/*************************************************************************** * Copyright (C) 2015 by Tobias Diedrich * * * * * * based on the stmsmi code written by Antonio Borneo * * * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc. * * * ***************************************************************************/ /* * Driver for the Atheros AR7xxx/AR9xxx SPI flash interface. * * Since no SPI mode register is present, presumably only * SPI "mode 3" (CPOL=1 and CPHA=1) is supported. * * The SPI interface supports up to 3 chip selects, however the SPI flash * used for booting the system must be connected to CS0. * * On boot, the first 4MiB of flash space are memory-mapped into the * area bf000000 - bfffffff (4 copies), so the MIPS bootstrap * vector bfc00000 is mapped to the beginning of the flash. * * By writing a 1 to the REMAP_DISABLE bit in the SPI_CONTROL register, * the full area of 16MiB is mapped. * * By writing a 0 to the SPI_FUNCTION_SELECT register (write-only dword * register @bf000000), memory mapping is disabled and the SPI registers * are exposed to the CPU instead: * bf000000 SPI_FUNCTION_SELECT * bf000004 SPI_CONTROL * bf000008 SPI_IO_CONTROL * bf00000c SPI_READ_DATA * * When not memory-mapped, the SPI interface is essentially bitbanged * using SPI_CONTROL and SPI_IO_CONTROL with the only hardware-assistance * being the 32bit read-only shift-register SPI_READ_DATA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "imp.h" #include "spi.h" #include #include #include #include #include #include #define BITS_PER_BYTE 8 #define ATH79_REG_FS 0 #define ATH79_REG_CLOCK 4 #define ATH79_REG_WRITE 8 #define ATH79_REG_DATA 12 #define ATH79_SPI_CS_ALLHI 0x70000 #define ATH79_SPI_CS0_HI 0x10000 #define ATH79_SPI_CS1_HI 0x20000 #define ATH79_SPI_CS2_HI 0x40000 #define ATH79_SPI_CE_HI 0x00100 #define ATH79_SPI_DO_HI 0x00001 #define ATH79_XFER_FINAL 0x00000001 #define ATH79_XFER_PARTIAL 0x00000000 /* Timeout in ms */ #define ATH79_MAX_TIMEOUT (3000) struct ath79_spi_ctx { uint8_t *page_buf; int pre_deselect; int post_deselect; }; struct ath79_flash_bank { int probed; int chipselect; uint32_t io_base; const struct flash_device *dev; struct ath79_spi_ctx spi; }; struct ath79_target { char *name; uint32_t tap_idcode; uint32_t io_base; }; static const struct ath79_target target_devices[] = { /* name, tap_idcode, io_base */ { "ATH79", 0x00000001, 0xbf000000 }, { NULL, 0, 0 } }; static const uint32_t ath79_chipselects[] = { (~ATH79_SPI_CS0_HI & ATH79_SPI_CS_ALLHI), (~ATH79_SPI_CS1_HI & ATH79_SPI_CS_ALLHI), (~ATH79_SPI_CS2_HI & ATH79_SPI_CS_ALLHI), }; static void ath79_pracc_addn(struct pracc_queue_info *ctx, const uint32_t *instr, int n) { for (int i = 0; i < n; i++) pracc_add(ctx, 0, instr[i]); } static int ath79_spi_bitbang_codegen(struct ath79_flash_bank *ath79_info, struct pracc_queue_info *ctx, uint8_t *data, int len, int partial_xfer) { uint32_t cs_high = ATH79_SPI_CS_ALLHI; uint32_t cs_low = ath79_chipselects[ath79_info->chipselect]; uint32_t clock_high = cs_low | ATH79_SPI_CE_HI; uint32_t clock_low = cs_low; uint32_t pracc_out = 0; uint32_t io_base = ath79_info->io_base; const uint32_t preamble1[] = { /* $15 = MIPS32_PRACC_BASE_ADDR */ MIPS32_LUI(0, 15, PRACC_UPPER_BASE_ADDR), /* $1 = io_base */ MIPS32_LUI(0, 1, UPPER16(io_base)), }; ath79_pracc_addn(ctx, preamble1, ARRAY_SIZE(preamble1)); if (ath79_info->spi.pre_deselect) { /* Clear deselect flag so we don't deselect again if * this is a partial xfer. */ ath79_info->spi.pre_deselect = 0; const uint32_t pre_deselect[] = { /* [$1 + FS] = 1 (enable flash io register access) */ MIPS32_LUI(0, 2, UPPER16(1)), MIPS32_ORI(0, 2, 2, LOWER16(1)), MIPS32_SW(0, 2, ATH79_REG_FS, 1), /* deselect flash just in case */ /* $2 = SPI_CS_DIS */ MIPS32_LUI(0, 2, UPPER16(cs_high)), MIPS32_ORI(0, 2, 2, LOWER16(cs_high)), /* [$1 + WRITE] = $2 */ MIPS32_SW(0, 2, ATH79_REG_WRITE, 1), }; ath79_pracc_addn(ctx, pre_deselect, ARRAY_SIZE(pre_deselect)); } const uint32_t preamble2[] = { /* t0 = CLOCK_LOW + 0-bit */ MIPS32_LUI(0, 8, UPPER16((clock_low + 0))), MIPS32_ORI(0, 8, 8, LOWER16((clock_low + 0))), /* t1 = CLOCK_LOW + 1-bit */ MIPS32_LUI(0, 9, UPPER16((clock_low + 1))), MIPS32_ORI(0, 9, 9, LOWER16((clock_low + 1))), /* t2 = CLOCK_HIGH + 0-bit */ MIPS32_LUI(0, 10, UPPER16((clock_high + 0))), MIPS32_ORI(0, 10, 10, LOWER16((clock_high + 0))), /* t3 = CLOCK_HIGH + 1-bit */ MIPS32_LUI(0, 11, UPPER16((clock_high + 1))), MIPS32_ORI(0, 11, 11, LOWER16((clock_high + 1))), }; ath79_pracc_addn(ctx, preamble2, ARRAY_SIZE(preamble2)); for (int i = 0; i < len; i++) { uint8_t x = data[i]; /* Generate bitbang code for one byte, highest bit first .*/ for (int j = BITS_PER_BYTE - 1; j >= 0; j--) { int bit = ((x >> j) & 1); if (bit) { /* [$1 + WRITE] = t1 */ pracc_add(ctx, 0, MIPS32_SW(0, 9, ATH79_REG_WRITE, 1)); /* [$1 + WRITE] = t3 */ pracc_add(ctx, 0, MIPS32_SW(0, 11, ATH79_REG_WRITE, 1)); } else { /* [$1 + WRITE] = t0 */ pracc_add(ctx, 0, MIPS32_SW(0, 8, ATH79_REG_WRITE, 1)); /* [$1 + WRITE] = t2 */ pracc_add(ctx, 0, MIPS32_SW(0, 10, ATH79_REG_WRITE, 1)); } } if (i % 4 == 3) { /* $3 = [$1 + DATA] */ pracc_add(ctx, 0, MIPS32_LW(0, 3, ATH79_REG_DATA, 1)); /* [OUTi] = $3 */ pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + pracc_out, MIPS32_SW(0, 3, PRACC_OUT_OFFSET + pracc_out, 15)); pracc_out += 4; } } if (len & 3) { /* not a multiple of 4 bytes */ /* $3 = [$1 + DATA] */ pracc_add(ctx, 0, MIPS32_LW(0, 3, ATH79_REG_DATA, 1)); /* [OUTi] = $3 */ pracc_add(ctx, MIPS32_PRACC_PARAM_OUT + pracc_out, MIPS32_SW(0, 3, PRACC_OUT_OFFSET + pracc_out, 15)); pracc_out += 4; } if (ath79_info->spi.post_deselect && !partial_xfer) { const uint32_t post_deselect[] = { /* $2 = SPI_CS_DIS */ MIPS32_LUI(0, 2, UPPER16(cs_high)), MIPS32_ORI(0, 2, 2, LOWER16(cs_high)), /* [$1 + WRITE] = $2 */ MIPS32_SW(0, 2, ATH79_REG_WRITE, 1), /* [$1 + FS] = 0 (disable flash io register access) */ MIPS32_XORI(0, 2, 2, 0), MIPS32_SW(0, 2, ATH79_REG_FS, 1), }; ath79_pracc_addn(ctx, post_deselect, ARRAY_SIZE(post_deselect)); } /* common pracc epilogue */ /* jump to start */ pracc_add(ctx, 0, MIPS32_B(0, NEG16(ctx->code_count + 1))); /* restore $15 from DeSave */ pracc_add(ctx, 0, MIPS32_MFC0(0, 15, 31, 0)); return pracc_out / 4; } static int ath79_spi_bitbang_chunk(struct flash_bank *bank, uint8_t *data, int len, int *transferred) { struct target *target = bank->target; struct ath79_flash_bank *ath79_info = bank->driver_priv; struct mips32_common *mips32 = target_to_mips32(target); struct mips_ejtag *ejtag_info = &mips32->ejtag_info; int pracc_words; /* * These constants must match the worst case in the above code * generator function ath79_spi_bitbang_codegen. */ const int pracc_pre_post = 26; const int pracc_loop_byte = 8 * 2 + 2; struct pracc_queue_info ctx = { .ejtag_info = ejtag_info }; int max_len = (PRACC_MAX_INSTRUCTIONS - pracc_pre_post) / pracc_loop_byte; int to_xfer = len > max_len ? max_len : len; int partial_xfer = len != to_xfer; int padded_len = (to_xfer + 3) & ~3; uint32_t *out = malloc(padded_len); if (!out) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } *transferred = 0; pracc_queue_init(&ctx); LOG_DEBUG("ath79_spi_bitbang_bytes(%p, %08x, %p, %d)", target, ath79_info->io_base, data, len); LOG_DEBUG("max code %d => max len %d. to_xfer %d", PRACC_MAX_INSTRUCTIONS, max_len, to_xfer); pracc_words = ath79_spi_bitbang_codegen( ath79_info, &ctx, data, to_xfer, partial_xfer); LOG_DEBUG("Assembled %d instructions, %d stores", ctx.code_count, ctx.store_count); ctx.retval = mips32_pracc_queue_exec(ejtag_info, &ctx, out, 1); if (ctx.retval != ERROR_OK) goto exit; if (to_xfer & 3) { /* Not a multiple of 4 bytes. */ /* * Need to realign last word since we didn't shift the * full 32 bits. */ int missed_bytes = 4 - (to_xfer & 3); out[pracc_words - 1] <<= BITS_PER_BYTE * missed_bytes; } /* * pracc reads return uint32_t in host endianness, convert to * target endianness. * Since we know the ATH79 target is big endian and the SPI * shift register has the bytes in highest to lowest bit order, * this will ensure correct memory byte order regardless of host * endianness. */ target_buffer_set_u32_array(target, (uint8_t *)out, pracc_words, out); if (LOG_LEVEL_IS(LOG_LVL_DEBUG)) { for (int i = 0; i < to_xfer; i++) { LOG_DEBUG("bitbang %02x => %02x", data[i], ((uint8_t *)out)[i]); } } memcpy(data, out, to_xfer); *transferred = to_xfer; exit: pracc_queue_free(&ctx); free(out); return ctx.retval; } static void ath79_spi_bitbang_prepare(struct flash_bank *bank) { struct ath79_flash_bank *ath79_info = bank->driver_priv; ath79_info->spi.pre_deselect = 1; } static int ath79_spi_bitbang_bytes(struct flash_bank *bank, uint8_t *data, int len, uint32_t flags) { struct ath79_flash_bank *ath79_info = bank->driver_priv; int retval; int transferred; ath79_info->spi.post_deselect = !!(flags & ATH79_XFER_FINAL); do { transferred = 0; retval = ath79_spi_bitbang_chunk( bank, data, len, &transferred); if (retval != ERROR_OK) return retval; data += transferred; len -= transferred; } while (len > 0); return ERROR_OK; } FLASH_BANK_COMMAND_HANDLER(ath79_flash_bank_command) { struct ath79_flash_bank *ath79_info; int chipselect = 0; LOG_DEBUG("%s", __func__); if (CMD_ARGC < 6 || CMD_ARGC > 7) return ERROR_COMMAND_SYNTAX_ERROR; if (CMD_ARGC == 7) { if (strcmp(CMD_ARGV[6], "cs0") == 0) chipselect = 0; /* default */ else if (strcmp(CMD_ARGV[6], "cs1") == 0) chipselect = 1; else if (strcmp(CMD_ARGV[6], "cs2") == 0) chipselect = 2; else { LOG_ERROR("Unknown arg: %s", CMD_ARGV[6]); return ERROR_COMMAND_SYNTAX_ERROR; } } ath79_info = calloc(1, sizeof(struct ath79_flash_bank)); if (!ath79_info) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } ath79_info->chipselect = chipselect; bank->driver_priv = ath79_info; return ERROR_OK; } /* Read the status register of the external SPI flash chip. */ static int read_status_reg(struct flash_bank *bank, uint32_t *status) { uint8_t spi_bytes[] = {SPIFLASH_READ_STATUS, 0}; int retval; /* Send SPI command "read STATUS" */ ath79_spi_bitbang_prepare(bank); retval = ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_FINAL); *status = spi_bytes[1]; return retval; } /* check for WIP (write in progress) bit in status register */ /* timeout in ms */ static int wait_till_ready(struct flash_bank *bank, int timeout) { uint32_t status; int retval; long long endtime; endtime = timeval_ms() + timeout; do { /* read flash status register */ retval = read_status_reg(bank, &status); if (retval != ERROR_OK) return retval; if ((status & SPIFLASH_BSY_BIT) == 0) return ERROR_OK; alive_sleep(1); } while (timeval_ms() < endtime); LOG_ERROR("timeout"); return ERROR_FAIL; } /* Send "write enable" command to SPI flash chip. */ static int ath79_write_enable(struct flash_bank *bank) { uint32_t status; int retval; uint8_t spi_bytes[] = {SPIFLASH_WRITE_ENABLE}; /* Send SPI command "write enable" */ ath79_spi_bitbang_prepare(bank); retval = ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_FINAL); if (retval != ERROR_OK) return retval; /* read flash status register */ retval = read_status_reg(bank, &status); if (retval != ERROR_OK) return retval; /* Check write enabled */ if ((status & SPIFLASH_WE_BIT) == 0) { LOG_ERROR("Cannot enable write to flash. Status=0x%08" PRIx32, status); return ERROR_FAIL; } return ERROR_OK; } static int erase_command(struct flash_bank *bank, int sector) { struct ath79_flash_bank *ath79_info = bank->driver_priv; uint32_t offset = bank->sectors[sector].offset; uint8_t spi_bytes[] = { ath79_info->dev->erase_cmd, offset >> 16, offset >> 8, offset }; /* bitbang command */ ath79_spi_bitbang_prepare(bank); return ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_FINAL); } static int ath79_erase_sector(struct flash_bank *bank, int sector) { int retval = ath79_write_enable(bank); if (retval != ERROR_OK) return retval; /* send SPI command "block erase" */ retval = erase_command(bank, sector); if (retval != ERROR_OK) return retval; /* poll WIP for end of self timed Sector Erase cycle */ return wait_till_ready(bank, ATH79_MAX_TIMEOUT); } static int ath79_erase(struct flash_bank *bank, int first, int last) { struct target *target = bank->target; struct ath79_flash_bank *ath79_info = bank->driver_priv; int retval = ERROR_OK; int sector; LOG_DEBUG("%s: from sector %d to sector %d", __func__, first, last); if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if ((first < 0) || (last < first) || (last >= bank->num_sectors)) { LOG_ERROR("Flash sector invalid"); return ERROR_FLASH_SECTOR_INVALID; } if (!ath79_info->probed) { LOG_ERROR("Flash bank not probed"); return ERROR_FLASH_BANK_NOT_PROBED; } for (sector = first; sector <= last; sector++) { if (bank->sectors[sector].is_protected) { LOG_ERROR("Flash sector %d protected", sector); return ERROR_FAIL; } } for (sector = first; sector <= last; sector++) { retval = ath79_erase_sector(bank, sector); if (retval != ERROR_OK) break; keep_alive(); } return retval; } static int ath79_protect(struct flash_bank *bank, int set, int first, int last) { int sector; for (sector = first; sector <= last; sector++) bank->sectors[sector].is_protected = set; return ERROR_OK; } static int ath79_write_page(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t len) { struct ath79_flash_bank *ath79_info = bank->driver_priv; uint8_t spi_bytes[] = { SPIFLASH_PAGE_PROGRAM, address >> 16, address >> 8, address, }; int retval; uint32_t i; if (address & 0xff) { LOG_ERROR("ath79_write_page: unaligned write address: %08x", address); return ERROR_FAIL; } if (!ath79_info->spi.page_buf) { LOG_ERROR("ath79_write_page: page buffer not initialized"); return ERROR_FAIL; } if (len > ath79_info->dev->pagesize) { LOG_ERROR("ath79_write_page: len bigger than page size %d: %d", ath79_info->dev->pagesize, len); return ERROR_FAIL; } for (i = 0; i < len; i++) { if (buffer[i] != 0xff) break; } if (i == len) /* all 0xff, no need to program. */ return ERROR_OK; LOG_INFO("writing %d bytes to flash page @0x%08x", len, address); memcpy(ath79_info->spi.page_buf, buffer, len); /* unlock writes */ retval = ath79_write_enable(bank); if (retval != ERROR_OK) return retval; /* bitbang command */ ath79_spi_bitbang_prepare(bank); retval = ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_PARTIAL); if (retval != ERROR_OK) return retval; /* write data */ return ath79_spi_bitbang_bytes( bank, ath79_info->spi.page_buf, len, ATH79_XFER_FINAL); } static int ath79_write_buffer(struct flash_bank *bank, const uint8_t *buffer, uint32_t address, uint32_t len) { struct ath79_flash_bank *ath79_info = bank->driver_priv; const uint32_t page_size = ath79_info->dev->pagesize; int retval; LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32, __func__, address, len); while (len > 0) { int page_len = len > page_size ? page_size : len; retval = ath79_write_page( bank, buffer, address, page_len); if (retval != ERROR_OK) return retval; buffer += page_size; address += page_size; len -= page_len; } return ERROR_OK; } static int ath79_write(struct flash_bank *bank, const uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; int sector; LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32, __func__, offset, count); if (offset < bank->base || offset >= bank->base + bank->size) { LOG_ERROR("Start address out of range"); return ERROR_FAIL; } offset -= bank->base; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > bank->size) { LOG_WARNING("Write pasts end of flash. Extra data discarded."); count = bank->size - offset; } /* Check sector protection */ for (sector = 0; sector < bank->num_sectors; sector++) { /* Start offset in or before this sector? */ /* End offset in or behind this sector? */ struct flash_sector *bs = &bank->sectors[sector]; if ((offset < (bs->offset + bs->size)) && ((offset + count - 1) >= bs->offset) && bs->is_protected) { LOG_ERROR("Flash sector %d protected", sector); return ERROR_FAIL; } } return ath79_write_buffer(bank, buffer, offset, count); } static int ath79_read_buffer(struct flash_bank *bank, uint8_t *buffer, uint32_t address, uint32_t len) { uint8_t spi_bytes[] = { SPIFLASH_READ, address >> 16, address >> 8, address, }; int retval; LOG_DEBUG("%s: address=0x%08" PRIx32 " len=0x%08" PRIx32, __func__, address, len); if (address & 0xff) { LOG_ERROR("ath79_read_buffer: unaligned read address: %08x", address); return ERROR_FAIL; } LOG_INFO("reading %d bytes from flash @0x%08x", len, address); /* bitbang command */ ath79_spi_bitbang_prepare(bank); retval = ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_PARTIAL); if (retval != ERROR_OK) return retval; /* read data */ return ath79_spi_bitbang_bytes( bank, buffer, len, ATH79_XFER_FINAL); } static int ath79_read(struct flash_bank *bank, uint8_t *buffer, uint32_t offset, uint32_t count) { struct target *target = bank->target; LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32, __func__, offset, count); if (offset < bank->base || offset >= bank->base + bank->size) { LOG_ERROR("Start address out of range"); return ERROR_FAIL; } offset -= bank->base; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } if (offset + count > bank->size) { LOG_WARNING("Reads past end of flash. Extra data discarded."); count = bank->size - offset; } return ath79_read_buffer(bank, buffer, offset, count); } /* Return ID of flash device */ static int read_flash_id(struct flash_bank *bank, uint32_t *id) { struct target *target = bank->target; int retval; uint8_t spi_bytes[] = {SPIFLASH_READ_ID, 0, 0, 0}; if (target->state != TARGET_HALTED) { LOG_ERROR("Target not halted"); return ERROR_TARGET_NOT_HALTED; } /* Send SPI command "read ID" */ ath79_spi_bitbang_prepare(bank); retval = ath79_spi_bitbang_bytes( bank, spi_bytes, sizeof(spi_bytes), ATH79_XFER_FINAL); if (retval != ERROR_OK) return retval; *id = (spi_bytes[1] << 0) | (spi_bytes[2] << 8) | (spi_bytes[3] << 16); if (*id == 0xffffff) { LOG_ERROR("No SPI flash found"); return ERROR_FAIL; } return ERROR_OK; } static int ath79_probe(struct flash_bank *bank) { struct target *target = bank->target; struct ath79_flash_bank *ath79_info = bank->driver_priv; struct flash_sector *sectors; uint32_t id = 0; /* silence uninitialized warning */ const struct ath79_target *target_device; int retval; if (ath79_info->probed) { free(bank->sectors); free(ath79_info->spi.page_buf); } ath79_info->probed = 0; for (target_device = target_devices; target_device->name; ++target_device) if (target_device->tap_idcode == target->tap->idcode) break; if (!target_device->name) { LOG_ERROR("Device ID 0x%" PRIx32 " is not known", target->tap->idcode); return ERROR_FAIL; } ath79_info->io_base = target_device->io_base; LOG_DEBUG("Found device %s at address 0x%" PRIx32, target_device->name, bank->base); retval = read_flash_id(bank, &id); if (retval != ERROR_OK) return retval; ath79_info->dev = NULL; for (const struct flash_device *p = flash_devices; p->name; p++) if (p->device_id == id) { ath79_info->dev = p; break; } if (!ath79_info->dev) { LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id); return ERROR_FAIL; } LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")", ath79_info->dev->name, ath79_info->dev->device_id); /* Set correct size value */ bank->size = ath79_info->dev->size_in_bytes; /* create and fill sectors array */ bank->num_sectors = ath79_info->dev->size_in_bytes / ath79_info->dev->sectorsize; sectors = calloc(1, sizeof(struct flash_sector) * bank->num_sectors); if (!sectors) { LOG_ERROR("not enough memory"); return ERROR_FAIL; } ath79_info->spi.page_buf = malloc(ath79_info->dev->pagesize); if (!ath79_info->spi.page_buf) { LOG_ERROR("not enough memory"); free(sectors); return ERROR_FAIL; } for (int sector = 0; sector < bank->num_sectors; sector++) { sectors[sector].offset = sector * ath79_info->dev->sectorsize; sectors[sector].size = ath79_info->dev->sectorsize; sectors[sector].is_erased = 0; sectors[sector].is_protected = 1; } bank->sectors = sectors; ath79_info->probed = 1; return ERROR_OK; } static int ath79_auto_probe(struct flash_bank *bank) { struct ath79_flash_bank *ath79_info = bank->driver_priv; if (ath79_info->probed) return ERROR_OK; return ath79_probe(bank); } static int ath79_flash_blank_check(struct flash_bank *bank) { /* Not implemented */ return ERROR_OK; } static int ath79_protect_check(struct flash_bank *bank) { /* Not implemented */ return ERROR_OK; } static int get_ath79_info(struct flash_bank *bank, char *buf, int buf_size) { struct ath79_flash_bank *ath79_info = bank->driver_priv; if (!ath79_info->probed) { snprintf(buf, buf_size, "\nATH79 flash bank not probed yet\n"); return ERROR_OK; } snprintf(buf, buf_size, "\nATH79 flash information:\n" " Device \'%s\' (ID 0x%08" PRIx32 ")\n", ath79_info->dev->name, ath79_info->dev->device_id); return ERROR_OK; } struct flash_driver ath79_flash = { .name = "ath79", .flash_bank_command = ath79_flash_bank_command, .erase = ath79_erase, .protect = ath79_protect, .write = ath79_write, .read = ath79_read, .probe = ath79_probe, .auto_probe = ath79_auto_probe, .erase_check = ath79_flash_blank_check, .protect_check = ath79_protect_check, .info = get_ath79_info, .free_driver_priv = default_flash_free_driver_priv, };