/*************************************************************************** * Copyright (C) 2007 by Dominic Rath * * Dominic.Rath@gmx.de * * * * Partially based on drivers/mtd/nand_ids.c from Linux. * * Copyright (C) 2002 Thomas Gleixner * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU General Public License as published by * * the Free Software Foundation; either version 2 of the License, or * * (at your option) any later version. * * * * This program is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this program; if not, write to the * * Free Software Foundation, Inc., * * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * ***************************************************************************/ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "nand.h" #include "common.h" #include "time_support.h" #include "fileio.h" static int nand_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size); //static int nand_read_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size); static int nand_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size); /* NAND flash controller */ extern struct nand_flash_controller davinci_nand_controller; extern struct nand_flash_controller lpc3180_nand_controller; extern struct nand_flash_controller orion_nand_controller; extern struct nand_flash_controller s3c2410_nand_controller; extern struct nand_flash_controller s3c2412_nand_controller; extern struct nand_flash_controller s3c2440_nand_controller; extern struct nand_flash_controller s3c2443_nand_controller; extern struct nand_flash_controller imx31_nand_flash_controller; /* extern struct nand_flash_controller boundary_scan_nand_controller; */ static struct nand_flash_controller *nand_flash_controllers[] = { &davinci_nand_controller, &lpc3180_nand_controller, &orion_nand_controller, &s3c2410_nand_controller, &s3c2412_nand_controller, &s3c2440_nand_controller, &s3c2443_nand_controller, &imx31_nand_flash_controller, /* &boundary_scan_nand_controller, */ NULL }; /* configured NAND devices and NAND Flash command handler */ static struct nand_device *nand_devices = NULL; static struct command *nand_cmd; /* Chip ID list * * Name, ID code, pagesize, chipsize in MegaByte, eraseblock size, * options * * Pagesize; 0, 256, 512 * 0 get this information from the extended chip ID * 256 256 Byte page size * 512 512 Byte page size */ static struct nand_info nand_flash_ids[] = { /* start "museum" IDs */ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, /* end "museum" IDs */ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 8-bit", 0x39, 512, 128, 0x4000, 0}, {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 1,8V 16-bit", 0x49, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 128MiB 3,3V 16-bit", 0x59, 512, 128, 0x4000, NAND_BUSWIDTH_16}, {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, {"NAND 64MiB 1,8V 8-bit", 0xA2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 3,3V 8-bit", 0xF2, 0, 64, 0, LP_OPTIONS}, {"NAND 64MiB 1,8V 16-bit", 0xB2, 0, 64, 0, LP_OPTIONS16}, {"NAND 64MiB 3,3V 16-bit", 0xC2, 0, 64, 0, LP_OPTIONS16}, {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, LP_OPTIONS}, {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, LP_OPTIONS16}, {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, LP_OPTIONS16}, {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, LP_OPTIONS}, {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, LP_OPTIONS16}, {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, LP_OPTIONS16}, {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, LP_OPTIONS}, {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, LP_OPTIONS16}, {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, LP_OPTIONS16}, {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, LP_OPTIONS}, {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, LP_OPTIONS16}, {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, LP_OPTIONS}, {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, LP_OPTIONS16}, {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, LP_OPTIONS16}, {NULL, 0, 0, 0, 0, 0 } }; /* Manufacturer ID list */ static struct nand_manufacturer nand_manuf_ids[] = { {0x0, "unknown"}, {NAND_MFR_TOSHIBA, "Toshiba"}, {NAND_MFR_SAMSUNG, "Samsung"}, {NAND_MFR_FUJITSU, "Fujitsu"}, {NAND_MFR_NATIONAL, "National"}, {NAND_MFR_RENESAS, "Renesas"}, {NAND_MFR_STMICRO, "ST Micro"}, {NAND_MFR_HYNIX, "Hynix"}, {NAND_MFR_MICRON, "Micron"}, {0x0, NULL}, }; /* * Define default oob placement schemes for large and small page devices */ #if 0 static struct nand_ecclayout nand_oob_8 = { .eccbytes = 3, .eccpos = {0, 1, 2}, .oobfree = { {.offset = 3, .length = 2}, {.offset = 6, .length = 2}} }; #endif static struct nand_ecclayout nand_oob_16 = { .eccbytes = 6, .eccpos = {0, 1, 2, 3, 6, 7}, .oobfree = { {.offset = 8, . length = 8}} }; static struct nand_ecclayout nand_oob_64 = { .eccbytes = 24, .eccpos = { 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63}, .oobfree = { {.offset = 2, .length = 38}} }; /* nand device [controller options] */ COMMAND_HANDLER(handle_nand_device_command) { int i; int retval; if (CMD_ARGC < 1) { LOG_WARNING("incomplete flash device nand configuration"); return ERROR_FLASH_BANK_INVALID; } for (i = 0; nand_flash_controllers[i]; i++) { struct nand_device *p, *c; if (strcmp(CMD_ARGV[0], nand_flash_controllers[i]->name) == 0) { /* register flash specific commands */ if ((retval = nand_flash_controllers[i]->register_commands(CMD_CTX)) != ERROR_OK) { LOG_ERROR("couldn't register '%s' commands", CMD_ARGV[0]); return retval; } c = malloc(sizeof(struct nand_device)); c->controller = nand_flash_controllers[i]; c->controller_priv = NULL; c->manufacturer = NULL; c->device = NULL; c->bus_width = 0; c->address_cycles = 0; c->page_size = 0; c->use_raw = 0; c->next = NULL; retval = CALL_COMMAND_HANDLER(nand_flash_controllers[i]->nand_device_command, c); if (ERROR_OK != retval) { LOG_ERROR("'%s' driver rejected nand flash", c->controller->name); free(c); return ERROR_OK; } /* put NAND device in linked list */ if (nand_devices) { /* find last flash device */ for (p = nand_devices; p && p->next; p = p->next); if (p) p->next = c; } else { nand_devices = c; } return ERROR_OK; } } /* no valid NAND controller was found (i.e. the configuration option, * didn't match one of the compiled-in controllers) */ LOG_ERROR("No valid NAND flash controller found (%s)", CMD_ARGV[0]); LOG_ERROR("compiled-in NAND flash controllers:"); for (i = 0; nand_flash_controllers[i]; i++) { LOG_ERROR("%i: %s", i, nand_flash_controllers[i]->name); } return ERROR_OK; } int nand_register_commands(struct command_context *cmd_ctx) { nand_cmd = register_command(cmd_ctx, NULL, "nand", NULL, COMMAND_ANY, "NAND specific commands"); register_command(cmd_ctx, nand_cmd, "device", handle_nand_device_command, COMMAND_CONFIG, NULL); return ERROR_OK; } struct nand_device *get_nand_device_by_name(const char *name) { unsigned requested = get_flash_name_index(name); unsigned found = 0; struct nand_device *nand; for (nand = nand_devices; NULL != nand; nand = nand->next) { if (!flash_driver_name_matches(nand->controller->name, name)) continue; if (++found < requested) continue; return nand; } return NULL; } struct nand_device *get_nand_device_by_num(int num) { struct nand_device *p; int i = 0; for (p = nand_devices; p; p = p->next) { if (i++ == num) { return p; } } return NULL; } COMMAND_HELPER(nand_command_get_device_by_num, unsigned name_index, struct nand_device **nand) { const char *str = CMD_ARGV[name_index]; *nand = get_nand_device_by_name(str); if (*nand) return ERROR_OK; unsigned num; COMMAND_PARSE_NUMBER(uint, str, num); *nand = get_nand_device_by_num(num); if (!*nand) { command_print(CMD_CTX, "NAND flash device '%s' not found", str); return ERROR_INVALID_ARGUMENTS; } return ERROR_OK; } static int nand_build_bbt(struct nand_device *nand, int first, int last) { uint32_t page = 0x0; int i; uint8_t oob[6]; if ((first < 0) || (first >= nand->num_blocks)) first = 0; if ((last >= nand->num_blocks) || (last == -1)) last = nand->num_blocks - 1; for (i = first; i < last; i++) { nand_read_page(nand, page, NULL, 0, oob, 6); if (((nand->device->options & NAND_BUSWIDTH_16) && ((oob[0] & oob[1]) != 0xff)) || (((nand->page_size == 512) && (oob[5] != 0xff)) || ((nand->page_size == 2048) && (oob[0] != 0xff)))) { LOG_WARNING("bad block: %i", i); nand->blocks[i].is_bad = 1; } else { nand->blocks[i].is_bad = 0; } page += (nand->erase_size / nand->page_size); } return ERROR_OK; } int nand_read_status(struct nand_device *nand, uint8_t *status) { if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; /* Send read status command */ nand->controller->command(nand, NAND_CMD_STATUS); alive_sleep(1); /* read status */ if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data; nand->controller->read_data(nand, &data); *status = data & 0xff; } else { nand->controller->read_data(nand, status); } return ERROR_OK; } static int nand_poll_ready(struct nand_device *nand, int timeout) { uint8_t status; nand->controller->command(nand, NAND_CMD_STATUS); do { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data; nand->controller->read_data(nand, &data); status = data & 0xff; } else { nand->controller->read_data(nand, &status); } if (status & NAND_STATUS_READY) break; alive_sleep(1); } while (timeout--); return (status & NAND_STATUS_READY) != 0; } int nand_probe(struct nand_device *nand) { uint8_t manufacturer_id, device_id; uint8_t id_buff[6]; int retval; int i; /* clear device data */ nand->device = NULL; nand->manufacturer = NULL; /* clear device parameters */ nand->bus_width = 0; nand->address_cycles = 0; nand->page_size = 0; nand->erase_size = 0; /* initialize controller (device parameters are zero, use controller default) */ if ((retval = nand->controller->init(nand) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("BUG: controller reported that it doesn't support default parameters"); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } nand->controller->command(nand, NAND_CMD_RESET); nand->controller->reset(nand); nand->controller->command(nand, NAND_CMD_READID); nand->controller->address(nand, 0x0); if (nand->bus_width == 8) { nand->controller->read_data(nand, &manufacturer_id); nand->controller->read_data(nand, &device_id); } else { uint16_t data_buf; nand->controller->read_data(nand, &data_buf); manufacturer_id = data_buf & 0xff; nand->controller->read_data(nand, &data_buf); device_id = data_buf & 0xff; } for (i = 0; nand_flash_ids[i].name; i++) { if (nand_flash_ids[i].id == device_id) { nand->device = &nand_flash_ids[i]; break; } } for (i = 0; nand_manuf_ids[i].name; i++) { if (nand_manuf_ids[i].id == manufacturer_id) { nand->manufacturer = &nand_manuf_ids[i]; break; } } if (!nand->manufacturer) { nand->manufacturer = &nand_manuf_ids[0]; nand->manufacturer->id = manufacturer_id; } if (!nand->device) { LOG_ERROR("unknown NAND flash device found, manufacturer id: 0x%2.2x device id: 0x%2.2x", manufacturer_id, device_id); return ERROR_NAND_OPERATION_FAILED; } LOG_DEBUG("found %s (%s)", nand->device->name, nand->manufacturer->name); /* initialize device parameters */ /* bus width */ if (nand->device->options & NAND_BUSWIDTH_16) nand->bus_width = 16; else nand->bus_width = 8; /* Do we need extended device probe information? */ if (nand->device->page_size == 0 || nand->device->erase_size == 0) { if (nand->bus_width == 8) { nand->controller->read_data(nand, id_buff + 3); nand->controller->read_data(nand, id_buff + 4); nand->controller->read_data(nand, id_buff + 5); } else { uint16_t data_buf; nand->controller->read_data(nand, &data_buf); id_buff[3] = data_buf; nand->controller->read_data(nand, &data_buf); id_buff[4] = data_buf; nand->controller->read_data(nand, &data_buf); id_buff[5] = data_buf >> 8; } } /* page size */ if (nand->device->page_size == 0) { nand->page_size = 1 << (10 + (id_buff[4] & 3)); } else if (nand->device->page_size == 256) { LOG_ERROR("NAND flashes with 256 byte pagesize are not supported"); return ERROR_NAND_OPERATION_FAILED; } else { nand->page_size = nand->device->page_size; } /* number of address cycles */ if (nand->page_size <= 512) { /* small page devices */ if (nand->device->chip_size <= 32) nand->address_cycles = 3; else if (nand->device->chip_size <= 8*1024) nand->address_cycles = 4; else { LOG_ERROR("BUG: small page NAND device with more than 8 GiB encountered"); nand->address_cycles = 5; } } else { /* large page devices */ if (nand->device->chip_size <= 128) nand->address_cycles = 4; else if (nand->device->chip_size <= 32*1024) nand->address_cycles = 5; else { LOG_ERROR("BUG: large page NAND device with more than 32 GiB encountered"); nand->address_cycles = 6; } } /* erase size */ if (nand->device->erase_size == 0) { switch ((id_buff[4] >> 4) & 3) { case 0: nand->erase_size = 64 << 10; break; case 1: nand->erase_size = 128 << 10; break; case 2: nand->erase_size = 256 << 10; break; case 3: nand->erase_size =512 << 10; break; } } else { nand->erase_size = nand->device->erase_size; } /* initialize controller, but leave parameters at the controllers default */ if ((retval = nand->controller->init(nand) != ERROR_OK)) { switch (retval) { case ERROR_NAND_OPERATION_FAILED: LOG_DEBUG("controller initialization failed"); return ERROR_NAND_OPERATION_FAILED; case ERROR_NAND_OPERATION_NOT_SUPPORTED: LOG_ERROR("controller doesn't support requested parameters (buswidth: %i, address cycles: %i, page size: %i)", nand->bus_width, nand->address_cycles, nand->page_size); return ERROR_NAND_OPERATION_FAILED; default: LOG_ERROR("BUG: unknown controller initialization failure"); return ERROR_NAND_OPERATION_FAILED; } } nand->num_blocks = (nand->device->chip_size * 1024) / (nand->erase_size / 1024); nand->blocks = malloc(sizeof(struct nand_block) * nand->num_blocks); for (i = 0; i < nand->num_blocks; i++) { nand->blocks[i].size = nand->erase_size; nand->blocks[i].offset = i * nand->erase_size; nand->blocks[i].is_erased = -1; nand->blocks[i].is_bad = -1; } return ERROR_OK; } static int nand_erase(struct nand_device *nand, int first_block, int last_block) { int i; uint32_t page; uint8_t status; int retval; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if ((first_block < 0) || (last_block > nand->num_blocks)) return ERROR_INVALID_ARGUMENTS; /* make sure we know if a block is bad before erasing it */ for (i = first_block; i <= last_block; i++) { if (nand->blocks[i].is_bad == -1) { nand_build_bbt(nand, i, last_block); break; } } for (i = first_block; i <= last_block; i++) { /* Send erase setup command */ nand->controller->command(nand, NAND_CMD_ERASE1); page = i * (nand->erase_size / nand->page_size); /* Send page address */ if (nand->page_size <= 512) { /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 32 MiB */ if (nand->address_cycles >= 4) nand->controller->address(nand, (page >> 16) & 0xff); /* 4th cycle only on devices with more than 8 GiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 24) & 0xff); } else { /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 3rd cycle only on devices with more than 128 MiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 16) & 0xff); } /* Send erase confirm command */ nand->controller->command(nand, NAND_CMD_ERASE2); retval = nand->controller->nand_ready ? nand->controller->nand_ready(nand, 1000) : nand_poll_ready(nand, 1000); if (!retval) { LOG_ERROR("timeout waiting for NAND flash block erase to complete"); return ERROR_NAND_OPERATION_TIMEOUT; } if ((retval = nand_read_status(nand, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & 0x1) { LOG_ERROR("didn't erase %sblock %d; status: 0x%2.2x", (nand->blocks[i].is_bad == 1) ? "bad " : "", i, status); /* continue; other blocks might still be erasable */ } nand->blocks[i].is_erased = 1; } return ERROR_OK; } #if 0 static int nand_read_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size) { uint8_t *page; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % nand->page_size) { LOG_ERROR("reads need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(nand->page_size); while (data_size > 0) { uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size; uint32_t page_address; page_address = address / nand->page_size; nand_read_page(nand, page_address, page, nand->page_size, NULL, 0); memcpy(data, page, thisrun_size); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } static int nand_write_plain(struct nand_device *nand, uint32_t address, uint8_t *data, uint32_t data_size) { uint8_t *page; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (address % nand->page_size) { LOG_ERROR("writes need to be page aligned"); return ERROR_NAND_OPERATION_FAILED; } page = malloc(nand->page_size); while (data_size > 0) { uint32_t thisrun_size = (data_size > nand->page_size) ? nand->page_size : data_size; uint32_t page_address; memset(page, 0xff, nand->page_size); memcpy(page, data, thisrun_size); page_address = address / nand->page_size; nand_write_page(nand, page_address, page, nand->page_size, NULL, 0); address += thisrun_size; data += thisrun_size; data_size -= thisrun_size; } free(page); return ERROR_OK; } #endif int nand_write_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t block; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; block = page / (nand->erase_size / nand->page_size); if (nand->blocks[block].is_erased == 1) nand->blocks[block].is_erased = 0; if (nand->use_raw || nand->controller->write_page == NULL) return nand_write_page_raw(nand, page, data, data_size, oob, oob_size); else return nand->controller->write_page(nand, page, data, data_size, oob, oob_size); } static int nand_read_page(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (nand->use_raw || nand->controller->read_page == NULL) return nand_read_page_raw(nand, page, data, data_size, oob, oob_size); else return nand->controller->read_page(nand, page, data, data_size, oob, oob_size); } int nand_read_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t i; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; if (nand->page_size <= 512) { /* small page device */ if (data) nand->controller->command(nand, NAND_CMD_READ0); else nand->controller->command(nand, NAND_CMD_READOOB); /* column (always 0, we start at the beginning of a page/OOB area) */ nand->controller->address(nand, 0x0); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 4th cycle only on devices with more than 32 MiB */ if (nand->address_cycles >= 4) nand->controller->address(nand, (page >> 16) & 0xff); /* 5th cycle only on devices with more than 8 GiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 24) & 0xff); } else { /* large page device */ nand->controller->command(nand, NAND_CMD_READ0); /* column (0 when we start at the beginning of a page, * or 2048 for the beginning of OOB area) */ nand->controller->address(nand, 0x0); if (data) nand->controller->address(nand, 0x0); else nand->controller->address(nand, 0x8); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 5th cycle only on devices with more than 128 MiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 16) & 0xff); /* large page devices need a start command */ nand->controller->command(nand, NAND_CMD_READSTART); } if (nand->controller->nand_ready) { if (!nand->controller->nand_ready(nand, 100)) return ERROR_NAND_OPERATION_TIMEOUT; } else { alive_sleep(1); } if (data) { if (nand->controller->read_block_data != NULL) (nand->controller->read_block_data)(nand, data, data_size); else { for (i = 0; i < data_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { nand->controller->read_data(nand, data); data += 2; i += 2; } else { nand->controller->read_data(nand, data); data += 1; i += 1; } } } } if (oob) { if (nand->controller->read_block_data != NULL) (nand->controller->read_block_data)(nand, oob, oob_size); else { for (i = 0; i < oob_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { nand->controller->read_data(nand, oob); oob += 2; i += 2; } else { nand->controller->read_data(nand, oob); oob += 1; i += 1; } } } } return ERROR_OK; } int nand_write_page_raw(struct nand_device *nand, uint32_t page, uint8_t *data, uint32_t data_size, uint8_t *oob, uint32_t oob_size) { uint32_t i; int retval; uint8_t status; if (!nand->device) return ERROR_NAND_DEVICE_NOT_PROBED; nand->controller->command(nand, NAND_CMD_SEQIN); if (nand->page_size <= 512) { /* column (always 0, we start at the beginning of a page/OOB area) */ nand->controller->address(nand, 0x0); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 4th cycle only on devices with more than 32 MiB */ if (nand->address_cycles >= 4) nand->controller->address(nand, (page >> 16) & 0xff); /* 5th cycle only on devices with more than 8 GiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 24) & 0xff); } else { /* column (0 when we start at the beginning of a page, * or 2048 for the beginning of OOB area) */ nand->controller->address(nand, 0x0); if (data) nand->controller->address(nand, 0x0); else nand->controller->address(nand, 0x8); /* row */ nand->controller->address(nand, page & 0xff); nand->controller->address(nand, (page >> 8) & 0xff); /* 5th cycle only on devices with more than 128 MiB */ if (nand->address_cycles >= 5) nand->controller->address(nand, (page >> 16) & 0xff); } if (data) { if (nand->controller->write_block_data != NULL) (nand->controller->write_block_data)(nand, data, data_size); else { for (i = 0; i < data_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t data_buf = le_to_h_u16(data); nand->controller->write_data(nand, data_buf); data += 2; i += 2; } else { nand->controller->write_data(nand, *data); data += 1; i += 1; } } } } if (oob) { if (nand->controller->write_block_data != NULL) (nand->controller->write_block_data)(nand, oob, oob_size); else { for (i = 0; i < oob_size;) { if (nand->device->options & NAND_BUSWIDTH_16) { uint16_t oob_buf = le_to_h_u16(data); nand->controller->write_data(nand, oob_buf); oob += 2; i += 2; } else { nand->controller->write_data(nand, *oob); oob += 1; i += 1; } } } } nand->controller->command(nand, NAND_CMD_PAGEPROG); retval = nand->controller->nand_ready ? nand->controller->nand_ready(nand, 100) : nand_poll_ready(nand, 100); if (!retval) return ERROR_NAND_OPERATION_TIMEOUT; if ((retval = nand_read_status(nand, &status)) != ERROR_OK) { LOG_ERROR("couldn't read status"); return ERROR_NAND_OPERATION_FAILED; } if (status & NAND_STATUS_FAIL) { LOG_ERROR("write operation didn't pass, status: 0x%2.2x", status); return ERROR_NAND_OPERATION_FAILED; } return ERROR_OK; } COMMAND_HANDLER(handle_nand_list_command) { struct nand_device *p; int i; if (!nand_devices) { command_print(CMD_CTX, "no NAND flash devices configured"); return ERROR_OK; } for (p = nand_devices, i = 0; p; p = p->next, i++) { if (p->device) command_print(CMD_CTX, "#%i: %s (%s) " "pagesize: %i, buswidth: %i,\n\t" "blocksize: %i, blocks: %i", i, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size, p->num_blocks); else command_print(CMD_CTX, "#%i: not probed", i); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_info_command) { int i = 0; int j = 0; int first = -1; int last = -1; struct nand_device *p; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &p); if (ERROR_OK != retval) return retval; switch (CMD_ARGC) { default: return ERROR_COMMAND_SYNTAX_ERROR; case 1: first = 0; last = INT32_MAX; break; case 2: COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], i); first = last = i; i = 0; break; case 3: COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], first); COMMAND_PARSE_NUMBER(int, CMD_ARGV[2], last); break; } if (NULL == p->device) { command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]); return ERROR_OK; } if (first >= p->num_blocks) first = p->num_blocks - 1; if (last >= p->num_blocks) last = p->num_blocks - 1; command_print(CMD_CTX, "#%i: %s (%s) pagesize: %i, buswidth: %i, erasesize: %i", i++, p->device->name, p->manufacturer->name, p->page_size, p->bus_width, p->erase_size); for (j = first; j <= last; j++) { char *erase_state, *bad_state; if (p->blocks[j].is_erased == 0) erase_state = "not erased"; else if (p->blocks[j].is_erased == 1) erase_state = "erased"; else erase_state = "erase state unknown"; if (p->blocks[j].is_bad == 0) bad_state = ""; else if (p->blocks[j].is_bad == 1) bad_state = " (marked bad)"; else bad_state = " (block condition unknown)"; command_print(CMD_CTX, "\t#%i: 0x%8.8" PRIx32 " (%" PRId32 "kB) %s%s", j, p->blocks[j].offset, p->blocks[j].size / 1024, erase_state, bad_state); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_probe_command) { if (CMD_ARGC != 1) { return ERROR_COMMAND_SYNTAX_ERROR; } struct nand_device *p; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &p); if (ERROR_OK != retval) return retval; if ((retval = nand_probe(p)) == ERROR_OK) { command_print(CMD_CTX, "NAND flash device '%s' found", p->device->name); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(CMD_CTX, "probing failed for NAND flash device"); } else { command_print(CMD_CTX, "unknown error when probing NAND flash device"); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_erase_command) { if (CMD_ARGC != 1 && CMD_ARGC != 3) { return ERROR_COMMAND_SYNTAX_ERROR; } struct nand_device *p; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &p); if (ERROR_OK != retval) return retval; unsigned long offset; unsigned long length; /* erase specified part of the chip; or else everything */ if (CMD_ARGC == 3) { unsigned long size = p->erase_size * p->num_blocks; COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], offset); if ((offset % p->erase_size) != 0 || offset >= size) return ERROR_INVALID_ARGUMENTS; COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], length); if ((length == 0) || (length % p->erase_size) != 0 || (length + offset) > size) return ERROR_INVALID_ARGUMENTS; offset /= p->erase_size; length /= p->erase_size; } else { offset = 0; length = p->num_blocks; } retval = nand_erase(p, offset, offset + length - 1); if (retval == ERROR_OK) { command_print(CMD_CTX, "erased blocks %lu to %lu " "on NAND flash device #%s '%s'", offset, offset + length, CMD_ARGV[0], p->device->name); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(CMD_CTX, "erase failed"); } else { command_print(CMD_CTX, "unknown error when erasing NAND flash device"); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_check_bad_blocks_command) { int first = -1; int last = -1; if ((CMD_ARGC < 1) || (CMD_ARGC > 3) || (CMD_ARGC == 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } struct nand_device *p; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &p); if (ERROR_OK != retval) return retval; if (CMD_ARGC == 3) { unsigned long offset; unsigned long length; COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[1], offset); if (offset % p->erase_size) return ERROR_INVALID_ARGUMENTS; offset /= p->erase_size; COMMAND_PARSE_NUMBER(ulong, CMD_ARGV[2], length); if (length % p->erase_size) return ERROR_INVALID_ARGUMENTS; length -= 1; length /= p->erase_size; first = offset; last = offset + length; } retval = nand_build_bbt(p, first, last); if (retval == ERROR_OK) { command_print(CMD_CTX, "checked NAND flash device for bad blocks, " "use \"nand info\" command to list blocks"); } else if (retval == ERROR_NAND_OPERATION_FAILED) { command_print(CMD_CTX, "error when checking for bad blocks on " "NAND flash device"); } else { command_print(CMD_CTX, "unknown error when checking for bad " "blocks on NAND flash device"); } return ERROR_OK; } struct nand_fileio_state { uint32_t address; uint32_t size; uint8_t *page; uint32_t page_size; enum oob_formats oob_format; uint8_t *oob; uint32_t oob_size; const int *eccpos; bool file_opened; struct fileio fileio; struct duration bench; }; static void nand_fileio_init(struct nand_fileio_state *state) { memset(state, 0, sizeof(*state)); state->oob_format = NAND_OOB_NONE; } static int nand_fileio_start(struct command_context *cmd_ctx, struct nand_device *nand, const char *filename, int filemode, struct nand_fileio_state *state) { if (state->address % nand->page_size) { command_print(cmd_ctx, "only page-aligned addresses are supported"); return ERROR_COMMAND_SYNTAX_ERROR; } duration_start(&state->bench); if (NULL != filename) { int retval = fileio_open(&state->fileio, filename, filemode, FILEIO_BINARY); if (ERROR_OK != retval) { const char *msg = (FILEIO_READ == filemode) ? "read" : "write"; command_print(cmd_ctx, "failed to open '%s' for %s access", filename, msg); return retval; } state->file_opened = true; } if (!(state->oob_format & NAND_OOB_ONLY)) { state->page_size = nand->page_size; state->page = malloc(nand->page_size); } if (state->oob_format & (NAND_OOB_RAW | NAND_OOB_SW_ECC | NAND_OOB_SW_ECC_KW)) { if (nand->page_size == 512) { state->oob_size = 16; state->eccpos = nand_oob_16.eccpos; } else if (nand->page_size == 2048) { state->oob_size = 64; state->eccpos = nand_oob_64.eccpos; } state->oob = malloc(state->oob_size); } return ERROR_OK; } static int nand_fileio_cleanup(struct nand_fileio_state *state) { if (state->file_opened) fileio_close(&state->fileio); if (state->oob) { free(state->oob); state->oob = NULL; } if (state->page) { free(state->page); state->page = NULL; } return ERROR_OK; } static int nand_fileio_finish(struct nand_fileio_state *state) { nand_fileio_cleanup(state); return duration_measure(&state->bench); } static COMMAND_HELPER(nand_fileio_parse_args, struct nand_fileio_state *state, struct nand_device **dev, enum fileio_access filemode, bool need_size, bool sw_ecc) { nand_fileio_init(state); unsigned minargs = need_size ? 4 : 3; if (CMD_ARGC < minargs) return ERROR_COMMAND_SYNTAX_ERROR; struct nand_device *nand; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &nand); if (ERROR_OK != retval) return retval; if (NULL == nand->device) { command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]); return ERROR_OK; } COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], state->address); if (need_size) { COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], state->size); if (state->size % nand->page_size) { command_print(CMD_CTX, "only page-aligned sizes are supported"); return ERROR_COMMAND_SYNTAX_ERROR; } } if (CMD_ARGC > minargs) { for (unsigned i = minargs; i < CMD_ARGC; i++) { if (!strcmp(CMD_ARGV[i], "oob_raw")) state->oob_format |= NAND_OOB_RAW; else if (!strcmp(CMD_ARGV[i], "oob_only")) state->oob_format |= NAND_OOB_RAW | NAND_OOB_ONLY; else if (sw_ecc && !strcmp(CMD_ARGV[i], "oob_softecc")) state->oob_format |= NAND_OOB_SW_ECC; else if (sw_ecc && !strcmp(CMD_ARGV[i], "oob_softecc_kw")) state->oob_format |= NAND_OOB_SW_ECC_KW; else { command_print(CMD_CTX, "unknown option: %s", CMD_ARGV[i]); return ERROR_COMMAND_SYNTAX_ERROR; } } } retval = nand_fileio_start(CMD_CTX, nand, CMD_ARGV[1], filemode, state); if (ERROR_OK != retval) return retval; if (!need_size) state->size = state->fileio.size; *dev = nand; return ERROR_OK; } /** * @returns If no error occurred, returns number of bytes consumed; * otherwise, returns a negative error code.) */ static int nand_fileio_read(struct nand_device *nand, struct nand_fileio_state *s) { size_t total_read = 0; size_t one_read; if (NULL != s->page) { fileio_read(&s->fileio, s->page_size, s->page, &one_read); if (one_read < s->page_size) memset(s->page + one_read, 0xff, s->page_size - one_read); total_read += one_read; } if (s->oob_format & NAND_OOB_SW_ECC) { uint8_t ecc[3]; memset(s->oob, 0xff, s->oob_size); for (uint32_t i = 0, j = 0; i < s->page_size; i += 256) { nand_calculate_ecc(nand, s->page + i, ecc); s->oob[s->eccpos[j++]] = ecc[0]; s->oob[s->eccpos[j++]] = ecc[1]; s->oob[s->eccpos[j++]] = ecc[2]; } } else if (s->oob_format & NAND_OOB_SW_ECC_KW) { /* * In this case eccpos is not used as * the ECC data is always stored contigously * at the end of the OOB area. It consists * of 10 bytes per 512-byte data block. */ uint8_t *ecc = s->oob + s->oob_size - s->page_size / 512 * 10; memset(s->oob, 0xff, s->oob_size); for (uint32_t i = 0; i < s->page_size; i += 512) { nand_calculate_ecc_kw(nand, s->page + i, ecc); ecc += 10; } } else if (NULL != s->oob) { fileio_read(&s->fileio, s->oob_size, s->oob, &one_read); if (one_read < s->oob_size) memset(s->oob + one_read, 0xff, s->oob_size - one_read); total_read += one_read; } return total_read; } COMMAND_HANDLER(handle_nand_write_command) { struct nand_device *nand = NULL; struct nand_fileio_state s; int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args, &s, &nand, FILEIO_READ, false, true); if (ERROR_OK != retval) return retval; uint32_t total_bytes = s.size; while (s.size > 0) { int bytes_read = nand_fileio_read(nand, &s); if (bytes_read <= 0) { command_print(CMD_CTX, "error while reading file"); return nand_fileio_cleanup(&s); } s.size -= bytes_read; retval = nand_write_page(nand, s.address / nand->page_size, s.page, s.page_size, s.oob, s.oob_size); if (ERROR_OK != retval) { command_print(CMD_CTX, "failed writing file %s " "to NAND flash %s at offset 0x%8.8" PRIx32, CMD_ARGV[1], CMD_ARGV[0], s.address); return nand_fileio_cleanup(&s); } s.address += s.page_size; } if (nand_fileio_finish(&s)) { command_print(CMD_CTX, "wrote file %s to NAND flash %s up to " "offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)", CMD_ARGV[1], CMD_ARGV[0], s.address, duration_elapsed(&s.bench), duration_kbps(&s.bench, total_bytes)); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_verify_command) { struct nand_device *nand = NULL; struct nand_fileio_state file; int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args, &file, &nand, FILEIO_READ, false, true); if (ERROR_OK != retval) return retval; struct nand_fileio_state dev; nand_fileio_init(&dev); dev.address = file.address; dev.size = file.size; dev.oob_format = file.oob_format; retval = nand_fileio_start(CMD_CTX, nand, NULL, FILEIO_NONE, &dev); if (ERROR_OK != retval) return retval; while (file.size > 0) { int retval = nand_read_page(nand, dev.address / dev.page_size, dev.page, dev.page_size, dev.oob, dev.oob_size); if (ERROR_OK != retval) { command_print(CMD_CTX, "reading NAND flash page failed"); nand_fileio_cleanup(&dev); return nand_fileio_cleanup(&file); } int bytes_read = nand_fileio_read(nand, &file); if (bytes_read <= 0) { command_print(CMD_CTX, "error while reading file"); nand_fileio_cleanup(&dev); return nand_fileio_cleanup(&file); } if ((dev.page && memcmp(dev.page, file.page, dev.page_size)) || (dev.oob && memcmp(dev.oob, file.oob, dev.oob_size)) ) { command_print(CMD_CTX, "NAND flash contents differ " "at 0x%8.8" PRIx32, dev.address); nand_fileio_cleanup(&dev); return nand_fileio_cleanup(&file); } file.size -= bytes_read; file.address += nand->page_size; } if (nand_fileio_finish(&file) == ERROR_OK) { command_print(CMD_CTX, "verified file %s in NAND flash %s " "up to offset 0x%8.8" PRIx32 " in %fs (%0.3f kb/s)", CMD_ARGV[1], CMD_ARGV[0], dev.address, duration_elapsed(&file.bench), duration_kbps(&file.bench, dev.size)); } return nand_fileio_cleanup(&dev); } COMMAND_HANDLER(handle_nand_dump_command) { struct nand_device *nand = NULL; struct nand_fileio_state s; int retval = CALL_COMMAND_HANDLER(nand_fileio_parse_args, &s, &nand, FILEIO_WRITE, true, false); if (ERROR_OK != retval) return retval; while (s.size > 0) { size_t size_written; int retval = nand_read_page(nand, s.address / nand->page_size, s.page, s.page_size, s.oob, s.oob_size); if (ERROR_OK != retval) { command_print(CMD_CTX, "reading NAND flash page failed"); return nand_fileio_cleanup(&s); } if (NULL != s.page) fileio_write(&s.fileio, s.page_size, s.page, &size_written); if (NULL != s.oob) fileio_write(&s.fileio, s.oob_size, s.oob, &size_written); s.size -= nand->page_size; s.address += nand->page_size; } if (nand_fileio_finish(&s) == ERROR_OK) { command_print(CMD_CTX, "dumped %zu bytes in %fs (%0.3f kb/s)", s.fileio.size, duration_elapsed(&s.bench), duration_kbps(&s.bench, s.fileio.size)); } return ERROR_OK; } COMMAND_HANDLER(handle_nand_raw_access_command) { if ((CMD_ARGC < 1) || (CMD_ARGC > 2)) { return ERROR_COMMAND_SYNTAX_ERROR; } struct nand_device *p; int retval = CALL_COMMAND_HANDLER(nand_command_get_device_by_num, 0, &p); if (ERROR_OK != retval) return retval; if (NULL == p->device) { command_print(CMD_CTX, "#%s: not probed", CMD_ARGV[0]); return ERROR_OK; } if (CMD_ARGC == 2) COMMAND_PARSE_ENABLE(CMD_ARGV[1], p->use_raw); const char *msg = p->use_raw ? "enabled" : "disabled"; command_print(CMD_CTX, "raw access is %s", msg); return ERROR_OK; } int nand_init(struct command_context *cmd_ctx) { if (!nand_devices) return ERROR_OK; register_command(cmd_ctx, nand_cmd, "list", handle_nand_list_command, COMMAND_EXEC, "list configured NAND flash devices"); register_command(cmd_ctx, nand_cmd, "info", handle_nand_info_command, COMMAND_EXEC, "print info about NAND flash device "); register_command(cmd_ctx, nand_cmd, "probe", handle_nand_probe_command, COMMAND_EXEC, "identify NAND flash device "); register_command(cmd_ctx, nand_cmd, "check_bad_blocks", handle_nand_check_bad_blocks_command, COMMAND_EXEC, "check NAND flash device for bad blocks [ ]"); register_command(cmd_ctx, nand_cmd, "erase", handle_nand_erase_command, COMMAND_EXEC, "erase blocks on NAND flash device [ ]"); register_command(cmd_ctx, nand_cmd, "dump", handle_nand_dump_command, COMMAND_EXEC, "dump from NAND flash device " " [oob_raw | oob_only]"); register_command(cmd_ctx, nand_cmd, "verify", &handle_nand_verify_command, COMMAND_EXEC, "verify NAND flash device " "[oob_raw | oob_only | oob_softecc | oob_softecc_kw]"); register_command(cmd_ctx, nand_cmd, "write", handle_nand_write_command, COMMAND_EXEC, "write to NAND flash device " "[oob_raw | oob_only | oob_softecc | oob_softecc_kw]"); register_command(cmd_ctx, nand_cmd, "raw_access", handle_nand_raw_access_command, COMMAND_EXEC, "raw access to NAND flash device ['enable'|'disable']"); return ERROR_OK; }