/* * This file contains an ECC algorithm from Toshiba that allows for detection * and correction of 1-bit errors in a 256 byte block of data. * * [ Extracted from the initial code found in some early Linux versions. * The current Linux code is bigger while being faster, but this is of * no real benefit when the bottleneck largely remains the JTAG link. ] * * Copyright (C) 2000-2004 Steven J. Hill (sjhill at realitydiluted.com) * Toshiba America Electronics Components, Inc. * * Copyright (C) 2006 Thomas Gleixner * * This file is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 or (at your option) any * later version. * * This file is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this file; if not, write to the Free Software Foundation, Inc., * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. * * As a special exception, if other files instantiate templates or use * macros or inline functions from these files, or you compile these * files and link them with other works to produce a work based on these * files, these files do not by themselves cause the resulting work to be * covered by the GNU General Public License. However the source code for * these files must still be made available in accordance with section (3) * of the GNU General Public License. * * This exception does not invalidate any other reasons why a work based on * this file might be covered by the GNU General Public License. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "nand.h" /* * Pre-calculated 256-way 1 byte column parity */ static const uint8_t nand_ecc_precalc_table[] = { 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 }; /* * nand_calculate_ecc - Calculate 3-byte ECC for 256-byte block */ int nand_calculate_ecc(struct nand_device_s *device, const uint8_t *dat, uint8_t *ecc_code) { uint8_t idx, reg1, reg2, reg3, tmp1, tmp2; int i; /* Initialize variables */ reg1 = reg2 = reg3 = 0; /* Build up column parity */ for (i = 0; i < 256; i++) { /* Get CP0 - CP5 from table */ idx = nand_ecc_precalc_table[*dat++]; reg1 ^= (idx & 0x3f); /* All bit XOR = 1 ? */ if (idx & 0x40) { reg3 ^= (uint8_t) i; reg2 ^= ~((uint8_t) i); } } /* Create non-inverted ECC code from line parity */ tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ /* Calculate final ECC code */ #ifdef NAND_ECC_SMC ecc_code[0] = ~tmp2; ecc_code[1] = ~tmp1; #else ecc_code[0] = ~tmp1; ecc_code[1] = ~tmp2; #endif ecc_code[2] = ((~reg1) << 2) | 0x03; return 0; }