOG_ERROR("error during the lock of flash"); if (retval == ERROR_OK) retval = retval2; return retval; } static void setup_sector(struct flash_bank *bank, int start, int num, int size) { for (int i = start; i < (start + num) ; i++) { assert(i < bank->num_sectors); bank->sectors[i].offset = bank->size; bank->sectors[i].size = size; bank->size += bank->sectors[i].size; } } static int stm32x_read_id_code(struct flash_bank *bank, uint32_t *id) { /* read stm32 device id register */ int retval = target_read_u32(bank->target, DBGMCU_IDCODE_REGISTER, id); if (retval != ERROR_OK) return retval; return ERROR_OK; } static int stm32x_probe(struct flash_bank *bank) { struct target *target = bank->target; struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; int i; uint16_t flash_size_in_kb; uint32_t device_id; uint32_t base_address = FLASH_BANK0_ADDRESS; uint32_t second_bank_base; stm32x_info->probed = 0; stm32x_info->part_info = NULL; int retval = stm32x_read_id_code(bank, &stm32x_info->idcode); if (retval != ERROR_OK) return retval; LOG_DEBUG("device id = 0x%08" PRIx32 "", stm32x_info->idcode); device_id = stm32x_info->idcode & 0xfff; for (unsigned int n = 0; n < ARRAY_SIZE(stm32h7x_parts); n++) { if (device_id == stm32h7x_parts[n].id) stm32x_info->part_info = &stm32h7x_parts[n]; } if (!stm32x_info->part_info) { LOG_WARNING("Cannot identify target as a STM32H7xx family."); return ERROR_FAIL; } else { LOG_INFO("Device: %s", stm32x_info->part_info->device_str); } /* update the address of controller from data base */ stm32x_info->flash_base = stm32x_info->part_info->flash_base; /* get flash size from target */ retval = target_read_u16(target, stm32x_info->part_info->fsize_base, &flash_size_in_kb); if (retval != ERROR_OK) { /* read error when device has invalid value, set max flash size */ flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb; } else LOG_INFO("flash size probed value %d", flash_size_in_kb); /* Lower flash size devices are single bank */ if (stm32x_info->part_info->has_dual_bank && (flash_size_in_kb > stm32x_info->part_info->first_bank_size_kb)) { /* Use the configured base address to determine if this is the first or second flash bank. * Verify that the base address is reasonably correct and determine the flash bank size */ second_bank_base = base_address + stm32x_info->part_info->first_bank_size_kb * 1024; if (bank->base == second_bank_base) { /* This is the second bank */ base_address = second_bank_base; flash_size_in_kb = flash_size_in_kb - stm32x_info->part_info->first_bank_size_kb; /* bank1 also uses a register offset */ stm32x_info->flash_base = FLASH_REG_BASE_B1; } else if (bank->base == base_address) { /* This is the first bank */ flash_size_in_kb = stm32x_info->part_info->first_bank_size_kb; } else { LOG_WARNING("STM32H flash bank base address config is incorrect." " 0x%" PRIx32 " but should rather be 0x%" PRIx32 " or 0x%" PRIx32, bank->base, base_address, second_bank_base); return ERROR_FAIL; } LOG_INFO("STM32H flash has dual banks. Bank (%d) size is %dkb, base address is 0x%" PRIx32, bank->bank_number, flash_size_in_kb, base_address); } else { LOG_INFO("STM32H flash size is %dkb, base address is 0x%" PRIx32, flash_size_in_kb, base_address); } /* if the user sets the size manually then ignore the probed value * this allows us to work around devices that have an invalid flash size register value */ if (stm32x_info->user_bank_size) { LOG_INFO("ignoring flash probed value, using configured bank size"); flash_size_in_kb = stm32x_info->user_bank_size / 1024; } else if (flash_size_in_kb == 0xffff) { /* die flash size */ flash_size_in_kb = stm32x_info->part_info->max_flash_size_kb; } /* did we assign flash size? */ assert(flash_size_in_kb != 0xffff); /* calculate numbers of pages */ int num_pages = flash_size_in_kb / stm32x_info->part_info->page_size; /* check that calculation result makes sense */ assert(num_pages > 0); if (bank->sectors) { free(bank->sectors); bank->sectors = NULL; } bank->base = base_address; bank->num_sectors = num_pages; bank->sectors = malloc(sizeof(struct flash_sector) * num_pages); if (bank->sectors == NULL) { LOG_ERROR("failed to allocate bank sectors"); return ERROR_FAIL; } bank->size = 0; /* fixed memory */ setup_sector(bank, 0, num_pages, stm32x_info->part_info->page_size * 1024); for (i = 0; i < num_pages; i++) { bank->sectors[i].is_erased = -1; bank->sectors[i].is_protected = 0; } stm32x_info->probed = 1; return ERROR_OK; } static int stm32x_auto_probe(struct flash_bank *bank) { struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; if (stm32x_info->probed) return ERROR_OK; return stm32x_probe(bank); } /* This method must return a string displaying information about the bank */ static int stm32x_get_info(struct flash_bank *bank, char *buf, int buf_size) { struct stm32h7x_flash_bank *stm32x_info = bank->driver_priv; const struct stm32h7x_part_info *info = stm32x_info->part_info; if (!stm32x_info->probed) { int retval = stm32x_probe(bank); if (retval != ERROR_OK) { snprintf(buf, buf_size, "Unable to find bank information."); return retval; } } if (info) { const char *rev_str = NULL; uint16_t rev_id = stm32x_info->idcode >> 16; for (unsigned int i = 0; i < info->num_revs; i++) if (rev_id == info->revs[i].rev) rev_str = info->revs[i].str; if (rev_str != NULL) { snprintf(buf, buf_size, "%s - Rev: %s", stm32x_info->part_info->device_str, rev_str); } else { snprintf(buf, buf_size, "%s - Rev: unknown (0x%04x)", stm32x_info->part_info->device_str, rev_id); } } else { snprintf(buf, buf_size, "Cannot identify target as a STM32H7x"); return ERROR_FAIL; } return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_lock_command) { struct target *target = NULL; struct stm32h7x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32x_info = bank->driver_priv; target = bank->target; /* if we have a dual flash bank device then * we need to perform option byte lock on bank0 only */ if (stm32x_info->flash_base != FLASH_REG_BASE_B0) { LOG_ERROR("Option Byte Lock Operation must use bank0"); return ERROR_FLASH_OPERATION_FAILED; } if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32x_read_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to read options", bank->driver->name); return ERROR_OK; } /* set readout protection */ stm32x_info->option_bytes.RDP = 0; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to lock device", bank->driver->name); return ERROR_OK; } command_print(CMD_CTX, "%s locked", bank->driver->name); return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_unlock_command) { struct target *target = NULL; struct stm32h7x_flash_bank *stm32x_info = NULL; if (CMD_ARGC < 1) return ERROR_COMMAND_SYNTAX_ERROR; struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; stm32x_info = bank->driver_priv; target = bank->target; /* if we have a dual flash bank device then * we need to perform option byte unlock on bank0 only */ if (stm32x_info->flash_base != FLASH_REG_BASE_B0) { LOG_ERROR("Option Byte Unlock Operation must use bank0"); return ERROR_FLASH_OPERATION_FAILED; } if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (stm32x_read_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to read options", bank->driver->name); return ERROR_OK; } /* clear readout protection option byte * this will also force a device unlock if set */ stm32x_info->option_bytes.RDP = 0xAA; if (stm32x_write_options(bank) != ERROR_OK) { command_print(CMD_CTX, "%s failed to unlock device", bank->driver->name); return ERROR_OK; } command_print(CMD_CTX, "%s unlocked.\n", bank->driver->name); return ERROR_OK; } static int stm32x_mass_erase(struct flash_bank *bank) { int retval; struct target *target = bank->target; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } retval = stm32x_unlock_reg(bank); if (retval != ERROR_OK) return retval; /* mass erase flash memory bank */ retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_BER_CMD | FLASH_PSIZE_64); if (retval != ERROR_OK) return retval; retval = target_write_u32(target, stm32x_get_flash_reg(bank, FLASH_CR), FLASH_BER_CMD | FLASH_PSIZE_64 | FLASH_START); if (retval != ERROR_OK) return retval; retval = stm32x_wait_status_busy(bank, 30000); if (retval != ERROR_OK) return retval; retval = stm32x_lock_reg(bank); if (retval != ERROR_OK) { LOG_ERROR("error during the lock of flash"); return retval; } return ERROR_OK; } COMMAND_HANDLER(stm32x_handle_mass_erase_command) { int i; if (CMD_ARGC < 1) { command_print(CMD_CTX, "stm32h7x mass_erase "); return ERROR_COMMAND_SYNTAX_ERROR; } struct flash_bank *bank; int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank); if (ERROR_OK != retval) return retval; retval = stm32x_mass_erase(bank); if (retval == ERROR_OK) { /* set all sectors as erased */ for (i = 0; i < bank->num_sectors; i++) bank->sectors[i].is_erased = 1; command_print(CMD_CTX, "stm32h7x mass erase complete"); } else { command_print(CMD_CTX, "stm32h7x mass erase failed"); } return retval; } static const struct command_registration stm32x_exec_command_handlers[] = { { .name = "lock", .handler = stm32x_handle_lock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Lock entire flash device.", }, { .name = "unlock", .handler = stm32x_handle_unlock_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Unlock entire protected flash device.", }, { .name = "mass_erase", .handler = stm32x_handle_mass_erase_command, .mode = COMMAND_EXEC, .usage = "bank_id", .help = "Erase entire flash device.", }, COMMAND_REGISTRATION_DONE }; static const struct command_registration stm32x_command_handlers[] = { { .name = "stm32h7x", .mode = COMMAND_ANY, .help = "stm32h7x flash command group", .usage = "", .chain = stm32x_exec_command_handlers, }, COMMAND_REGISTRATION_DONE }; struct flash_driver stm32h7x_flash = { .name = "stm32h7x", .commands = stm32x_command_handlers, .flash_bank_command = stm32x_flash_bank_command, .erase = stm32x_erase, .protect = stm32x_protect, .write = stm32x_write, .read = default_flash_read, .probe = stm32x_probe, .auto_probe = stm32x_auto_probe, .erase_check = default_flash_blank_check, .protect_check = stm32x_protect_check, .info = stm32x_get_info, .free_driver_priv = default_flash_free_driver_priv, };