/*************************************************************************** * Copyright (C) 2007 by Dominic Rath * * Copyright (C) 2002 Thomas Gleixner * * Copyright (C) 2009 Zachary T Welch * * * * Partially based on drivers/mtd/nand_ids.c from Linux. * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "imp.h" /* configured NAND devices and NAND Flash command handler */ struct nand_device *nand_devices = NULL; void nand_device_add(struct nand_device *c) { if (nand_devices) { struct nand_device *p = nand_devices; while (p && p->next) p = p->next; p->next = c; } else nand_devices = c; } /* Chip ID list * * Name, ID code, pagesize, chipsize in MegaByte, eraseblock size, * options * * Pagesize; 0, 256, 512 * 0 get this information from the extended chip ID * 256 256 Byte page size * 512 512 Byte page size */ static struct nand_info nand_flash_ids[] = { /* start "museum" IDs */ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, /* end "museum" IDs */ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, {NULL, 0, 0, 0, 0, 0 } }; /* Manufacturer ID list */ static struct nand_manufacturer nand_manuf_ids[] = { {0x0, "unknown"}, {NAND_MFR_TOSHIBA, "Toshiba"}, {NAND_MFR_SAMSUNG, "Samsung"}, {NAND_MFR_FUJITSU, "Fujitsu"}, {NAND_MFR_NATIONAL, "National"}, {NAND_MFR_RENESAS, "Renesas"}, {NAND_MFR_STMICRO, "ST Micro"}, {NAND_MFR_HYNIX, "Hynix"}, {NAND_MFR_MICRON, "Micron"}, {0x0, NULL}, }; /* * Define default oob placement schemes for large and small page devices */ #if 0 static struct nand_ecclayout nand_oob_8 = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {.offset = 3, .length = 2}, {.offset = 6, .length = 2}} }; #endif struct nand_device *get_nand_device_by_name(const char *name) { unsigned requested = get_flash_name_index(name); unsigned found = 0; struct nand_device *nand; for (nand = nand_devices; NULL != nand; nand = nand->next) { if (strcmp(nand->name, name) == 0) return nand; if (!flash_driver_name_matches(nand->controller->name, name)) continue; if (++found < requested) continue; return nand; } return NULL; } struct nand_device *get_nand_device_by_num(int num) { struct nand_device *p; int i = 0; for (p = nand_devices; p; p = p->next) { if (i++ == num) { return p; } } return NULL; } COMMAND_HELPER(nand_command_get_device, unsigned name_index, struct nand_device **nand) { const char *str = CMD_ARGV[name_index]; *nand = get_nand_device_by_name(str); if (*nand) return ERROR_OK; unsigned num; COMMAND_PARSE_NUMBER(uint, str, num); *nand = get_nand_device_by_num(num); if (!*nand) { command_print(CMD_CTX, "NAND flash device '%s' not found", str); return ERROR_INVALID_ARGUMENTS; } return ERROR_OK; } int nand_build_bbt(struct nand_device *nand, int first, int last) { uint32_t page = 0x0; int i; uint8_t oob[6]; if ((first < 0) || (first >= nand->num_blocks)) first = 0; if ((last >= nand->num_blocks) || (last == -1)) last = nand->num_blocks - 1; for (i = first; i < last; i++) { nand_read_page(nand, page, NULL, 0, oob, 6); if (((nand->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff)) || (((nand->page_size == 512) && (oob[5] != 0xff)) || ((nand->page_size == 2048) && (oob[0] != 0xff)))) { LOG_WARNING("bad block: %i", i); nand->blocks[i].is_bad = 1; } else { nand->blocks[i].is_bad = 0; } page += (nand->erase_size / nand->page_size); } return ERROR_OK; } int nand_read_status(struct nand_device *nand, uint8_t *status) { if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; /* Send read status command */ nand->controller->command(nand, NAND_CMD_STATUS); alive_sleep(1); /* read status */ if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data; nand->controller->read_data(nand, &data); *status = data & 0xff; } else { nand->controller->read_data(nand, status); } return ERROR_OK; } static int nand_poll_ready(struct nand_device *nand, int timeout) { uint8_t status; nand->controller->command(nand, NAND_CMD_STATUS); do { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data; nand->controller->read_data(nand, &data); status = data & 0xff; } else { nand->controller->read_data(nand, &status); } if (status & NAND_STATUS_READY) break; alive_sleep(1); } while (timeout--); return (status & NAND_STATUS_READY) != 0; } int nand_probe(struct nand_device *nand) { uint8_t manufacturer_id, device_id; uint8_t id_buff[6]; int retval; int i; /* clear device data */ nand->device = NULL; nand->manufacturer = NULL; /* clear device parameters */ nand->bus_width = 0; nand->address_cycles = 0; nand->page_size = 0; nand->erase_size = 0; /* initialize controller (device parameters are zero, use controller default) */ if ((retval = nand->controller->init(nand) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("BUG: controller reported that it doesn't support default parameters"); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } nand->controller->command(nand, NAND_CMD_RESET); nand->controller->reset(nand); nand->controller->command(nand, NAND_CMD_READID); nand->controller->address(nand, 0x0); if (nand->bus_width == 8) { nand->controller->read_data(nand, &manufacturer_id); nand->controller->read_data(nand, &device_id); } else { uint16_t data_buf; nand->controller->read_data(nand, &data_buf); manufacturer_id = data_buf & 0xff; nand->controller->read_data(nand, &data_buf); device_id = data_buf & 0xff; } for (i = 0; nand_flash_ids[i].name; i++) { if (nand_flash_ids[i].id == device_id) { nand->device = &nand_flash_ids[i]; break; } } for (i = 0; nand_manuf_ids[i].name; i++) { if (nand_manuf_ids[i].id == manufacturer_id) { nand->manufacturer = &nand_manuf_ids[i]; break; } } if (!nand->manufacturer) { nand->manufacturer = &nand_manuf_ids[0]; nand->manufacturer->id = manufacturer_id; } if (!nand->device) { LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x", manufacturer_id, device_id); return ERROR_NAND_OPERATION_FAILED; } LOG_DEBUG("found %s (%s)", nand->device->name, nand->manufacturer->name); /* initialize device parameters */ /* bus width */ if (nand->device->options & NAND_BUSWIDTH_16) nand->bus_width = 16; else nand->bus_width = 8; /* Do we need extended device probe information? */ if (nand->device->page_size == 0 || nand->device->erase_size == 0) { if (nand->bus_width == 8) { nand->controller->read_data(nand, id_buff + 3); nand->controller->read_data(nand, id_buff + 4); nand->controller->read_data(nand, id_buff + 5); } else { uint16_t data_buf; nand->controller->read_data(nand, &data_buf); id_buff[3] = data_buf; nand->controller->read_data(nand, &data_buf); id_buff[4] = data_buf; nand->controller->read_data(nand, &data_buf); id_buff[5] = data_buf >> 8; } } /* page size */ if (nand->device->page_size == 0) { nand->page_size = 1 << (10 + (id_buff[4] & 3)); } else if (nand->device->page_size == 256) { LOG_ERROR("NAND flashes with 256 byte pagesize are not supported"); return ERROR_NAND_OPERATION_FAILED; } else { nand->page_size = nand->device->page_size; } /* number of address cycles */ if (nand->page_size <= 512) { /* small page devices */ if (nand->device->chip_size <= 32) nand->address_cycles = 3; else if (nand->device->chip_size <= 8*1024) nand->address_cycles = 4; else { LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered"); nand->address_cycles = 5; } } else { /* large page devices */ if (nand->device->chip_size <= 128) nand->address_cycles = 4; else if (nand->device->chip_size <= 32*1024) nand->address_cycles = 5; else { LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered"); nand->address_cycles = 6; } } /* erase size */ if (nand->device->erase_size == 0) { switch ((id_buff[4] >> 4) & 3) { case 0: nand->erase_size = 64 << 10; break; case 1: nand->erase_size = 128 << 10; break; case 2: nand->erase_size = 256 << 10; break; case 3: nand->erase_size =512 << 10; break; } } else { nand->erase_size = nand->device->erase_size; } /* initialize controller, but leave parameters at the controllers default */ if ((retval = nand->controller->init(nand) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)", nand->bus_width, nand->address_cycles, nand->page_size); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } nand->num_blocks = (nand->device->chip_size * 1024) / (nand->erase_size / 1024); nand->blocks = malloc(sizeof(struct nand_block) * nand->num_blocks); for (i = 0; i < nand->num_blocks; i++) { nand->blocks[i].size = nand->erase_size; nand->blocks[i].offset = i * nand->erase_size; nand->blocks[i].is_erased = -1; nand->blocks[i].is_bad = -1; } return ERROR_OK; } int nand_erase(struct nand_device *nand, int first_block, int last_block) { int i; uint32_t page; uint8_t status; int retval; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if ((first_block < 0) || (last_block > nand->num_blocks)) return ERROR_INVALID_ARGUMENTS; /* make sure we know if a block is bad before erasing it */ for (i = first_block; i <= last_block; i++) { if (nand->blocks[i].is_bad == -1) { nand_build_bbt(nand, i, last_block); break; } } for (i = first_block; i <= last_block; i++) { /* Send erase setup command */ nand->controller->command(nand, NAND_CMD_ERASE1); page = i * (nand->erase_size / nand->page_size); /* Send page address */ if (nand->page_size <= 512) { /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 32 MiB */ if (nand->address_cycles >= 4) nand->controller->address(nand, (page >> 16) & 0xff); /* 4th cycle only on devices with more than 8 GiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 24) & 0xff); } else { /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 128 MiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 16) & 0xff); } /* Send erase confirm command */ nand->controller->command(nand, NAND_CMD_ERASE2); retval = nand->controller->nand_ready ? nand->controller->nand_ready(nand, 1000) : nand_poll_ready(nand, 1000); if (!retval) { LOG_ERROR("timeout waiting for NAND flash block erase to complete"); return ERROR_NAND_OPERATION_TIMEOUT; } if ((retval = nand_read_status(nand, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & 0x1) { LOG_ERROR("didn't erase %sblock %d; status: 0x%2.2x", (nand->blocks[i].is_bad == 1) ? "bad " : "", i, status); /* continue; other blocks might still be erasable */ } nand->blocks[i].is_erased = 1; } return ERROR_OK; } #if 0 static int nand_read_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size) { uint8_t *page; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % nand->page_size) { LOG_ERROR("reads need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(nand->page_size); while (data_size > 0) { uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size; uint32_t page_address; page_address = address / nand->page_size; nand_read_page(nand, page_address, page, nand->page_size, NULL, 0); memcpy(data, page, thisrun_size); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } static int nand_write_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size) { uint8_t *page; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % nand->page_size) { LOG_ERROR("writes need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(nand->page_size); while (data_size > 0) { uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size; uint32_t page_address; memset(page, 0xff, nand->page_size); memcpy(page, data, thisrun_size); page_address = address / nand->page_size; nand_write_page(nand, page_address, page, nand->page_size, NULL, 0); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } #endif int nand_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t block; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; block = page / (nand->erase_size / nand->page_size); if (nand->blocks[block].is_erased == 1) nand->blocks[block].is_erased = 0; if (nand->use_raw || nand->controller->write_page == NULL) return nand_write_page_raw(nand, page, data, data_size, oob, oob_size); else return nand->controller->write_page(nand, page, data, data_size, oob, oob_size); } int nand_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (nand->use_raw || nand->controller->read_page == NULL) return nand_read_page_raw(nand, page, data, data_size, oob, oob_size); else return nand->controller->read_page(nand, page, data, data_size, oob, oob_size); } int nand_page_command(struct nand_device *nand, uint32_t page, uint8_t cmd, bool oob_only) { if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (oob_only && NAND_CMD_READ0 == cmd && nand->page_size <= 512) cmd = NAND_CMD_READOOB; nand->controller->command(nand, cmd); if (nand->page_size <= 512) { /* small page device */ /* column (always 0, we start at the beginning of a page/OOB area) */ nand->controller->address(nand, 0x0); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 4th cycle only on devices with more than 32 MiB */ if (nand->address_cycles >= 4) nand->controller->address(nand, (page >> 16) & 0xff); /* 5th cycle only on devices with more than 8 GiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 24) & 0xff); } else { /* large page device */ /* column (0 when we start at the beginning of a page, * or 2048 for the beginning of OOB area) */ nand->controller->address(nand, 0x0); if (oob_only) nand->controller->address(nand, 0x8); else nand->controller->address(nand, 0x0); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 5th cycle only on devices with more than 128 MiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 16) & 0xff); /* large page devices need a start command if reading */ if (NAND_CMD_READ0 == cmd) nand->controller->command(nand, NAND_CMD_READSTART); } if (nand->controller->nand_ready) { if (!nand->controller->nand_ready(nand, 100)) return ERROR_NAND_OPERATION_TIMEOUT; } else { alive_sleep(1); } return ERROR_OK; } int nand_read_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t i; int retval; retval = nand_page_command(nand, page, NAND_CMD_READ0, !data); if (ERROR_OK != retval) return retval; if (data) { if (nand->controller->read_block_data != NULL) (nand->controller->read_block_data)(nand, data, data_size); else { for (i = 0; i < data_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { nand->controller->read_data(nand, data); data += 2; i += 2; } else { nand->controller->read_data(nand, data); data += 1; i += 1; } } } } if (oob) { if (nand->controller->read_block_data != NULL) (nand->controller->read_block_data)(nand, oob, oob_size); else { for (i = 0; i < oob_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { nand->controller->read_data(nand, oob); oob += 2; i += 2; } else { nand->controller->read_data(nand, oob); oob += 1; i += 1; } } } } return ERROR_OK; } int nand_write_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t i; int retval; uint8_t status; retval = nand_page_command(nand, page, NAND_CMD_SEQIN, !data); if (ERROR_OK != retval) return retval; if (data) { if (nand->controller->write_block_data != NULL) (nand->controller->write_block_data)(nand, data, data_size); else { for (i = 0; i < data_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data_buf = le_to_h_u16(data); nand->controller->write_data(nand, data_buf); data += 2; i += 2; } else { nand->controller->write_data(nand, *data); data += 1; i += 1; } } } } if (oob) { if (nand->controller->write_block_data != NULL) (nand->controller->write_block_data)(nand, oob, oob_size); else { for (i = 0; i < oob_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t oob_buf = le_to_h_u16(data); nand->controller->write_data(nand, oob_buf); oob += 2; i += 2; } else { nand->controller->write_data(nand, *oob); oob += 1; i += 1; } } } } nand->controller->command(nand, NAND_CMD_PAGEPROG); retval = nand->controller->nand_ready ? nand->controller->nand_ready(nand, 100) : nand_poll_ready(nand, 100); if (!retval) return ERROR_NAND_OPERATION_TIMEOUT; if ((retval = nand_read_status(nand, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & NAND_STATUS_FAIL) { LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status); return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; }